Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus

Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Plant journal : for cell and molecular biology Ročník 45; číslo 6; s. 917 - 929
Hlavní autori: Bleeker, Petra M, Hakvoort, Henk W.J, Bliek, Mattijs, Souer, Erik, Schat, Henk
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Oxford, UK : Blackwell Science Ltd 01.03.2006
Blackwell Science Ltd
Blackwell Science
Blackwell Publishing Ltd
Predmet:
ISSN:0960-7412, 1365-313X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus.
AbstractList Summary Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)‐hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC‐based sequestration in As(V)‐hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite‐thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25‐like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)‐inducible and its expression was enhanced in the As(V)‐hypertolerant H. lanatus ecotype, compared with the non‐tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T‐DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus.
Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus.
Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)‐hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC‐based sequestration in As(V)‐hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite‐thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25‐like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana . The gene appeared to be As(V)‐inducible and its expression was enhanced in the As(V)‐hypertolerant H. lanatus ecotype, compared with the non‐tolerant ecotype. Homologous ectopic overexpression of the At ASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T‐DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of Hl ASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus .
Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus. [PUBLICATION ABSTRACT]
Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus.Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show enhanced rates of phytochelatin (PC) accumulation, suggesting that improved sequestration might additionally contribute to the hypertolerance phenotype. Here, we show that enhanced PC-based sequestration in As(V)-hypertolerant Holcus lanatus is not due to an enhanced capacity for PC synthesis as such, but to increased As(V) reductase activity. Vacuolar transport of arsenite-thiol complexes was equal in both ecotypes. Based on homology with the yeast As(V) reductase, Acr2p, we identified a Cdc25-like plant candidate, HlAsr, and confirmed the As(V) reductase activity of both HlAsr and the homologous protein from Arabidopsis thaliana. The gene appeared to be As(V)-inducible and its expression was enhanced in the As(V)-hypertolerant H. lanatus ecotype, compared with the non-tolerant ecotype. Homologous ectopic overexpression of the AtASR cDNA in A. thaliana produced a dual phenotype. It improved tolerance to mildly toxic levels of As(V) exposure, but caused hypersensitivity to more toxic levels. Arabidopsis asr T-DNA mutants showed increased As(V) sensitivity at low exposure levels and enhanced arsenic retention in the root. It is argued that, next to decreased uptake, enhanced expression of HlASR might act as an additional determinant of As(V) hypertolerance and As transport in H. lanatus.
Author Bleeker, Petra M
Bliek, Mattijs
Schat, Henk
Hakvoort, Henk W.J
Souer, Erik
Author_xml – sequence: 1
  fullname: Bleeker, Petra M
– sequence: 2
  fullname: Hakvoort, Henk W.J
– sequence: 3
  fullname: Bliek, Mattijs
– sequence: 4
  fullname: Souer, Erik
– sequence: 5
  fullname: Schat, Henk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17569522$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16507083$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9uFCEUxompsdvqKygx0btZ-c_MhSZmrVbTRBPbxDvCMIzLOgsrMHH3NXxime42TXphyw1w-J0PDuc7AUc-eAsAxGiOy3izmmMqeEUx3c4JQnyOiOB4vn0EZjcHP47ADDUCVZJhcgxOUlohhCUV7Ak4xoIjiWo6A3_P_FJ7YzuoY7JeZwuj7UaTXfCw3UENFx8WhFeD-2Vh3sWQnLdwswxps9RZJwvtdjNo5xN03kRbIl053uVglnbQ2XmojRnX47QuktP-cFGVw2Cj9hmeh8GMCQ66hMf0FDzu9ZDss8N8Cq4-nl0uzquLr58-L95fVKa8HlcG45b23Gqje9MzIk1Xs67HhgmG6pqYWjaYYNM1hiOBDC1Q2-pedIig1lp6Cl7vdTcx_B5tymrtkrFDeYYNY1JCSiQbie8FmahJIwm_F8QSc0b5pPjyDrgKY_SlWkUwZbWoqSjQ8wM0tmvbqU10ax136qZ5BXh1AHQyeujLXxqXbjnJRcMJKVy950xpX4q2v0WQmvykVmqyjZpsoyY_qWs_qW1JfXcn1bh83ckctRseIvB2L_DHDXb34IvV5bcv06rkv9jn9zoo_TOW-q6-E4QZQogSipr_EpgLxug_B0b4ug
CitedBy_id crossref_primary_10_1007_s11244_023_01901_9
crossref_primary_10_1016_j_envexpbot_2016_01_010
crossref_primary_10_1016_j_jplph_2009_07_017
crossref_primary_10_1104_pp_110_153452
crossref_primary_10_1007_s11696_020_01122_4
crossref_primary_10_1016_j_febslet_2008_02_030
crossref_primary_10_1093_jxb_ern097
crossref_primary_10_1016_j_envexpbot_2016_08_004
crossref_primary_10_1093_aob_mcr016
crossref_primary_10_1111_j_1469_8137_2012_04154_x
crossref_primary_10_1186_s12870_022_03475_2
crossref_primary_10_1007_s11104_012_1376_3
crossref_primary_10_1007_s11105_015_0937_z
crossref_primary_10_1111_j_1469_8137_2009_02841_x
crossref_primary_10_1111_j_1469_8137_2008_02609_x
crossref_primary_10_1002_tox_20733
crossref_primary_10_1016_j_ecoenv_2022_113405
crossref_primary_10_1016_S2095_3119_15_61320_X
crossref_primary_10_1016_j_aquatox_2007_11_001
crossref_primary_10_1186_1471_2229_12_45
crossref_primary_10_3390_jof8020176
crossref_primary_10_1016_j_ecoleng_2011_07_006
crossref_primary_10_1021_es902992d
crossref_primary_10_1016_j_envpol_2010_07_043
crossref_primary_10_1016_j_scitotenv_2016_01_188
crossref_primary_10_1111_j_1469_8137_2007_02038_x
crossref_primary_10_1007_s40626_019_00144_y
crossref_primary_10_1016_j_chemosphere_2010_10_059
crossref_primary_10_1371_journal_pone_0217516
crossref_primary_10_3390_ijerph15010059
crossref_primary_10_1016_j_gexplo_2016_08_007
crossref_primary_10_1007_s00344_023_11075_z
crossref_primary_10_1016_j_envpol_2022_118940
crossref_primary_10_1016_j_molp_2015_01_005
crossref_primary_10_1016_j_febslet_2009_12_027
crossref_primary_10_1016_j_scienta_2012_06_010
crossref_primary_10_1016_j_envint_2014_11_010
crossref_primary_10_1016_j_ecoenv_2011_12_019
crossref_primary_10_1016_j_jhazmat_2021_126341
crossref_primary_10_1186_s12951_024_02371_1
crossref_primary_10_1016_j_jhazmat_2023_131607
crossref_primary_10_1093_pcp_pcy025
crossref_primary_10_1080_15226514_2015_1118432
crossref_primary_10_1016_j_tibtech_2007_02_003
crossref_primary_10_1016_j_envexpbot_2010_05_007
crossref_primary_10_1007_s11356_009_0252_z
crossref_primary_10_1007_s11816_012_0247_y
crossref_primary_10_1016_j_eti_2021_101976
crossref_primary_10_1111_nph_14691
crossref_primary_10_1104_pp_109_146126
crossref_primary_10_1016_j_envexpbot_2008_12_021
crossref_primary_10_1016_j_scitotenv_2019_06_279
crossref_primary_10_1016_j_envpol_2008_04_002
crossref_primary_10_3389_fcell_2017_00067
crossref_primary_10_1186_1471_2229_10_108
crossref_primary_10_1016_j_jhazmat_2023_132463
crossref_primary_10_1080_01904160802463130
crossref_primary_10_1016_j_chemosphere_2011_02_045
crossref_primary_10_1016_j_heliyon_2024_e29140
crossref_primary_10_1186_1741_7007_6_26
crossref_primary_10_1105_tpc_106_045047
crossref_primary_10_1016_j_jenvman_2013_12_027
crossref_primary_10_1007_s13213_016_1229_z
crossref_primary_10_3390_molecules20011410
crossref_primary_10_1007_s00344_019_10019_w
crossref_primary_10_1016_j_pbi_2009_05_001
crossref_primary_10_1038_s41598_019_45015_3
crossref_primary_10_1016_j_chemosphere_2020_127442
crossref_primary_10_1104_pp_107_111393
crossref_primary_10_1016_j_envpol_2018_03_039
crossref_primary_10_1111_j_1469_8137_2010_03192_x
crossref_primary_10_1111_pce_12124
crossref_primary_10_1080_15226514_2014_883496
crossref_primary_10_1016_j_envpol_2009_12_024
crossref_primary_10_1111_j_1469_8137_2008_02716_x
crossref_primary_10_1080_03650340902832861
crossref_primary_10_1371_journal_pbio_1002009
crossref_primary_10_1111_j_1469_8137_2007_02009_x
crossref_primary_10_1007_s00425_018_2906_x
crossref_primary_10_1016_j_ecoenv_2016_11_002
crossref_primary_10_1016_j_envpol_2021_116549
crossref_primary_10_1146_annurev_genet_40_110405_090431
crossref_primary_10_1021_es900304x
crossref_primary_10_1111_j_1365_313X_2007_03167_x
crossref_primary_10_1007_s11032_010_9412_6
crossref_primary_10_1016_j_tcb_2013_03_002
crossref_primary_10_1016_j_jhazmat_2019_04_011
crossref_primary_10_1111_nph_12491
crossref_primary_10_1016_j_chemosphere_2024_141460
crossref_primary_10_1146_annurev_arplant_042809_112152
crossref_primary_10_1016_j_envpol_2017_05_001
crossref_primary_10_1038_ncomms5617
crossref_primary_10_1093_aob_mcr055
crossref_primary_10_1515_biolog_2017_0062
crossref_primary_10_1007_s11104_019_03961_x
crossref_primary_10_1007_s11270_010_0329_9
crossref_primary_10_1016_j_agee_2017_10_017
crossref_primary_10_1111_j_1439_037X_2009_00407_x
crossref_primary_10_1111_j_1469_8137_2010_03456_x
crossref_primary_10_17221_224_2011_PSE
crossref_primary_10_1007_s00709_020_01577_y
crossref_primary_10_1093_jxb_eraa465
crossref_primary_10_1007_s11104_016_3064_1
crossref_primary_10_1007_s00018_009_0021_7
crossref_primary_10_1007_s11104_008_9549_9
crossref_primary_10_1016_j_ecoenv_2018_09_023
crossref_primary_10_1093_jxb_err025
crossref_primary_10_1093_jxb_eru018
crossref_primary_10_1016_j_chemosphere_2008_12_021
crossref_primary_10_3390_toxics11070568
crossref_primary_10_1007_s11103_012_9969_z
crossref_primary_10_1007_s13562_019_00486_3
crossref_primary_10_1016_j_plaphy_2016_03_034
crossref_primary_10_1016_j_envint_2014_10_019
crossref_primary_10_1016_j_envpol_2007_07_002
crossref_primary_10_1016_j_scitotenv_2023_165232
crossref_primary_10_1007_s11104_015_2739_3
crossref_primary_10_1111_j_1469_8137_2008_02758_x
crossref_primary_10_1016_S1001_0742_10_60492_5
crossref_primary_10_1105_tpc_105_040485
crossref_primary_10_1016_j_envpol_2022_119038
crossref_primary_10_1016_j_jprot_2011_03_027
crossref_primary_10_1104_pp_113_224303
crossref_primary_10_1186_1471_2229_14_94
crossref_primary_10_1016_j_gsd_2019_100263
crossref_primary_10_1016_j_jhazmat_2020_124831
crossref_primary_10_1016_j_jhazmat_2020_122895
crossref_primary_10_1016_j_pbi_2009_04_005
crossref_primary_10_1021_es062167j
crossref_primary_10_1104_pp_106_084079
crossref_primary_10_1104_pp_111_173088
crossref_primary_10_1073_pnas_1013964107
crossref_primary_10_1590_0001_3765201720160320
crossref_primary_10_1016_j_eti_2018_12_003
crossref_primary_10_1039_C3MT00317E
crossref_primary_10_1007_s10311_011_0313_7
crossref_primary_10_1007_s11356_023_26472_w
crossref_primary_10_1016_j_plaphy_2010_11_004
crossref_primary_10_1016_j_sajb_2020_02_024
crossref_primary_10_1111_j_1365_3040_2007_01746_x
crossref_primary_10_1016_j_stress_2025_100931
crossref_primary_10_1093_aob_mcq142
crossref_primary_10_1105_tpc_109_070417
crossref_primary_10_1007_s00128_017_2135_1
crossref_primary_10_1007_s11356_024_32177_5
crossref_primary_10_1111_j_1469_8137_2007_02195_x
crossref_primary_10_1105_tpc_109_069773
crossref_primary_10_1016_j_chemosphere_2022_135164
crossref_primary_10_1016_j_envexpbot_2020_104312
crossref_primary_10_1093_jxb_erp181
crossref_primary_10_1080_15226514_2011_604690
crossref_primary_10_1007_s00344_020_10145_w
crossref_primary_10_1007_s11157_015_9371_9
crossref_primary_10_1007_s40415_020_00694_5
crossref_primary_10_1111_ppl_12607
crossref_primary_10_1007_s11356_012_1205_5
crossref_primary_10_1186_gb_2010_11_2_r17
crossref_primary_10_3389_fpls_2017_01115
crossref_primary_10_1139_gen_2018_0152
crossref_primary_10_1111_j_1469_8137_2011_03743_x
crossref_primary_10_1111_j_1469_8137_2011_03789_x
crossref_primary_10_1016_j_ecoleng_2021_106267
crossref_primary_10_1007_s11104_009_0154_3
crossref_primary_10_1016_j_envpol_2012_02_009
crossref_primary_10_1016_j_ecoenv_2025_118382
crossref_primary_10_1007_s11356_012_1342_x
crossref_primary_10_1104_pp_110_163261
Cites_doi 10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO;2-Y
10.1074/jbc.270.9.4721
10.1016/S0014-5793(02)03186-1
10.1248/cpb.38.2364
10.1104/pp.107.4.1067
10.1104/pp.103.033506
10.1074/jbc.M103354200
10.1093/jxb/erf107
10.1104/pp.107.4.1293
10.1111/j.1469-8137.1987.tb00190.x
10.1016/j.bbrc.2004.07.182
10.1104/pp.010733
10.1016/S0076-6879(83)91014-5
10.1139/o91-018
10.1111/j.1365-3040.1994.tb02032.x
10.1038/hdy.1992.35
10.1002/j.1460-2075.1988.tb02939.x
10.1093/carcin/8.6.803
10.1046/j.1469-8137.2003.00542.x
10.1046/j.1365-313x.1998.00343.x
10.1046/j.1462-2920.2003.00508.x
10.1073/pnas.96.9.5001
10.1007/BF00016283
10.1104/pp.104.1.255
10.1016/0048-9697(94)90300-X
10.1104/pp.126.1.299
10.1104/pp.104.057422
10.1073/pnas.86.18.6838
10.1093/embo-reports/kvf150
10.1046/j.1365-2958.2001.02485.x
10.1016/S0176-1617(97)80001-6
10.1038/hdy.1992.133
10.1021/bi00189a033
10.1128/JB.144.1.366-374.1980
10.1016/S0003-2670(00)88444-5
10.1046/j.1469-8137.2003.00655.x
10.1016/0039-9140(85)80023-0
10.1038/hdy.1992.132
10.1104/pp.120.3.779
10.1074/jbc.M002997200
10.1038/nbt747
10.1111/j.1469-8137.1991.tb04903.x
10.1074/jbc.M910401199
10.1073/pnas.0405248101
10.1046/j.1469-8137.2002.00363.x
10.1046/j.1365-313X.2003.01835.x
10.1093/jxb/43.4.519
10.1104/pp.84.3.574
10.1016/0013-9327(77)90137-9
10.1126/science.188.4185.263
10.1021/jf9903105
10.1016/0378-1119(96)00079-0
10.1016/0009-2797(94)90099-X
10.1007/s00425-003-1091-7
10.1111/j.0031-9317.2004.0240.x
10.1126/science.230.4726.674
10.1105/tpc.11.6.1153
10.2134/jeq1995.00472425002400020022x
10.1046/j.1469-8137.2002.00455.x
10.1021/bi00189a034
10.1021/bk-1975-0007.ch009
ContentType Journal Article
Copyright 2006 INIST-CNRS
2006 The Authors Journal compilation 2006 Blackwell Publishing Ltd
Copyright_xml – notice: 2006 INIST-CNRS
– notice: 2006 The Authors Journal compilation 2006 Blackwell Publishing Ltd
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7S9
L.6
7X8
DOI 10.1111/j.1365-313x.2005.02651.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

CrossRef
AGRICOLA
Genetics Abstracts
Genetics Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 929
ExternalDocumentID 995219281
16507083
17569522
10_1111_j_1365_313X_2005_02651_x
TPJ2651
US201400032309
US201400015644
Genre article
Journal Article
Feature
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
24P
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AEUQT
AFPWT
AFVGU
AGJLS
ESX
IPNFZ
WRC
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
O8X
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c6501-c11b3f5eacafcf427cd84df1c4640882c879121cd9c5060c3cf4bbaf6d020bee3
IEDL.DBID WIN
ISICitedReferencesCount 205
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000235596600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-7412
IngestDate Fri Jul 11 08:49:27 EDT 2025
Fri Jul 11 07:40:44 EDT 2025
Fri Jul 11 16:53:07 EDT 2025
Fri Jul 25 10:52:03 EDT 2025
Wed Feb 19 01:44:31 EST 2025
Mon Jul 21 09:12:00 EDT 2025
Sat Nov 29 06:05:03 EST 2025
Tue Nov 18 21:49:40 EST 2025
Wed Jan 22 16:52:16 EST 2025
Wed Dec 27 19:14:39 EST 2023
Mon May 19 05:25:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords vacuolar transport
Monocotyledones
Root
arsenate tolerance
Hypersensitivity
Tolerance
arsenate reductase
phytochelatin synthase
Holcus lanatus
Arabidopsis thaliana
EC 2.3.2.15
Complementary DNA
Gene
Cruciferae
Gramineae
CDC25
Dicotyledones
Angiospermae
Spermatophyta
Mutation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6501-c11b3f5eacafcf427cd84df1c4640882c879121cd9c5060c3cf4bbaf6d020bee3
Notes http://dx.doi.org/10.1111/j.1365-313X.2005.02651.x
Present address: Rothamsted Research, Crop Performance and Improvement Division, Harpenden, AL5 2JQ, UK.
Present address: Institute for Molecular and Cellular Biology, Department of Genetics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-313X.2005.02651.x
PMID 16507083
PQID 213486836
PQPubID 31702
PageCount 13
ParticipantIDs proquest_miscellaneous_67707971
proquest_miscellaneous_46829725
proquest_miscellaneous_17154351
proquest_journals_213486836
pubmed_primary_16507083
pascalfrancis_primary_17569522
crossref_primary_10_1111_j_1365_313X_2005_02651_x
crossref_citationtrail_10_1111_j_1365_313X_2005_02651_x
wiley_primary_10_1111_j_1365_313X_2005_02651_x_TPJ2651
fao_agris_US201400032309
fao_agris_US201400015644
PublicationCentury 2000
PublicationDate March 2006
PublicationDateYYYYMMDD 2006-03-01
PublicationDate_xml – month: 03
  year: 2006
  text: March 2006
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2006
Publisher Oxford, UK : Blackwell Science Ltd
Blackwell Science Ltd
Blackwell Science
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Science Ltd
– name: Blackwell Science Ltd
– name: Blackwell Science
– name: Blackwell Publishing Ltd
References 2004; 120
1989; 86
1992a; 43
1987; 8
2002; 154
2002; 53
2000; 48
1997; 151
2005; 138
2002; 155
1987; 107
1999; 120
1972
1983; 91
1991; 117
2003; 157
2001; 40
1998; 16
1994; 145
2004; 134
1987; 84
1994; 104
1995; 24
1997; 13
1979; 6
1994; 33
1999; 11
1996; 171
2003; 5
1975; 188
1999; 96
1975; 7
1980; 144
2003; 218
1994; 90
1990; 38
2003; 35
2002; 3
2000; 275
1992b; 69
2001; 126
2004b; 322
1995; 270
2001; 276
1991; 69
2002; 20
1977; 14
1988; 7
2002; 128
2004a; 101
1962; 27
1995; 107
1993; 151
1992; 68
1992; 69
2002; 529
1994; 17
1985; 32
1985; 230
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Meharg A.A. (e_1_2_6_36_1) 1994; 17
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Asher D.J. (e_1_2_6_3_1) 1979; 6
Jocelyn P.C. (e_1_2_6_28_1) 1972
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
Van Tunen A.J. (e_1_2_6_60_1) 1988; 7
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 68
  start-page: 219
  year: 1992
  end-page: 229
  article-title: Genetic control of copper tolerance in
  publication-title: Heredity
– volume: 91
  start-page: 95
  year: 1983
  end-page: 121
  article-title: Determination of total protein
  publication-title: Methods Enzymol.
– volume: 8
  start-page: 803
  year: 1987
  end-page: 808
  article-title: Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation
  publication-title: Carcinogenesis
– volume: 275
  start-page: 31451
  year: 2000
  end-page: 31459
  article-title: Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase‐catalyzed transpeptidation of glutathione and related thiol peptides
  publication-title: J. Biol. Chem.
– volume: 107
  start-page: 1293
  year: 1995
  end-page: 1301
  article-title: MgATP‐dependent transport of phytochelatins across the tonoplast of oat roots
  publication-title: Plant Physiol.
– volume: 38
  start-page: 2364
  year: 1990
  end-page: 2368
  article-title: Amino acids and peptides XXVII. Synthesis of phytochelatin‐related peptides and examination of their heavy metal‐binding properties
  publication-title: Chem. Pharm. Bull.
– volume: 157
  start-page: 39
  year: 2003
  end-page: 44
  article-title: Arsenite transport into paddy rice ( ) roots
  publication-title: New Phytol.
– volume: 117
  start-page: 225
  year: 1991
  end-page: 231
  article-title: Uptake, accumulation and translocation of arsenate in arsenate tolerant and non‐tolerant L
  publication-title: New Phytol.
– volume: 154
  start-page: 29
  year: 2002
  end-page: 43
  article-title: Arsenic uptake and metabolism in arsenic resistant and non‐resistant plant species
  publication-title: New Phytol.
– volume: 11
  start-page: 1153
  year: 1999
  end-page: 1163
  article-title: Phytochelatin synthase genes from Arabidopsis and the yeast
  publication-title: Plant Cell
– volume: 151
  start-page: 385
  year: 1997
  end-page: 389
  article-title: Thiosulfate reductase from
  publication-title: J. Plant Physiol.
– volume: 84
  start-page: 574
  year: 1987
  end-page: 577
  article-title: Effect of buthionine sulfoximine on Cd‐binding peptide levels in suspension‐cultured tobacco cells treated with Cd, Zn, or Cu
  publication-title: Plant Physiol.
– volume: 32
  start-page: 69
  year: 1985
  end-page: 72
  article-title: Arsenic speciation in soil‐pore waters from mineralised and unmineralised areas of South–West England
  publication-title: Talanta
– volume: 276
  start-page: 34738
  year: 2001
  end-page: 34742
  article-title: The phosphatase C(X) R motif is required for catalytic activity of the Asr2p arsenate reductase
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for ‐mediated transformation of
  publication-title: Plant J.
– volume: 134
  start-page: 1113
  year: 2004
  end-page: 1122
  article-title: The nature of arsenic phytochelatins complexes in and
  publication-title: Plant Physiol.
– volume: 101
  start-page: 13380
  year: 2004a
  end-page: 13385
  article-title: A small CDC25 dual‐specificity tyrosine‐phosphatase isoform in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 322
  start-page: 734
  year: 2004b
  end-page: 739
  article-title: Characterization of the ;CDC25 dual‐specificity tyrosime phosphatase
  publication-title: Biochem. Bioph. Res. Co.
– volume: 7
  start-page: 124
  year: 1975
  end-page: 147
  article-title: A proposed arsenic cycle in an agronomic ecosystem
  publication-title: ACS Symp. Ser.
– volume: 69
  start-page: 336
  year: 1992b
  end-page: 341
  article-title: Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in L
  publication-title: Heredity
– volume: 104
  start-page: 255
  year: 1994
  end-page: 261
  article-title: Phytochelatins in cadmium‐sensitive and cadmium‐tolerant : chain length distribution and sulfide incorporation
  publication-title: Plant Physiol.
– volume: 86
  start-page: 6838
  year: 1989
  end-page: 6842
  article-title: Phytochelatins, the heavy metal‐binding peptides of plants, are synthesized from glutathione by a specific ‐glutamylcysteinedipeptyl transpeptidase (phytochelatin synthase)
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 145
  start-page: 103
  year: 1994
  end-page: 109
  article-title: and on heavy metal and arsenic enriched sites in NE Portugal
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 1140
  year: 2002
  end-page: 1145
  article-title: Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and ‐glutamylcysteine synthetase expression
  publication-title: Nat. Biotech.
– volume: 155
  start-page: 219
  year: 2002
  end-page: 225
  article-title: Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant ?
  publication-title: New Phytol.
– volume: 17
  start-page: 989
  year: 1994
  end-page: 993
  article-title: Integrated tolerance mechanisms – constitutive and adaptive plant – responses to elevated metal concentrations in the environment
  publication-title: Plant Cell Environ.
– volume: 69
  start-page: 115
  year: 1991
  end-page: 121
  article-title: Two pathways in the biosynthesis of cadystins ( ‐EC) G in the cell‐free system of the fission yeast
  publication-title: Biochem. Cell Biol.
– volume: 33
  start-page: 7294
  year: 1994
  end-page: 7299
  article-title: Arsenate reductase of plasmid pI258
  publication-title: Biochemistry
– year: 1972
– volume: 138
  start-page: 461
  year: 2005
  end-page: 469
  article-title: Characterization of arsenate reductase in the extract of roots and fronds of Chinese Brake Fern, an arsenic hyperaccumulator
  publication-title: Plant Physiol.
– volume: 171
  start-page: 41
  year: 1996
  end-page: 47
  article-title: A putative new membrane protein, Pho86p, in the inorganic phosphate uptake system of
  publication-title: Gene
– volume: 33
  start-page: 7288
  year: 1994
  end-page: 7293
  article-title: Properties of the arsenate reductase of plasmid R773
  publication-title: Biochemistry
– volume: 218
  start-page: 300
  year: 2003
  end-page: 308
  article-title: Localization and functional characterization of metal‐binding sites in phytochelatin synthases
  publication-title: Planta
– volume: 151
  start-page: 185
  year: 1993
  end-page: 191
  article-title: As(V) tolerance in and
  publication-title: Plant Soil
– volume: 230
  start-page: 674
  year: 1985
  end-page: 676
  article-title: Phytochelatins: the principal heavy‐metal complexing peptides of higher plants
  publication-title: Science
– volume: 3
  start-page: 741
  year: 2002
  end-page: 746
  article-title: The rhodanese/Cdc25 phosphatase superfamily
  publication-title: EMBO Rep.
– volume: 48
  start-page: 4014
  year: 2000
  end-page: 4019
  article-title: Derivatization of phytochelatins from induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellmans's reagent and monobromobimane
  publication-title: J. Agric. Food Chem.
– volume: 126
  start-page: 299
  year: 2001
  end-page: 306
  article-title: Phytochelatins are involved in differential arsenate tolerance in
  publication-title: Plant Physiol.
– volume: 270
  start-page: 4721
  year: 1995
  end-page: 4728
  article-title: Transport of metal‐binding peptides by HMT1, a fission yeast ABC‐type vacuolar membrane protein
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 1257
  year: 1988
  end-page: 1263
  article-title: Cloning of the two chalcone flavonone isomerase genes from : coordinate light‐regulated and differential expression of flavonoid genes
  publication-title: EMBO J.
– volume: 40
  start-page: 1391
  year: 2001
  end-page: 1401
  article-title: The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in
  publication-title: Mol. Microb.
– volume: 53
  start-page: 2381
  year: 2002
  end-page: 2392
  article-title: The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumylator and non‐hyperaccumuylator metallophytes
  publication-title: J. Exp. Bot.
– volume: 13
  start-page: 819
  year: 1997
  end-page: 828
  article-title: Isolation of three contiguous genes, , and , involved in resistance to arsenic compounds in the yeast
  publication-title: Yeast
– volume: 96
  start-page: 5001
  year: 1999
  end-page: 5006
  article-title: Pathways of As(III) detoxification in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 144
  start-page: 366
  year: 1980
  end-page: 374
  article-title: Effect of arsenate on inorganic phosphate transport in
  publication-title: J. Bacteriol.
– volume: 275
  start-page: 21149
  year: 2000
  end-page: 21157
  article-title: Purification and characterization of Asr2p, the arsenate reductase
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 1087
  year: 2003
  end-page: 1093
  article-title: Arsenate transport and reduction in the hyper‐tolerant fungus sp. P37
  publication-title: Environ. Microbiol.
– volume: 128
  start-page: 1
  year: 2002
  end-page: 9
  article-title: Uptake kinetics of arsenic species in rice plants
  publication-title: Plant Physiol.
– volume: 157
  start-page: 33
  year: 2003
  end-page: 38
  article-title: Mechanisms of arsenate tolerance in
  publication-title: New Phytol.
– volume: 90
  start-page: 139
  year: 1994
  end-page: 155
  article-title: Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study
  publication-title: Chem. Biol. Interact.
– volume: 120
  start-page: 280
  year: 2004
  end-page: 286
  article-title: Arsenic uptake, translocation and speciation in and mutants of
  publication-title: Physiol. Plant.
– volume: 6
  start-page: 459
  year: 1979
  end-page: 466
  article-title: Arsenic uptake by barley seedlings
  publication-title: J. Plant Physiol.
– volume: 120
  start-page: 779
  year: 1999
  end-page: 785
  article-title: Properties of enhanced tonoplast zinc transport in naturally selected zinc tolerant
  publication-title: Plant Physiol.
– volume: 69
  start-page: 325
  year: 1992
  end-page: 335
  article-title: The genetics of arsenate tolerance in Yorkshire Fog, L
  publication-title: Heredity
– volume: 188
  start-page: 263
  year: 1975
  end-page: 264
  article-title: Arsenic tolerance in a population of the grass Michx
  publication-title: Science
– volume: 35
  start-page: 637
  year: 2003
  end-page: 646
  article-title: , an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake
  publication-title: Plant J.
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chim. Acta
– volume: 107
  start-page: 387
  year: 1987
  end-page: 394
  article-title: Evidence that arsenic tolerance in L. is caused by an altered phosphate uptake system
  publication-title: New Phytol.
– volume: 107
  start-page: 1067
  year: 1995
  end-page: 1073
  article-title: A cadmium sensitive, glutathione‐deficient mutant of
  publication-title: Plant Physiol.
– volume: 43
  start-page: 519
  year: 1992a
  end-page: 524
  article-title: Suppression of the high‐affinity phosphate‐uptake system – a mechanism of arsenate tolerance in L
  publication-title: J. Exp. Bot.
– volume: 14
  start-page: 255
  year: 1977
  end-page: 265
  article-title: Arsenic tolerance in grasses growing on mine waste
  publication-title: Environ. Pollut.
– volume: 24
  start-page: 373
  year: 1995
  end-page: 381
  article-title: Plant uptake and determination of arsenic species in soil solutions under flooded conditions
  publication-title: J. Environ. Qual.
– volume: 529
  start-page: 86
  year: 2002
  end-page: 92
  article-title: Biochemistry of arsenic detoxification
  publication-title: FEBS Lett.
– ident: e_1_2_6_6_1
  doi: 10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO;2-Y
– ident: e_1_2_6_46_1
  doi: 10.1074/jbc.270.9.4721
– ident: e_1_2_6_54_1
  doi: 10.1016/S0014-5793(02)03186-1
– ident: e_1_2_6_35_1
  doi: 10.1248/cpb.38.2364
– ident: e_1_2_6_26_1
  doi: 10.1104/pp.107.4.1067
– ident: e_1_2_6_51_1
  doi: 10.1104/pp.103.033506
– ident: e_1_2_6_42_1
  doi: 10.1074/jbc.M103354200
– ident: e_1_2_6_58_1
  doi: 10.1093/jxb/erf107
– ident: e_1_2_6_55_1
  doi: 10.1104/pp.107.4.1293
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1469-8137.1987.tb00190.x
– ident: e_1_2_6_30_1
  doi: 10.1016/j.bbrc.2004.07.182
– ident: e_1_2_6_2_1
  doi: 10.1104/pp.010733
– ident: e_1_2_6_47_1
  doi: 10.1016/S0076-6879(83)91014-5
– ident: e_1_2_6_25_1
  doi: 10.1139/o91-018
– volume: 17
  start-page: 989
  year: 1994
  ident: e_1_2_6_36_1
  article-title: Integrated tolerance mechanisms – constitutive and adaptive plant – responses to elevated metal concentrations in the environment
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.1994.tb02032.x
– ident: e_1_2_6_57_1
  doi: 10.1038/hdy.1992.35
– volume: 7
  start-page: 1257
  year: 1988
  ident: e_1_2_6_60_1
  article-title: Cloning of the two chalcone flavonone isomerase genes from Petunia hybrida: coordinate light‐regulated and differential expression of flavonoid genes
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1988.tb02939.x
– ident: e_1_2_6_4_1
  doi: 10.1093/carcin/8.6.803
– ident: e_1_2_6_5_1
  doi: 10.1046/j.1469-8137.2003.00542.x
– ident: e_1_2_6_10_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– volume-title: Biochemistry of the SH Group
  year: 1972
  ident: e_1_2_6_28_1
– ident: e_1_2_6_8_1
  doi: 10.1046/j.1462-2920.2003.00508.x
– ident: e_1_2_6_18_1
  doi: 10.1073/pnas.96.9.5001
– ident: e_1_2_6_13_1
  doi: 10.1007/BF00016283
– ident: e_1_2_6_11_1
  doi: 10.1104/pp.104.1.255
– ident: e_1_2_6_12_1
  doi: 10.1016/0048-9697(94)90300-X
– ident: e_1_2_6_22_1
  doi: 10.1104/pp.126.1.299
– ident: e_1_2_6_16_1
  doi: 10.1104/pp.104.057422
– ident: e_1_2_6_20_1
  doi: 10.1073/pnas.86.18.6838
– ident: e_1_2_6_7_1
  doi: 10.1093/embo-reports/kvf150
– ident: e_1_2_6_63_1
  doi: 10.1046/j.1365-2958.2001.02485.x
– ident: e_1_2_6_49_1
  doi: 10.1016/S0176-1617(97)80001-6
– ident: e_1_2_6_41_1
  doi: 10.1038/hdy.1992.133
– ident: e_1_2_6_17_1
  doi: 10.1021/bi00189a033
– ident: e_1_2_6_62_1
  doi: 10.1128/JB.144.1.366-374.1980
– ident: e_1_2_6_44_1
  doi: 10.1016/S0003-2670(00)88444-5
– ident: e_1_2_6_38_1
  doi: 10.1046/j.1469-8137.2003.00655.x
– ident: e_1_2_6_24_1
  doi: 10.1016/0039-9140(85)80023-0
– ident: e_1_2_6_33_1
  doi: 10.1038/hdy.1992.132
– ident: e_1_2_6_9_1
  doi: 10.1104/pp.120.3.779
– ident: e_1_2_6_61_1
  doi: 10.1074/jbc.M002997200
– ident: e_1_2_6_15_1
  doi: 10.1038/nbt747
– volume: 6
  start-page: 459
  year: 1979
  ident: e_1_2_6_3_1
  article-title: Arsenic uptake by barley seedlings
  publication-title: J. Plant Physiol.
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1469-8137.1991.tb04903.x
– ident: e_1_2_6_43_1
  doi: 10.1074/jbc.M910401199
– ident: e_1_2_6_29_1
  doi: 10.1073/pnas.0405248101
– ident: e_1_2_6_37_1
  doi: 10.1046/j.1469-8137.2002.00363.x
– ident: e_1_2_6_31_1
  doi: 10.1046/j.1365-313X.2003.01835.x
– ident: e_1_2_6_40_1
  doi: 10.1093/jxb/43.4.519
– ident: e_1_2_6_52_1
  doi: 10.1104/pp.84.3.574
– ident: e_1_2_6_48_1
  doi: 10.1016/0013-9327(77)90137-9
– ident: e_1_2_6_53_1
  doi: 10.1126/science.188.4185.263
– ident: e_1_2_6_59_1
  doi: 10.1021/jf9903105
– ident: e_1_2_6_64_1
  doi: 10.1016/0378-1119(96)00079-0
– ident: e_1_2_6_14_1
  doi: 10.1016/0009-2797(94)90099-X
– ident: e_1_2_6_34_1
  doi: 10.1007/s00425-003-1091-7
– ident: e_1_2_6_50_1
  doi: 10.1111/j.0031-9317.2004.0240.x
– ident: e_1_2_6_19_1
  doi: 10.1126/science.230.4726.674
– ident: e_1_2_6_21_1
  doi: 10.1105/tpc.11.6.1153
– ident: e_1_2_6_45_1
  doi: 10.2134/jeq1995.00472425002400020022x
– ident: e_1_2_6_23_1
  doi: 10.1046/j.1469-8137.2002.00455.x
– ident: e_1_2_6_27_1
  doi: 10.1021/bi00189a034
– ident: e_1_2_6_56_1
  doi: 10.1021/bk-1975-0007.ch009
SSID ssj0017364
Score 2.3360934
Snippet Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)-hypertolerant ecotypes also show...
Summary Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)‐hypertolerant ecotypes...
Decreased arsenate [As(V)] uptake is the major mechanism of naturally selected As(V) hypertolerance in plants. However, As(V)‐hypertolerant ecotypes also show...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 917
SubjectTerms Amino Acid Sequence
Amino acids
Analysis of Variance
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis thaliana
arsenate reductase
arsenate tolerance
Arsenates
Arsenates - metabolism
Arsenates - pharmacology
Arsenic
Arsenite Transporting ATPases
Biological and medical sciences
CDC25
cdc25 Phosphatases
cdc25 Phosphatases - genetics
cdc25 Phosphatases - metabolism
complementary DNA
Consensus Sequence
DNA, Bacterial
DNA, Bacterial - genetics
DNA, Complementary
DNA, Complementary - metabolism
drug effects
Ecotypes
Enzymes
enzymology
Flowers & plants
Fundamental and applied biological sciences. Psychology
gene overexpression
genes
genetics
Genotype & phenotype
Glutathione
Glutathione - metabolism
Holcus
Holcus - drug effects
Holcus - enzymology
Holcus - genetics
Holcus lanatus
Hypersensitivity
Ion Pumps
Ion Pumps - genetics
Ion Pumps - metabolism
Metabolism
Molecular Sequence Data
Multienzyme Complexes
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Mutagenesis, Insertional
mutants
pharmacology
Phenotype
Phosphates
phytochelatin synthase
Phytochelatins
Plant physiology and development
Plant Proteins
Plant Proteins - genetics
Plant Proteins - metabolism
Sequence Alignment
toxicity
transfer DNA
tyrosine
vacuolar transport
Yeasts
Title Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2005.02651.x
https://www.ncbi.nlm.nih.gov/pubmed/16507083
https://www.proquest.com/docview/213486836
https://www.proquest.com/docview/17154351
https://www.proquest.com/docview/46829725
https://www.proquest.com/docview/67707971
Volume 45
WOSCitedRecordID wos000235596600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-313X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017364
  issn: 0960-7412
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-313X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017364
  issn: 0960-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZo6YEL_9BQWHzgGlQnThwfy7argqpVBV3YW2Q7dndFSFabbNW98QiceECehJkk3bJoK1WIWyL_xePxzDfOeIaQNxlo8dAI61uhuc-53Pe13Ld-ZjNlrWMuaLwqP5-I4TAZj-Vp5_-Ed2Ha-BCrAzfcGY28xg2udLW-ydFDK2ThuDsaCeKIvUU8yTjDZAZf3g9XPxRE2EaSAsDugxL9y6lnY0drmmrLqRL9JlUFpHNtzotNoHQd4zZKavDgf07vIbnfQVV60PLWI3LHFo_JzrsS4OTyCfl5VEwa7wEKprEtALLSOYaBxYWmekkV7R_2g-jX9x_59Kul9RImCR9FZ5Oymk1UDdqT2stZrqZFRacFgtcKOoNVrzGJF7roFVQZs_jWJRij-N4NBb3WZW6BQDU9LnOzqGiuMEZp9ZSMBkdn_WO_S_LgGwCHzDeM6dBFIP-VM44HwmQJzxwzPOYI_00iJAuYyaTBWIgmhEpaKxdnAHS1teEzsl2Uhd0lNNGBSxKuBUapi2SiRQbWlJQC5E7mpPaIuFrQ1HQR0DERR57-YQkB0VMkOubnjNKG6OmlR9iq5ayNAnKLNrvAM6k6B2Gdjj4FaMo2F9c531wUgjUoPdJb47Hr4UQUSwDLHtm7Yrq0EzdVihNO4iSMPfJ6VQpyAn_-qMKWiwraA1gOI3ZzDR7jNesgurlGLDCeooA-nrfcfv11sJYC0LxH4oapb02l9Oz0Az69-NeGe-ReeyqGboEvyXY9X9hXZMdc1NNq3iNbYpz0yN3Dj4PRSa8RCb8B32hc-Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgTIIX_sPCYPMDr0FL4sTxI5RNHZRqEh30zbIde60ISdWkaH3jI_DEB-STcJdkHUWdNCHeEsV24rvz3e-c8x0hLzOw4pHh1rdcM58xceBrcWD9zGbKWhe4sImq_DTgw2E6HouTrhwQnoVp80OsNtxwZTT6Ghc4bkivr3IM0YqCaNztjYRJHLwCQHmLAe7AOg6fj4erXwo8anNJAWT3wYz-FdazcaQ1W3XTqRIjJ1UFxHNt1YtNsHQd5TZm6ujef53gfXK3Q6v0dSteD8gNWzwk229KQJTLR-TnYTFpAggoeMe2ANRK55gJFnlN9ZIq2nvbC-Nf33_k0y-W1kuYJXwVnU3KajZRNRhQas9nuZoWFZ0WiF8rGAwYX2MdL4zSK6gyZvG1qzFG8b57FYxal7kFCtW0X-ZmUdFcYZrS6jE5PToc9fp-V-fBN8CnwDdBoCMXgwlQzjgWcpOlLHOBYQlDD8CkXARhYDJhMB2iiaCR1solGWBdbW30hGwVZWF3CE116NKUaY6J6mKRap6BQyUEB9WTOaE9wi84Kk2XBB1rceTyD2cIiC6R6FiiM5YN0eW5R4JVz1mbCOQafXZAaKQ6A30tTz-G6M02Z9cZ2_woAodQeGRvTcguX8fjRABe9sjuhdTJTuNUEiecJmmUeGR_9RRUBf7_UYUtFxX0B7wcxcHVLViCJ63D-OoWCceUihzGeNqK--XXAS85AHqPJI1UX5tKcnTyDq-e_WvHfXK7P_owkIPj4ftdcqfdJMMowedkq54v7Auybb7V02q-12iE33NdXo8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELegm9Be-A8Lg80PvAYtiRPHj9CuGlBVFayob5Ht2GtFSKomndY3PgJPfEA-CXdJ1lHUSRPiLZH_xefz3e-c8x0hr1PQ4oHmxjVcMZcxcewqcWzc1KTSGOtZv_aq_DLgw2E8mYhRmw4I78I08SHWB264M2p5jRvczFO7ucvRRSvwgkl7NuJHofcGAOUOw5wyHbLT-9QfD9Y_FXjQRJMC0O6CIv3LsWdrXxva6q6VBfpOyhLIZ5u8F9uA6SbOrRVV_8F_neJDcr_Fq_Rtw2CPyB2TPya77wrAlKsn5OdJPq1dCCjYxyYH3EoXGAsWV5uqFZW02-v64a_vP7LZV0OrFcwSvorOp0U5n8oKVCg1l_NMzvKSznJEsCV0BktfYSYv9NPLqdR6-a3NMkbxvR0Keq2KzACFKnpaZHpZ0kxioNLyKRn3T866p26b6cHVgBA9V3ueCmwISkBabZnPdRqz1HqaRQxtAB1z4fmeToXGgIg6gEpKSRulgHaVMcEz0smL3OwTGivfxjFTHEPVhSJWPAWTSggOwie1QjmEX61ootsw6JiNI0v-MIeA6AkSHZN0hklN9OTSId665bwJBXKLNvvANIk8B4mdjD_7aM_Wt9cZ214UgEkoHHK4wWTXw_EwEoCYHXJwxXVJK3PKBCccR3EQOeRoXQrCAv8AydwUyxLaA2IOQu_mGizCu9Z-eHONiGNQRQ59PG_Y_frrYC05QHqHRDVX35pKydnoAz69-NeGR-TeqNdPBu-HHw_IXnNKhm6CL0mnWizNK7KrL6pZuThsRcJv_F5fOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+arsenate+reduction+by+a+CDC25-like+tyrosine+phosphatase+explains+increased+phytochelatin+accumulation+in+arsenate-tolerant+Holcus+lanatus&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=BLEEKER%2C+Petra+M&rft.au=HAKVOORT%2C+Henk+W.+J&rft.au=BLIEK%2C+Mattijs&rft.au=SOUER%2C+Erik&rft.date=2006-03-01&rft.pub=Blackwell+Science&rft.issn=0960-7412&rft.volume=45&rft.issue=6&rft.spage=917&rft.epage=929&rft_id=info:doi/10.1111%2Fj.1365-313x.2005.02651.x&rft.externalDBID=n%2Fa&rft.externalDocID=17569522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon