A stochastic spectral analysis of transcriptional regulatory cascades
The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here, we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The...
Uložené v:
| Vydané v: | Proceedings of the National Academy of Sciences - PNAS Ročník 106; číslo 16; s. 6529 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
21.04.2009
|
| Predmet: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here, we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The spectral method exploits the natural eigenfunctions of the master equation of birth-death processes to solve for the joint distribution of modules within the network, which then inform each other and facilitate calculation of the entire joint distribution. We illustrate the method on a ubiquitous case in nature: linear regulatory cascades. The efficiency of the method makes possible numerical optimization of the input and regulatory parameters, revealing design properties of, e.g., the most informative cascades. We find, for threshold regulation, that a cascade of strong regulations converts a unimodal input to a bimodal output, that multimodal inputs are no more informative than bimodal inputs, and that a chain of up-regulations outperforms a chain of down-regulations. We anticipate that this numerical approach may be useful for modeling noise in a variety of small network topologies in biology. |
|---|---|
| AbstractList | The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here, we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The spectral method exploits the natural eigenfunctions of the master equation of birth-death processes to solve for the joint distribution of modules within the network, which then inform each other and facilitate calculation of the entire joint distribution. We illustrate the method on a ubiquitous case in nature: linear regulatory cascades. The efficiency of the method makes possible numerical optimization of the input and regulatory parameters, revealing design properties of, e.g., the most informative cascades. We find, for threshold regulation, that a cascade of strong regulations converts a unimodal input to a bimodal output, that multimodal inputs are no more informative than bimodal inputs, and that a chain of up-regulations outperforms a chain of down-regulations. We anticipate that this numerical approach may be useful for modeling noise in a variety of small network topologies in biology. The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here, we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The spectral method exploits the natural eigenfunctions of the master equation of birth-death processes to solve for the joint distribution of modules within the network, which then inform each other and facilitate calculation of the entire joint distribution. We illustrate the method on a ubiquitous case in nature: linear regulatory cascades. The efficiency of the method makes possible numerical optimization of the input and regulatory parameters, revealing design properties of, e.g., the most informative cascades. We find, for threshold regulation, that a cascade of strong regulations converts a unimodal input to a bimodal output, that multimodal inputs are no more informative than bimodal inputs, and that a chain of up-regulations outperforms a chain of down-regulations. We anticipate that this numerical approach may be useful for modeling noise in a variety of small network topologies in biology.The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here, we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The spectral method exploits the natural eigenfunctions of the master equation of birth-death processes to solve for the joint distribution of modules within the network, which then inform each other and facilitate calculation of the entire joint distribution. We illustrate the method on a ubiquitous case in nature: linear regulatory cascades. The efficiency of the method makes possible numerical optimization of the input and regulatory parameters, revealing design properties of, e.g., the most informative cascades. We find, for threshold regulation, that a cascade of strong regulations converts a unimodal input to a bimodal output, that multimodal inputs are no more informative than bimodal inputs, and that a chain of up-regulations outperforms a chain of down-regulations. We anticipate that this numerical approach may be useful for modeling noise in a variety of small network topologies in biology. |
| Author | Walczak, Aleksandra M Mugler, Andrew Wiggins, Chris H |
| Author_xml | – sequence: 1 givenname: Aleksandra M surname: Walczak fullname: Walczak, Aleksandra M email: awalczak@princeton.edu organization: Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA. awalczak@princeton.edu – sequence: 2 givenname: Andrew surname: Mugler fullname: Mugler, Andrew – sequence: 3 givenname: Chris H surname: Wiggins fullname: Wiggins, Chris H |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19351901$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj71PwzAUxC1URD9gZkOe2FKencSxx6oqH1IlFpgjx36FoDQOfs7Q_55IFInpTqefTndLNutDj4zdClgLqPKHobe0Bi2EMUaAumALAUZkqjAw--fnbEn0BQCm1HDF5sLkpTAgFmy34ZSC-7SUWsdpQJei7bjtbXeilng48CnoycV2SG2YYh7xY-xsCvHEnSVnPdI1uzzYjvDmrCv2_rh72z5n-9enl-1mn7lpRcqwPJgGi6YpEHPvQTVSSudQN0aDzy0UWisrvBHVtBNROaO8ddKXxisoUK7Y_W_vEMP3iJTqY0sOu872GEaqVSVB67yawLszODZH9PUQ26ONp_rvuPwBnNheLQ |
| CitedBy_id | crossref_primary_10_1088_0953_8984_23_15_153102 crossref_primary_10_1088_1361_6633_aa5ae2 crossref_primary_10_1073_pnas_1218301110 crossref_primary_10_1038_s41598_025_92424_8 crossref_primary_10_1016_j_csbj_2014_10_003 crossref_primary_10_1109_TMBMC_2016_2633269 crossref_primary_10_1038_msb_2009_79 crossref_primary_10_1103_PhysRevX_13_041017 crossref_primary_10_1088_1478_3975_11_2_026004 crossref_primary_10_1049_iet_syb_2009_0070 crossref_primary_10_1016_j_copbio_2014_05_002 crossref_primary_10_1038_nbt_2401 crossref_primary_10_1007_s10955_015_1332_8 crossref_primary_10_1371_journal_pcbi_1002209 crossref_primary_10_1073_pnas_1008965107 crossref_primary_10_1073_pnas_1008898108 crossref_primary_10_1049_iet_syb_2010_0013 crossref_primary_10_1103_PRXLife_3_023004 crossref_primary_10_1371_journal_pone_0084020 crossref_primary_10_1063_5_0276591 crossref_primary_10_1137_110852887 crossref_primary_10_1103_PhysRevX_4_041017 crossref_primary_10_1371_journal_pcbi_1004793 crossref_primary_10_1038_nature09333 crossref_primary_10_1007_s11538_013_9864_z |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.0811999106 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 19351901 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA121852 – fundername: NCI NIH HHS grantid: 1U54CA121852-01A1 – fundername: NEI NIH HHS grantid: 5PN2EY016586-03 – fundername: NEI NIH HHS grantid: PN2 EY016586 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c649t-e5f9be4bb4ee3dd06b222cce8b980d3a04886a1d917580ee6c96dac2d59d604e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000265506800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 12:04:01 EDT 2025 Thu Apr 03 07:03:21 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c649t-e5f9be4bb4ee3dd06b222cce8b980d3a04886a1d917580ee6c96dac2d59d604e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1073/pnas.0811999106 |
| PMID | 19351901 |
| PQID | 67208837 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_67208837 pubmed_primary_19351901 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-04-21 |
| PublicationDateYYYYMMDD | 2009-04-21 |
| PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-21 day: 21 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2009 |
| References | 17632062 - Cell. 2007 Jul 13;130(1):153-64 15790857 - Science. 2005 Mar 25;307(5717):1965-9 16361441 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18926-31 11967532 - Nat Genet. 2002 May;31(1):69-73 17957259 - PLoS One. 2007;2(10):e1077 16392952 - J Chem Phys. 2005 Dec 15;123(23):234910 17677882 - Phys Rev Lett. 2007 Jun 1;98(22):228301 15698138 - Phys Rev Lett. 2005 Jan 14;94(1):018104 17059287 - J Chem Phys. 2006 Oct 21;125(15):154901 12424362 - Science. 2002 Nov 8;298(5596):1189-90 17012327 - Biophys J. 2006 Dec 15;91(12):4350-67 12183631 - Science. 2002 Aug 16;297(5584):1183-6 11438714 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9 12606710 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2374-9 18719112 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12265-70 10607620 - Curr Opin Microbiol. 1999 Dec;2(6):582-7 18763985 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011910 15889097 - Nature. 2005 May 12;435(7039):228-32 17026206 - Phys Rev Lett. 2006 Aug 11;97(6):068102 10852944 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7148-53 17014165 - J Chem Phys. 2006 Sep 28;125(12):124106 14749823 - Nature. 2004 Jan 29;427(6973):415-8 12883007 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9371-6 12023217 - Biophys J. 2002 Jun;82(6):2943-50 12237400 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12795-800 11106590 - Biophys J. 2000 Dec;79(6):2801-17 15738412 - Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3581-6 |
| References_xml | – reference: 12183631 - Science. 2002 Aug 16;297(5584):1183-6 – reference: 12424362 - Science. 2002 Nov 8;298(5596):1189-90 – reference: 15738412 - Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3581-6 – reference: 12883007 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9371-6 – reference: 17026206 - Phys Rev Lett. 2006 Aug 11;97(6):068102 – reference: 17012327 - Biophys J. 2006 Dec 15;91(12):4350-67 – reference: 15790857 - Science. 2005 Mar 25;307(5717):1965-9 – reference: 17632062 - Cell. 2007 Jul 13;130(1):153-64 – reference: 18719112 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12265-70 – reference: 11438714 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9 – reference: 11106590 - Biophys J. 2000 Dec;79(6):2801-17 – reference: 10852944 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7148-53 – reference: 17677882 - Phys Rev Lett. 2007 Jun 1;98(22):228301 – reference: 11967532 - Nat Genet. 2002 May;31(1):69-73 – reference: 17014165 - J Chem Phys. 2006 Sep 28;125(12):124106 – reference: 15889097 - Nature. 2005 May 12;435(7039):228-32 – reference: 17059287 - J Chem Phys. 2006 Oct 21;125(15):154901 – reference: 15698138 - Phys Rev Lett. 2005 Jan 14;94(1):018104 – reference: 12023217 - Biophys J. 2002 Jun;82(6):2943-50 – reference: 16361441 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18926-31 – reference: 12237400 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12795-800 – reference: 18763985 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011910 – reference: 12606710 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2374-9 – reference: 17957259 - PLoS One. 2007;2(10):e1077 – reference: 14749823 - Nature. 2004 Jan 29;427(6973):415-8 – reference: 10607620 - Curr Opin Microbiol. 1999 Dec;2(6):582-7 – reference: 16392952 - J Chem Phys. 2005 Dec 15;123(23):234910 |
| SSID | ssj0009580 |
| Score | 2.2007086 |
| Snippet | The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 6529 |
| SubjectTerms | Computational Biology - methods Down-Regulation Gene Expression Regulation Signal Transduction - genetics Stochastic Processes Transcription, Genetic Up-Regulation |
| Title | A stochastic spectral analysis of transcriptional regulatory cascades |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19351901 https://www.proquest.com/docview/67208837 |
| Volume | 106 |
| WOSCitedRecordID | wos000265506800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VysAClGd5emCAwRAnjuNISKhCrVioOoDULXL8ECxJaQoS_55zHhILYmDJYkWyzvf4zuf7DuBSCxFIl0rKtZI-QWFUMWcpc8IJjhE5z3k9bCKZTuV8ns56cNf1wvhnlZ1PrB21KbW_I78VSYgGESX3i3fqZ0b52mo7QGMN-hECGW-WyVz-oNyVDRdByqjgadAR-yTR7aJQ1Q0GQ9-DzwLxO7qso8xk-3_724GtFl2SUaMOA-jZYhcGrf1W5Kolmb7eg_GIIOzTr8rzNJO63xIXiGo5SkjpyMqHsc6p4NqyGVtfLr-IVpV_V1_tw8tk_PzwSNuRClSjCFbUxi7NLccDsDYyJhA54gOtrcxTGZhIeXsWihlM4lB61gqdCqN0aOLUiIDb8ADWi7KwR0C470FVKmaJkxwTDxkLp00gDaIKY3I2hItOUBmqrK9DqMKWH1XWiWoIh42ss0XDrJEhmow9Qjn-898T2OzqOiE7hb5DY7VnsKE_V2_V8rzWBPxOZ0_fz7e-5Q |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+spectral+analysis+of+transcriptional+regulatory+cascades&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Walczak%2C+Aleksandra+M&rft.au=Mugler%2C+Andrew&rft.au=Wiggins%2C+Chris+H&rft.date=2009-04-21&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=106&rft.issue=16&rft.spage=6529&rft_id=info:doi/10.1073%2Fpnas.0811999106&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |