Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling

We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3...

Full description

Saved in:
Bibliographic Details
Published in:Ecosystems (New York) Vol. 14; no. 6; pp. 880 - 893
Main Authors: Laudon, Hjalmar, Berggren, Martin, Ågren, Anneli, Buffam, Ishi, Bishop, Kevin, Grabs, Thomas, Jansson, Mats, Köhler, Stephan
Format: Journal Article
Language:English
Published: New York Springer Science+Business Media 01.09.2011
Springer-Verlag
Springer
Springer Nature B.V
Subjects:
ISSN:1432-9840, 1435-0629, 1435-0629
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3 to 6900 ha in size, as well as a set of monitored transects of forested and wetland soils. We show that in small homogenous catchments, hydrological functioning provides a first order control on the temporal variability of stream water DOC. In larger, more heterogeneous catchments, stream water DOC dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment covered by 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions. During high flow, the major source of DOC is from forested areas of the catchment. We demonstrate that by connecting knowledge about DOC sources in the landscape with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. The purpose of this study is to serve as a framework for appreciating the role of regulating mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes. The results from this study suggest that the sensitivity of stream water DOC in the boreal landscape ultimately depends on changes within individual landscape elements, the proportion and connectivity of these affected landscape elements, and how these changes are propagated downstream.
AbstractList We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3 to 6900 ha in size, as well as a set of monitored transects of forested and wetland soils. We show that in small homogenous catchments, hydrological functioning provides a first order control on the temporal variability of stream water DOC. In larger, more heterogeneous catchments, stream water DOC dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment covered by 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions. During high flow, the major source of DOC is from forested areas of the catchment. We demonstrate that by connecting knowledge about DOC sources in the landscape with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. The purpose of this study is to serve as a framework for appreciating the role of regulating mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes. The results from this study suggest that the sensitivity of stream water DOC in the boreal landscape ultimately depends on changes within individual landscape elements, the proportion and connectivity of these affected landscape elements, and how these changes are propagated downstream.
We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3 to 6900 ha in size, as well as a set of monitored transects of forested and wetland soils. We show that in small homogenous catchments, hydrological functioning provides a first order control on the temporal variability of stream water DOC. In larger, more heterogeneous catchments, stream water DOC dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment covered by 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions. During high flow, the major source of DOC is from forested areas of the catchment. We demonstrate that by connecting knowledge about DOC sources in the landscape with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. The purpose of this study is to serve as a framework for appreciating the role of regulating mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes. The results from this study suggest that the sensitivity of stream water DOC in the boreal landscape ultimately depends on changes within individual landscape elements, the proportion and connectivity of these affected landscape elements, and how these changes are propagated downstream.[PUBLICATION ABSTRACT]
We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3 to 6900 ha in size, as well as a set of monitored transects of forested and wetland soils. We show that in small homogenous catchments, hydrological functioning provides a first order control on the temporal variability of stream water DOC. In larger, more heterogeneous catchments, stream water DOC dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment covered by 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions. During high flow, the major source of DOC is from forested areas of the catchment. We demonstrate that by connecting knowledge about DOC sources in the landscape with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. The purpose of this study is to serve as a framework for appreciating the role of regulating mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes. The results from this study suggest that the sensitivity of stream water DOC in the boreal landscape ultimately depends on changes within individual landscape elements, the proportion and connectivity of these affected landscape elements, and how these changes are propagated downstream.
Audience Academic
Author Ågren, Anneli
Jansson, Mats
Buffam, Ishi
Bishop, Kevin
Laudon, Hjalmar
Grabs, Thomas
Berggren, Martin
Köhler, Stephan
Author_xml – sequence: 1
  givenname: Hjalmar
  surname: Laudon
  fullname: Laudon, Hjalmar
– sequence: 2
  givenname: Martin
  surname: Berggren
  fullname: Berggren, Martin
– sequence: 3
  givenname: Anneli
  surname: Ågren
  fullname: Ågren, Anneli
– sequence: 4
  givenname: Ishi
  surname: Buffam
  fullname: Buffam, Ishi
– sequence: 5
  givenname: Kevin
  surname: Bishop
  fullname: Bishop, Kevin
– sequence: 6
  givenname: Thomas
  surname: Grabs
  fullname: Grabs, Thomas
– sequence: 7
  givenname: Mats
  surname: Jansson
  fullname: Jansson, Mats
– sequence: 8
  givenname: Stephan
  surname: Köhler
  fullname: Köhler, Stephan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25293844$$DView record in Pascal Francis
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-46621$$DView record from Swedish Publication Index (Umeå universitet)
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-159247$$DView record from Swedish Publication Index (Uppsala universitet)
https://res.slu.se/id/publ/58592$$DView record from Swedish Publication Index (Sveriges lantbruksuniversitet)
BookMark eNqNkm9rFDEQxhepYFv9AL4QgiBWuK2ZbLK78d155z8oXLHVtyGbTc4ce8k12a0cfnmzvbNCwUMCmRB-z0xm8pxkR847nWXPAZ8DxtXbmHYCOQbIOWUkrx9lx0ALluOS8KO7M8l5TfGT7CTGFcbAakqPs1-Xsu91cBFJ16L51sm1VRF5g-Y2Rt_d6hYtwlI6q9BMhsY7dDZfzN4g69B7H7Ts0FWfwjq-Q9c_NPrqOz2qL4NXOkYdJ2jmndOqt7e2307uylwp2Vm3fJo9NrKL-tk-nmbfPn64nn3OLxafvsymF7kqKe9zZqhseM1qjGnTGqKhqkrVtKWUUGBTFAbXDS5NC4yZpmVgmkorjkEDI01TFKdZvssbf-rN0IhNsGsZtsJLK2I3NDKMQUQtWM04Sfzkn_zcfp8KH5ZiGAQkmFb_ia8HQcuSQMJf7_BN8DeDjr1Y26h010mn_RAFxxXUmANP5NlBEijHDAiu6oS-fICu_BBcmqqo64qPIE3Q-Q5ayk4L64zvg1RptTp9evKTsel-WkFRFTgZJgle7bPKmL7MBOmUjfcNEkZ4kVyUuGrHqeBjDNoIZXvZW-9SAdsJwGI0qdiZVCSTitGkYnw3PFD-SX5IQ_bzTqxb6vC310OiFzvRKvY-3FehwDAbZ_0bnhwDfw
CitedBy_id crossref_primary_10_5194_bg_10_891_2013
crossref_primary_10_1007_s00027_013_0296_5
crossref_primary_10_1088_1755_1315_1093_1_012018
crossref_primary_10_5194_bg_12_1881_2015
crossref_primary_10_1016_j_chemgeo_2012_01_033
crossref_primary_10_1002_wat2_1265
crossref_primary_10_1007_s00027_023_00956_w
crossref_primary_10_1002_saj2_20705
crossref_primary_10_1088_1748_9326_acd467
crossref_primary_10_1002_lol2_10305
crossref_primary_10_1016_j_jhydrol_2018_09_011
crossref_primary_10_1002_2017JG004272
crossref_primary_10_1002_hyp_11277
crossref_primary_10_1016_j_chemosphere_2014_12_080
crossref_primary_10_1002_hyp_11279
crossref_primary_10_1016_j_envpol_2013_08_023
crossref_primary_10_1007_s10021_015_9878_5
crossref_primary_10_1007_s12665_016_5464_1
crossref_primary_10_5194_hess_27_3935_2023
crossref_primary_10_1016_j_chemgeo_2022_121254
crossref_primary_10_1016_j_jhydrol_2022_128534
crossref_primary_10_1002_wat2_1155
crossref_primary_10_1016_j_scitotenv_2024_177434
crossref_primary_10_1080_02626667_2022_2038792
crossref_primary_10_1002_hyp_10877
crossref_primary_10_1002_lno_12282
crossref_primary_10_1016_j_agrformet_2021_108454
crossref_primary_10_5194_bg_11_3043_2014
crossref_primary_10_1016_j_scitotenv_2022_157398
crossref_primary_10_1016_j_scitotenv_2014_05_091
crossref_primary_10_1080_17538947_2024_2308734
crossref_primary_10_1029_2019GB006495
crossref_primary_10_1080_20442041_2020_1787765
crossref_primary_10_1007_s10750_013_1549_y
crossref_primary_10_59717_j_xinn_geo_2025_100148
crossref_primary_10_1002_2014JG002695
crossref_primary_10_1016_j_scitotenv_2021_152420
crossref_primary_10_1111_gcb_12488
crossref_primary_10_1016_j_scitotenv_2012_06_111
crossref_primary_10_1002_hyp_13918
crossref_primary_10_1016_j_chemgeo_2013_11_023
crossref_primary_10_1016_j_scitotenv_2023_162308
crossref_primary_10_3390_w11020390
crossref_primary_10_1029_2021GL096616
crossref_primary_10_1029_2019WR026695
crossref_primary_10_1007_s10533_022_00983_z
crossref_primary_10_1029_2019WR026577
crossref_primary_10_1029_2019WR026336
crossref_primary_10_1088_1755_1315_232_1_012010
crossref_primary_10_1007_s10533_013_9949_7
crossref_primary_10_5194_essd_15_1779_2023
crossref_primary_10_1007_s10021_017_0149_5
crossref_primary_10_1029_2020WR028134
crossref_primary_10_1002_2015JG002963
crossref_primary_10_1007_s10750_018_3553_8
crossref_primary_10_1002_2016JG003357
crossref_primary_10_3390_f6092982
crossref_primary_10_1088_1748_9326_ab23d4
crossref_primary_10_1002_2017WR020707
crossref_primary_10_1016_j_gca_2014_03_033
crossref_primary_10_5194_bg_9_2159_2012
crossref_primary_10_1007_s00382_014_2124_6
crossref_primary_10_1088_1748_9326_8_2_024017
crossref_primary_10_1002_2016WR019186
crossref_primary_10_3390_rs16010176
crossref_primary_10_1029_2020WR028806
crossref_primary_10_5194_bg_14_3001_2017
crossref_primary_10_1007_s10498_015_9277_8
crossref_primary_10_1016_j_earscirev_2021_103873
crossref_primary_10_1039_D0EW00150C
crossref_primary_10_1111_gcb_14891
crossref_primary_10_1088_1748_9326_ac462f
crossref_primary_10_1002_lol2_10066
crossref_primary_10_1016_j_ecoleng_2013_01_028
crossref_primary_10_1016_j_rse_2018_09_014
crossref_primary_10_5194_bg_9_3901_2012
crossref_primary_10_1007_s00027_020_0714_4
crossref_primary_10_1029_2022WR033358
crossref_primary_10_1002_2017WR020739
crossref_primary_10_1088_1748_9326_ace637
crossref_primary_10_1007_s42452_019_0225_x
crossref_primary_10_1016_j_jhydrol_2013_09_056
crossref_primary_10_1002_hyp_11352
crossref_primary_10_1007_s10021_016_0057_0
crossref_primary_10_1002_2015JG003190
crossref_primary_10_1002_2015WR018343
crossref_primary_10_1029_2022JG007179
crossref_primary_10_1111_1752_1688_12702
crossref_primary_10_3389_frwa_2021_669007
crossref_primary_10_1002_2017WR021718
crossref_primary_10_1016_j_catena_2023_107054
crossref_primary_10_1088_1748_9326_9_3_035005
crossref_primary_10_1016_j_scitotenv_2016_02_199
crossref_primary_10_1080_02827581_2018_1441900
crossref_primary_10_1029_2020JD033413
crossref_primary_10_1088_1748_9326_ad3cf8
crossref_primary_10_1111_fwb_12549
crossref_primary_10_1890_13_0363_1
crossref_primary_10_1007_s00027_015_0451_2
crossref_primary_10_1016_j_jhydrol_2024_131740
crossref_primary_10_1002_lno_10589
crossref_primary_10_1007_s41109_018_0067_2
crossref_primary_10_1016_j_gca_2017_05_023
crossref_primary_10_1002_hyp_10834
crossref_primary_10_1002_wrcr_20520
crossref_primary_10_1016_j_foreco_2020_117962
crossref_primary_10_1002_hyp_10715
crossref_primary_10_1016_j_gca_2018_07_030
crossref_primary_10_1139_cjfas_2020_0421
crossref_primary_10_1038_s41467_020_15496_2
crossref_primary_10_1080_02626667_2016_1170942
crossref_primary_10_1016_j_jhydrol_2019_05_029
crossref_primary_10_1007_s13280_016_0837_y
crossref_primary_10_1657_AAAR0014_044
crossref_primary_10_1002_2014JG002809
crossref_primary_10_1002_hyp_10830
crossref_primary_10_1016_j_chemgeo_2015_05_013
crossref_primary_10_1111_gcb_14156
crossref_primary_10_1016_j_watres_2017_01_066
crossref_primary_10_5194_bg_10_905_2013
crossref_primary_10_1002_2013JG002551
crossref_primary_10_1029_2020JG005804
crossref_primary_10_1038_s41598_018_34272_3
crossref_primary_10_1111_gcb_14983
crossref_primary_10_1002_2015GL066916
crossref_primary_10_1016_j_jhydrol_2017_03_056
crossref_primary_10_1016_j_scitotenv_2015_03_102
crossref_primary_10_1002_2016JG003420
crossref_primary_10_1002_2014JG002814
crossref_primary_10_1016_j_jhydrol_2024_130985
crossref_primary_10_1002_lno_12099
crossref_primary_10_1890_15_0515_1
crossref_primary_10_1002_hyp_10286
crossref_primary_10_1007_s13280_015_0751_8
crossref_primary_10_5194_hess_24_1709_2020
crossref_primary_10_1002_lno_12406
crossref_primary_10_1016_j_jhydrol_2022_128988
crossref_primary_10_1007_s10533_018_0469_3
crossref_primary_10_1371_journal_pone_0164592
crossref_primary_10_1007_s00027_013_0305_8
crossref_primary_10_1016_j_jhydrol_2024_131605
crossref_primary_10_1016_j_scitotenv_2018_11_392
crossref_primary_10_5194_bg_10_3849_2013
crossref_primary_10_1016_j_apgeochem_2015_05_023
crossref_primary_10_1007_s41742_025_00745_3
crossref_primary_10_1002_hyp_10733
crossref_primary_10_1016_j_scitotenv_2024_177452
crossref_primary_10_1111_j_1365_2486_2012_02666_x
crossref_primary_10_1002_2016GB005578
crossref_primary_10_1016_j_envpol_2024_124761
crossref_primary_10_1016_j_jenvrad_2012_06_010
crossref_primary_10_1016_j_jhydrol_2018_09_051
crossref_primary_10_5194_hess_22_1081_2018
crossref_primary_10_1002_ece3_2726
crossref_primary_10_1002_hyp_14898
crossref_primary_10_1007_s10661_015_4385_x
crossref_primary_10_1016_j_agrformet_2025_110758
crossref_primary_10_3390_rs16081345
crossref_primary_10_1016_j_scitotenv_2012_05_071
crossref_primary_10_1029_2019JG005142
crossref_primary_10_1029_2019JG005384
crossref_primary_10_1016_j_chemosphere_2024_143047
crossref_primary_10_5194_bg_15_6637_2018
crossref_primary_10_1002_2013GB004770
crossref_primary_10_1002_2015WR018419
crossref_primary_10_1007_s12665_013_3005_8
crossref_primary_10_1007_s13157_019_01170_x
crossref_primary_10_1002_hyp_13616
crossref_primary_10_1016_j_ecolind_2024_112491
crossref_primary_10_1029_2023JG007556
crossref_primary_10_1016_j_gloplacha_2020_103294
crossref_primary_10_1007_s10533_019_00603_3
crossref_primary_10_1016_j_scitotenv_2018_02_152
crossref_primary_10_3389_ffgc_2022_1044447
crossref_primary_10_1016_j_scitotenv_2024_171959
crossref_primary_10_5194_bg_13_1863_2016
crossref_primary_10_1002_lno_10383
crossref_primary_10_1016_j_gca_2016_08_030
crossref_primary_10_1016_j_catena_2024_107918
crossref_primary_10_5194_bg_11_1199_2014
crossref_primary_10_5194_bg_13_399_2016
crossref_primary_10_1002_hyp_11205
crossref_primary_10_5194_bg_12_4651_2015
crossref_primary_10_1002_hyp_14279
crossref_primary_10_5194_hess_21_2035_2017
crossref_primary_10_1029_2022JG007027
crossref_primary_10_1080_20442041_2019_1568073
crossref_primary_10_1007_s10021_017_0133_0
crossref_primary_10_1002_lol2_10169
crossref_primary_10_1002_2016JG003621
crossref_primary_10_1002_ecs2_1739
crossref_primary_10_1007_s10533_013_9896_3
crossref_primary_10_1007_s10021_022_00798_x
crossref_primary_10_5194_hess_22_4455_2018
crossref_primary_10_5194_bg_13_1_2016
crossref_primary_10_5194_bg_10_2315_2013
crossref_primary_10_1007_s00442_011_2092_z
crossref_primary_10_1002_2013JG002309
crossref_primary_10_1002_hyp_14049
crossref_primary_10_1029_2022WR032892
crossref_primary_10_1016_j_scitotenv_2022_159982
crossref_primary_10_1007_s10533_021_00874_9
crossref_primary_10_1029_2018GB006106
crossref_primary_10_5194_bg_15_6979_2018
crossref_primary_10_1016_j_jhydrol_2018_12_065
crossref_primary_10_1029_2020JG005851
crossref_primary_10_3402_polar_v32i0_19704
crossref_primary_10_1007_s10661_015_4969_5
crossref_primary_10_1016_j_scitotenv_2024_171139
crossref_primary_10_5194_bg_14_4391_2017
crossref_primary_10_1002_2015GB005316
crossref_primary_10_1111_gcb_14812
crossref_primary_10_1007_s10533_018_0446_x
crossref_primary_10_1016_j_chemgeo_2015_08_013
crossref_primary_10_3389_frwa_2023_1087108
crossref_primary_10_1002_2015WR016927
crossref_primary_10_1002_wrcr_20469
crossref_primary_10_1002_2015WR017336
crossref_primary_10_1002_hyp_13528
crossref_primary_10_1002_lno_11134
crossref_primary_10_5004_dwt_2018_22352
crossref_primary_10_3390_s120403798
crossref_primary_10_1029_2023JG007538
crossref_primary_10_1002_lno_10954
crossref_primary_10_1016_j_foreco_2023_120776
crossref_primary_10_1029_2020JG006152
crossref_primary_10_1002_hyp_15020
crossref_primary_10_2166_nh_2019_161
crossref_primary_10_1002_hyp_14170
crossref_primary_10_1007_s00027_023_01001_6
crossref_primary_10_1016_j_jhydrol_2015_10_002
crossref_primary_10_1002_2013WR014275
crossref_primary_10_1002_hyp_15263
crossref_primary_10_1080_02626667_2013_822639
crossref_primary_10_1016_j_scitotenv_2015_03_041
crossref_primary_10_1007_s11270_013_1767_y
crossref_primary_10_1080_10934529_2015_992670
crossref_primary_10_1016_j_ecohyd_2021_02_005
crossref_primary_10_1007_s10533_022_00947_3
crossref_primary_10_1038_s41598_023_47528_4
crossref_primary_10_1007_s12665_024_11804_x
crossref_primary_10_1029_2022WR032426
crossref_primary_10_1111_gwat_12186
crossref_primary_10_1002_2017JG004083
crossref_primary_10_1002_2014JG002878
crossref_primary_10_1002_hyp_11519
crossref_primary_10_1007_s10533_020_00648_9
crossref_primary_10_1016_j_jhydrol_2013_01_015
crossref_primary_10_5194_hess_27_613_2023
crossref_primary_10_1007_s10533_014_0046_3
crossref_primary_10_1016_j_scitotenv_2023_167300
crossref_primary_10_1007_s10750_015_2636_z
crossref_primary_10_1111_gcb_12265
crossref_primary_10_1002_2015JG002946
crossref_primary_10_1002_2016JG003495
crossref_primary_10_1016_j_foreco_2014_08_033
crossref_primary_10_1146_annurev_earth_082517_010018
crossref_primary_10_1080_20442041_2020_1740549
crossref_primary_10_5194_hess_29_1449_2025
crossref_primary_10_1002_2016RG000547
crossref_primary_10_1002_lno_10738
crossref_primary_10_1016_j_scitotenv_2025_178696
crossref_primary_10_1088_1748_9326_ab9d3c
crossref_primary_10_3390_land13030355
crossref_primary_10_1007_s11430_018_9309_6
crossref_primary_10_1007_s00027_023_01041_y
crossref_primary_10_1007_s10498_013_9215_6
crossref_primary_10_1016_j_catena_2021_105441
crossref_primary_10_3390_w9060383
crossref_primary_10_1016_j_scitotenv_2024_173486
crossref_primary_10_1007_s00267_014_0259_1
crossref_primary_10_1016_j_agee_2020_107075
crossref_primary_10_1111_gcb_13815
crossref_primary_10_1111_geoa_12136
crossref_primary_10_1134_S0097807824604849
crossref_primary_10_1002_2015JG003201
crossref_primary_10_1016_j_scitotenv_2022_159382
crossref_primary_10_1111_gcb_12607
crossref_primary_10_1371_journal_pone_0225271
crossref_primary_10_1111_1365_2745_12355
crossref_primary_10_1139_er_2024_0078
crossref_primary_10_5194_hess_28_1055_2024
crossref_primary_10_1038_s41467_024_44888_x
crossref_primary_10_1002_vzj2_20126
crossref_primary_10_1016_j_geoderma_2014_02_017
crossref_primary_10_1007_s13280_015_0635_y
crossref_primary_10_1029_2020JG005654
crossref_primary_10_1007_s13280_019_01227_5
crossref_primary_10_1016_j_ecolmodel_2017_04_014
crossref_primary_10_1016_j_scitotenv_2017_11_252
crossref_primary_10_1029_2018JG004622
crossref_primary_10_1029_2018JG004981
crossref_primary_10_1016_j_watres_2023_121048
crossref_primary_10_5194_bg_17_581_2020
crossref_primary_10_1002_2015JG002922
crossref_primary_10_1016_j_jhydrol_2016_04_067
crossref_primary_10_1002_2016JG003399
crossref_primary_10_1016_j_orggeochem_2013_10_008
crossref_primary_10_1088_3033_4942_adb906
crossref_primary_10_1007_s10021_019_00471_w
crossref_primary_10_1111_gcb_12959
crossref_primary_10_3390_f13040599
crossref_primary_10_1029_2022JG006831
crossref_primary_10_5194_hess_29_2377_2025
crossref_primary_10_5194_bg_15_457_2018
crossref_primary_10_5194_hess_25_2133_2021
Cites_doi 10.1029/97WR01921
10.1023/A:1005903428956
10.1007/s10533-007-9170-7
10.1007/BF03161449
10.1007/BF01189693
10.1007/s00027-007-0943-9
10.1029/2006JG000381
10.1016/j.envpol.2010.05.027
10.1023/A:1005496331593
10.1007/s00248-008-9423-6
10.1111/j.1365-2486.2008.01551.x
10.1007/s00027-004-0700-2
10.1016/B978-012256371-3/50007-X
10.1029/2006GB002844
10.5194/hess-12-425-2008
10.1029/2001JD900119
10.1029/2005JG000055
10.1038/nature06316
10.1007/s10021-008-9142-3
10.1007/s00027-005-0802-5
10.1021/es0201552
10.1016/j.tree.2007.02.015
10.1111/j.1365-2486.2004.00866.x
10.1021/es903179j
10.1029/2007WR006523
10.1023/A:1005779711821
10.1016/S0009-2541(96)00139-8
10.1579/0044-7447-38.7.381
10.1029/2002WR001525
10.1002/hyp.5209
10.1016/j.scitotenv.2008.10.006
10.1002/hyp.1357
10.1002/hyp.7615
10.1029/2010JG001452
10.1002/hyp.7577
10.1021/es8017946
10.1029/2009JG001100
10.1029/2006WR005128
10.4319/lo.2001.46.2.0345
10.2166/nh.1989.0001
10.1029/2006JG000387
10.1016/j.jhydrol.2009.04.012
10.1029/2009JG001013
10.1029/2007JG000629
10.1016/j.scitotenv.2009.09.008
10.1021/es0523183
10.1111/j.1365-2486.2008.01654.x
10.1016/j.envpol.2010.03.009
10.1890/02-5271
10.1021/es102885z
10.1016/j.gca.2009.05.052
10.1890/1051-0761(1999)009[1377:DOCAAI]2.0.CO;2
10.1007/s10533-005-2024-2
10.1016/0160-4120(96)00036-0
10.1016/j.apgeochem.2010.12.005
10.1029/2005JG000065
10.1007/s10980-006-0020-0
10.1111/j.1365-2427.2008.01955.x
10.1029/2008GB003294
10.1111/j.1365-2486.2007.01530.x
10.1029/2006WR005286
10.1038/ismej.2009.120
10.1007/BF00024390
10.1029/2006JG000218
10.1016/j.gca.2008.03.024
10.1139/f07-194
10.1021/es070557f
10.1016/j.jhydrol.2007.07.010
10.1029/2002WR001404
10.5194/hess-13-2287-2009
10.1016/j.scitotenv.2010.02.046
10.1016/j.apgeochem.2009.04.038
10.1029/2003WR002455
ContentType Journal Article
Copyright 2011 Springer Science+Business Media, LLC
Springer Science+Business Media, LLC 2011
2015 INIST-CNRS
COPYRIGHT 2011 Springer
Copyright_xml – notice: 2011 Springer Science+Business Media, LLC
– notice: Springer Science+Business Media, LLC 2011
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2011 Springer
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
IQODW
3V.
7SN
7ST
7XB
88I
8FK
8G5
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7S9
L.6
7QH
7UA
F1W
H95
L.G
ADTPV
AOWAS
D93
DF2
DOI 10.1007/s10021-011-9452-8
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central (ProQuest)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Research Library
Science Database
Research Library (Corporate)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Aqualine
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
SwePub
SwePub Articles
SWEPUB Umeå universitet
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Ecology Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Water Resources Abstracts
DatabaseTitleList


AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Research Library Prep


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
Zoology
EISSN 1435-0629
EndPage 893
ExternalDocumentID oai_slubar_slu_se_58592
oai_DiVA_org_uu_159247
oai_DiVA_org_umu_46621
2445450811
A713730143
25293844
10_1007_s10021_011_9452_8
41505919
Genre Feature
GroupedDBID -DZ
-~C
.86
06C
06D
0R~
0VY
199
1N0
203
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~F
2~H
30V
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67N
67Z
6NX
78A
7XC
88I
8CJ
8FE
8FH
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHBH
AAHKG
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPLY
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTLG
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHIC
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEBTG
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEZWR
AFAZZ
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGUYK
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHPBZ
AHWEU
AHXOZ
AHYZX
AIAKS
AICQM
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANHSF
AOCGG
AQVQM
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CBGCD
CCPQU
COF
CS3
CSCUP
D1J
DATOO
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GTFYD
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HTVGU
HVGLF
HZ~
I-F
I09
IAO
IEP
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JBMMH
JBS
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KPH
LAS
LLZTM
M2O
M2P
M4Y
MA-
MQGED
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
PATMY
PCBAR
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SA0
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
Y6R
YLTOR
YV5
Z45
ZMTXR
ZOVNA
~02
~A9
~KM
-56
-5G
-BR
-EM
-Y2
1SB
2P1
3V.
ADINQ
AGGDS
AHAVH
AHSBF
DOOOF
EQZMY
GQ6
HGD
IHE
JSODD
OVD
RIG
RNI
RZK
S1Z
TEORI
VJK
WHG
Z7Y
Z7Z
AAYXX
ABRTQ
AFFHD
AFOHR
BANNL
CITATION
IQODW
7SN
7ST
7XB
8FK
C1K
MBDVC
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
7QH
7UA
F1W
H95
L.G
ADTPV
AOWAS
D93
DF2
ID FETCH-LOGICAL-c649t-5f4ab9858004bdf2e1776cbd6aa130f33f08b06fd155fbd51fb7ec901e152bb33
IEDL.DBID BENPR
ISICitedReferencesCount 358
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294683300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-9840
1435-0629
IngestDate Tue Nov 04 16:55:51 EST 2025
Tue Nov 04 16:39:42 EST 2025
Tue Nov 04 16:59:03 EST 2025
Tue Oct 07 09:58:04 EDT 2025
Sun Nov 09 09:38:34 EST 2025
Tue Dec 02 16:27:25 EST 2025
Sat Nov 29 10:09:25 EST 2025
Mon Jul 21 09:15:46 EDT 2025
Sat Nov 29 06:23:51 EST 2025
Tue Nov 18 22:32:08 EST 2025
Fri Feb 21 02:29:09 EST 2025
Thu Jun 19 15:59:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords scaling
Krycklan catchment
connectivity
hydrology
boreal forest
dissolved organic carbon
Dissolved organic carbon
Boreal forest
Hydrology
Dynamics
Ecosystem
Watershed
Stream
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c649t-5f4ab9858004bdf2e1776cbd6aa130f33f08b06fd155fbd51fb7ec901e152bb33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 887949054
PQPubID 55443
PageCount 14
ParticipantIDs swepub_primary_oai_slubar_slu_se_58592
swepub_primary_oai_DiVA_org_uu_159247
swepub_primary_oai_DiVA_org_umu_46621
proquest_miscellaneous_907180919
proquest_miscellaneous_1490512078
proquest_journals_887949054
gale_infotracacademiconefile_A713730143
pascalfrancis_primary_25293844
crossref_citationtrail_10_1007_s10021_011_9452_8
crossref_primary_10_1007_s10021_011_9452_8
springer_journals_10_1007_s10021_011_9452_8
jstor_primary_41505919
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
PublicationTitle Ecosystems (New York)
PublicationTitleAbbrev Ecosystems
PublicationYear 2011
Publisher Springer Science+Business Media
Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer Science+Business Media
– name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References Ågren A, Buffam I, Jansson M, Laudon H. 2007a. Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. J Geophys Res 112: doi: 03010.01029/02006JG000381.
CanhamCDPaceMLPapaikMJPrimackAGBRoyKMMarangerRJCurranRPSpadaDMA spatially explicit watershed-scale analysis of dissolved organic carbon in Adriondack lakesEcol Appl20041483985410.1890/02-5271
NilssonMSagerforsJBuffamILaudonHErikssonTGrelleAKlemedtssonLWeslienPLinderothAComplete carbon budgets for two years of a boreal oligotrophic minerogenic mireGlob Change Biol20081411610.1111/j.1365-2486.2008.01654.x
NilssonMMikkelaCSundhIGranbergGSvenssonBHRannebyBMethane emission from Swedish mires: national and regional budgets and dependence on mire vegetationJ Geophys Res Atmos2001106208472086010.1029/2001JD9001191:CAS:528:DC%2BD3MXnslKksLo%3D
Lundin L. 1982. Soil moisture and ground water in till soil and the significance of soil type for runoff. UNGI Report No. 56. Uppsala University, Uppsala. 216 pp.
GergelSETurnerMGKratzTKDissolved organic carbon as an indicator of the scale of watershed influence on lakes and riversEcol Appl199991377139010.1890/1051-0761(1999)009[1377:DOCAAI]2.0.CO;2
Seibert J, McGlynn BL. 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Res 43. doi:10.1029/2006WR005128.
Wallin M, Buffam I, Öquist M, Laudon H, Bishop K. 2010. Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network—concentrations and downstream fluxes. J Geophys Res 115. doi:10.1029/2009JG001100.
ÅgrenAJanssonMIvarssonHBishopKSeibertJSeasonal and runoff-related changes in allochtonous organic carbon concentrations in the River Öre, Northern SwedenAquat Sci200770212910.1007/s00027-007-0943-9
Bishop KH. 1991. Episodic increases in stream acidity, catchment flow pathways and hydrograph separation. University of Cambridge. 246 pp.
BishopKSeibertJKöhlerSLaudonHResolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistryHydrol Process20041818518910.1002/hyp.5209
McGlynn BL, McDonnell JJ. 2003. Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Res 39. doi:10.1029/2002WR001525.
BergknutMMeijerSHalsallCÅgrenALaudonHKöhlerSJonesKCTysklindMWibergKModelling the fate of hydrophobic organic contaminants in a boreal forest catchment: a cross disciplinary approach to assessing diffuse pollution to surface watersEnviron Pollut2010158296429692061951710.1016/j.envpol.2010.05.0271:CAS:528:DC%2BC3cXps1Ghsr0%3D
DillonPJMolotLAEffect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchmentsWater Resour Res1997332591260010.1029/97WR019211:CAS:528:DyaK2sXnsVyisb0%3D
JanssonMPerssonLDe RoosAMJonesRTranvikLJTerrestrial carbon and intraspecific size-variation shape lake ecosystemsTrends Ecol Evol2007223163221733906710.1016/j.tree.2007.02.015
ClairTADennisIFVetRLaudonHLong-term trends in catchment organic carbon and nitrogen exports from three acidified catchments in Nova Scotia, CanadaBiogeochemistry200887839710.1007/s10533-007-9170-71:CAS:528:DC%2BD1cXivVOqtbw%3D
PregitzerKSEuskirchenESCarbon cycling and storage in world forests: biome patterns related to forest ageGlob Change Biol2004102052207710.1111/j.1365-2486.2004.00866.x
Ågren A, Buffam I, Bishop K, Laudon H. 2010. Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: a simple empirical approach for regional predictions. J Geophys Res Biogeosci. doi:10.1029/2009JG001013.
ColeJJPrairieYTCaracoNFMcDowellWHTranvikLJStrieglRGDuarteCMKortelainenPDowningJAMiddelburgJJMelackJPlumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budgetEcosystems20071017118410.1007/s10021-006-9013-81:CAS:528:DC%2BD2sXlslCmsbY%3D
Sirin A, Bishop K, Köher S. 1998. Resolving flow pathways and geochemistry in a headwater forested wetland with multiple traces. HeadWater ‘98 Conference. IAHS Publ., Merano, Italy. pp 337–42.
ClarkJMBottrellSHEvansCDMonteithDTBartlettRRoseRNewtonRJChapmanPJThe importance of the relationship between scale and process in understanding long-term DOC dynamicsSci Total Environ2010408276827752039891510.1016/j.scitotenv.2010.02.0461:CAS:528:DC%2BC3cXlsFaqtr0%3D
BerggrenMLaudonHHaeiMStromLJanssonMEfficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sourcesISME J201044084161990750510.1038/ismej.2009.1201:CAS:528:DC%2BC3cXitVWgtbg%3D
MulhollandPJFindlaySSinsabaughRLarge-scale patterns in dissolved organic carbon concentration, flux, and sourcesAquatic ecosystems: interactivity of dissolved organic matter2003AmsterdamElsevier139159
Petrone K, Buffam I, Laudon H. 2007. Hydrologic and biotic control of nitrogen export during snowmelt: a combined conservative and reactive tracer approach. Water Resources Res 43. doi:10.1029/2006WR005286.
SchiffSAravenaRMewhinneyEElgoodRWarnerBDillonPTrumboreSPrecambrian shield wetlands: hydrologic control of the sources and export of dissolved organic matterClim Change19984016718810.1023/A:10054963315931:CAS:528:DyaK1cXntlCrs7k%3D
LikensGEBusoDCVariation in streamwater chemistry throughout the Hubbard Brook ValleyBiogeochemistry20067813010.1007/s10533-005-2024-21:CAS:528:DC%2BD28Xks1els7Y%3D
Rodhe A. 1987. The origin of streamwater traced by Oxygen-18. Uppsala University, Uppsala. 260 pp.
ConradOSAGA—Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen2007GöttingenPhysical Geography, University of Göttingen221
ErlandssonMBuffamIFölsterJLaudonHTemnerudJWeyhenmeyerGABishopKThirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphateGlob Change Biol2008141191119810.1111/j.1365-2486.2008.01551.x
BerggrenMLaudonHJanssonMHydrological control of organic carbon support for bacterial growth in boreal headwater streamsMicrob Ecol2009571701781866111410.1007/s00248-008-9423-6
HintonMJSchiffSLEnglishMCSources and flowpaths of dissolved organic carbon during storms in two forested watersheds of the Precambrian ShieldBiogeochemistry19984117519710.1023/A:10059034289561:CAS:528:DyaK1cXisFCqu7g%3D
LaudonHHedtjärnJSchelkerJBishopKSörensenRÅgrenAResponse of dissolved organic carbon following forest harvesting in a boreal forestAmbio2009383813861994339410.1579/0044-7447-38.7.3811:CAS:528:DC%2BD1MXhsFaqu7fP
GieslerRBjörkvaldLLaudonHMörthCMSpatial and seasonal variations in stream water delta S-34-dissolved organic matter in Northern SwedenEnviron Sci Technol2009434474521923897810.1021/es80179461:CAS:528:DC%2BD1cXhsVOmt7%2FI
Yurova A, Sirin A, Buffam I, Bishop K, Laudon H. 2008. Modeling the dissolved organic carbon output from a boreal mire using the convection-dispersion equation: importance of representing sorption. Water Resources Res 44. doi:10.1029/2007wr006523.
EimersMCButtleJWatmoughSAInfluence of seasonal changes in runoff and extreme events on dissolved organic carbon trends in wetland- and upland-draining streamsCan J Fish Aquat Sci20086579680810.1139/f07-1941:CAS:528:DC%2BD1cXotVait7s%3D
IPCC. 2007. Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. 996 pp.
MonteithDTStoddardJLEvansCDde WitHAForsiusMHogasenTWilanderASkjelkvaleBLJeffriesDSVuorenmaaJKellerBKopacekJVeselyJDissolved organic carbon trends resulting from changes in atmospheric deposition chemistryNature2007450U537U53910.1038/nature06316
ÅgrenABerggrenMLaudonHJanssonMTerrestrial export of highly bioavailable carbon from small boreal catchments in spring floodsFreshw Biol20085396497210.1111/j.1365-2427.2008.01955.x
RodheAOn the generation of stream runoff in till soilsNordic Hydrol19892018
Creed IF, Beall FD, Clair TA, Dillon PJ, Hesslein RH. 2008. Predicting export of dissolved organic carbon from forested catchments in glaciated landscapes with shallow soils. Glob Biogeochem Cycles 22. doi:10.1029/2008GB003294.
CoryNBuffamILaudonHKöhlerSBishopKLandscape control of stream water aluminum in a boreal catchment during spring floodEnviron Sci Technol200640349435001678668510.1021/es05231831:CAS:528:DC%2BD28Xjs1Gnuro%3D
Billett MF, Deacon CM, Palmer SM, Dawson JJC, Hope D. 2006. Connecting organic carbon in stream water and soils in a peatland catchment. J Geophys Res Biogeosci 111: doi:10.1029/2005JG000065.
CreedIFSanfordSEBeallFDMolotLADillonPJCryptic wetlands: integrating hidden wetlands in regression models of the export of dissolved organic carbon from forested landscapesHydrol Process2003173629364810.1002/hyp.1357
CoryNBuffamILaudonHBjörkvaldLMörthCMKöhlerSBishopKParticulate aluminium in boreal streams: towards a better understanding of its sources and influence on dissolved aluminium speciationAppl Geochem2009241677168510.1016/j.apgeochem.2009.04.0381:CAS:528:DC%2BD1MXhtVKgsLnM
Köhler SJ, Buffam I, Laudon H, Bishop KH. 2008. Climate’s control of intra-annual and interannual variability of total organic carbon concentration and flux in two contrasting boreal landscape elements. J Geophys Res Biogeosci 113. doi:10.1029/2007JG000629.
BuffamILaudonHSeibertJMorthCMBishopKSpatial heterogeneity of the spring flood acid pulse in a boreal stream networkSci Total Environ20084077087221894027110.1016/j.scitotenv.2008.10.0061:CAS:528:DC%2BD1cXhsVWhsrzI
BöhnerJBlaschkeTMontanarellaLSAGA: system for an automated geographical analysis2008HamburgInstitute of Geography, University of Hamburg
LyonSWLaudonHSeibertJMörthCMTetzlaffDBishopKControls on snowmelt water mean transit times in northern boreal catchmentsHydrol Process2010241672168410.1002/hyp.7577
Cory N, Laudon H, Köhler S, Seibert J, Bishop K. 2007. Evolution of soil solution aluminum during transport along a forested boreal hillslope. J Geophys Res Biogeosci 112. doi:10.1029/2006JG000387.
FrostPCLarsonJHJohn
E Gorham (9452_CR41) 1998; 18
9452_CR61
9452_CR63
9452_CR20
9452_CR64
K Bishop (9452_CR15) 2004; 18
9452_CR69
KS Pregitzer (9452_CR71) 2004; 10
9452_CR28
TA Clair (9452_CR23) 2008; 87
MJ Hinton (9452_CR45) 1998; 41
S Sarkkola (9452_CR74) 2009; 408
M Nilsson (9452_CR68) 2008; 14
M Berggren (9452_CR7) 2009; 57
M Jansson (9452_CR49) 2007; 22
9452_CR4
M Erlandsson (9452_CR36) 2008; 14
H Laudon (9452_CR57) 2007; 344
9452_CR1
M Berggren (9452_CR8) 2010; 4
9452_CR72
M Bergknut (9452_CR9) 2010; 158
H Laudon (9452_CR55) 2004; 66
9452_CR6
9452_CR31
9452_CR76
MC Eimers (9452_CR35) 2008; 65
9452_CR77
SE Gergel (9452_CR39) 1999; 9
K Bishop (9452_CR13) 1996; 22
L Björkvald (9452_CR16) 2008; 72
CD Canham (9452_CR22) 2004; 14
M Baker (9452_CR5) 2006; 21
H Laudon (9452_CR54) 2008; 12
I Buffam (9452_CR21) 2008; 407
A Ågren (9452_CR2) 2007; 70
J Seibert (9452_CR78) 2009; 13
N Cory (9452_CR29) 2009; 24
F Lidman (9452_CR59) 2011; 45
A Ågren (9452_CR3) 2008; 53
S Findlay (9452_CR37) 2001; 46
9452_CR82
PC Frost (9452_CR38) 2006; 68
9452_CR84
HF Wilson (9452_CR83) 2008; 11
9452_CR42
SJ Köhler (9452_CR53) 2009; 373
A Rodhe (9452_CR73) 1989; 20
9452_CR48
O Conrad (9452_CR26) 2007
S Schiff (9452_CR75) 1998; 40
R Giesler (9452_CR40) 2009; 43
J Hruska (9452_CR47) 2003; 37
HA Wit De (9452_CR32) 2007; 41
H Laudon (9452_CR58) 2009; 38
M Bergknut (9452_CR10) 2010; 158
GE Likens (9452_CR60) 2006; 78
J Temnerud (9452_CR81) 2010; 24
M Nilsson (9452_CR67) 2001; 106
K Bishop (9452_CR14) 1995; 80
IF Creed (9452_CR30) 2003; 17
MM Shafer (9452_CR79) 1997; 136
9452_CR80
S Haaland (9452_CR43) 2010; 44
9452_CR52
9452_CR11
9452_CR12
9452_CR56
JJ Cole (9452_CR25) 2007; 10
MC Eimers (9452_CR34) 2008; 14
SW Lyon (9452_CR62) 2010; 24
JM Clark (9452_CR24) 2010; 408
9452_CR19
J Klaminder (9452_CR51) 2011; 26
PJ Dillon (9452_CR33) 1997; 33
L Björkvald (9452_CR17) 2009; 73
DT Monteith (9452_CR65) 2007; 450
PJ Mulholland (9452_CR66) 2003
MJ Hinton (9452_CR44) 1997; 36
(9452_CR18) 2008
GM Hornberger (9452_CR46) 1994; 25
N Cory (9452_CR27) 2006; 40
References_xml – reference: SchiffSAravenaRMewhinneyEElgoodRWarnerBDillonPTrumboreSPrecambrian shield wetlands: hydrologic control of the sources and export of dissolved organic matterClim Change19984016718810.1023/A:10054963315931:CAS:528:DyaK1cXntlCrs7k%3D
– reference: GorhamEUnderwoodJKJanssensJAFreedmanBMaassWWallerDHOgdenJGThe chemistry of streams in southwestern and central Nova Scotia, with particular reference to catchment vegetation and the influence of dissolved organic carbon primarily from wetlandsWetlands19981811513210.1007/BF03161449
– reference: CanhamCDPaceMLPapaikMJPrimackAGBRoyKMMarangerRJCurranRPSpadaDMA spatially explicit watershed-scale analysis of dissolved organic carbon in Adriondack lakesEcol Appl20041483985410.1890/02-5271
– reference: Buffam I, Laudon H, Temnerud J, Mörth C-M, Bishop K. 2007. Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. J Geophys Res 112. doi:10.1029/2006JG000218.
– reference: ErlandssonMBuffamIFölsterJLaudonHTemnerudJWeyhenmeyerGABishopKThirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphateGlob Change Biol2008141191119810.1111/j.1365-2486.2008.01551.x
– reference: LidmanFBjörkvaldLMörthC-MLaudonHSelenium dynamics in boreal streams: the role of wetlands and changing groundwater tablesEnviron Sci Technol201145267726832139532610.1021/es102885z1:CAS:528:DC%2BC3MXjtVCmtL8%3D
– reference: Wallin M, Buffam I, Öquist M, Laudon H, Bishop K. 2010. Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network—concentrations and downstream fluxes. J Geophys Res 115. doi:10.1029/2009JG001100.
– reference: KlaminderJGripHMörthCMLaudonHCarbon mineralization and pyrite oxidation in groundwater: importance for silicate weathering in boreal forest soils and stream base-flow chemistryAppl Geochem20112631932510.1016/j.apgeochem.2010.12.0051:CAS:528:DC%2BC3MXhs1egurc%3D
– reference: BuffamILaudonHSeibertJMorthCMBishopKSpatial heterogeneity of the spring flood acid pulse in a boreal stream networkSci Total Environ20084077087221894027110.1016/j.scitotenv.2008.10.0061:CAS:528:DC%2BD1cXhsVWhsrzI
– reference: FindlaySQuinnJMHickeyCWBurrellGDownesMEffects of land use and riparian flowpath on delivery of dissolved organic carbon to streamsLimnol Oceanogr20014634535510.4319/lo.2001.46.2.03451:CAS:528:DC%2BD3MXjtVWgsb4%3D
– reference: ShaferMMOverdierJTHurleyJPArmstrongDWebbDThe influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA)Chem Geol1997136719710.1016/S0009-2541(96)00139-81:CAS:528:DyaK2sXhslOmurg%3D
– reference: Billett MF, Deacon CM, Palmer SM, Dawson JJC, Hope D. 2006. Connecting organic carbon in stream water and soils in a peatland catchment. J Geophys Res Biogeosci 111: doi:10.1029/2005JG000065.
– reference: Seibert J, Bishop K, Rodhe A, McDonnell JJ. 2003. Groundwater dynamics along a hillslope: a test of the steady state hypothesis. Water Resources Res 39. doi:10.1029/2002WR001404.
– reference: LikensGEBusoDCVariation in streamwater chemistry throughout the Hubbard Brook ValleyBiogeochemistry20067813010.1007/s10533-005-2024-21:CAS:528:DC%2BD28Xks1els7Y%3D
– reference: Rodhe A. 1987. The origin of streamwater traced by Oxygen-18. Uppsala University, Uppsala. 260 pp.
– reference: Cory N, Laudon H, Köhler S, Seibert J, Bishop K. 2007. Evolution of soil solution aluminum during transport along a forested boreal hillslope. J Geophys Res Biogeosci 112. doi:10.1029/2006JG000387.
– reference: Seibert J, McGlynn BL. 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Res 43. doi:10.1029/2006WR005128.
– reference: BishopKLeeYHPetterssonCAllardBTerrestrial sources of methylmercury in surface waters—the importance of the riparian zone on the Svartberget catchmentWater Air Soil Pollut19958043544410.1007/BF011896931:CAS:528:DyaK2MXnsVCht7o%3D
– reference: DillonPJMolotLAEffect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchmentsWater Resour Res1997332591260010.1029/97WR019211:CAS:528:DyaK2sXnsVyisb0%3D
– reference: BerggrenMLaudonHHaeiMStromLJanssonMEfficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sourcesISME J201044084161990750510.1038/ismej.2009.1201:CAS:528:DC%2BC3cXitVWgtbg%3D
– reference: BjörkvaldLGieslerRLaudonHHumborgCMörthCMLandscape variations in stream water SO42− and delta S-34(SO4) in a boreal stream networkGeochim Cosmochim Acta2009734648466010.1016/j.gca.2009.05.052
– reference: MonteithDTStoddardJLEvansCDde WitHAForsiusMHogasenTWilanderASkjelkvaleBLJeffriesDSVuorenmaaJKellerBKopacekJVeselyJDissolved organic carbon trends resulting from changes in atmospheric deposition chemistryNature2007450U537U53910.1038/nature06316
– reference: CreedIFSanfordSEBeallFDMolotLADillonPJCryptic wetlands: integrating hidden wetlands in regression models of the export of dissolved organic carbon from forested landscapesHydrol Process2003173629364810.1002/hyp.1357
– reference: Creed IF, Beall FD, Clair TA, Dillon PJ, Hesslein RH. 2008. Predicting export of dissolved organic carbon from forested catchments in glaciated landscapes with shallow soils. Glob Biogeochem Cycles 22. doi:10.1029/2008GB003294.
– reference: De WitHAMulderJHindarAHoleLLong term increase in dissolved organic carbon in stream waters in Norway is response to reduced acid depositionEnviron Sci Technol200741770677131807507810.1021/es070557f
– reference: McGlynn BL, McDonnell JJ. 2003. Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Res 39. doi:10.1029/2002WR001525.
– reference: Köhler SJ, Buffam I, Laudon H, Bishop KH. 2008. Climate’s control of intra-annual and interannual variability of total organic carbon concentration and flux in two contrasting boreal landscape elements. J Geophys Res Biogeosci 113. doi:10.1029/2007JG000629.
– reference: NilssonMSagerforsJBuffamILaudonHErikssonTGrelleAKlemedtssonLWeslienPLinderothAComplete carbon budgets for two years of a boreal oligotrophic minerogenic mireGlob Change Biol20081411610.1111/j.1365-2486.2008.01654.x
– reference: JanssonMPerssonLDe RoosAMJonesRTranvikLJTerrestrial carbon and intraspecific size-variation shape lake ecosystemsTrends Ecol Evol2007223163221733906710.1016/j.tree.2007.02.015
– reference: RodheAOn the generation of stream runoff in till soilsNordic Hydrol19892018
– reference: Bishop KH. 1991. Episodic increases in stream acidity, catchment flow pathways and hydrograph separation. University of Cambridge. 246 pp.
– reference: CoryNBuffamILaudonHKöhlerSBishopKLandscape control of stream water aluminum in a boreal catchment during spring floodEnviron Sci Technol200640349435001678668510.1021/es05231831:CAS:528:DC%2BD28Xjs1Gnuro%3D
– reference: LaudonHKöhlerSBuffamISeasonal TOC export from seven boreal catchments in northern SwedenAquat Sci20046622323010.1007/s00027-004-0700-2
– reference: Laudon H, Seibert J, Köhler S, Bishop K. 2004b. Hydrological flow paths during snowmelt: congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. Water Resources Research 40. doi:03110.10292003WR10002455.
– reference: LaudonHHedtjärnJSchelkerJBishopKSörensenRÅgrenAResponse of dissolved organic carbon following forest harvesting in a boreal forestAmbio2009383813861994339410.1579/0044-7447-38.7.3811:CAS:528:DC%2BD1MXhsFaqu7fP
– reference: Ågren A, Buffam I, Jansson M, Laudon H. 2007a. Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. J Geophys Res 112: doi: 03010.01029/02006JG000381.
– reference: SeibertJGrabsTKohlerSLaudonHWinterdahlMBishopKLinking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration ModelHydrol Earth Syst Sci2009132287229710.5194/hess-13-2287-20091:CAS:528:DC%2BC3cXjsFentr4%3D
– reference: NilssonMMikkelaCSundhIGranbergGSvenssonBHRannebyBMethane emission from Swedish mires: national and regional budgets and dependence on mire vegetationJ Geophys Res Atmos2001106208472086010.1029/2001JD9001191:CAS:528:DC%2BD3MXnslKksLo%3D
– reference: ClarkJMBottrellSHEvansCDMonteithDTBartlettRRoseRNewtonRJChapmanPJThe importance of the relationship between scale and process in understanding long-term DOC dynamicsSci Total Environ2010408276827752039891510.1016/j.scitotenv.2010.02.0461:CAS:528:DC%2BC3cXlsFaqtr0%3D
– reference: GieslerRBjörkvaldLLaudonHMörthCMSpatial and seasonal variations in stream water delta S-34-dissolved organic matter in Northern SwedenEnviron Sci Technol2009434474521923897810.1021/es80179461:CAS:528:DC%2BD1cXhsVOmt7%2FI
– reference: Petrone KC, Jones JB, Hinzman LD, Boone, RD. 2006. Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res Biogeosc 111. doi:10.1029/2005JG000055.
– reference: ColeJJPrairieYTCaracoNFMcDowellWHTranvikLJStrieglRGDuarteCMKortelainenPDowningJAMiddelburgJJMelackJPlumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budgetEcosystems20071017118410.1007/s10021-006-9013-81:CAS:528:DC%2BD2sXlslCmsbY%3D
– reference: FrostPCLarsonJHJohnstonCAYoungKCMauricePALambertiGABridghamSDLandscape predictors of stream dissolved organic matter concentrations and physiochemistry in a Lake Superior river watershedAquat Sci20066840511:CAS:528:DC%2BD28XkslWhs7o%3D
– reference: ConradOSAGA—Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen2007GöttingenPhysical Geography, University of Göttingen221
– reference: CoryNBuffamILaudonHBjörkvaldLMörthCMKöhlerSBishopKParticulate aluminium in boreal streams: towards a better understanding of its sources and influence on dissolved aluminium speciationAppl Geochem2009241677168510.1016/j.apgeochem.2009.04.0381:CAS:528:DC%2BD1MXhtVKgsLnM
– reference: BishopKSeibertJKöhlerSLaudonHResolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistryHydrol Process20041818518910.1002/hyp.5209
– reference: MulhollandPJFindlaySSinsabaughRLarge-scale patterns in dissolved organic carbon concentration, flux, and sourcesAquatic ecosystems: interactivity of dissolved organic matter2003AmsterdamElsevier139159
– reference: Grabs T. 2010. Water quality modeling based on landscape analysis: importance of riparian hydrology. Ph.D. thesis, Department of Physical Geography and Quaternary Geology No 24, Stockholm University, Sweden.
– reference: BakerMWellerDJordanTImproved methods for quantifying potential nutrient interception by riparian buffersLandscape Ecol2006211327134510.1007/s10980-006-0020-0
– reference: LyonSWLaudonHSeibertJMörthCMTetzlaffDBishopKControls on snowmelt water mean transit times in northern boreal catchmentsHydrol Process2010241672168410.1002/hyp.7577
– reference: HintonMJSchiffSLEnglishMCThe significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchmentsBiogeochemistry199736678810.1023/A:10057797118211:CAS:528:DyaK2sXhvVejur8%3D
– reference: WilsonHFXenopoulosMAEcosystem and seasonal control of stream dissolved organic carbon along a gradient of land useEcosystems20081155556810.1007/s10021-008-9142-31:CAS:528:DC%2BD1cXmvFWjtLw%3D
– reference: BerggrenMLaudonHJanssonMHydrological control of organic carbon support for bacterial growth in boreal headwater streamsMicrob Ecol2009571701781866111410.1007/s00248-008-9423-6
– reference: BergknutMMeijerSHalsallCÅgrenALaudonHKöhlerSJonesKCTysklindMWibergKModelling the fate of hydrophobic organic contaminants in a boreal forest catchment: a cross disciplinary approach to assessing diffuse pollution to surface watersEnviron Pollut2010158296429692061951710.1016/j.envpol.2010.05.0271:CAS:528:DC%2BC3cXps1Ghsr0%3D
– reference: BergknutMLaudonHWibergKDioxins, PCBs, and HCB in soil and peat profiles from a pristine boreal catchmentEnviron Pollut2010158251825252043424710.1016/j.envpol.2010.03.0091:CAS:528:DC%2BC3cXmvVWjsLk%3D
– reference: LaudonHSjöblomVBuffamISeibertJMörthMThe role of catchment scale and landscape characteristics for runoff generation of boreal streamsJ Hydrol200734419820910.1016/j.jhydrol.2007.07.010
– reference: Lyon SW, Grabs T, Laudon H, Bishop KH, Seibert J. 2011. Variability of groundwater levels and total organic carbon (TOC) in the riparian zone of a boreal catchment. J Geophys Res Biogeosci. doi:10.1029/2010JG001452.
– reference: Yurova A, Sirin A, Buffam I, Bishop K, Laudon H. 2008. Modeling the dissolved organic carbon output from a boreal mire using the convection-dispersion equation: importance of representing sorption. Water Resources Res 44. doi:10.1029/2007wr006523.
– reference: Ågren A, Buffam I, Bishop K, Laudon H. 2010. Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: a simple empirical approach for regional predictions. J Geophys Res Biogeosci. doi:10.1029/2009JG001013.
– reference: ClairTADennisIFVetRLaudonHLong-term trends in catchment organic carbon and nitrogen exports from three acidified catchments in Nova Scotia, CanadaBiogeochemistry200887839710.1007/s10533-007-9170-71:CAS:528:DC%2BD1cXivVOqtbw%3D
– reference: HintonMJSchiffSLEnglishMCSources and flowpaths of dissolved organic carbon during storms in two forested watersheds of the Precambrian ShieldBiogeochemistry19984117519710.1023/A:10059034289561:CAS:528:DyaK1cXisFCqu7g%3D
– reference: BjörkvaldLBuffamILaudonHMörthCMHydrogeochemistry of Fe and Mn in small boreal streams: the role of seasonality, landscape type and scaleGeochim Cosmochim Acta2008722789280410.1016/j.gca.2008.03.024
– reference: GergelSETurnerMGKratzTKDissolved organic carbon as an indicator of the scale of watershed influence on lakes and riversEcol Appl199991377139010.1890/1051-0761(1999)009[1377:DOCAAI]2.0.CO;2
– reference: HruskaJKöhlerSLaudonHBishopKIs a universal model of organic acidity possible: comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zonesEnviron Sci Technol200337172617301277504110.1021/es02015521:CAS:528:DC%2BD3sXitFGhsbw%3D
– reference: HaalandSHongveDLaudonHRiiseGVogtRDQuantifying the drivers of the increasing colored organic matter in boreal surface watersEnviron Sci Technol201044297529802032977010.1021/es903179j1:CAS:528:DC%2BC3cXjs12gsLc%3D
– reference: IPCC. 2007. Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. 996 pp.
– reference: EimersMCWatmoughSAButtleJMDillonPJExamination of the potential relationship between droughts, sulphate and dissolved organic carbon at a wetland-draining streamGlob Change Biol20081493894810.1111/j.1365-2486.2007.01530.x
– reference: PregitzerKSEuskirchenESCarbon cycling and storage in world forests: biome patterns related to forest ageGlob Change Biol2004102052207710.1111/j.1365-2486.2004.00866.x
– reference: KöhlerSJBuffamISeibertJBishopKHLaudonHDynamics of stream water TOC concentrations in a boreal headwater catchment: controlling factors and implications for climate scenariosJ Hydrol2009373445610.1016/j.jhydrol.2009.04.012
– reference: ÅgrenAJanssonMIvarssonHBishopKSeibertJSeasonal and runoff-related changes in allochtonous organic carbon concentrations in the River Öre, Northern SwedenAquat Sci200770212910.1007/s00027-007-0943-9
– reference: EimersMCButtleJWatmoughSAInfluence of seasonal changes in runoff and extreme events on dissolved organic carbon trends in wetland- and upland-draining streamsCan J Fish Aquat Sci20086579680810.1139/f07-1941:CAS:528:DC%2BD1cXotVait7s%3D
– reference: Petrone K, Buffam I, Laudon H. 2007. Hydrologic and biotic control of nitrogen export during snowmelt: a combined conservative and reactive tracer approach. Water Resources Res 43. doi:10.1029/2006WR005286.
– reference: SarkkolaSKoivusaloHLaurenAKortelainenPMattssonTPalviainenMPiirainenSStarrMFinerLTrends in hydrometeorological conditions and stream water organic carbon in boreal forested catchmentsSci Total Environ2009408921011981952210.1016/j.scitotenv.2009.09.0081:CAS:528:DC%2BD1MXhtlCnt73N
– reference: BöhnerJBlaschkeTMontanarellaLSAGA: system for an automated geographical analysis2008HamburgInstitute of Geography, University of Hamburg
– reference: BishopKPetterssonCOrganic carbon in the boreal spring flood from adjacent subcatchmentsEnviron Int19962253554010.1016/0160-4120(96)00036-01:CAS:528:DyaK28XmsVOqurg%3D
– reference: LaudonHBuffamIImpact of changing DOC concentrations on the potential distribution of acid sensitive biota in a boreal stream networkHydrol Earth Syst Sci20081242543510.5194/hess-12-425-20081:CAS:528:DC%2BD1cXoslels78%3D
– reference: Lundin L. 1982. Soil moisture and ground water in till soil and the significance of soil type for runoff. UNGI Report No. 56. Uppsala University, Uppsala. 216 pp.
– reference: Berggren M, Laudon H, Jansson M. 2007. Landscape regulation of bacterial growth efficiency in boreal freshwaters. Glob Biogeochem Cycle 21. doi:4010.1029/2006GB002844.
– reference: TemnerudJFölsterJBuffamILaudonHErlandssonMBishopKCan the distribution of headwater stream chemistry be predicted from downstream observations?Hydrol Process2010242269227610.1002/hyp.76151:CAS:528:DC%2BC3cXhtFers77E
– reference: HornbergerGMBencalaKEMcKnightDMHydrological controls on dissolved organic-carbon during snowmelt in the Snake River near Montezuma, ColoradoBiogeochemistry19942514716510.1007/BF000243901:CAS:528:DyaK2cXms1arsLY%3D
– reference: Sirin A, Bishop K, Köher S. 1998. Resolving flow pathways and geochemistry in a headwater forested wetland with multiple traces. HeadWater ‘98 Conference. IAHS Publ., Merano, Italy. pp 337–42.
– reference: ÅgrenABerggrenMLaudonHJanssonMTerrestrial export of highly bioavailable carbon from small boreal catchments in spring floodsFreshw Biol20085396497210.1111/j.1365-2427.2008.01955.x
– volume: 33
  start-page: 2591
  year: 1997
  ident: 9452_CR33
  publication-title: Water Resour Res
  doi: 10.1029/97WR01921
– volume: 41
  start-page: 175
  year: 1998
  ident: 9452_CR45
  publication-title: Biogeochemistry
  doi: 10.1023/A:1005903428956
– start-page: 221
  volume-title: SAGA—Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen
  year: 2007
  ident: 9452_CR26
– volume: 87
  start-page: 83
  year: 2008
  ident: 9452_CR23
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9170-7
– volume: 18
  start-page: 115
  year: 1998
  ident: 9452_CR41
  publication-title: Wetlands
  doi: 10.1007/BF03161449
– volume: 80
  start-page: 435
  year: 1995
  ident: 9452_CR14
  publication-title: Water Air Soil Pollut
  doi: 10.1007/BF01189693
– volume: 70
  start-page: 21
  year: 2007
  ident: 9452_CR2
  publication-title: Aquat Sci
  doi: 10.1007/s00027-007-0943-9
– ident: 9452_CR1
  doi: 10.1029/2006JG000381
– volume: 158
  start-page: 2964
  year: 2010
  ident: 9452_CR9
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.05.027
– volume: 40
  start-page: 167
  year: 1998
  ident: 9452_CR75
  publication-title: Clim Change
  doi: 10.1023/A:1005496331593
– volume: 57
  start-page: 170
  year: 2009
  ident: 9452_CR7
  publication-title: Microb Ecol
  doi: 10.1007/s00248-008-9423-6
– volume: 14
  start-page: 1191
  year: 2008
  ident: 9452_CR36
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2008.01551.x
– ident: 9452_CR72
– volume: 66
  start-page: 223
  year: 2004
  ident: 9452_CR55
  publication-title: Aquat Sci
  doi: 10.1007/s00027-004-0700-2
– start-page: 139
  volume-title: Aquatic ecosystems: interactivity of dissolved organic matter
  year: 2003
  ident: 9452_CR66
  doi: 10.1016/B978-012256371-3/50007-X
– ident: 9452_CR6
  doi: 10.1029/2006GB002844
– volume: 12
  start-page: 425
  year: 2008
  ident: 9452_CR54
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-12-425-2008
– volume: 106
  start-page: 20847
  year: 2001
  ident: 9452_CR67
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2001JD900119
– ident: 9452_CR19
  doi: 10.1029/2005JG000055
– volume: 450
  start-page: U537
  year: 2007
  ident: 9452_CR65
  publication-title: Nature
  doi: 10.1038/nature06316
– volume: 11
  start-page: 555
  year: 2008
  ident: 9452_CR83
  publication-title: Ecosystems
  doi: 10.1007/s10021-008-9142-3
– volume: 68
  start-page: 40
  year: 2006
  ident: 9452_CR38
  publication-title: Aquat Sci
  doi: 10.1007/s00027-005-0802-5
– volume: 37
  start-page: 1726
  year: 2003
  ident: 9452_CR47
  publication-title: Environ Sci Technol
  doi: 10.1021/es0201552
– volume: 22
  start-page: 316
  year: 2007
  ident: 9452_CR49
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2007.02.015
– volume: 10
  start-page: 2052
  year: 2004
  ident: 9452_CR71
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2004.00866.x
– ident: 9452_CR80
– volume: 44
  start-page: 2975
  year: 2010
  ident: 9452_CR43
  publication-title: Environ Sci Technol
  doi: 10.1021/es903179j
– ident: 9452_CR84
  doi: 10.1029/2007WR006523
– volume: 36
  start-page: 67
  year: 1997
  ident: 9452_CR44
  publication-title: Biogeochemistry
  doi: 10.1023/A:1005779711821
– volume: 136
  start-page: 71
  year: 1997
  ident: 9452_CR79
  publication-title: Chem Geol
  doi: 10.1016/S0009-2541(96)00139-8
– ident: 9452_CR42
– volume: 38
  start-page: 381
  year: 2009
  ident: 9452_CR58
  publication-title: Ambio
  doi: 10.1579/0044-7447-38.7.381
– ident: 9452_CR64
  doi: 10.1029/2002WR001525
– volume: 18
  start-page: 185
  year: 2004
  ident: 9452_CR15
  publication-title: Hydrol Process
  doi: 10.1002/hyp.5209
– volume: 407
  start-page: 708
  year: 2008
  ident: 9452_CR21
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2008.10.006
– volume: 17
  start-page: 3629
  year: 2003
  ident: 9452_CR30
  publication-title: Hydrol Process
  doi: 10.1002/hyp.1357
– volume: 24
  start-page: 2269
  year: 2010
  ident: 9452_CR81
  publication-title: Hydrol Process
  doi: 10.1002/hyp.7615
– ident: 9452_CR63
  doi: 10.1029/2010JG001452
– volume: 24
  start-page: 1672
  year: 2010
  ident: 9452_CR62
  publication-title: Hydrol Process
  doi: 10.1002/hyp.7577
– volume: 43
  start-page: 447
  year: 2009
  ident: 9452_CR40
  publication-title: Environ Sci Technol
  doi: 10.1021/es8017946
– ident: 9452_CR82
  doi: 10.1029/2009JG001100
– ident: 9452_CR76
  doi: 10.1029/2006WR005128
– volume: 46
  start-page: 345
  year: 2001
  ident: 9452_CR37
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2001.46.2.0345
– volume: 20
  start-page: 1
  year: 1989
  ident: 9452_CR73
  publication-title: Nordic Hydrol
  doi: 10.2166/nh.1989.0001
– ident: 9452_CR28
  doi: 10.1029/2006JG000387
– volume: 373
  start-page: 44
  year: 2009
  ident: 9452_CR53
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.04.012
– ident: 9452_CR4
  doi: 10.1029/2009JG001013
– ident: 9452_CR52
  doi: 10.1029/2007JG000629
– volume: 408
  start-page: 92
  year: 2009
  ident: 9452_CR74
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2009.09.008
– volume: 40
  start-page: 3494
  year: 2006
  ident: 9452_CR27
  publication-title: Environ Sci Technol
  doi: 10.1021/es0523183
– volume: 14
  start-page: 1
  year: 2008
  ident: 9452_CR68
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2008.01654.x
– volume: 158
  start-page: 2518
  year: 2010
  ident: 9452_CR10
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.03.009
– volume: 14
  start-page: 839
  year: 2004
  ident: 9452_CR22
  publication-title: Ecol Appl
  doi: 10.1890/02-5271
– volume: 45
  start-page: 2677
  year: 2011
  ident: 9452_CR59
  publication-title: Environ Sci Technol
  doi: 10.1021/es102885z
– volume: 73
  start-page: 4648
  year: 2009
  ident: 9452_CR17
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2009.05.052
– volume: 9
  start-page: 1377
  year: 1999
  ident: 9452_CR39
  publication-title: Ecol Appl
  doi: 10.1890/1051-0761(1999)009[1377:DOCAAI]2.0.CO;2
– volume: 78
  start-page: 1
  year: 2006
  ident: 9452_CR60
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-005-2024-2
– volume: 22
  start-page: 535
  year: 1996
  ident: 9452_CR13
  publication-title: Environ Int
  doi: 10.1016/0160-4120(96)00036-0
– ident: 9452_CR48
– volume: 26
  start-page: 319
  year: 2011
  ident: 9452_CR51
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2010.12.005
– ident: 9452_CR11
  doi: 10.1029/2005JG000065
– volume: 21
  start-page: 1327
  year: 2006
  ident: 9452_CR5
  publication-title: Landscape Ecol
  doi: 10.1007/s10980-006-0020-0
– volume: 53
  start-page: 964
  year: 2008
  ident: 9452_CR3
  publication-title: Freshw Biol
  doi: 10.1111/j.1365-2427.2008.01955.x
– ident: 9452_CR31
  doi: 10.1029/2008GB003294
– volume: 14
  start-page: 938
  year: 2008
  ident: 9452_CR34
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2007.01530.x
– ident: 9452_CR69
  doi: 10.1029/2006WR005286
– volume: 4
  start-page: 408
  year: 2010
  ident: 9452_CR8
  publication-title: ISME J
  doi: 10.1038/ismej.2009.120
– volume: 10
  start-page: 171
  year: 2007
  ident: 9452_CR25
  publication-title: Ecosystems
– volume: 25
  start-page: 147
  year: 1994
  ident: 9452_CR46
  publication-title: Biogeochemistry
  doi: 10.1007/BF00024390
– ident: 9452_CR20
  doi: 10.1029/2006JG000218
– ident: 9452_CR61
– volume: 72
  start-page: 2789
  year: 2008
  ident: 9452_CR16
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2008.03.024
– volume: 65
  start-page: 796
  year: 2008
  ident: 9452_CR35
  publication-title: Can J Fish Aquat Sci
  doi: 10.1139/f07-194
– volume: 41
  start-page: 7706
  year: 2007
  ident: 9452_CR32
  publication-title: Environ Sci Technol
  doi: 10.1021/es070557f
– volume: 344
  start-page: 198
  year: 2007
  ident: 9452_CR57
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.07.010
– ident: 9452_CR77
  doi: 10.1029/2002WR001404
– volume: 13
  start-page: 2287
  year: 2009
  ident: 9452_CR78
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-13-2287-2009
– volume: 408
  start-page: 2768
  year: 2010
  ident: 9452_CR24
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2010.02.046
– volume-title: SAGA: system for an automated geographical analysis
  year: 2008
  ident: 9452_CR18
– volume: 24
  start-page: 1677
  year: 2009
  ident: 9452_CR29
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2009.04.038
– ident: 9452_CR56
  doi: 10.1029/2003WR002455
– ident: 9452_CR12
SSID ssj0015844
Score 2.5140913
Snippet We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic...
SourceID swepub
proquest
gale
pascalfrancis
crossref
springer
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 880
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Aquatic resources
Biological and medical sciences
Biomedical and Life Sciences
boreal forest
Boreal forests
Carbon cycle
Catchments
connectivity
Creeks & streams
Dissolved organic carbon
Ecology
Environmental Management
Environmental Sciences related to Agriculture and Land-use
Forest hydrology
Forest soils
Forested watersheds
Forests
Fresh water ecosystems
Fundamental and applied biological sciences. Psychology
General aspects
Geoecology/Natural Processes
High flow
Hydrology
Hydrology/Water Resources
Krycklan catchment
Landscape ecology
landscapes
Life Sciences
Low flow
Lowland forests
Miljö- och naturvårdsvetenskap
Plant Sciences
scaling
Streams
Surface water
Synecology
temporal variation
Watersheds
Wetland soils
Wetlands
Zoology
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CARIvXAYVYTAZietYpCZxkpq30nbiaUwbTBMvlu3YqFKXoLqZhPjzHDuXUjSG4KkPPXFs58s534nPBeB5GiVG6FyGkcpFiP5XFApWyFDlJo-0KdCCK99sIj88HJ2dsaM2j9t20e7dkaTX1L8ku7lwAvdJj9EUX-PrcAOtXe6gfHxy2h8doEX1R8k0iUOG7kt3lHnZEBvGqFXJTViii5EUFrfJNP0tNghof2b6W31Rb5MO7v7Xau7BnZaCknGDmftwTZfbcGvmy1d_34bBbJ37hmLty29R5EvlRR7AjyNflbO0RJQFmTZN7S2pDJnOHZgvdEGaJE9FJmIpq5K8nn6cvCHzkryvkKbisC7C_dy-I4hTclwttLu6zVrQdp_4ABzVtLbY97c5wW3CFT6EzwezT5MPYdvFIVQZZaswNVRINkqRmVJZmFhHeZ4pWWRCoP00SWKGIznMTIHMxsgijYzMtUKaopFaSJkkA9gqq1I_AqJToxLEEFPOrc2ZFKiNMoryQsaGFgEMu8fJVVvi3HXaWPB1cWa37Ry3nbtt56MA9vpLvjX1Pa4SfuUwwt27j-Mq0aYw4OxcFS0-Ro_faUyaBDDwMOrHRJ6ERDZiAexu4KoXiFMkXgjdAHY6oPFWnViOloBRhuw6gGf9v6gH3OGOKHVVW3ThXKW1GBlfAOQPMgz55GjoZ_G2Q-X6Jlcs-0WD8n6yrib5dH465tXyK6_Pa06zLI7-Jldz5M4xzQN4eYmcXdRSLN0Pt5qjF8vix_80zR243XzwdwGAT2Brtaz1U7ipLlZzu9z1SuInxsxhdA
  priority: 102
  providerName: Springer Nature
Title Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling
URI https://www.jstor.org/stable/41505919
https://link.springer.com/article/10.1007/s10021-011-9452-8
https://www.proquest.com/docview/887949054
https://www.proquest.com/docview/1490512078
https://www.proquest.com/docview/907180919
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-46621
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-159247
https://res.slu.se/id/publ/58592
Volume 14
WOSCitedRecordID wos000294683300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1435-0629
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0015844
  issn: 1435-0629
  databaseCode: PCBAR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1435-0629
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0015844
  issn: 1435-0629
  databaseCode: PATMY
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1435-0629
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0015844
  issn: 1435-0629
  databaseCode: BENPR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1435-0629
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0015844
  issn: 1435-0629
  databaseCode: M2O
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1435-0629
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0015844
  issn: 1435-0629
  databaseCode: M2P
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1435-0629
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015844
  issn: 1435-0629
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYBhIvXAYVYVAZiTuLaO41L6hbO_FCV3Uw7c2yHRtV6pJRN5MQf55zEjdVEZQHXtKHnjiO-_X4Oz43Qp4nQWSEzqQfqEz4YH8FvmC59FVmskCbHHZwVTebyMbj_sUFm7jYHOvCKlc6sVbUeanwjPw9_BlYzIBgfLz67mPTKHSuug4aO2QPC5UBzPeORuPJtHUjwO5au5XjKPQZmDIrt2aTO4fRCXhCyOIEtMLGxuTUcxOiiPGSwsKSmabXxQYZbf2nv9Uarfenk7v_-Wb3yB1HTOmgQdJ9ckMX--TWqC5q_WOfdEbrjDgQcyrBPiA_J3WFzsJSUeR02DS4t7Q0dDhDYF_rnDYJn4oei4UsC_p6eHr8hs4KelQCZYXBMNr90n6ggFk6Leca73YZDNoe0joYRzVtLg7rx5zBMsFyPCRfT0Zfjj_5rqODr9KYLf3ExEKyfgIsNZa5CXWQZamSeSoE7KUmikyvL3upyYHlGJkngZGZVkBZNNAMKaOoQ3aLstCPCNWJURHgiSk0cTMmBWimNAZ5IUMT5x7prX5Orly5c-y6MefrQs2IAA4I4IgA3vfI2_aWq6bWxzbhV4gRjnoAxlXCpTPA7LCiFh-A9Y_aM4480qlh1I4JnAlIbcA80t3AVSsQJkDCALoeOVghhjvVYnkLF488a78FnYCOHlHosrJgzmHVtRDYn0foX2QYcMt-r57FuxWE1w_Z8tovGpS3k8X65MPZ-YCXi2-8uqx4nKZh8C-5igOPDuPMIy__IGfnlRQL_OBWc7BoWfh461ockNvNYT8G_z0hu8tFpZ-Sm-p6ObOLrlMLXbLzOTytrxO4Ts_OfwGnLGzw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VLQguPAoRS6EYifLsiuw7RkIoTVK1aglRKag3Y3ttFCnZLdmkKOI38R8Z7ysKgnDqgVMOmfV67ZlvZjzjGYAngeNpriJhOzLiNvpfjs1pLGwZ6chROkYNLvNmE1G_3zo7o4M1-FndhTFplRUm5kAdp9Kckb9GYaA-RQPj3fk32zSNMsHVqoNGwRVHav4dPbbs7WEXt3fHdfd7p50Du2wqYMvQp1M70D4XtBWgoeSLWLvKiaJQijjkHOFce55utkQz1DEqWi3iwNEiUhK1pkJNJ4Q5_0TE3_A9RPV12Njr9QcnddgCtXkexvY916boOlVh1OKunsmGMCeS1A8QhZYUYakOipRIk5_JM9wiXfTWWDJ-63jtb7VNc324f_M_W8lbcKM0vEm7kJTbsKaSTbjay4t2zzeh0Vvc-EOyEvKyO_BjkFcgTTLCk5h05wkfD2VGUk26QyO4FyomxYVWSTp8ItKEPO9-6Lwgw4TspWiS42Amm3-cvSEok-QkHSnzdHlDQ2W7JE82kkUbj938NR9xW3D578KnS1mSBqwnaaLuAVGBlh7KC5XGhY-o4Ii8oY_0XLjajy1oVuzDZFnO3XQVGbFFIWrDcQw5jhmOYy0LXtaPnBe1TFYRPzM8yQzO4biSl9c1cHamYhhrR45ntIPvWdDI2bYeE21CNNodasH2Eh_XBG6ARiaKigVbFYeyEjozVrOnBY_rfxHzTCCLJyqdZeiumqpyLlq3FpC_0FC0nVvNfBavKpFZvGTFZ-8UUlVP1tRf7w4_t1k6-cpm4xnzw9B1_kU3Y-gnuH5kwdM_0GWjmeAT88MyxdBjp-79lWvxCK4dnL4_ZseH_aMtuF4ENkyi4wNYn05m6iFckRfTYTbZLiGJwJfLlt1fREPIFA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqFhAXHoWIpVCMRHl21ezTaySEQh6iKoQICionY3ttFCnZLdlsUcQv498x3lcUBOHUA6ccMuv12jPfzHjGMwg9CBxPc0WE7UjCbfC_HJvTWNiSaOIoHYMGl0WzCTIcRicndLSBftZ3YUxaZY2JBVDHqTRn5AcgDNSnYGAc6CorYtQbvDz9ZpsGUibQWnfTKDnkSC2-g_eWvTjswVbvue6gf9x9bVcNBmwZ-nRuB9rngkYBGE2-iLWrHEJCKeKQc4B27Xm6HYl2qGNQulrEgaMFURI0qAKtJ4Q5CwX034pC0ga_b2vUOX77uQlhgGYvQtq-59oU3Kg6pFre2zOZEeZ0kvoBINKKUqxUQ5keaXI1eQbbpcs-GyuGcBO7_a3OaaEbB1f_41W9hq5UBjnulBJ0HW2oZBtd7BfFvBfbqNVf3gQEsgoKsxvox6ioTJpkmCcx7i0SPh3LDKca98ZGoM9UjMuLrhJ3-UykCX7ce9d9gscJfpWCqQ6DmSz_afYcg6zi9-lEmaermxsq28dFEpIs23vsF6_5AFsEW3ETfTyXJWmhzSRN1C2EVaClB3JEpXHtCRUcEDn0gZ4LV_uxhdo1KzFZlXk33UYmbFmg2nAfA-5jhvtYZKGnzSOnZY2TdcSPDH8yg38wruTVNQ6YnakkxjrE8YzW8D0LtQoWbsYEWxGMeYdaaHeFpxsCNwDjE8TGQjs1t7IKUjPWsKqF7jf_AhaaABdPVJpn4MaaanMuWL0Wwn-hoWBTR-1iFs9q8Vm-ZM1n75US1kzW1GXvjT91WDr7yvJpzvwwdJ1_0eUM_AfXJxZ6-Ae6bJILPjM_LFMMPHnq3l67FvfQJRBY9uZweLSDLpfxDpP_eAdtzme5uosuyLP5OJvtVuiE0ZfzFt1f4cHRAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+and+Dynamics+of+Dissolved+Organic+Carbon+%28DOC%29+in+Boreal+Streams%3A+The+Role+of+Processes%2C+Connectivity%2C+and+Scaling&rft.jtitle=Ecosystems+%28New+York%29&rft.au=Laudon%2C+Hjalmar&rft.au=Berggren%2C+Martin&rft.au=%C3%85gren%2C+Anneli&rft.au=Buffam%2C+Ishi&rft.date=2011-09-01&rft.issn=1432-9840&rft.eissn=1435-0629&rft.volume=14&rft.issue=6&rft.spage=880&rft.epage=893&rft_id=info:doi/10.1007%2Fs10021-011-9452-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10021_011_9452_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-9840&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-9840&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-9840&client=summon