A stochastic spectral analysis of transcriptional regulatory cascades

The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here, we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the National Academy of Sciences - PNAS Ročník 106; číslo 16; s. 6529
Hlavní autori: Walczak, Aleksandra M, Mugler, Andrew, Wiggins, Chris H
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 21.04.2009
Predmet:
ISSN:1091-6490, 1091-6490
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here, we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The spectral method exploits the natural eigenfunctions of the master equation of birth-death processes to solve for the joint distribution of modules within the network, which then inform each other and facilitate calculation of the entire joint distribution. We illustrate the method on a ubiquitous case in nature: linear regulatory cascades. The efficiency of the method makes possible numerical optimization of the input and regulatory parameters, revealing design properties of, e.g., the most informative cascades. We find, for threshold regulation, that a cascade of strong regulations converts a unimodal input to a bimodal output, that multimodal inputs are no more informative than bimodal inputs, and that a chain of up-regulations outperforms a chain of down-regulations. We anticipate that this numerical approach may be useful for modeling noise in a variety of small network topologies in biology.
AbstractList The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here, we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The spectral method exploits the natural eigenfunctions of the master equation of birth-death processes to solve for the joint distribution of modules within the network, which then inform each other and facilitate calculation of the entire joint distribution. We illustrate the method on a ubiquitous case in nature: linear regulatory cascades. The efficiency of the method makes possible numerical optimization of the input and regulatory parameters, revealing design properties of, e.g., the most informative cascades. We find, for threshold regulation, that a cascade of strong regulations converts a unimodal input to a bimodal output, that multimodal inputs are no more informative than bimodal inputs, and that a chain of up-regulations outperforms a chain of down-regulations. We anticipate that this numerical approach may be useful for modeling noise in a variety of small network topologies in biology.
The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here, we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The spectral method exploits the natural eigenfunctions of the master equation of birth-death processes to solve for the joint distribution of modules within the network, which then inform each other and facilitate calculation of the entire joint distribution. We illustrate the method on a ubiquitous case in nature: linear regulatory cascades. The efficiency of the method makes possible numerical optimization of the input and regulatory parameters, revealing design properties of, e.g., the most informative cascades. We find, for threshold regulation, that a cascade of strong regulations converts a unimodal input to a bimodal output, that multimodal inputs are no more informative than bimodal inputs, and that a chain of up-regulations outperforms a chain of down-regulations. We anticipate that this numerical approach may be useful for modeling noise in a variety of small network topologies in biology.The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here, we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The spectral method exploits the natural eigenfunctions of the master equation of birth-death processes to solve for the joint distribution of modules within the network, which then inform each other and facilitate calculation of the entire joint distribution. We illustrate the method on a ubiquitous case in nature: linear regulatory cascades. The efficiency of the method makes possible numerical optimization of the input and regulatory parameters, revealing design properties of, e.g., the most informative cascades. We find, for threshold regulation, that a cascade of strong regulations converts a unimodal input to a bimodal output, that multimodal inputs are no more informative than bimodal inputs, and that a chain of up-regulations outperforms a chain of down-regulations. We anticipate that this numerical approach may be useful for modeling noise in a variety of small network topologies in biology.
Author Walczak, Aleksandra M
Mugler, Andrew
Wiggins, Chris H
Author_xml – sequence: 1
  givenname: Aleksandra M
  surname: Walczak
  fullname: Walczak, Aleksandra M
  email: awalczak@princeton.edu
  organization: Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA. awalczak@princeton.edu
– sequence: 2
  givenname: Andrew
  surname: Mugler
  fullname: Mugler, Andrew
– sequence: 3
  givenname: Chris H
  surname: Wiggins
  fullname: Wiggins, Chris H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19351901$$D View this record in MEDLINE/PubMed
BookMark eNpNj71PwzAUxC1URD9gZkOe2FKencSxx6oqH1IlFpgjx36FoDQOfs7Q_55IFInpTqefTndLNutDj4zdClgLqPKHobe0Bi2EMUaAumALAUZkqjAw--fnbEn0BQCm1HDF5sLkpTAgFmy34ZSC-7SUWsdpQJei7bjtbXeilng48CnoycV2SG2YYh7xY-xsCvHEnSVnPdI1uzzYjvDmrCv2_rh72z5n-9enl-1mn7lpRcqwPJgGi6YpEHPvQTVSSudQN0aDzy0UWisrvBHVtBNROaO8ddKXxisoUK7Y_W_vEMP3iJTqY0sOu872GEaqVSVB67yawLszODZH9PUQ26ONp_rvuPwBnNheLQ
CitedBy_id crossref_primary_10_1088_0953_8984_23_15_153102
crossref_primary_10_1088_1361_6633_aa5ae2
crossref_primary_10_1073_pnas_1218301110
crossref_primary_10_1038_s41598_025_92424_8
crossref_primary_10_1016_j_csbj_2014_10_003
crossref_primary_10_1109_TMBMC_2016_2633269
crossref_primary_10_1038_msb_2009_79
crossref_primary_10_1103_PhysRevX_13_041017
crossref_primary_10_1088_1478_3975_11_2_026004
crossref_primary_10_1049_iet_syb_2009_0070
crossref_primary_10_1016_j_copbio_2014_05_002
crossref_primary_10_1038_nbt_2401
crossref_primary_10_1007_s10955_015_1332_8
crossref_primary_10_1371_journal_pcbi_1002209
crossref_primary_10_1073_pnas_1008965107
crossref_primary_10_1073_pnas_1008898108
crossref_primary_10_1049_iet_syb_2010_0013
crossref_primary_10_1103_PRXLife_3_023004
crossref_primary_10_1371_journal_pone_0084020
crossref_primary_10_1063_5_0276591
crossref_primary_10_1137_110852887
crossref_primary_10_1103_PhysRevX_4_041017
crossref_primary_10_1371_journal_pcbi_1004793
crossref_primary_10_1038_nature09333
crossref_primary_10_1007_s11538_013_9864_z
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.0811999106
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 19351901
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA121852
– fundername: NCI NIH HHS
  grantid: 1U54CA121852-01A1
– fundername: NEI NIH HHS
  grantid: 5PN2EY016586-03
– fundername: NEI NIH HHS
  grantid: PN2 EY016586
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c649t-e5f9be4bb4ee3dd06b222cce8b980d3a04886a1d917580ee6c96dac2d59d604e2
IEDL.DBID 7X8
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000265506800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 12:04:01 EDT 2025
Thu Apr 03 07:03:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c649t-e5f9be4bb4ee3dd06b222cce8b980d3a04886a1d917580ee6c96dac2d59d604e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1073/pnas.0811999106
PMID 19351901
PQID 67208837
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67208837
pubmed_primary_19351901
PublicationCentury 2000
PublicationDate 2009-04-21
PublicationDateYYYYMMDD 2009-04-21
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-21
  day: 21
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
References 17632062 - Cell. 2007 Jul 13;130(1):153-64
15790857 - Science. 2005 Mar 25;307(5717):1965-9
16361441 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18926-31
11967532 - Nat Genet. 2002 May;31(1):69-73
17957259 - PLoS One. 2007;2(10):e1077
16392952 - J Chem Phys. 2005 Dec 15;123(23):234910
17677882 - Phys Rev Lett. 2007 Jun 1;98(22):228301
15698138 - Phys Rev Lett. 2005 Jan 14;94(1):018104
17059287 - J Chem Phys. 2006 Oct 21;125(15):154901
12424362 - Science. 2002 Nov 8;298(5596):1189-90
17012327 - Biophys J. 2006 Dec 15;91(12):4350-67
12183631 - Science. 2002 Aug 16;297(5584):1183-6
11438714 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9
12606710 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2374-9
18719112 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12265-70
10607620 - Curr Opin Microbiol. 1999 Dec;2(6):582-7
18763985 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011910
15889097 - Nature. 2005 May 12;435(7039):228-32
17026206 - Phys Rev Lett. 2006 Aug 11;97(6):068102
10852944 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7148-53
17014165 - J Chem Phys. 2006 Sep 28;125(12):124106
14749823 - Nature. 2004 Jan 29;427(6973):415-8
12883007 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9371-6
12023217 - Biophys J. 2002 Jun;82(6):2943-50
12237400 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12795-800
11106590 - Biophys J. 2000 Dec;79(6):2801-17
15738412 - Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3581-6
References_xml – reference: 12183631 - Science. 2002 Aug 16;297(5584):1183-6
– reference: 12424362 - Science. 2002 Nov 8;298(5596):1189-90
– reference: 15738412 - Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3581-6
– reference: 12883007 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9371-6
– reference: 17026206 - Phys Rev Lett. 2006 Aug 11;97(6):068102
– reference: 17012327 - Biophys J. 2006 Dec 15;91(12):4350-67
– reference: 15790857 - Science. 2005 Mar 25;307(5717):1965-9
– reference: 17632062 - Cell. 2007 Jul 13;130(1):153-64
– reference: 18719112 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12265-70
– reference: 11438714 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9
– reference: 11106590 - Biophys J. 2000 Dec;79(6):2801-17
– reference: 10852944 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7148-53
– reference: 17677882 - Phys Rev Lett. 2007 Jun 1;98(22):228301
– reference: 11967532 - Nat Genet. 2002 May;31(1):69-73
– reference: 17014165 - J Chem Phys. 2006 Sep 28;125(12):124106
– reference: 15889097 - Nature. 2005 May 12;435(7039):228-32
– reference: 17059287 - J Chem Phys. 2006 Oct 21;125(15):154901
– reference: 15698138 - Phys Rev Lett. 2005 Jan 14;94(1):018104
– reference: 12023217 - Biophys J. 2002 Jun;82(6):2943-50
– reference: 16361441 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18926-31
– reference: 12237400 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12795-800
– reference: 18763985 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011910
– reference: 12606710 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2374-9
– reference: 17957259 - PLoS One. 2007;2(10):e1077
– reference: 14749823 - Nature. 2004 Jan 29;427(6973):415-8
– reference: 10607620 - Curr Opin Microbiol. 1999 Dec;2(6):582-7
– reference: 16392952 - J Chem Phys. 2005 Dec 15;123(23):234910
SSID ssj0009580
Score 2.2007086
Snippet The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6529
SubjectTerms Computational Biology - methods
Down-Regulation
Gene Expression Regulation
Signal Transduction - genetics
Stochastic Processes
Transcription, Genetic
Up-Regulation
Title A stochastic spectral analysis of transcriptional regulatory cascades
URI https://www.ncbi.nlm.nih.gov/pubmed/19351901
https://www.proquest.com/docview/67208837
Volume 106
WOSCitedRecordID wos000265506800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VysAClGd5emCAwRAnjuNISKhCrVioOoDULXL8ECxJaQoS_55zHhILYmDJYkWyzvf4zuf7DuBSCxFIl0rKtZI-QWFUMWcpc8IJjhE5z3k9bCKZTuV8ns56cNf1wvhnlZ1PrB21KbW_I78VSYgGESX3i3fqZ0b52mo7QGMN-hECGW-WyVz-oNyVDRdByqjgadAR-yTR7aJQ1Q0GQ9-DzwLxO7qso8xk-3_724GtFl2SUaMOA-jZYhcGrf1W5Kolmb7eg_GIIOzTr8rzNJO63xIXiGo5SkjpyMqHsc6p4NqyGVtfLr-IVpV_V1_tw8tk_PzwSNuRClSjCFbUxi7NLccDsDYyJhA54gOtrcxTGZhIeXsWihlM4lB61gqdCqN0aOLUiIDb8ADWi7KwR0C470FVKmaJkxwTDxkLp00gDaIKY3I2hItOUBmqrK9DqMKWH1XWiWoIh42ss0XDrJEhmow9Qjn-898T2OzqOiE7hb5DY7VnsKE_V2_V8rzWBPxOZ0_fz7e-5Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+spectral+analysis+of+transcriptional+regulatory+cascades&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Walczak%2C+Aleksandra+M&rft.au=Mugler%2C+Andrew&rft.au=Wiggins%2C+Chris+H&rft.date=2009-04-21&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=106&rft.issue=16&rft.spage=6529&rft_id=info:doi/10.1073%2Fpnas.0811999106&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon