Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus
Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance...
Uložené v:
| Vydané v: | The Plant journal : for cell and molecular biology Ročník 45; číslo 6; s. 917 - 929 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford, UK
Oxford, UK : Blackwell Science Ltd
01.03.2006
Blackwell Science Ltd Blackwell Science Blackwell Publishing Ltd |
| Predmet: | |
| ISSN: | 0960-7412, 1365-313X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus. |
|---|---|
| AbstractList | Summary
Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)‐hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC‐based sequestration in As(V)‐hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite‐thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25‐like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)‐inducible and its expression was enhanced in the As(V)‐hypertolerant H. lanatus ecotype, compared with the non‐tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T‐DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus. Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus. Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)‐hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC‐based sequestration in As(V)‐hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite‐thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25‐like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana . The gene appeared to be As(V)‐inducible and its expression was enhanced in the As(V)‐hypertolerant H. lanatus ecotype, compared with the non‐tolerant ecotype. Homologous ectopic overexpression of the At ASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T‐DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of Hl ASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus . Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus. [PUBLICATION ABSTRACT] Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus.Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus. |
| Author | Bleeker, Petra M Bliek, Mattijs Schat, Henk Hakvoort, Henk W.J Souer, Erik |
| Author_xml | – sequence: 1 fullname: Bleeker, Petra M – sequence: 2 fullname: Hakvoort, Henk W.J – sequence: 3 fullname: Bliek, Mattijs – sequence: 4 fullname: Souer, Erik – sequence: 5 fullname: Schat, Henk |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17569522$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16507083$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkt9uFCEUxompsdvqKygx0btZ-c_MhSZmrVbTRBPbxDvCMIzLOgsrMHH3NXxime42TXphyw1w-J0PDuc7AUc-eAsAxGiOy3izmmMqeEUx3c4JQnyOiOB4vn0EZjcHP47ADDUCVZJhcgxOUlohhCUV7Ak4xoIjiWo6A3_P_FJ7YzuoY7JeZwuj7UaTXfCw3UENFx8WhFeD-2Vh3sWQnLdwswxps9RZJwvtdjNo5xN03kRbIl053uVglnbQ2XmojRnX47QuktP-cFGVw2Cj9hmeh8GMCQ66hMf0FDzu9ZDss8N8Cq4-nl0uzquLr58-L95fVKa8HlcG45b23Gqje9MzIk1Xs67HhgmG6pqYWjaYYNM1hiOBDC1Q2-pedIig1lp6Cl7vdTcx_B5tymrtkrFDeYYNY1JCSiQbie8FmahJIwm_F8QSc0b5pPjyDrgKY_SlWkUwZbWoqSjQ8wM0tmvbqU10ax136qZ5BXh1AHQyeujLXxqXbjnJRcMJKVy950xpX4q2v0WQmvykVmqyjZpsoyY_qWs_qW1JfXcn1bh83ckctRseIvB2L_DHDXb34IvV5bcv06rkv9jn9zoo_TOW-q6-E4QZQogSipr_EpgLxug_B0b4ug |
| CitedBy_id | crossref_primary_10_1007_s11244_023_01901_9 crossref_primary_10_1016_j_envexpbot_2016_01_010 crossref_primary_10_1016_j_jplph_2009_07_017 crossref_primary_10_1104_pp_110_153452 crossref_primary_10_1007_s11696_020_01122_4 crossref_primary_10_1016_j_febslet_2008_02_030 crossref_primary_10_1093_jxb_ern097 crossref_primary_10_1016_j_envexpbot_2016_08_004 crossref_primary_10_1093_aob_mcr016 crossref_primary_10_1111_j_1469_8137_2012_04154_x crossref_primary_10_1186_s12870_022_03475_2 crossref_primary_10_1007_s11104_012_1376_3 crossref_primary_10_1007_s11105_015_0937_z crossref_primary_10_1111_j_1469_8137_2009_02841_x crossref_primary_10_1111_j_1469_8137_2008_02609_x crossref_primary_10_1002_tox_20733 crossref_primary_10_1016_j_ecoenv_2022_113405 crossref_primary_10_1016_S2095_3119_15_61320_X crossref_primary_10_1016_j_aquatox_2007_11_001 crossref_primary_10_1186_1471_2229_12_45 crossref_primary_10_3390_jof8020176 crossref_primary_10_1016_j_ecoleng_2011_07_006 crossref_primary_10_1021_es902992d crossref_primary_10_1016_j_envpol_2010_07_043 crossref_primary_10_1016_j_scitotenv_2016_01_188 crossref_primary_10_1111_j_1469_8137_2007_02038_x crossref_primary_10_1007_s40626_019_00144_y crossref_primary_10_1016_j_chemosphere_2010_10_059 crossref_primary_10_1371_journal_pone_0217516 crossref_primary_10_3390_ijerph15010059 crossref_primary_10_1016_j_gexplo_2016_08_007 crossref_primary_10_1007_s00344_023_11075_z crossref_primary_10_1016_j_envpol_2022_118940 crossref_primary_10_1016_j_molp_2015_01_005 crossref_primary_10_1016_j_febslet_2009_12_027 crossref_primary_10_1016_j_scienta_2012_06_010 crossref_primary_10_1016_j_envint_2014_11_010 crossref_primary_10_1016_j_ecoenv_2011_12_019 crossref_primary_10_1016_j_jhazmat_2021_126341 crossref_primary_10_1186_s12951_024_02371_1 crossref_primary_10_1016_j_jhazmat_2023_131607 crossref_primary_10_1093_pcp_pcy025 crossref_primary_10_1080_15226514_2015_1118432 crossref_primary_10_1016_j_tibtech_2007_02_003 crossref_primary_10_1016_j_envexpbot_2010_05_007 crossref_primary_10_1007_s11356_009_0252_z crossref_primary_10_1007_s11816_012_0247_y crossref_primary_10_1016_j_eti_2021_101976 crossref_primary_10_1111_nph_14691 crossref_primary_10_1104_pp_109_146126 crossref_primary_10_1016_j_envexpbot_2008_12_021 crossref_primary_10_1016_j_scitotenv_2019_06_279 crossref_primary_10_1016_j_envpol_2008_04_002 crossref_primary_10_3389_fcell_2017_00067 crossref_primary_10_1186_1471_2229_10_108 crossref_primary_10_1016_j_jhazmat_2023_132463 crossref_primary_10_1080_01904160802463130 crossref_primary_10_1016_j_chemosphere_2011_02_045 crossref_primary_10_1016_j_heliyon_2024_e29140 crossref_primary_10_1186_1741_7007_6_26 crossref_primary_10_1105_tpc_106_045047 crossref_primary_10_1016_j_jenvman_2013_12_027 crossref_primary_10_1007_s13213_016_1229_z crossref_primary_10_3390_molecules20011410 crossref_primary_10_1007_s00344_019_10019_w crossref_primary_10_1016_j_pbi_2009_05_001 crossref_primary_10_1038_s41598_019_45015_3 crossref_primary_10_1016_j_chemosphere_2020_127442 crossref_primary_10_1104_pp_107_111393 crossref_primary_10_1016_j_envpol_2018_03_039 crossref_primary_10_1111_j_1469_8137_2010_03192_x crossref_primary_10_1111_pce_12124 crossref_primary_10_1080_15226514_2014_883496 crossref_primary_10_1016_j_envpol_2009_12_024 crossref_primary_10_1111_j_1469_8137_2008_02716_x crossref_primary_10_1080_03650340902832861 crossref_primary_10_1371_journal_pbio_1002009 crossref_primary_10_1111_j_1469_8137_2007_02009_x crossref_primary_10_1007_s00425_018_2906_x crossref_primary_10_1016_j_ecoenv_2016_11_002 crossref_primary_10_1016_j_envpol_2021_116549 crossref_primary_10_1146_annurev_genet_40_110405_090431 crossref_primary_10_1021_es900304x crossref_primary_10_1111_j_1365_313X_2007_03167_x crossref_primary_10_1007_s11032_010_9412_6 crossref_primary_10_1016_j_tcb_2013_03_002 crossref_primary_10_1016_j_jhazmat_2019_04_011 crossref_primary_10_1111_nph_12491 crossref_primary_10_1016_j_chemosphere_2024_141460 crossref_primary_10_1146_annurev_arplant_042809_112152 crossref_primary_10_1016_j_envpol_2017_05_001 crossref_primary_10_1038_ncomms5617 crossref_primary_10_1093_aob_mcr055 crossref_primary_10_1515_biolog_2017_0062 crossref_primary_10_1007_s11104_019_03961_x crossref_primary_10_1007_s11270_010_0329_9 crossref_primary_10_1016_j_agee_2017_10_017 crossref_primary_10_1111_j_1439_037X_2009_00407_x crossref_primary_10_1111_j_1469_8137_2010_03456_x crossref_primary_10_17221_224_2011_PSE crossref_primary_10_1007_s00709_020_01577_y crossref_primary_10_1093_jxb_eraa465 crossref_primary_10_1007_s11104_016_3064_1 crossref_primary_10_1007_s00018_009_0021_7 crossref_primary_10_1007_s11104_008_9549_9 crossref_primary_10_1016_j_ecoenv_2018_09_023 crossref_primary_10_1093_jxb_err025 crossref_primary_10_1093_jxb_eru018 crossref_primary_10_1016_j_chemosphere_2008_12_021 crossref_primary_10_3390_toxics11070568 crossref_primary_10_1007_s11103_012_9969_z crossref_primary_10_1007_s13562_019_00486_3 crossref_primary_10_1016_j_plaphy_2016_03_034 crossref_primary_10_1016_j_envint_2014_10_019 crossref_primary_10_1016_j_envpol_2007_07_002 crossref_primary_10_1016_j_scitotenv_2023_165232 crossref_primary_10_1007_s11104_015_2739_3 crossref_primary_10_1111_j_1469_8137_2008_02758_x crossref_primary_10_1016_S1001_0742_10_60492_5 crossref_primary_10_1105_tpc_105_040485 crossref_primary_10_1016_j_envpol_2022_119038 crossref_primary_10_1016_j_jprot_2011_03_027 crossref_primary_10_1104_pp_113_224303 crossref_primary_10_1186_1471_2229_14_94 crossref_primary_10_1016_j_gsd_2019_100263 crossref_primary_10_1016_j_jhazmat_2020_124831 crossref_primary_10_1016_j_jhazmat_2020_122895 crossref_primary_10_1016_j_pbi_2009_04_005 crossref_primary_10_1021_es062167j crossref_primary_10_1104_pp_106_084079 crossref_primary_10_1104_pp_111_173088 crossref_primary_10_1073_pnas_1013964107 crossref_primary_10_1590_0001_3765201720160320 crossref_primary_10_1016_j_eti_2018_12_003 crossref_primary_10_1039_C3MT00317E crossref_primary_10_1007_s10311_011_0313_7 crossref_primary_10_1007_s11356_023_26472_w crossref_primary_10_1016_j_plaphy_2010_11_004 crossref_primary_10_1016_j_sajb_2020_02_024 crossref_primary_10_1111_j_1365_3040_2007_01746_x crossref_primary_10_1016_j_stress_2025_100931 crossref_primary_10_1093_aob_mcq142 crossref_primary_10_1105_tpc_109_070417 crossref_primary_10_1007_s00128_017_2135_1 crossref_primary_10_1007_s11356_024_32177_5 crossref_primary_10_1111_j_1469_8137_2007_02195_x crossref_primary_10_1105_tpc_109_069773 crossref_primary_10_1016_j_chemosphere_2022_135164 crossref_primary_10_1016_j_envexpbot_2020_104312 crossref_primary_10_1093_jxb_erp181 crossref_primary_10_1080_15226514_2011_604690 crossref_primary_10_1007_s00344_020_10145_w crossref_primary_10_1007_s11157_015_9371_9 crossref_primary_10_1007_s40415_020_00694_5 crossref_primary_10_1111_ppl_12607 crossref_primary_10_1007_s11356_012_1205_5 crossref_primary_10_1186_gb_2010_11_2_r17 crossref_primary_10_3389_fpls_2017_01115 crossref_primary_10_1139_gen_2018_0152 crossref_primary_10_1111_j_1469_8137_2011_03743_x crossref_primary_10_1111_j_1469_8137_2011_03789_x crossref_primary_10_1016_j_ecoleng_2021_106267 crossref_primary_10_1007_s11104_009_0154_3 crossref_primary_10_1016_j_envpol_2012_02_009 crossref_primary_10_1016_j_ecoenv_2025_118382 crossref_primary_10_1007_s11356_012_1342_x crossref_primary_10_1104_pp_110_163261 |
| Cites_doi | 10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO;2-Y 10.1074/jbc.270.9.4721 10.1016/S0014-5793(02)03186-1 10.1248/cpb.38.2364 10.1104/pp.107.4.1067 10.1104/pp.103.033506 10.1074/jbc.M103354200 10.1093/jxb/erf107 10.1104/pp.107.4.1293 10.1111/j.1469-8137.1987.tb00190.x 10.1016/j.bbrc.2004.07.182 10.1104/pp.010733 10.1016/S0076-6879(83)91014-5 10.1139/o91-018 10.1111/j.1365-3040.1994.tb02032.x 10.1038/hdy.1992.35 10.1002/j.1460-2075.1988.tb02939.x 10.1093/carcin/8.6.803 10.1046/j.1469-8137.2003.00542.x 10.1046/j.1365-313x.1998.00343.x 10.1046/j.1462-2920.2003.00508.x 10.1073/pnas.96.9.5001 10.1007/BF00016283 10.1104/pp.104.1.255 10.1016/0048-9697(94)90300-X 10.1104/pp.126.1.299 10.1104/pp.104.057422 10.1073/pnas.86.18.6838 10.1093/embo-reports/kvf150 10.1046/j.1365-2958.2001.02485.x 10.1016/S0176-1617(97)80001-6 10.1038/hdy.1992.133 10.1021/bi00189a033 10.1128/JB.144.1.366-374.1980 10.1016/S0003-2670(00)88444-5 10.1046/j.1469-8137.2003.00655.x 10.1016/0039-9140(85)80023-0 10.1038/hdy.1992.132 10.1104/pp.120.3.779 10.1074/jbc.M002997200 10.1038/nbt747 10.1111/j.1469-8137.1991.tb04903.x 10.1074/jbc.M910401199 10.1073/pnas.0405248101 10.1046/j.1469-8137.2002.00363.x 10.1046/j.1365-313X.2003.01835.x 10.1093/jxb/43.4.519 10.1104/pp.84.3.574 10.1016/0013-9327(77)90137-9 10.1126/science.188.4185.263 10.1021/jf9903105 10.1016/0378-1119(96)00079-0 10.1016/0009-2797(94)90099-X 10.1007/s00425-003-1091-7 10.1111/j.0031-9317.2004.0240.x 10.1126/science.230.4726.674 10.1105/tpc.11.6.1153 10.2134/jeq1995.00472425002400020022x 10.1046/j.1469-8137.2002.00455.x 10.1021/bi00189a034 10.1021/bk-1975-0007.ch009 |
| ContentType | Journal Article |
| Copyright | 2006 INIST-CNRS 2006 The Authors Journal compilation 2006 Blackwell Publishing Ltd |
| Copyright_xml | – notice: 2006 INIST-CNRS – notice: 2006 The Authors Journal compilation 2006 Blackwell Publishing Ltd |
| DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7S9 L.6 7X8 |
| DOI | 10.1111/j.1365-313x.2005.02651.x |
| DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | CrossRef AGRICOLA Genetics Abstracts Genetics Abstracts MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1365-313X |
| EndPage | 929 |
| ExternalDocumentID | 995219281 16507083 17569522 10_1111_j_1365_313X_2005_02651_x TPJ2651 US201400032309 US201400015644 |
| Genre | article Journal Article Feature |
| GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT 24P ABHUG ABPTK ABWRO ACXME ADAWD ADDAD AEUQT AFPWT AFVGU AGJLS ESX IPNFZ WRC AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION O8X IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c6501-c11b3f5eacafcf427cd84df1c4640882c879121cd9c5060c3cf4bbaf6d020bee3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 205 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000235596600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-7412 |
| IngestDate | Fri Jul 11 08:49:27 EDT 2025 Fri Jul 11 07:40:44 EDT 2025 Fri Jul 11 16:53:07 EDT 2025 Fri Jul 25 10:52:03 EDT 2025 Wed Feb 19 01:44:31 EST 2025 Mon Jul 21 09:12:00 EDT 2025 Sat Nov 29 06:05:03 EST 2025 Tue Nov 18 21:49:40 EST 2025 Wed Jan 22 16:52:16 EST 2025 Wed Dec 27 19:14:39 EST 2023 Mon May 19 05:25:18 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | vacuolar transport Monocotyledones Root arsenate tolerance Hypersensitivity Tolerance arsenate reductase phytochelatin synthase Holcus lanatus Arabidopsis thaliana EC 2.3.2.15 Complementary DNA Gene Cruciferae Gramineae CDC25 Dicotyledones Angiospermae Spermatophyta Mutation |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6501-c11b3f5eacafcf427cd84df1c4640882c879121cd9c5060c3cf4bbaf6d020bee3 |
| Notes | http://dx.doi.org/10.1111/j.1365-313X.2005.02651.x Present address: Rothamsted Research, Crop Performance and Improvement Division, Harpenden, AL5 2JQ, UK. Present address: Institute for Molecular and Cellular Biology, Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-313X.2005.02651.x |
| PMID | 16507083 |
| PQID | 213486836 |
| PQPubID | 31702 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_67707971 proquest_miscellaneous_46829725 proquest_miscellaneous_17154351 proquest_journals_213486836 pubmed_primary_16507083 pascalfrancis_primary_17569522 crossref_primary_10_1111_j_1365_313X_2005_02651_x crossref_citationtrail_10_1111_j_1365_313X_2005_02651_x wiley_primary_10_1111_j_1365_313X_2005_02651_x_TPJ2651 fao_agris_US201400032309 fao_agris_US201400015644 |
| PublicationCentury | 2000 |
| PublicationDate | March 2006 |
| PublicationDateYYYYMMDD | 2006-03-01 |
| PublicationDate_xml | – month: 03 year: 2006 text: March 2006 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
| PublicationTitle | The Plant journal : for cell and molecular biology |
| PublicationTitleAlternate | Plant J |
| PublicationYear | 2006 |
| Publisher | Oxford, UK : Blackwell Science Ltd Blackwell Science Ltd Blackwell Science Blackwell Publishing Ltd |
| Publisher_xml | – name: Oxford, UK : Blackwell Science Ltd – name: Blackwell Science Ltd – name: Blackwell Science – name: Blackwell Publishing Ltd |
| References | 2004; 120 1989; 86 1992a; 43 1987; 8 2002; 154 2002; 53 2000; 48 1997; 151 2005; 138 2002; 155 1987; 107 1999; 120 1972 1983; 91 1991; 117 2003; 157 2001; 40 1998; 16 1994; 145 2004; 134 1987; 84 1994; 104 1995; 24 1997; 13 1979; 6 1994; 33 1999; 11 1996; 171 2003; 5 1975; 188 1999; 96 1975; 7 1980; 144 2003; 218 1994; 90 1990; 38 2003; 35 2002; 3 2000; 275 1992b; 69 2001; 126 2004b; 322 1995; 270 2001; 276 1991; 69 2002; 20 1977; 14 1988; 7 2002; 128 2004a; 101 1962; 27 1995; 107 1993; 151 1992; 68 1992; 69 2002; 529 1994; 17 1985; 32 1985; 230 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Meharg A.A. (e_1_2_6_36_1) 1994; 17 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Asher D.J. (e_1_2_6_3_1) 1979; 6 Jocelyn P.C. (e_1_2_6_28_1) 1972 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 Van Tunen A.J. (e_1_2_6_60_1) 1988; 7 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 68 start-page: 219 year: 1992 end-page: 229 article-title: Genetic control of copper tolerance in publication-title: Heredity – volume: 91 start-page: 95 year: 1983 end-page: 121 article-title: Determination of total protein publication-title: Methods Enzymol. – volume: 8 start-page: 803 year: 1987 end-page: 808 article-title: Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation publication-title: Carcinogenesis – volume: 275 start-page: 31451 year: 2000 end-page: 31459 article-title: Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase‐catalyzed transpeptidation of glutathione and related thiol peptides publication-title: J. Biol. Chem. – volume: 107 start-page: 1293 year: 1995 end-page: 1301 article-title: MgATP‐dependent transport of phytochelatins across the tonoplast of oat roots publication-title: Plant Physiol. – volume: 38 start-page: 2364 year: 1990 end-page: 2368 article-title: Amino acids and peptides XXVII. Synthesis of phytochelatin‐related peptides and examination of their heavy metal‐binding properties publication-title: Chem. Pharm. Bull. – volume: 157 start-page: 39 year: 2003 end-page: 44 article-title: Arsenite transport into paddy rice ( ) roots publication-title: New Phytol. – volume: 117 start-page: 225 year: 1991 end-page: 231 article-title: Uptake, accumulation and translocation of arsenate in arsenate tolerant and non‐tolerant L publication-title: New Phytol. – volume: 154 start-page: 29 year: 2002 end-page: 43 article-title: Arsenic uptake and metabolism in arsenic resistant and non‐resistant plant species publication-title: New Phytol. – volume: 11 start-page: 1153 year: 1999 end-page: 1163 article-title: Phytochelatin synthase genes from Arabidopsis and the yeast publication-title: Plant Cell – volume: 151 start-page: 385 year: 1997 end-page: 389 article-title: Thiosulfate reductase from publication-title: J. Plant Physiol. – volume: 84 start-page: 574 year: 1987 end-page: 577 article-title: Effect of buthionine sulfoximine on Cd‐binding peptide levels in suspension‐cultured tobacco cells treated with Cd, Zn, or Cu publication-title: Plant Physiol. – volume: 32 start-page: 69 year: 1985 end-page: 72 article-title: Arsenic speciation in soil‐pore waters from mineralised and unmineralised areas of South–West England publication-title: Talanta – volume: 276 start-page: 34738 year: 2001 end-page: 34742 article-title: The phosphatase C(X) R motif is required for catalytic activity of the Asr2p arsenate reductase publication-title: J. Biol. Chem. – volume: 16 start-page: 735 year: 1998 end-page: 743 article-title: Floral dip: a simplified method for ‐mediated transformation of publication-title: Plant J. – volume: 134 start-page: 1113 year: 2004 end-page: 1122 article-title: The nature of arsenic phytochelatins complexes in and publication-title: Plant Physiol. – volume: 101 start-page: 13380 year: 2004a end-page: 13385 article-title: A small CDC25 dual‐specificity tyrosine‐phosphatase isoform in publication-title: Proc. Natl Acad. Sci. USA – volume: 322 start-page: 734 year: 2004b end-page: 739 article-title: Characterization of the ;CDC25 dual‐specificity tyrosime phosphatase publication-title: Biochem. Bioph. Res. Co. – volume: 7 start-page: 124 year: 1975 end-page: 147 article-title: A proposed arsenic cycle in an agronomic ecosystem publication-title: ACS Symp. Ser. – volume: 69 start-page: 336 year: 1992b end-page: 341 article-title: Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in L publication-title: Heredity – volume: 104 start-page: 255 year: 1994 end-page: 261 article-title: Phytochelatins in cadmium‐sensitive and cadmium‐tolerant : chain length distribution and sulfide incorporation publication-title: Plant Physiol. – volume: 86 start-page: 6838 year: 1989 end-page: 6842 article-title: Phytochelatins, the heavy metal‐binding peptides of plants, are synthesized from glutathione by a specific ‐glutamylcysteinedipeptyl transpeptidase (phytochelatin synthase) publication-title: Proc. Natl Acad. Sci. USA – volume: 145 start-page: 103 year: 1994 end-page: 109 article-title: and on heavy metal and arsenic enriched sites in NE Portugal publication-title: Sci. Total Environ. – volume: 20 start-page: 1140 year: 2002 end-page: 1145 article-title: Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and ‐glutamylcysteine synthetase expression publication-title: Nat. Biotech. – volume: 155 start-page: 219 year: 2002 end-page: 225 article-title: Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant ? publication-title: New Phytol. – volume: 17 start-page: 989 year: 1994 end-page: 993 article-title: Integrated tolerance mechanisms – constitutive and adaptive plant – responses to elevated metal concentrations in the environment publication-title: Plant Cell Environ. – volume: 69 start-page: 115 year: 1991 end-page: 121 article-title: Two pathways in the biosynthesis of cadystins ( ‐EC) G in the cell‐free system of the fission yeast publication-title: Biochem. Cell Biol. – volume: 33 start-page: 7294 year: 1994 end-page: 7299 article-title: Arsenate reductase of plasmid pI258 publication-title: Biochemistry – year: 1972 – volume: 138 start-page: 461 year: 2005 end-page: 469 article-title: Characterization of arsenate reductase in the extract of roots and fronds of Chinese Brake Fern, an arsenic hyperaccumulator publication-title: Plant Physiol. – volume: 171 start-page: 41 year: 1996 end-page: 47 article-title: A putative new membrane protein, Pho86p, in the inorganic phosphate uptake system of publication-title: Gene – volume: 33 start-page: 7288 year: 1994 end-page: 7293 article-title: Properties of the arsenate reductase of plasmid R773 publication-title: Biochemistry – volume: 218 start-page: 300 year: 2003 end-page: 308 article-title: Localization and functional characterization of metal‐binding sites in phytochelatin synthases publication-title: Planta – volume: 151 start-page: 185 year: 1993 end-page: 191 article-title: As(V) tolerance in and publication-title: Plant Soil – volume: 230 start-page: 674 year: 1985 end-page: 676 article-title: Phytochelatins: the principal heavy‐metal complexing peptides of higher plants publication-title: Science – volume: 3 start-page: 741 year: 2002 end-page: 746 article-title: The rhodanese/Cdc25 phosphatase superfamily publication-title: EMBO Rep. – volume: 48 start-page: 4014 year: 2000 end-page: 4019 article-title: Derivatization of phytochelatins from induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellmans's reagent and monobromobimane publication-title: J. Agric. Food Chem. – volume: 126 start-page: 299 year: 2001 end-page: 306 article-title: Phytochelatins are involved in differential arsenate tolerance in publication-title: Plant Physiol. – volume: 270 start-page: 4721 year: 1995 end-page: 4728 article-title: Transport of metal‐binding peptides by HMT1, a fission yeast ABC‐type vacuolar membrane protein publication-title: J. Biol. Chem. – volume: 7 start-page: 1257 year: 1988 end-page: 1263 article-title: Cloning of the two chalcone flavonone isomerase genes from : coordinate light‐regulated and differential expression of flavonoid genes publication-title: EMBO J. – volume: 40 start-page: 1391 year: 2001 end-page: 1401 article-title: The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in publication-title: Mol. Microb. – volume: 53 start-page: 2381 year: 2002 end-page: 2392 article-title: The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumylator and non‐hyperaccumuylator metallophytes publication-title: J. Exp. Bot. – volume: 13 start-page: 819 year: 1997 end-page: 828 article-title: Isolation of three contiguous genes, , and , involved in resistance to arsenic compounds in the yeast publication-title: Yeast – volume: 96 start-page: 5001 year: 1999 end-page: 5006 article-title: Pathways of As(III) detoxification in publication-title: Proc. Natl Acad. Sci. USA – volume: 144 start-page: 366 year: 1980 end-page: 374 article-title: Effect of arsenate on inorganic phosphate transport in publication-title: J. Bacteriol. – volume: 275 start-page: 21149 year: 2000 end-page: 21157 article-title: Purification and characterization of Asr2p, the arsenate reductase publication-title: J. Biol. Chem. – volume: 5 start-page: 1087 year: 2003 end-page: 1093 article-title: Arsenate transport and reduction in the hyper‐tolerant fungus sp. P37 publication-title: Environ. Microbiol. – volume: 128 start-page: 1 year: 2002 end-page: 9 article-title: Uptake kinetics of arsenic species in rice plants publication-title: Plant Physiol. – volume: 157 start-page: 33 year: 2003 end-page: 38 article-title: Mechanisms of arsenate tolerance in publication-title: New Phytol. – volume: 90 start-page: 139 year: 1994 end-page: 155 article-title: Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study publication-title: Chem. Biol. Interact. – volume: 120 start-page: 280 year: 2004 end-page: 286 article-title: Arsenic uptake, translocation and speciation in and mutants of publication-title: Physiol. Plant. – volume: 6 start-page: 459 year: 1979 end-page: 466 article-title: Arsenic uptake by barley seedlings publication-title: J. Plant Physiol. – volume: 120 start-page: 779 year: 1999 end-page: 785 article-title: Properties of enhanced tonoplast zinc transport in naturally selected zinc tolerant publication-title: Plant Physiol. – volume: 69 start-page: 325 year: 1992 end-page: 335 article-title: The genetics of arsenate tolerance in Yorkshire Fog, L publication-title: Heredity – volume: 188 start-page: 263 year: 1975 end-page: 264 article-title: Arsenic tolerance in a population of the grass Michx publication-title: Science – volume: 35 start-page: 637 year: 2003 end-page: 646 article-title: , an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake publication-title: Plant J. – volume: 27 start-page: 31 year: 1962 end-page: 36 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chim. Acta – volume: 107 start-page: 387 year: 1987 end-page: 394 article-title: Evidence that arsenic tolerance in L. is caused by an altered phosphate uptake system publication-title: New Phytol. – volume: 107 start-page: 1067 year: 1995 end-page: 1073 article-title: A cadmium sensitive, glutathione‐deficient mutant of publication-title: Plant Physiol. – volume: 43 start-page: 519 year: 1992a end-page: 524 article-title: Suppression of the high‐affinity phosphate‐uptake system – a mechanism of arsenate tolerance in L publication-title: J. Exp. Bot. – volume: 14 start-page: 255 year: 1977 end-page: 265 article-title: Arsenic tolerance in grasses growing on mine waste publication-title: Environ. Pollut. – volume: 24 start-page: 373 year: 1995 end-page: 381 article-title: Plant uptake and determination of arsenic species in soil solutions under flooded conditions publication-title: J. Environ. Qual. – volume: 529 start-page: 86 year: 2002 end-page: 92 article-title: Biochemistry of arsenic detoxification publication-title: FEBS Lett. – ident: e_1_2_6_6_1 doi: 10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO;2-Y – ident: e_1_2_6_46_1 doi: 10.1074/jbc.270.9.4721 – ident: e_1_2_6_54_1 doi: 10.1016/S0014-5793(02)03186-1 – ident: e_1_2_6_35_1 doi: 10.1248/cpb.38.2364 – ident: e_1_2_6_26_1 doi: 10.1104/pp.107.4.1067 – ident: e_1_2_6_51_1 doi: 10.1104/pp.103.033506 – ident: e_1_2_6_42_1 doi: 10.1074/jbc.M103354200 – ident: e_1_2_6_58_1 doi: 10.1093/jxb/erf107 – ident: e_1_2_6_55_1 doi: 10.1104/pp.107.4.1293 – ident: e_1_2_6_32_1 doi: 10.1111/j.1469-8137.1987.tb00190.x – ident: e_1_2_6_30_1 doi: 10.1016/j.bbrc.2004.07.182 – ident: e_1_2_6_2_1 doi: 10.1104/pp.010733 – ident: e_1_2_6_47_1 doi: 10.1016/S0076-6879(83)91014-5 – ident: e_1_2_6_25_1 doi: 10.1139/o91-018 – volume: 17 start-page: 989 year: 1994 ident: e_1_2_6_36_1 article-title: Integrated tolerance mechanisms – constitutive and adaptive plant – responses to elevated metal concentrations in the environment publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1994.tb02032.x – ident: e_1_2_6_57_1 doi: 10.1038/hdy.1992.35 – volume: 7 start-page: 1257 year: 1988 ident: e_1_2_6_60_1 article-title: Cloning of the two chalcone flavonone isomerase genes from Petunia hybrida: coordinate light‐regulated and differential expression of flavonoid genes publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb02939.x – ident: e_1_2_6_4_1 doi: 10.1093/carcin/8.6.803 – ident: e_1_2_6_5_1 doi: 10.1046/j.1469-8137.2003.00542.x – ident: e_1_2_6_10_1 doi: 10.1046/j.1365-313x.1998.00343.x – volume-title: Biochemistry of the SH Group year: 1972 ident: e_1_2_6_28_1 – ident: e_1_2_6_8_1 doi: 10.1046/j.1462-2920.2003.00508.x – ident: e_1_2_6_18_1 doi: 10.1073/pnas.96.9.5001 – ident: e_1_2_6_13_1 doi: 10.1007/BF00016283 – ident: e_1_2_6_11_1 doi: 10.1104/pp.104.1.255 – ident: e_1_2_6_12_1 doi: 10.1016/0048-9697(94)90300-X – ident: e_1_2_6_22_1 doi: 10.1104/pp.126.1.299 – ident: e_1_2_6_16_1 doi: 10.1104/pp.104.057422 – ident: e_1_2_6_20_1 doi: 10.1073/pnas.86.18.6838 – ident: e_1_2_6_7_1 doi: 10.1093/embo-reports/kvf150 – ident: e_1_2_6_63_1 doi: 10.1046/j.1365-2958.2001.02485.x – ident: e_1_2_6_49_1 doi: 10.1016/S0176-1617(97)80001-6 – ident: e_1_2_6_41_1 doi: 10.1038/hdy.1992.133 – ident: e_1_2_6_17_1 doi: 10.1021/bi00189a033 – ident: e_1_2_6_62_1 doi: 10.1128/JB.144.1.366-374.1980 – ident: e_1_2_6_44_1 doi: 10.1016/S0003-2670(00)88444-5 – ident: e_1_2_6_38_1 doi: 10.1046/j.1469-8137.2003.00655.x – ident: e_1_2_6_24_1 doi: 10.1016/0039-9140(85)80023-0 – ident: e_1_2_6_33_1 doi: 10.1038/hdy.1992.132 – ident: e_1_2_6_9_1 doi: 10.1104/pp.120.3.779 – ident: e_1_2_6_61_1 doi: 10.1074/jbc.M002997200 – ident: e_1_2_6_15_1 doi: 10.1038/nbt747 – volume: 6 start-page: 459 year: 1979 ident: e_1_2_6_3_1 article-title: Arsenic uptake by barley seedlings publication-title: J. Plant Physiol. – ident: e_1_2_6_39_1 doi: 10.1111/j.1469-8137.1991.tb04903.x – ident: e_1_2_6_43_1 doi: 10.1074/jbc.M910401199 – ident: e_1_2_6_29_1 doi: 10.1073/pnas.0405248101 – ident: e_1_2_6_37_1 doi: 10.1046/j.1469-8137.2002.00363.x – ident: e_1_2_6_31_1 doi: 10.1046/j.1365-313X.2003.01835.x – ident: e_1_2_6_40_1 doi: 10.1093/jxb/43.4.519 – ident: e_1_2_6_52_1 doi: 10.1104/pp.84.3.574 – ident: e_1_2_6_48_1 doi: 10.1016/0013-9327(77)90137-9 – ident: e_1_2_6_53_1 doi: 10.1126/science.188.4185.263 – ident: e_1_2_6_59_1 doi: 10.1021/jf9903105 – ident: e_1_2_6_64_1 doi: 10.1016/0378-1119(96)00079-0 – ident: e_1_2_6_14_1 doi: 10.1016/0009-2797(94)90099-X – ident: e_1_2_6_34_1 doi: 10.1007/s00425-003-1091-7 – ident: e_1_2_6_50_1 doi: 10.1111/j.0031-9317.2004.0240.x – ident: e_1_2_6_19_1 doi: 10.1126/science.230.4726.674 – ident: e_1_2_6_21_1 doi: 10.1105/tpc.11.6.1153 – ident: e_1_2_6_45_1 doi: 10.2134/jeq1995.00472425002400020022x – ident: e_1_2_6_23_1 doi: 10.1046/j.1469-8137.2002.00455.x – ident: e_1_2_6_27_1 doi: 10.1021/bi00189a034 – ident: e_1_2_6_56_1 doi: 10.1021/bk-1975-0007.ch009 |
| SSID | ssj0017364 |
| Score | 2.3360934 |
| Snippet | Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show... Summary Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)‐hypertolerant ecotypes... Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)‐hypertolerant ecotypes also show... |
| SourceID | proquest pubmed pascalfrancis crossref wiley fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 917 |
| SubjectTerms | Amino Acid Sequence Amino acids Analysis of Variance Arabidopsis Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis thaliana arsenate reductase arsenate tolerance Arsenates Arsenates - metabolism Arsenates - pharmacology Arsenic Arsenite Transporting ATPases Biological and medical sciences CDC25 cdc25 Phosphatases cdc25 Phosphatases - genetics cdc25 Phosphatases - metabolism complementary DNA Consensus Sequence DNA, Bacterial DNA, Bacterial - genetics DNA, Complementary DNA, Complementary - metabolism drug effects Ecotypes Enzymes enzymology Flowers & plants Fundamental and applied biological sciences. Psychology gene overexpression genes genetics Genotype & phenotype Glutathione Glutathione - metabolism Holcus Holcus - drug effects Holcus - enzymology Holcus - genetics Holcus lanatus Hypersensitivity Ion Pumps Ion Pumps - genetics Ion Pumps - metabolism Metabolism Molecular Sequence Data Multienzyme Complexes Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Mutagenesis, Insertional mutants pharmacology Phenotype Phosphates phytochelatin synthase Phytochelatins Plant physiology and development Plant Proteins Plant Proteins - genetics Plant Proteins - metabolism Sequence Alignment toxicity transfer DNA tyrosine vacuolar transport Yeasts |
| Title | Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2005.02651.x https://www.ncbi.nlm.nih.gov/pubmed/16507083 https://www.proquest.com/docview/213486836 https://www.proquest.com/docview/17154351 https://www.proquest.com/docview/46829725 https://www.proquest.com/docview/67707971 |
| Volume | 45 |
| WOSCitedRecordID | wos000235596600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1365-313X dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0017364 issn: 0960-7412 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-313X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017364 issn: 0960-7412 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZo6YEL_9BQWHzgGlQnThwfy7argqpVBV3YW2Q7dndFSFabbNW98QiceECehJkk3bJoK1WIWyL_xePxzDfOeIaQNxlo8dAI61uhuc-53Pe13Ld-ZjNlrWMuaLwqP5-I4TAZj-Vp5_-Ed2Ha-BCrAzfcGY28xg2udLW-ydFDK2ThuDsaCeKIvUU8yTjDZAZf3g9XPxRE2EaSAsDugxL9y6lnY0drmmrLqRL9JlUFpHNtzotNoHQd4zZKavDgf07vIbnfQVV60PLWI3LHFo_JzrsS4OTyCfl5VEwa7wEKprEtALLSOYaBxYWmekkV7R_2g-jX9x_59Kul9RImCR9FZ5Oymk1UDdqT2stZrqZFRacFgtcKOoNVrzGJF7roFVQZs_jWJRij-N4NBb3WZW6BQDU9LnOzqGiuMEZp9ZSMBkdn_WO_S_LgGwCHzDeM6dBFIP-VM44HwmQJzxwzPOYI_00iJAuYyaTBWIgmhEpaKxdnAHS1teEzsl2Uhd0lNNGBSxKuBUapi2SiRQbWlJQC5E7mpPaIuFrQ1HQR0DERR57-YQkB0VMkOubnjNKG6OmlR9iq5ayNAnKLNrvAM6k6B2Gdjj4FaMo2F9c531wUgjUoPdJb47Hr4UQUSwDLHtm7Yrq0EzdVihNO4iSMPfJ6VQpyAn_-qMKWiwraA1gOI3ZzDR7jNesgurlGLDCeooA-nrfcfv11sJYC0LxH4oapb02l9Oz0Az69-NeGe-ReeyqGboEvyXY9X9hXZMdc1NNq3iNbYpz0yN3Dj4PRSa8RCb8B32hc-Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgTIIX_sPCYPMDr0FL4sTxI5RNHZRqEh30zbIde60ISdWkaH3jI_DEB-STcJdkHUWdNCHeEsV24rvz3e-c8x0hLzOw4pHh1rdcM58xceBrcWD9zGbKWhe4sImq_DTgw2E6HouTrhwQnoVp80OsNtxwZTT6Ghc4bkivr3IM0YqCaNztjYRJHLwCQHmLAe7AOg6fj4erXwo8anNJAWT3wYz-FdazcaQ1W3XTqRIjJ1UFxHNt1YtNsHQd5TZm6ujef53gfXK3Q6v0dSteD8gNWzwk229KQJTLR-TnYTFpAggoeMe2ANRK55gJFnlN9ZIq2nvbC-Nf33_k0y-W1kuYJXwVnU3KajZRNRhQas9nuZoWFZ0WiF8rGAwYX2MdL4zSK6gyZvG1qzFG8b57FYxal7kFCtW0X-ZmUdFcYZrS6jE5PToc9fp-V-fBN8CnwDdBoCMXgwlQzjgWcpOlLHOBYQlDD8CkXARhYDJhMB2iiaCR1solGWBdbW30hGwVZWF3CE116NKUaY6J6mKRap6BQyUEB9WTOaE9wi84Kk2XBB1rceTyD2cIiC6R6FiiM5YN0eW5R4JVz1mbCOQafXZAaKQ6A30tTz-G6M02Z9cZ2_woAodQeGRvTcguX8fjRABe9sjuhdTJTuNUEiecJmmUeGR_9RRUBf7_UYUtFxX0B7wcxcHVLViCJ63D-OoWCceUihzGeNqK--XXAS85AHqPJI1UX5tKcnTyDq-e_WvHfXK7P_owkIPj4ftdcqfdJMMowedkq54v7Auybb7V02q-12iE33NdXo8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELegm9Be-A8Lg80PvAYtiRPHj9CuGlBVFayob5Ht2GtFSKomndY3PgJPfEA-CXdJ1lHUSRPiLZH_xefz3e-c8x0hr1PQ4oHmxjVcMZcxcewqcWzc1KTSGOtZv_aq_DLgw2E8mYhRmw4I78I08SHWB264M2p5jRvczFO7ucvRRSvwgkl7NuJHofcGAOUOw5wyHbLT-9QfD9Y_FXjQRJMC0O6CIv3LsWdrXxva6q6VBfpOyhLIZ5u8F9uA6SbOrRVV_8F_neJDcr_Fq_Rtw2CPyB2TPya77wrAlKsn5OdJPq1dCCjYxyYH3EoXGAsWV5uqFZW02-v64a_vP7LZV0OrFcwSvorOp0U5n8oKVCg1l_NMzvKSznJEsCV0BktfYSYv9NPLqdR6-a3NMkbxvR0Keq2KzACFKnpaZHpZ0kxioNLyKRn3T866p26b6cHVgBA9V3ueCmwISkBabZnPdRqz1HqaRQxtAB1z4fmeToXGgIg6gEpKSRulgHaVMcEz0smL3OwTGivfxjFTHEPVhSJWPAWTSggOwie1QjmEX61ootsw6JiNI0v-MIeA6AkSHZN0hklN9OTSId665bwJBXKLNvvANIk8B4mdjD_7aM_Wt9cZ214UgEkoHHK4wWTXw_EwEoCYHXJwxXVJK3PKBCccR3EQOeRoXQrCAv8AydwUyxLaA2IOQu_mGizCu9Z-eHONiGNQRQ59PG_Y_frrYC05QHqHRDVX35pKydnoAz69-NeGR-TeqNdPBu-HHw_IXnNKhm6CL0mnWizNK7KrL6pZuThsRcJv_F5fOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+arsenate+reduction+by+a+CDC25-like+tyrosine+phosphatase+explains+increased+phytochelatin+accumulation+in+arsenate-tolerant+Holcus+lanatus&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=BLEEKER%2C+Petra+M&rft.au=HAKVOORT%2C+Henk+W.+J&rft.au=BLIEK%2C+Mattijs&rft.au=SOUER%2C+Erik&rft.date=2006-03-01&rft.pub=Blackwell+Science&rft.issn=0960-7412&rft.volume=45&rft.issue=6&rft.spage=917&rft.epage=929&rft_id=info:doi/10.1111%2Fj.1365-313x.2005.02651.x&rft.externalDBID=n%2Fa&rft.externalDocID=17569522 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |