Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling
We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3...
Saved in:
| Published in: | Ecosystems (New York) Vol. 14; no. 6; pp. 880 - 893 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer Science+Business Media
01.09.2011
Springer-Verlag Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 1432-9840, 1435-0629, 1435-0629 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3 to 6900 ha in size, as well as a set of monitored transects of forested and wetland soils. We show that in small homogenous catchments, hydrological functioning provides a first order control on the temporal variability of stream water DOC. In larger, more heterogeneous catchments, stream water DOC dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment covered by 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions. During high flow, the major source of DOC is from forested areas of the catchment. We demonstrate that by connecting knowledge about DOC sources in the landscape with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. The purpose of this study is to serve as a framework for appreciating the role of regulating mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes. The results from this study suggest that the sensitivity of stream water DOC in the boreal landscape ultimately depends on changes within individual landscape elements, the proportion and connectivity of these affected landscape elements, and how these changes are propagated downstream. |
|---|---|
| AbstractList | We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3 to 6900 ha in size, as well as a set of monitored transects of forested and wetland soils. We show that in small homogenous catchments, hydrological functioning provides a first order control on the temporal variability of stream water DOC. In larger, more heterogeneous catchments, stream water DOC dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment covered by 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions. During high flow, the major source of DOC is from forested areas of the catchment. We demonstrate that by connecting knowledge about DOC sources in the landscape with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. The purpose of this study is to serve as a framework for appreciating the role of regulating mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes. The results from this study suggest that the sensitivity of stream water DOC in the boreal landscape ultimately depends on changes within individual landscape elements, the proportion and connectivity of these affected landscape elements, and how these changes are propagated downstream. We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3 to 6900 ha in size, as well as a set of monitored transects of forested and wetland soils. We show that in small homogenous catchments, hydrological functioning provides a first order control on the temporal variability of stream water DOC. In larger, more heterogeneous catchments, stream water DOC dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment covered by 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions. During high flow, the major source of DOC is from forested areas of the catchment. We demonstrate that by connecting knowledge about DOC sources in the landscape with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. The purpose of this study is to serve as a framework for appreciating the role of regulating mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes. The results from this study suggest that the sensitivity of stream water DOC in the boreal landscape ultimately depends on changes within individual landscape elements, the proportion and connectivity of these affected landscape elements, and how these changes are propagated downstream.[PUBLICATION ABSTRACT] We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3 to 6900 ha in size, as well as a set of monitored transects of forested and wetland soils. We show that in small homogenous catchments, hydrological functioning provides a first order control on the temporal variability of stream water DOC. In larger, more heterogeneous catchments, stream water DOC dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment covered by 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions. During high flow, the major source of DOC is from forested areas of the catchment. We demonstrate that by connecting knowledge about DOC sources in the landscape with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. The purpose of this study is to serve as a framework for appreciating the role of regulating mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes. The results from this study suggest that the sensitivity of stream water DOC in the boreal landscape ultimately depends on changes within individual landscape elements, the proportion and connectivity of these affected landscape elements, and how these changes are propagated downstream. |
| Audience | Academic |
| Author | Ågren, Anneli Jansson, Mats Buffam, Ishi Bishop, Kevin Laudon, Hjalmar Grabs, Thomas Berggren, Martin Köhler, Stephan |
| Author_xml | – sequence: 1 givenname: Hjalmar surname: Laudon fullname: Laudon, Hjalmar – sequence: 2 givenname: Martin surname: Berggren fullname: Berggren, Martin – sequence: 3 givenname: Anneli surname: Ågren fullname: Ågren, Anneli – sequence: 4 givenname: Ishi surname: Buffam fullname: Buffam, Ishi – sequence: 5 givenname: Kevin surname: Bishop fullname: Bishop, Kevin – sequence: 6 givenname: Thomas surname: Grabs fullname: Grabs, Thomas – sequence: 7 givenname: Mats surname: Jansson fullname: Jansson, Mats – sequence: 8 givenname: Stephan surname: Köhler fullname: Köhler, Stephan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25293844$$DView record in Pascal Francis https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-46621$$DView record from Swedish Publication Index (Umeå universitet) https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-159247$$DView record from Swedish Publication Index (Uppsala universitet) https://res.slu.se/id/publ/58592$$DView record from Swedish Publication Index (Sveriges lantbruksuniversitet) |
| BookMark | eNqNkm9rFDEQxhepYFv9AL4QgiBWuK2ZbLK78d155z8oXLHVtyGbTc4ce8k12a0cfnmzvbNCwUMCmRB-z0xm8pxkR847nWXPAZ8DxtXbmHYCOQbIOWUkrx9lx0ALluOS8KO7M8l5TfGT7CTGFcbAakqPs1-Xsu91cBFJ16L51sm1VRF5g-Y2Rt_d6hYtwlI6q9BMhsY7dDZfzN4g69B7H7Ts0FWfwjq-Q9c_NPrqOz2qL4NXOkYdJ2jmndOqt7e2307uylwp2Vm3fJo9NrKL-tk-nmbfPn64nn3OLxafvsymF7kqKe9zZqhseM1qjGnTGqKhqkrVtKWUUGBTFAbXDS5NC4yZpmVgmkorjkEDI01TFKdZvssbf-rN0IhNsGsZtsJLK2I3NDKMQUQtWM04Sfzkn_zcfp8KH5ZiGAQkmFb_ia8HQcuSQMJf7_BN8DeDjr1Y26h010mn_RAFxxXUmANP5NlBEijHDAiu6oS-fICu_BBcmqqo64qPIE3Q-Q5ayk4L64zvg1RptTp9evKTsel-WkFRFTgZJgle7bPKmL7MBOmUjfcNEkZ4kVyUuGrHqeBjDNoIZXvZW-9SAdsJwGI0qdiZVCSTitGkYnw3PFD-SX5IQ_bzTqxb6vC310OiFzvRKvY-3FehwDAbZ_0bnhwDfw |
| CitedBy_id | crossref_primary_10_5194_bg_10_891_2013 crossref_primary_10_1007_s00027_013_0296_5 crossref_primary_10_1088_1755_1315_1093_1_012018 crossref_primary_10_5194_bg_12_1881_2015 crossref_primary_10_1016_j_chemgeo_2012_01_033 crossref_primary_10_1002_wat2_1265 crossref_primary_10_1007_s00027_023_00956_w crossref_primary_10_1002_saj2_20705 crossref_primary_10_1088_1748_9326_acd467 crossref_primary_10_1002_lol2_10305 crossref_primary_10_1016_j_jhydrol_2018_09_011 crossref_primary_10_1002_2017JG004272 crossref_primary_10_1002_hyp_11277 crossref_primary_10_1016_j_chemosphere_2014_12_080 crossref_primary_10_1002_hyp_11279 crossref_primary_10_1016_j_envpol_2013_08_023 crossref_primary_10_1007_s10021_015_9878_5 crossref_primary_10_1007_s12665_016_5464_1 crossref_primary_10_5194_hess_27_3935_2023 crossref_primary_10_1016_j_chemgeo_2022_121254 crossref_primary_10_1016_j_jhydrol_2022_128534 crossref_primary_10_1002_wat2_1155 crossref_primary_10_1016_j_scitotenv_2024_177434 crossref_primary_10_1080_02626667_2022_2038792 crossref_primary_10_1002_hyp_10877 crossref_primary_10_1002_lno_12282 crossref_primary_10_1016_j_agrformet_2021_108454 crossref_primary_10_5194_bg_11_3043_2014 crossref_primary_10_1016_j_scitotenv_2022_157398 crossref_primary_10_1016_j_scitotenv_2014_05_091 crossref_primary_10_1080_17538947_2024_2308734 crossref_primary_10_1029_2019GB006495 crossref_primary_10_1080_20442041_2020_1787765 crossref_primary_10_1007_s10750_013_1549_y crossref_primary_10_59717_j_xinn_geo_2025_100148 crossref_primary_10_1002_2014JG002695 crossref_primary_10_1016_j_scitotenv_2021_152420 crossref_primary_10_1111_gcb_12488 crossref_primary_10_1016_j_scitotenv_2012_06_111 crossref_primary_10_1002_hyp_13918 crossref_primary_10_1016_j_chemgeo_2013_11_023 crossref_primary_10_1016_j_scitotenv_2023_162308 crossref_primary_10_3390_w11020390 crossref_primary_10_1029_2021GL096616 crossref_primary_10_1029_2019WR026695 crossref_primary_10_1007_s10533_022_00983_z crossref_primary_10_1029_2019WR026577 crossref_primary_10_1029_2019WR026336 crossref_primary_10_1088_1755_1315_232_1_012010 crossref_primary_10_1007_s10533_013_9949_7 crossref_primary_10_5194_essd_15_1779_2023 crossref_primary_10_1007_s10021_017_0149_5 crossref_primary_10_1029_2020WR028134 crossref_primary_10_1002_2015JG002963 crossref_primary_10_1007_s10750_018_3553_8 crossref_primary_10_1002_2016JG003357 crossref_primary_10_3390_f6092982 crossref_primary_10_1088_1748_9326_ab23d4 crossref_primary_10_1002_2017WR020707 crossref_primary_10_1016_j_gca_2014_03_033 crossref_primary_10_5194_bg_9_2159_2012 crossref_primary_10_1007_s00382_014_2124_6 crossref_primary_10_1088_1748_9326_8_2_024017 crossref_primary_10_1002_2016WR019186 crossref_primary_10_3390_rs16010176 crossref_primary_10_1029_2020WR028806 crossref_primary_10_5194_bg_14_3001_2017 crossref_primary_10_1007_s10498_015_9277_8 crossref_primary_10_1016_j_earscirev_2021_103873 crossref_primary_10_1039_D0EW00150C crossref_primary_10_1111_gcb_14891 crossref_primary_10_1088_1748_9326_ac462f crossref_primary_10_1002_lol2_10066 crossref_primary_10_1016_j_ecoleng_2013_01_028 crossref_primary_10_1016_j_rse_2018_09_014 crossref_primary_10_5194_bg_9_3901_2012 crossref_primary_10_1007_s00027_020_0714_4 crossref_primary_10_1029_2022WR033358 crossref_primary_10_1002_2017WR020739 crossref_primary_10_1088_1748_9326_ace637 crossref_primary_10_1007_s42452_019_0225_x crossref_primary_10_1016_j_jhydrol_2013_09_056 crossref_primary_10_1002_hyp_11352 crossref_primary_10_1007_s10021_016_0057_0 crossref_primary_10_1002_2015JG003190 crossref_primary_10_1002_2015WR018343 crossref_primary_10_1029_2022JG007179 crossref_primary_10_1111_1752_1688_12702 crossref_primary_10_3389_frwa_2021_669007 crossref_primary_10_1002_2017WR021718 crossref_primary_10_1016_j_catena_2023_107054 crossref_primary_10_1088_1748_9326_9_3_035005 crossref_primary_10_1016_j_scitotenv_2016_02_199 crossref_primary_10_1080_02827581_2018_1441900 crossref_primary_10_1029_2020JD033413 crossref_primary_10_1088_1748_9326_ad3cf8 crossref_primary_10_1111_fwb_12549 crossref_primary_10_1890_13_0363_1 crossref_primary_10_1007_s00027_015_0451_2 crossref_primary_10_1016_j_jhydrol_2024_131740 crossref_primary_10_1002_lno_10589 crossref_primary_10_1007_s41109_018_0067_2 crossref_primary_10_1016_j_gca_2017_05_023 crossref_primary_10_1002_hyp_10834 crossref_primary_10_1002_wrcr_20520 crossref_primary_10_1016_j_foreco_2020_117962 crossref_primary_10_1002_hyp_10715 crossref_primary_10_1016_j_gca_2018_07_030 crossref_primary_10_1139_cjfas_2020_0421 crossref_primary_10_1038_s41467_020_15496_2 crossref_primary_10_1080_02626667_2016_1170942 crossref_primary_10_1016_j_jhydrol_2019_05_029 crossref_primary_10_1007_s13280_016_0837_y crossref_primary_10_1657_AAAR0014_044 crossref_primary_10_1002_2014JG002809 crossref_primary_10_1002_hyp_10830 crossref_primary_10_1016_j_chemgeo_2015_05_013 crossref_primary_10_1111_gcb_14156 crossref_primary_10_1016_j_watres_2017_01_066 crossref_primary_10_5194_bg_10_905_2013 crossref_primary_10_1002_2013JG002551 crossref_primary_10_1029_2020JG005804 crossref_primary_10_1038_s41598_018_34272_3 crossref_primary_10_1111_gcb_14983 crossref_primary_10_1002_2015GL066916 crossref_primary_10_1016_j_jhydrol_2017_03_056 crossref_primary_10_1016_j_scitotenv_2015_03_102 crossref_primary_10_1002_2016JG003420 crossref_primary_10_1002_2014JG002814 crossref_primary_10_1016_j_jhydrol_2024_130985 crossref_primary_10_1002_lno_12099 crossref_primary_10_1890_15_0515_1 crossref_primary_10_1002_hyp_10286 crossref_primary_10_1007_s13280_015_0751_8 crossref_primary_10_5194_hess_24_1709_2020 crossref_primary_10_1002_lno_12406 crossref_primary_10_1016_j_jhydrol_2022_128988 crossref_primary_10_1007_s10533_018_0469_3 crossref_primary_10_1371_journal_pone_0164592 crossref_primary_10_1007_s00027_013_0305_8 crossref_primary_10_1016_j_jhydrol_2024_131605 crossref_primary_10_1016_j_scitotenv_2018_11_392 crossref_primary_10_5194_bg_10_3849_2013 crossref_primary_10_1016_j_apgeochem_2015_05_023 crossref_primary_10_1007_s41742_025_00745_3 crossref_primary_10_1002_hyp_10733 crossref_primary_10_1016_j_scitotenv_2024_177452 crossref_primary_10_1111_j_1365_2486_2012_02666_x crossref_primary_10_1002_2016GB005578 crossref_primary_10_1016_j_envpol_2024_124761 crossref_primary_10_1016_j_jenvrad_2012_06_010 crossref_primary_10_1016_j_jhydrol_2018_09_051 crossref_primary_10_5194_hess_22_1081_2018 crossref_primary_10_1002_ece3_2726 crossref_primary_10_1002_hyp_14898 crossref_primary_10_1007_s10661_015_4385_x crossref_primary_10_1016_j_agrformet_2025_110758 crossref_primary_10_3390_rs16081345 crossref_primary_10_1016_j_scitotenv_2012_05_071 crossref_primary_10_1029_2019JG005142 crossref_primary_10_1029_2019JG005384 crossref_primary_10_1016_j_chemosphere_2024_143047 crossref_primary_10_5194_bg_15_6637_2018 crossref_primary_10_1002_2013GB004770 crossref_primary_10_1002_2015WR018419 crossref_primary_10_1007_s12665_013_3005_8 crossref_primary_10_1007_s13157_019_01170_x crossref_primary_10_1002_hyp_13616 crossref_primary_10_1016_j_ecolind_2024_112491 crossref_primary_10_1029_2023JG007556 crossref_primary_10_1016_j_gloplacha_2020_103294 crossref_primary_10_1007_s10533_019_00603_3 crossref_primary_10_1016_j_scitotenv_2018_02_152 crossref_primary_10_3389_ffgc_2022_1044447 crossref_primary_10_1016_j_scitotenv_2024_171959 crossref_primary_10_5194_bg_13_1863_2016 crossref_primary_10_1002_lno_10383 crossref_primary_10_1016_j_gca_2016_08_030 crossref_primary_10_1016_j_catena_2024_107918 crossref_primary_10_5194_bg_11_1199_2014 crossref_primary_10_5194_bg_13_399_2016 crossref_primary_10_1002_hyp_11205 crossref_primary_10_5194_bg_12_4651_2015 crossref_primary_10_1002_hyp_14279 crossref_primary_10_5194_hess_21_2035_2017 crossref_primary_10_1029_2022JG007027 crossref_primary_10_1080_20442041_2019_1568073 crossref_primary_10_1007_s10021_017_0133_0 crossref_primary_10_1002_lol2_10169 crossref_primary_10_1002_2016JG003621 crossref_primary_10_1002_ecs2_1739 crossref_primary_10_1007_s10533_013_9896_3 crossref_primary_10_1007_s10021_022_00798_x crossref_primary_10_5194_hess_22_4455_2018 crossref_primary_10_5194_bg_13_1_2016 crossref_primary_10_5194_bg_10_2315_2013 crossref_primary_10_1007_s00442_011_2092_z crossref_primary_10_1002_2013JG002309 crossref_primary_10_1002_hyp_14049 crossref_primary_10_1029_2022WR032892 crossref_primary_10_1016_j_scitotenv_2022_159982 crossref_primary_10_1007_s10533_021_00874_9 crossref_primary_10_1029_2018GB006106 crossref_primary_10_5194_bg_15_6979_2018 crossref_primary_10_1016_j_jhydrol_2018_12_065 crossref_primary_10_1029_2020JG005851 crossref_primary_10_3402_polar_v32i0_19704 crossref_primary_10_1007_s10661_015_4969_5 crossref_primary_10_1016_j_scitotenv_2024_171139 crossref_primary_10_5194_bg_14_4391_2017 crossref_primary_10_1002_2015GB005316 crossref_primary_10_1111_gcb_14812 crossref_primary_10_1007_s10533_018_0446_x crossref_primary_10_1016_j_chemgeo_2015_08_013 crossref_primary_10_3389_frwa_2023_1087108 crossref_primary_10_1002_2015WR016927 crossref_primary_10_1002_wrcr_20469 crossref_primary_10_1002_2015WR017336 crossref_primary_10_1002_hyp_13528 crossref_primary_10_1002_lno_11134 crossref_primary_10_5004_dwt_2018_22352 crossref_primary_10_3390_s120403798 crossref_primary_10_1029_2023JG007538 crossref_primary_10_1002_lno_10954 crossref_primary_10_1016_j_foreco_2023_120776 crossref_primary_10_1029_2020JG006152 crossref_primary_10_1002_hyp_15020 crossref_primary_10_2166_nh_2019_161 crossref_primary_10_1002_hyp_14170 crossref_primary_10_1007_s00027_023_01001_6 crossref_primary_10_1016_j_jhydrol_2015_10_002 crossref_primary_10_1002_2013WR014275 crossref_primary_10_1002_hyp_15263 crossref_primary_10_1080_02626667_2013_822639 crossref_primary_10_1016_j_scitotenv_2015_03_041 crossref_primary_10_1007_s11270_013_1767_y crossref_primary_10_1080_10934529_2015_992670 crossref_primary_10_1016_j_ecohyd_2021_02_005 crossref_primary_10_1007_s10533_022_00947_3 crossref_primary_10_1038_s41598_023_47528_4 crossref_primary_10_1007_s12665_024_11804_x crossref_primary_10_1029_2022WR032426 crossref_primary_10_1111_gwat_12186 crossref_primary_10_1002_2017JG004083 crossref_primary_10_1002_2014JG002878 crossref_primary_10_1002_hyp_11519 crossref_primary_10_1007_s10533_020_00648_9 crossref_primary_10_1016_j_jhydrol_2013_01_015 crossref_primary_10_5194_hess_27_613_2023 crossref_primary_10_1007_s10533_014_0046_3 crossref_primary_10_1016_j_scitotenv_2023_167300 crossref_primary_10_1007_s10750_015_2636_z crossref_primary_10_1111_gcb_12265 crossref_primary_10_1002_2015JG002946 crossref_primary_10_1002_2016JG003495 crossref_primary_10_1016_j_foreco_2014_08_033 crossref_primary_10_1146_annurev_earth_082517_010018 crossref_primary_10_1080_20442041_2020_1740549 crossref_primary_10_5194_hess_29_1449_2025 crossref_primary_10_1002_2016RG000547 crossref_primary_10_1002_lno_10738 crossref_primary_10_1016_j_scitotenv_2025_178696 crossref_primary_10_1088_1748_9326_ab9d3c crossref_primary_10_3390_land13030355 crossref_primary_10_1007_s11430_018_9309_6 crossref_primary_10_1007_s00027_023_01041_y crossref_primary_10_1007_s10498_013_9215_6 crossref_primary_10_1016_j_catena_2021_105441 crossref_primary_10_3390_w9060383 crossref_primary_10_1016_j_scitotenv_2024_173486 crossref_primary_10_1007_s00267_014_0259_1 crossref_primary_10_1016_j_agee_2020_107075 crossref_primary_10_1111_gcb_13815 crossref_primary_10_1111_geoa_12136 crossref_primary_10_1134_S0097807824604849 crossref_primary_10_1002_2015JG003201 crossref_primary_10_1016_j_scitotenv_2022_159382 crossref_primary_10_1111_gcb_12607 crossref_primary_10_1371_journal_pone_0225271 crossref_primary_10_1111_1365_2745_12355 crossref_primary_10_1139_er_2024_0078 crossref_primary_10_5194_hess_28_1055_2024 crossref_primary_10_1038_s41467_024_44888_x crossref_primary_10_1002_vzj2_20126 crossref_primary_10_1016_j_geoderma_2014_02_017 crossref_primary_10_1007_s13280_015_0635_y crossref_primary_10_1029_2020JG005654 crossref_primary_10_1007_s13280_019_01227_5 crossref_primary_10_1016_j_ecolmodel_2017_04_014 crossref_primary_10_1016_j_scitotenv_2017_11_252 crossref_primary_10_1029_2018JG004622 crossref_primary_10_1029_2018JG004981 crossref_primary_10_1016_j_watres_2023_121048 crossref_primary_10_5194_bg_17_581_2020 crossref_primary_10_1002_2015JG002922 crossref_primary_10_1016_j_jhydrol_2016_04_067 crossref_primary_10_1002_2016JG003399 crossref_primary_10_1016_j_orggeochem_2013_10_008 crossref_primary_10_1088_3033_4942_adb906 crossref_primary_10_1007_s10021_019_00471_w crossref_primary_10_1111_gcb_12959 crossref_primary_10_3390_f13040599 crossref_primary_10_1029_2022JG006831 crossref_primary_10_5194_hess_29_2377_2025 crossref_primary_10_5194_bg_15_457_2018 crossref_primary_10_5194_hess_25_2133_2021 |
| Cites_doi | 10.1029/97WR01921 10.1023/A:1005903428956 10.1007/s10533-007-9170-7 10.1007/BF03161449 10.1007/BF01189693 10.1007/s00027-007-0943-9 10.1029/2006JG000381 10.1016/j.envpol.2010.05.027 10.1023/A:1005496331593 10.1007/s00248-008-9423-6 10.1111/j.1365-2486.2008.01551.x 10.1007/s00027-004-0700-2 10.1016/B978-012256371-3/50007-X 10.1029/2006GB002844 10.5194/hess-12-425-2008 10.1029/2001JD900119 10.1029/2005JG000055 10.1038/nature06316 10.1007/s10021-008-9142-3 10.1007/s00027-005-0802-5 10.1021/es0201552 10.1016/j.tree.2007.02.015 10.1111/j.1365-2486.2004.00866.x 10.1021/es903179j 10.1029/2007WR006523 10.1023/A:1005779711821 10.1016/S0009-2541(96)00139-8 10.1579/0044-7447-38.7.381 10.1029/2002WR001525 10.1002/hyp.5209 10.1016/j.scitotenv.2008.10.006 10.1002/hyp.1357 10.1002/hyp.7615 10.1029/2010JG001452 10.1002/hyp.7577 10.1021/es8017946 10.1029/2009JG001100 10.1029/2006WR005128 10.4319/lo.2001.46.2.0345 10.2166/nh.1989.0001 10.1029/2006JG000387 10.1016/j.jhydrol.2009.04.012 10.1029/2009JG001013 10.1029/2007JG000629 10.1016/j.scitotenv.2009.09.008 10.1021/es0523183 10.1111/j.1365-2486.2008.01654.x 10.1016/j.envpol.2010.03.009 10.1890/02-5271 10.1021/es102885z 10.1016/j.gca.2009.05.052 10.1890/1051-0761(1999)009[1377:DOCAAI]2.0.CO;2 10.1007/s10533-005-2024-2 10.1016/0160-4120(96)00036-0 10.1016/j.apgeochem.2010.12.005 10.1029/2005JG000065 10.1007/s10980-006-0020-0 10.1111/j.1365-2427.2008.01955.x 10.1029/2008GB003294 10.1111/j.1365-2486.2007.01530.x 10.1029/2006WR005286 10.1038/ismej.2009.120 10.1007/BF00024390 10.1029/2006JG000218 10.1016/j.gca.2008.03.024 10.1139/f07-194 10.1021/es070557f 10.1016/j.jhydrol.2007.07.010 10.1029/2002WR001404 10.5194/hess-13-2287-2009 10.1016/j.scitotenv.2010.02.046 10.1016/j.apgeochem.2009.04.038 10.1029/2003WR002455 |
| ContentType | Journal Article |
| Copyright | 2011 Springer Science+Business Media, LLC Springer Science+Business Media, LLC 2011 2015 INIST-CNRS COPYRIGHT 2011 Springer |
| Copyright_xml | – notice: 2011 Springer Science+Business Media, LLC – notice: Springer Science+Business Media, LLC 2011 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2011 Springer |
| CorporateAuthor | Sveriges lantbruksuniversitet |
| CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
| DBID | AAYXX CITATION IQODW 3V. 7SN 7ST 7XB 88I 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U SOI 7S9 L.6 7QH 7UA F1W H95 L.G ADTPV AOWAS D93 DF2 |
| DOI | 10.1007/s10021-011-9452-8 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central (ProQuest) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Research Library Science Database Research Library (Corporate) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic Aqualine Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional SwePub SwePub Articles SWEPUB Umeå universitet SWEPUB Uppsala universitet |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Ecology Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aqualine Water Resources Abstracts |
| DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology Environmental Sciences Zoology |
| EISSN | 1435-0629 |
| EndPage | 893 |
| ExternalDocumentID | oai_slubar_slu_se_58592 oai_DiVA_org_uu_159247 oai_DiVA_org_umu_46621 2445450811 A713730143 25293844 10_1007_s10021_011_9452_8 41505919 |
| Genre | Feature |
| GroupedDBID | -DZ -~C .86 06C 06D 0R~ 0VY 199 1N0 203 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~F 2~H 30V 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67N 67Z 6NX 78A 7XC 88I 8CJ 8FE 8FH 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAGAY AAHBH AAHKG AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPLY ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTLG ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACGOD ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEBTG AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFAZZ AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGUYK AGWIL AGWZB AGYKE AHBYD AHKAY AHPBZ AHWEU AHXOZ AHYZX AIAKS AICQM AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANHSF AOCGG AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CBGCD CCPQU COF CS3 CSCUP D1J DATOO DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GTFYD GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HTVGU HVGLF HZ~ I-F I09 IAO IEP IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBS JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAS LLZTM M2O M2P M4Y MA- MQGED N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P PATMY PCBAR PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 PYCSY Q2X QOR QOS R89 R9I RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 Y6R YLTOR YV5 Z45 ZMTXR ZOVNA ~02 ~A9 ~KM -56 -5G -BR -EM -Y2 1SB 2P1 3V. ADINQ AGGDS AHAVH AHSBF DOOOF EQZMY GQ6 HGD IHE JSODD OVD RIG RNI RZK S1Z TEORI VJK WHG Z7Y Z7Z AAYXX ABRTQ AFFHD AFOHR BANNL CITATION IQODW 7SN 7ST 7XB 8FK C1K MBDVC PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 7QH 7UA F1W H95 L.G ADTPV AOWAS D93 DF2 |
| ID | FETCH-LOGICAL-c649t-5f4ab9858004bdf2e1776cbd6aa130f33f08b06fd155fbd51fb7ec901e152bb33 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 358 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294683300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-9840 1435-0629 |
| IngestDate | Tue Nov 04 16:55:51 EST 2025 Tue Nov 04 16:39:42 EST 2025 Tue Nov 04 16:59:03 EST 2025 Tue Oct 07 09:58:04 EDT 2025 Sun Nov 09 09:38:34 EST 2025 Tue Dec 02 16:27:25 EST 2025 Sat Nov 29 10:09:25 EST 2025 Mon Jul 21 09:15:46 EDT 2025 Sat Nov 29 06:23:51 EST 2025 Tue Nov 18 22:32:08 EST 2025 Fri Feb 21 02:29:09 EST 2025 Thu Jun 19 15:59:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | scaling Krycklan catchment connectivity hydrology boreal forest dissolved organic carbon Dissolved organic carbon Boreal forest Hydrology Dynamics Ecosystem Watershed Stream |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c649t-5f4ab9858004bdf2e1776cbd6aa130f33f08b06fd155fbd51fb7ec901e152bb33 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 887949054 |
| PQPubID | 55443 |
| PageCount | 14 |
| ParticipantIDs | swepub_primary_oai_slubar_slu_se_58592 swepub_primary_oai_DiVA_org_uu_159247 swepub_primary_oai_DiVA_org_umu_46621 proquest_miscellaneous_907180919 proquest_miscellaneous_1490512078 proquest_journals_887949054 gale_infotracacademiconefile_A713730143 pascalfrancis_primary_25293844 crossref_citationtrail_10_1007_s10021_011_9452_8 crossref_primary_10_1007_s10021_011_9452_8 springer_journals_10_1007_s10021_011_9452_8 jstor_primary_41505919 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-09-01 |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: New York, NY |
| PublicationTitle | Ecosystems (New York) |
| PublicationTitleAbbrev | Ecosystems |
| PublicationYear | 2011 |
| Publisher | Springer Science+Business Media Springer-Verlag Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Science+Business Media – name: Springer-Verlag – name: Springer – name: Springer Nature B.V |
| References | Ågren A, Buffam I, Jansson M, Laudon H. 2007a. Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. J Geophys Res 112: doi: 03010.01029/02006JG000381. CanhamCDPaceMLPapaikMJPrimackAGBRoyKMMarangerRJCurranRPSpadaDMA spatially explicit watershed-scale analysis of dissolved organic carbon in Adriondack lakesEcol Appl20041483985410.1890/02-5271 NilssonMSagerforsJBuffamILaudonHErikssonTGrelleAKlemedtssonLWeslienPLinderothAComplete carbon budgets for two years of a boreal oligotrophic minerogenic mireGlob Change Biol20081411610.1111/j.1365-2486.2008.01654.x NilssonMMikkelaCSundhIGranbergGSvenssonBHRannebyBMethane emission from Swedish mires: national and regional budgets and dependence on mire vegetationJ Geophys Res Atmos2001106208472086010.1029/2001JD9001191:CAS:528:DC%2BD3MXnslKksLo%3D Lundin L. 1982. Soil moisture and ground water in till soil and the significance of soil type for runoff. UNGI Report No. 56. Uppsala University, Uppsala. 216 pp. GergelSETurnerMGKratzTKDissolved organic carbon as an indicator of the scale of watershed influence on lakes and riversEcol Appl199991377139010.1890/1051-0761(1999)009[1377:DOCAAI]2.0.CO;2 Seibert J, McGlynn BL. 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Res 43. doi:10.1029/2006WR005128. Wallin M, Buffam I, Öquist M, Laudon H, Bishop K. 2010. Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network—concentrations and downstream fluxes. J Geophys Res 115. doi:10.1029/2009JG001100. ÅgrenAJanssonMIvarssonHBishopKSeibertJSeasonal and runoff-related changes in allochtonous organic carbon concentrations in the River Öre, Northern SwedenAquat Sci200770212910.1007/s00027-007-0943-9 Bishop KH. 1991. Episodic increases in stream acidity, catchment flow pathways and hydrograph separation. University of Cambridge. 246 pp. BishopKSeibertJKöhlerSLaudonHResolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistryHydrol Process20041818518910.1002/hyp.5209 McGlynn BL, McDonnell JJ. 2003. Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Res 39. doi:10.1029/2002WR001525. BergknutMMeijerSHalsallCÅgrenALaudonHKöhlerSJonesKCTysklindMWibergKModelling the fate of hydrophobic organic contaminants in a boreal forest catchment: a cross disciplinary approach to assessing diffuse pollution to surface watersEnviron Pollut2010158296429692061951710.1016/j.envpol.2010.05.0271:CAS:528:DC%2BC3cXps1Ghsr0%3D DillonPJMolotLAEffect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchmentsWater Resour Res1997332591260010.1029/97WR019211:CAS:528:DyaK2sXnsVyisb0%3D JanssonMPerssonLDe RoosAMJonesRTranvikLJTerrestrial carbon and intraspecific size-variation shape lake ecosystemsTrends Ecol Evol2007223163221733906710.1016/j.tree.2007.02.015 ClairTADennisIFVetRLaudonHLong-term trends in catchment organic carbon and nitrogen exports from three acidified catchments in Nova Scotia, CanadaBiogeochemistry200887839710.1007/s10533-007-9170-71:CAS:528:DC%2BD1cXivVOqtbw%3D PregitzerKSEuskirchenESCarbon cycling and storage in world forests: biome patterns related to forest ageGlob Change Biol2004102052207710.1111/j.1365-2486.2004.00866.x Ågren A, Buffam I, Bishop K, Laudon H. 2010. Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: a simple empirical approach for regional predictions. J Geophys Res Biogeosci. doi:10.1029/2009JG001013. ColeJJPrairieYTCaracoNFMcDowellWHTranvikLJStrieglRGDuarteCMKortelainenPDowningJAMiddelburgJJMelackJPlumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budgetEcosystems20071017118410.1007/s10021-006-9013-81:CAS:528:DC%2BD2sXlslCmsbY%3D Sirin A, Bishop K, Köher S. 1998. Resolving flow pathways and geochemistry in a headwater forested wetland with multiple traces. HeadWater ‘98 Conference. IAHS Publ., Merano, Italy. pp 337–42. ClarkJMBottrellSHEvansCDMonteithDTBartlettRRoseRNewtonRJChapmanPJThe importance of the relationship between scale and process in understanding long-term DOC dynamicsSci Total Environ2010408276827752039891510.1016/j.scitotenv.2010.02.0461:CAS:528:DC%2BC3cXlsFaqtr0%3D BerggrenMLaudonHHaeiMStromLJanssonMEfficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sourcesISME J201044084161990750510.1038/ismej.2009.1201:CAS:528:DC%2BC3cXitVWgtbg%3D MulhollandPJFindlaySSinsabaughRLarge-scale patterns in dissolved organic carbon concentration, flux, and sourcesAquatic ecosystems: interactivity of dissolved organic matter2003AmsterdamElsevier139159 Petrone K, Buffam I, Laudon H. 2007. Hydrologic and biotic control of nitrogen export during snowmelt: a combined conservative and reactive tracer approach. Water Resources Res 43. doi:10.1029/2006WR005286. SchiffSAravenaRMewhinneyEElgoodRWarnerBDillonPTrumboreSPrecambrian shield wetlands: hydrologic control of the sources and export of dissolved organic matterClim Change19984016718810.1023/A:10054963315931:CAS:528:DyaK1cXntlCrs7k%3D LikensGEBusoDCVariation in streamwater chemistry throughout the Hubbard Brook ValleyBiogeochemistry20067813010.1007/s10533-005-2024-21:CAS:528:DC%2BD28Xks1els7Y%3D Rodhe A. 1987. The origin of streamwater traced by Oxygen-18. Uppsala University, Uppsala. 260 pp. ConradOSAGA—Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen2007GöttingenPhysical Geography, University of Göttingen221 ErlandssonMBuffamIFölsterJLaudonHTemnerudJWeyhenmeyerGABishopKThirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphateGlob Change Biol2008141191119810.1111/j.1365-2486.2008.01551.x BerggrenMLaudonHJanssonMHydrological control of organic carbon support for bacterial growth in boreal headwater streamsMicrob Ecol2009571701781866111410.1007/s00248-008-9423-6 HintonMJSchiffSLEnglishMCSources and flowpaths of dissolved organic carbon during storms in two forested watersheds of the Precambrian ShieldBiogeochemistry19984117519710.1023/A:10059034289561:CAS:528:DyaK1cXisFCqu7g%3D LaudonHHedtjärnJSchelkerJBishopKSörensenRÅgrenAResponse of dissolved organic carbon following forest harvesting in a boreal forestAmbio2009383813861994339410.1579/0044-7447-38.7.3811:CAS:528:DC%2BD1MXhsFaqu7fP GieslerRBjörkvaldLLaudonHMörthCMSpatial and seasonal variations in stream water delta S-34-dissolved organic matter in Northern SwedenEnviron Sci Technol2009434474521923897810.1021/es80179461:CAS:528:DC%2BD1cXhsVOmt7%2FI Yurova A, Sirin A, Buffam I, Bishop K, Laudon H. 2008. Modeling the dissolved organic carbon output from a boreal mire using the convection-dispersion equation: importance of representing sorption. Water Resources Res 44. doi:10.1029/2007wr006523. EimersMCButtleJWatmoughSAInfluence of seasonal changes in runoff and extreme events on dissolved organic carbon trends in wetland- and upland-draining streamsCan J Fish Aquat Sci20086579680810.1139/f07-1941:CAS:528:DC%2BD1cXotVait7s%3D IPCC. 2007. Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. 996 pp. MonteithDTStoddardJLEvansCDde WitHAForsiusMHogasenTWilanderASkjelkvaleBLJeffriesDSVuorenmaaJKellerBKopacekJVeselyJDissolved organic carbon trends resulting from changes in atmospheric deposition chemistryNature2007450U537U53910.1038/nature06316 ÅgrenABerggrenMLaudonHJanssonMTerrestrial export of highly bioavailable carbon from small boreal catchments in spring floodsFreshw Biol20085396497210.1111/j.1365-2427.2008.01955.x RodheAOn the generation of stream runoff in till soilsNordic Hydrol19892018 Creed IF, Beall FD, Clair TA, Dillon PJ, Hesslein RH. 2008. Predicting export of dissolved organic carbon from forested catchments in glaciated landscapes with shallow soils. Glob Biogeochem Cycles 22. doi:10.1029/2008GB003294. CoryNBuffamILaudonHKöhlerSBishopKLandscape control of stream water aluminum in a boreal catchment during spring floodEnviron Sci Technol200640349435001678668510.1021/es05231831:CAS:528:DC%2BD28Xjs1Gnuro%3D Billett MF, Deacon CM, Palmer SM, Dawson JJC, Hope D. 2006. Connecting organic carbon in stream water and soils in a peatland catchment. J Geophys Res Biogeosci 111: doi:10.1029/2005JG000065. CreedIFSanfordSEBeallFDMolotLADillonPJCryptic wetlands: integrating hidden wetlands in regression models of the export of dissolved organic carbon from forested landscapesHydrol Process2003173629364810.1002/hyp.1357 CoryNBuffamILaudonHBjörkvaldLMörthCMKöhlerSBishopKParticulate aluminium in boreal streams: towards a better understanding of its sources and influence on dissolved aluminium speciationAppl Geochem2009241677168510.1016/j.apgeochem.2009.04.0381:CAS:528:DC%2BD1MXhtVKgsLnM Köhler SJ, Buffam I, Laudon H, Bishop KH. 2008. Climate’s control of intra-annual and interannual variability of total organic carbon concentration and flux in two contrasting boreal landscape elements. J Geophys Res Biogeosci 113. doi:10.1029/2007JG000629. BuffamILaudonHSeibertJMorthCMBishopKSpatial heterogeneity of the spring flood acid pulse in a boreal stream networkSci Total Environ20084077087221894027110.1016/j.scitotenv.2008.10.0061:CAS:528:DC%2BD1cXhsVWhsrzI BöhnerJBlaschkeTMontanarellaLSAGA: system for an automated geographical analysis2008HamburgInstitute of Geography, University of Hamburg LyonSWLaudonHSeibertJMörthCMTetzlaffDBishopKControls on snowmelt water mean transit times in northern boreal catchmentsHydrol Process2010241672168410.1002/hyp.7577 Cory N, Laudon H, Köhler S, Seibert J, Bishop K. 2007. Evolution of soil solution aluminum during transport along a forested boreal hillslope. J Geophys Res Biogeosci 112. doi:10.1029/2006JG000387. FrostPCLarsonJHJohn E Gorham (9452_CR41) 1998; 18 9452_CR61 9452_CR63 9452_CR20 9452_CR64 K Bishop (9452_CR15) 2004; 18 9452_CR69 KS Pregitzer (9452_CR71) 2004; 10 9452_CR28 TA Clair (9452_CR23) 2008; 87 MJ Hinton (9452_CR45) 1998; 41 S Sarkkola (9452_CR74) 2009; 408 M Nilsson (9452_CR68) 2008; 14 M Berggren (9452_CR7) 2009; 57 M Jansson (9452_CR49) 2007; 22 9452_CR4 M Erlandsson (9452_CR36) 2008; 14 H Laudon (9452_CR57) 2007; 344 9452_CR1 M Berggren (9452_CR8) 2010; 4 9452_CR72 M Bergknut (9452_CR9) 2010; 158 H Laudon (9452_CR55) 2004; 66 9452_CR6 9452_CR31 9452_CR76 MC Eimers (9452_CR35) 2008; 65 9452_CR77 SE Gergel (9452_CR39) 1999; 9 K Bishop (9452_CR13) 1996; 22 L Björkvald (9452_CR16) 2008; 72 CD Canham (9452_CR22) 2004; 14 M Baker (9452_CR5) 2006; 21 H Laudon (9452_CR54) 2008; 12 I Buffam (9452_CR21) 2008; 407 A Ågren (9452_CR2) 2007; 70 J Seibert (9452_CR78) 2009; 13 N Cory (9452_CR29) 2009; 24 F Lidman (9452_CR59) 2011; 45 A Ågren (9452_CR3) 2008; 53 S Findlay (9452_CR37) 2001; 46 9452_CR82 PC Frost (9452_CR38) 2006; 68 9452_CR84 HF Wilson (9452_CR83) 2008; 11 9452_CR42 SJ Köhler (9452_CR53) 2009; 373 A Rodhe (9452_CR73) 1989; 20 9452_CR48 O Conrad (9452_CR26) 2007 S Schiff (9452_CR75) 1998; 40 R Giesler (9452_CR40) 2009; 43 J Hruska (9452_CR47) 2003; 37 HA Wit De (9452_CR32) 2007; 41 H Laudon (9452_CR58) 2009; 38 M Bergknut (9452_CR10) 2010; 158 GE Likens (9452_CR60) 2006; 78 J Temnerud (9452_CR81) 2010; 24 M Nilsson (9452_CR67) 2001; 106 K Bishop (9452_CR14) 1995; 80 IF Creed (9452_CR30) 2003; 17 MM Shafer (9452_CR79) 1997; 136 9452_CR80 S Haaland (9452_CR43) 2010; 44 9452_CR52 9452_CR11 9452_CR12 9452_CR56 JJ Cole (9452_CR25) 2007; 10 MC Eimers (9452_CR34) 2008; 14 SW Lyon (9452_CR62) 2010; 24 JM Clark (9452_CR24) 2010; 408 9452_CR19 J Klaminder (9452_CR51) 2011; 26 PJ Dillon (9452_CR33) 1997; 33 L Björkvald (9452_CR17) 2009; 73 DT Monteith (9452_CR65) 2007; 450 PJ Mulholland (9452_CR66) 2003 MJ Hinton (9452_CR44) 1997; 36 (9452_CR18) 2008 GM Hornberger (9452_CR46) 1994; 25 N Cory (9452_CR27) 2006; 40 |
| References_xml | – reference: SchiffSAravenaRMewhinneyEElgoodRWarnerBDillonPTrumboreSPrecambrian shield wetlands: hydrologic control of the sources and export of dissolved organic matterClim Change19984016718810.1023/A:10054963315931:CAS:528:DyaK1cXntlCrs7k%3D – reference: GorhamEUnderwoodJKJanssensJAFreedmanBMaassWWallerDHOgdenJGThe chemistry of streams in southwestern and central Nova Scotia, with particular reference to catchment vegetation and the influence of dissolved organic carbon primarily from wetlandsWetlands19981811513210.1007/BF03161449 – reference: CanhamCDPaceMLPapaikMJPrimackAGBRoyKMMarangerRJCurranRPSpadaDMA spatially explicit watershed-scale analysis of dissolved organic carbon in Adriondack lakesEcol Appl20041483985410.1890/02-5271 – reference: Buffam I, Laudon H, Temnerud J, Mörth C-M, Bishop K. 2007. Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. J Geophys Res 112. doi:10.1029/2006JG000218. – reference: ErlandssonMBuffamIFölsterJLaudonHTemnerudJWeyhenmeyerGABishopKThirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphateGlob Change Biol2008141191119810.1111/j.1365-2486.2008.01551.x – reference: LidmanFBjörkvaldLMörthC-MLaudonHSelenium dynamics in boreal streams: the role of wetlands and changing groundwater tablesEnviron Sci Technol201145267726832139532610.1021/es102885z1:CAS:528:DC%2BC3MXjtVCmtL8%3D – reference: Wallin M, Buffam I, Öquist M, Laudon H, Bishop K. 2010. Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network—concentrations and downstream fluxes. J Geophys Res 115. doi:10.1029/2009JG001100. – reference: KlaminderJGripHMörthCMLaudonHCarbon mineralization and pyrite oxidation in groundwater: importance for silicate weathering in boreal forest soils and stream base-flow chemistryAppl Geochem20112631932510.1016/j.apgeochem.2010.12.0051:CAS:528:DC%2BC3MXhs1egurc%3D – reference: BuffamILaudonHSeibertJMorthCMBishopKSpatial heterogeneity of the spring flood acid pulse in a boreal stream networkSci Total Environ20084077087221894027110.1016/j.scitotenv.2008.10.0061:CAS:528:DC%2BD1cXhsVWhsrzI – reference: FindlaySQuinnJMHickeyCWBurrellGDownesMEffects of land use and riparian flowpath on delivery of dissolved organic carbon to streamsLimnol Oceanogr20014634535510.4319/lo.2001.46.2.03451:CAS:528:DC%2BD3MXjtVWgsb4%3D – reference: ShaferMMOverdierJTHurleyJPArmstrongDWebbDThe influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA)Chem Geol1997136719710.1016/S0009-2541(96)00139-81:CAS:528:DyaK2sXhslOmurg%3D – reference: Billett MF, Deacon CM, Palmer SM, Dawson JJC, Hope D. 2006. Connecting organic carbon in stream water and soils in a peatland catchment. J Geophys Res Biogeosci 111: doi:10.1029/2005JG000065. – reference: Seibert J, Bishop K, Rodhe A, McDonnell JJ. 2003. Groundwater dynamics along a hillslope: a test of the steady state hypothesis. Water Resources Res 39. doi:10.1029/2002WR001404. – reference: LikensGEBusoDCVariation in streamwater chemistry throughout the Hubbard Brook ValleyBiogeochemistry20067813010.1007/s10533-005-2024-21:CAS:528:DC%2BD28Xks1els7Y%3D – reference: Rodhe A. 1987. The origin of streamwater traced by Oxygen-18. Uppsala University, Uppsala. 260 pp. – reference: Cory N, Laudon H, Köhler S, Seibert J, Bishop K. 2007. Evolution of soil solution aluminum during transport along a forested boreal hillslope. J Geophys Res Biogeosci 112. doi:10.1029/2006JG000387. – reference: Seibert J, McGlynn BL. 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Res 43. doi:10.1029/2006WR005128. – reference: BishopKLeeYHPetterssonCAllardBTerrestrial sources of methylmercury in surface waters—the importance of the riparian zone on the Svartberget catchmentWater Air Soil Pollut19958043544410.1007/BF011896931:CAS:528:DyaK2MXnsVCht7o%3D – reference: DillonPJMolotLAEffect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchmentsWater Resour Res1997332591260010.1029/97WR019211:CAS:528:DyaK2sXnsVyisb0%3D – reference: BerggrenMLaudonHHaeiMStromLJanssonMEfficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sourcesISME J201044084161990750510.1038/ismej.2009.1201:CAS:528:DC%2BC3cXitVWgtbg%3D – reference: BjörkvaldLGieslerRLaudonHHumborgCMörthCMLandscape variations in stream water SO42− and delta S-34(SO4) in a boreal stream networkGeochim Cosmochim Acta2009734648466010.1016/j.gca.2009.05.052 – reference: MonteithDTStoddardJLEvansCDde WitHAForsiusMHogasenTWilanderASkjelkvaleBLJeffriesDSVuorenmaaJKellerBKopacekJVeselyJDissolved organic carbon trends resulting from changes in atmospheric deposition chemistryNature2007450U537U53910.1038/nature06316 – reference: CreedIFSanfordSEBeallFDMolotLADillonPJCryptic wetlands: integrating hidden wetlands in regression models of the export of dissolved organic carbon from forested landscapesHydrol Process2003173629364810.1002/hyp.1357 – reference: Creed IF, Beall FD, Clair TA, Dillon PJ, Hesslein RH. 2008. Predicting export of dissolved organic carbon from forested catchments in glaciated landscapes with shallow soils. Glob Biogeochem Cycles 22. doi:10.1029/2008GB003294. – reference: De WitHAMulderJHindarAHoleLLong term increase in dissolved organic carbon in stream waters in Norway is response to reduced acid depositionEnviron Sci Technol200741770677131807507810.1021/es070557f – reference: McGlynn BL, McDonnell JJ. 2003. Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Res 39. doi:10.1029/2002WR001525. – reference: Köhler SJ, Buffam I, Laudon H, Bishop KH. 2008. Climate’s control of intra-annual and interannual variability of total organic carbon concentration and flux in two contrasting boreal landscape elements. J Geophys Res Biogeosci 113. doi:10.1029/2007JG000629. – reference: NilssonMSagerforsJBuffamILaudonHErikssonTGrelleAKlemedtssonLWeslienPLinderothAComplete carbon budgets for two years of a boreal oligotrophic minerogenic mireGlob Change Biol20081411610.1111/j.1365-2486.2008.01654.x – reference: JanssonMPerssonLDe RoosAMJonesRTranvikLJTerrestrial carbon and intraspecific size-variation shape lake ecosystemsTrends Ecol Evol2007223163221733906710.1016/j.tree.2007.02.015 – reference: RodheAOn the generation of stream runoff in till soilsNordic Hydrol19892018 – reference: Bishop KH. 1991. Episodic increases in stream acidity, catchment flow pathways and hydrograph separation. University of Cambridge. 246 pp. – reference: CoryNBuffamILaudonHKöhlerSBishopKLandscape control of stream water aluminum in a boreal catchment during spring floodEnviron Sci Technol200640349435001678668510.1021/es05231831:CAS:528:DC%2BD28Xjs1Gnuro%3D – reference: LaudonHKöhlerSBuffamISeasonal TOC export from seven boreal catchments in northern SwedenAquat Sci20046622323010.1007/s00027-004-0700-2 – reference: Laudon H, Seibert J, Köhler S, Bishop K. 2004b. Hydrological flow paths during snowmelt: congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. Water Resources Research 40. doi:03110.10292003WR10002455. – reference: LaudonHHedtjärnJSchelkerJBishopKSörensenRÅgrenAResponse of dissolved organic carbon following forest harvesting in a boreal forestAmbio2009383813861994339410.1579/0044-7447-38.7.3811:CAS:528:DC%2BD1MXhsFaqu7fP – reference: Ågren A, Buffam I, Jansson M, Laudon H. 2007a. Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. J Geophys Res 112: doi: 03010.01029/02006JG000381. – reference: SeibertJGrabsTKohlerSLaudonHWinterdahlMBishopKLinking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration ModelHydrol Earth Syst Sci2009132287229710.5194/hess-13-2287-20091:CAS:528:DC%2BC3cXjsFentr4%3D – reference: NilssonMMikkelaCSundhIGranbergGSvenssonBHRannebyBMethane emission from Swedish mires: national and regional budgets and dependence on mire vegetationJ Geophys Res Atmos2001106208472086010.1029/2001JD9001191:CAS:528:DC%2BD3MXnslKksLo%3D – reference: ClarkJMBottrellSHEvansCDMonteithDTBartlettRRoseRNewtonRJChapmanPJThe importance of the relationship between scale and process in understanding long-term DOC dynamicsSci Total Environ2010408276827752039891510.1016/j.scitotenv.2010.02.0461:CAS:528:DC%2BC3cXlsFaqtr0%3D – reference: GieslerRBjörkvaldLLaudonHMörthCMSpatial and seasonal variations in stream water delta S-34-dissolved organic matter in Northern SwedenEnviron Sci Technol2009434474521923897810.1021/es80179461:CAS:528:DC%2BD1cXhsVOmt7%2FI – reference: Petrone KC, Jones JB, Hinzman LD, Boone, RD. 2006. Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res Biogeosc 111. doi:10.1029/2005JG000055. – reference: ColeJJPrairieYTCaracoNFMcDowellWHTranvikLJStrieglRGDuarteCMKortelainenPDowningJAMiddelburgJJMelackJPlumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budgetEcosystems20071017118410.1007/s10021-006-9013-81:CAS:528:DC%2BD2sXlslCmsbY%3D – reference: FrostPCLarsonJHJohnstonCAYoungKCMauricePALambertiGABridghamSDLandscape predictors of stream dissolved organic matter concentrations and physiochemistry in a Lake Superior river watershedAquat Sci20066840511:CAS:528:DC%2BD28XkslWhs7o%3D – reference: ConradOSAGA—Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen2007GöttingenPhysical Geography, University of Göttingen221 – reference: CoryNBuffamILaudonHBjörkvaldLMörthCMKöhlerSBishopKParticulate aluminium in boreal streams: towards a better understanding of its sources and influence on dissolved aluminium speciationAppl Geochem2009241677168510.1016/j.apgeochem.2009.04.0381:CAS:528:DC%2BD1MXhtVKgsLnM – reference: BishopKSeibertJKöhlerSLaudonHResolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistryHydrol Process20041818518910.1002/hyp.5209 – reference: MulhollandPJFindlaySSinsabaughRLarge-scale patterns in dissolved organic carbon concentration, flux, and sourcesAquatic ecosystems: interactivity of dissolved organic matter2003AmsterdamElsevier139159 – reference: Grabs T. 2010. Water quality modeling based on landscape analysis: importance of riparian hydrology. Ph.D. thesis, Department of Physical Geography and Quaternary Geology No 24, Stockholm University, Sweden. – reference: BakerMWellerDJordanTImproved methods for quantifying potential nutrient interception by riparian buffersLandscape Ecol2006211327134510.1007/s10980-006-0020-0 – reference: LyonSWLaudonHSeibertJMörthCMTetzlaffDBishopKControls on snowmelt water mean transit times in northern boreal catchmentsHydrol Process2010241672168410.1002/hyp.7577 – reference: HintonMJSchiffSLEnglishMCThe significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchmentsBiogeochemistry199736678810.1023/A:10057797118211:CAS:528:DyaK2sXhvVejur8%3D – reference: WilsonHFXenopoulosMAEcosystem and seasonal control of stream dissolved organic carbon along a gradient of land useEcosystems20081155556810.1007/s10021-008-9142-31:CAS:528:DC%2BD1cXmvFWjtLw%3D – reference: BerggrenMLaudonHJanssonMHydrological control of organic carbon support for bacterial growth in boreal headwater streamsMicrob Ecol2009571701781866111410.1007/s00248-008-9423-6 – reference: BergknutMMeijerSHalsallCÅgrenALaudonHKöhlerSJonesKCTysklindMWibergKModelling the fate of hydrophobic organic contaminants in a boreal forest catchment: a cross disciplinary approach to assessing diffuse pollution to surface watersEnviron Pollut2010158296429692061951710.1016/j.envpol.2010.05.0271:CAS:528:DC%2BC3cXps1Ghsr0%3D – reference: BergknutMLaudonHWibergKDioxins, PCBs, and HCB in soil and peat profiles from a pristine boreal catchmentEnviron Pollut2010158251825252043424710.1016/j.envpol.2010.03.0091:CAS:528:DC%2BC3cXmvVWjsLk%3D – reference: LaudonHSjöblomVBuffamISeibertJMörthMThe role of catchment scale and landscape characteristics for runoff generation of boreal streamsJ Hydrol200734419820910.1016/j.jhydrol.2007.07.010 – reference: Lyon SW, Grabs T, Laudon H, Bishop KH, Seibert J. 2011. Variability of groundwater levels and total organic carbon (TOC) in the riparian zone of a boreal catchment. J Geophys Res Biogeosci. doi:10.1029/2010JG001452. – reference: Yurova A, Sirin A, Buffam I, Bishop K, Laudon H. 2008. Modeling the dissolved organic carbon output from a boreal mire using the convection-dispersion equation: importance of representing sorption. Water Resources Res 44. doi:10.1029/2007wr006523. – reference: Ågren A, Buffam I, Bishop K, Laudon H. 2010. Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: a simple empirical approach for regional predictions. J Geophys Res Biogeosci. doi:10.1029/2009JG001013. – reference: ClairTADennisIFVetRLaudonHLong-term trends in catchment organic carbon and nitrogen exports from three acidified catchments in Nova Scotia, CanadaBiogeochemistry200887839710.1007/s10533-007-9170-71:CAS:528:DC%2BD1cXivVOqtbw%3D – reference: HintonMJSchiffSLEnglishMCSources and flowpaths of dissolved organic carbon during storms in two forested watersheds of the Precambrian ShieldBiogeochemistry19984117519710.1023/A:10059034289561:CAS:528:DyaK1cXisFCqu7g%3D – reference: BjörkvaldLBuffamILaudonHMörthCMHydrogeochemistry of Fe and Mn in small boreal streams: the role of seasonality, landscape type and scaleGeochim Cosmochim Acta2008722789280410.1016/j.gca.2008.03.024 – reference: GergelSETurnerMGKratzTKDissolved organic carbon as an indicator of the scale of watershed influence on lakes and riversEcol Appl199991377139010.1890/1051-0761(1999)009[1377:DOCAAI]2.0.CO;2 – reference: HruskaJKöhlerSLaudonHBishopKIs a universal model of organic acidity possible: comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zonesEnviron Sci Technol200337172617301277504110.1021/es02015521:CAS:528:DC%2BD3sXitFGhsbw%3D – reference: HaalandSHongveDLaudonHRiiseGVogtRDQuantifying the drivers of the increasing colored organic matter in boreal surface watersEnviron Sci Technol201044297529802032977010.1021/es903179j1:CAS:528:DC%2BC3cXjs12gsLc%3D – reference: IPCC. 2007. Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. 996 pp. – reference: EimersMCWatmoughSAButtleJMDillonPJExamination of the potential relationship between droughts, sulphate and dissolved organic carbon at a wetland-draining streamGlob Change Biol20081493894810.1111/j.1365-2486.2007.01530.x – reference: PregitzerKSEuskirchenESCarbon cycling and storage in world forests: biome patterns related to forest ageGlob Change Biol2004102052207710.1111/j.1365-2486.2004.00866.x – reference: KöhlerSJBuffamISeibertJBishopKHLaudonHDynamics of stream water TOC concentrations in a boreal headwater catchment: controlling factors and implications for climate scenariosJ Hydrol2009373445610.1016/j.jhydrol.2009.04.012 – reference: ÅgrenAJanssonMIvarssonHBishopKSeibertJSeasonal and runoff-related changes in allochtonous organic carbon concentrations in the River Öre, Northern SwedenAquat Sci200770212910.1007/s00027-007-0943-9 – reference: EimersMCButtleJWatmoughSAInfluence of seasonal changes in runoff and extreme events on dissolved organic carbon trends in wetland- and upland-draining streamsCan J Fish Aquat Sci20086579680810.1139/f07-1941:CAS:528:DC%2BD1cXotVait7s%3D – reference: Petrone K, Buffam I, Laudon H. 2007. Hydrologic and biotic control of nitrogen export during snowmelt: a combined conservative and reactive tracer approach. Water Resources Res 43. doi:10.1029/2006WR005286. – reference: SarkkolaSKoivusaloHLaurenAKortelainenPMattssonTPalviainenMPiirainenSStarrMFinerLTrends in hydrometeorological conditions and stream water organic carbon in boreal forested catchmentsSci Total Environ2009408921011981952210.1016/j.scitotenv.2009.09.0081:CAS:528:DC%2BD1MXhtlCnt73N – reference: BöhnerJBlaschkeTMontanarellaLSAGA: system for an automated geographical analysis2008HamburgInstitute of Geography, University of Hamburg – reference: BishopKPetterssonCOrganic carbon in the boreal spring flood from adjacent subcatchmentsEnviron Int19962253554010.1016/0160-4120(96)00036-01:CAS:528:DyaK28XmsVOqurg%3D – reference: LaudonHBuffamIImpact of changing DOC concentrations on the potential distribution of acid sensitive biota in a boreal stream networkHydrol Earth Syst Sci20081242543510.5194/hess-12-425-20081:CAS:528:DC%2BD1cXoslels78%3D – reference: Lundin L. 1982. Soil moisture and ground water in till soil and the significance of soil type for runoff. UNGI Report No. 56. Uppsala University, Uppsala. 216 pp. – reference: Berggren M, Laudon H, Jansson M. 2007. Landscape regulation of bacterial growth efficiency in boreal freshwaters. Glob Biogeochem Cycle 21. doi:4010.1029/2006GB002844. – reference: TemnerudJFölsterJBuffamILaudonHErlandssonMBishopKCan the distribution of headwater stream chemistry be predicted from downstream observations?Hydrol Process2010242269227610.1002/hyp.76151:CAS:528:DC%2BC3cXhtFers77E – reference: HornbergerGMBencalaKEMcKnightDMHydrological controls on dissolved organic-carbon during snowmelt in the Snake River near Montezuma, ColoradoBiogeochemistry19942514716510.1007/BF000243901:CAS:528:DyaK2cXms1arsLY%3D – reference: Sirin A, Bishop K, Köher S. 1998. Resolving flow pathways and geochemistry in a headwater forested wetland with multiple traces. HeadWater ‘98 Conference. IAHS Publ., Merano, Italy. pp 337–42. – reference: ÅgrenABerggrenMLaudonHJanssonMTerrestrial export of highly bioavailable carbon from small boreal catchments in spring floodsFreshw Biol20085396497210.1111/j.1365-2427.2008.01955.x – volume: 33 start-page: 2591 year: 1997 ident: 9452_CR33 publication-title: Water Resour Res doi: 10.1029/97WR01921 – volume: 41 start-page: 175 year: 1998 ident: 9452_CR45 publication-title: Biogeochemistry doi: 10.1023/A:1005903428956 – start-page: 221 volume-title: SAGA—Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen year: 2007 ident: 9452_CR26 – volume: 87 start-page: 83 year: 2008 ident: 9452_CR23 publication-title: Biogeochemistry doi: 10.1007/s10533-007-9170-7 – volume: 18 start-page: 115 year: 1998 ident: 9452_CR41 publication-title: Wetlands doi: 10.1007/BF03161449 – volume: 80 start-page: 435 year: 1995 ident: 9452_CR14 publication-title: Water Air Soil Pollut doi: 10.1007/BF01189693 – volume: 70 start-page: 21 year: 2007 ident: 9452_CR2 publication-title: Aquat Sci doi: 10.1007/s00027-007-0943-9 – ident: 9452_CR1 doi: 10.1029/2006JG000381 – volume: 158 start-page: 2964 year: 2010 ident: 9452_CR9 publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.05.027 – volume: 40 start-page: 167 year: 1998 ident: 9452_CR75 publication-title: Clim Change doi: 10.1023/A:1005496331593 – volume: 57 start-page: 170 year: 2009 ident: 9452_CR7 publication-title: Microb Ecol doi: 10.1007/s00248-008-9423-6 – volume: 14 start-page: 1191 year: 2008 ident: 9452_CR36 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2008.01551.x – ident: 9452_CR72 – volume: 66 start-page: 223 year: 2004 ident: 9452_CR55 publication-title: Aquat Sci doi: 10.1007/s00027-004-0700-2 – start-page: 139 volume-title: Aquatic ecosystems: interactivity of dissolved organic matter year: 2003 ident: 9452_CR66 doi: 10.1016/B978-012256371-3/50007-X – ident: 9452_CR6 doi: 10.1029/2006GB002844 – volume: 12 start-page: 425 year: 2008 ident: 9452_CR54 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-12-425-2008 – volume: 106 start-page: 20847 year: 2001 ident: 9452_CR67 publication-title: J Geophys Res Atmos doi: 10.1029/2001JD900119 – ident: 9452_CR19 doi: 10.1029/2005JG000055 – volume: 450 start-page: U537 year: 2007 ident: 9452_CR65 publication-title: Nature doi: 10.1038/nature06316 – volume: 11 start-page: 555 year: 2008 ident: 9452_CR83 publication-title: Ecosystems doi: 10.1007/s10021-008-9142-3 – volume: 68 start-page: 40 year: 2006 ident: 9452_CR38 publication-title: Aquat Sci doi: 10.1007/s00027-005-0802-5 – volume: 37 start-page: 1726 year: 2003 ident: 9452_CR47 publication-title: Environ Sci Technol doi: 10.1021/es0201552 – volume: 22 start-page: 316 year: 2007 ident: 9452_CR49 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2007.02.015 – volume: 10 start-page: 2052 year: 2004 ident: 9452_CR71 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2004.00866.x – ident: 9452_CR80 – volume: 44 start-page: 2975 year: 2010 ident: 9452_CR43 publication-title: Environ Sci Technol doi: 10.1021/es903179j – ident: 9452_CR84 doi: 10.1029/2007WR006523 – volume: 36 start-page: 67 year: 1997 ident: 9452_CR44 publication-title: Biogeochemistry doi: 10.1023/A:1005779711821 – volume: 136 start-page: 71 year: 1997 ident: 9452_CR79 publication-title: Chem Geol doi: 10.1016/S0009-2541(96)00139-8 – ident: 9452_CR42 – volume: 38 start-page: 381 year: 2009 ident: 9452_CR58 publication-title: Ambio doi: 10.1579/0044-7447-38.7.381 – ident: 9452_CR64 doi: 10.1029/2002WR001525 – volume: 18 start-page: 185 year: 2004 ident: 9452_CR15 publication-title: Hydrol Process doi: 10.1002/hyp.5209 – volume: 407 start-page: 708 year: 2008 ident: 9452_CR21 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2008.10.006 – volume: 17 start-page: 3629 year: 2003 ident: 9452_CR30 publication-title: Hydrol Process doi: 10.1002/hyp.1357 – volume: 24 start-page: 2269 year: 2010 ident: 9452_CR81 publication-title: Hydrol Process doi: 10.1002/hyp.7615 – ident: 9452_CR63 doi: 10.1029/2010JG001452 – volume: 24 start-page: 1672 year: 2010 ident: 9452_CR62 publication-title: Hydrol Process doi: 10.1002/hyp.7577 – volume: 43 start-page: 447 year: 2009 ident: 9452_CR40 publication-title: Environ Sci Technol doi: 10.1021/es8017946 – ident: 9452_CR82 doi: 10.1029/2009JG001100 – ident: 9452_CR76 doi: 10.1029/2006WR005128 – volume: 46 start-page: 345 year: 2001 ident: 9452_CR37 publication-title: Limnol Oceanogr doi: 10.4319/lo.2001.46.2.0345 – volume: 20 start-page: 1 year: 1989 ident: 9452_CR73 publication-title: Nordic Hydrol doi: 10.2166/nh.1989.0001 – ident: 9452_CR28 doi: 10.1029/2006JG000387 – volume: 373 start-page: 44 year: 2009 ident: 9452_CR53 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.04.012 – ident: 9452_CR4 doi: 10.1029/2009JG001013 – ident: 9452_CR52 doi: 10.1029/2007JG000629 – volume: 408 start-page: 92 year: 2009 ident: 9452_CR74 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2009.09.008 – volume: 40 start-page: 3494 year: 2006 ident: 9452_CR27 publication-title: Environ Sci Technol doi: 10.1021/es0523183 – volume: 14 start-page: 1 year: 2008 ident: 9452_CR68 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2008.01654.x – volume: 158 start-page: 2518 year: 2010 ident: 9452_CR10 publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.03.009 – volume: 14 start-page: 839 year: 2004 ident: 9452_CR22 publication-title: Ecol Appl doi: 10.1890/02-5271 – volume: 45 start-page: 2677 year: 2011 ident: 9452_CR59 publication-title: Environ Sci Technol doi: 10.1021/es102885z – volume: 73 start-page: 4648 year: 2009 ident: 9452_CR17 publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2009.05.052 – volume: 9 start-page: 1377 year: 1999 ident: 9452_CR39 publication-title: Ecol Appl doi: 10.1890/1051-0761(1999)009[1377:DOCAAI]2.0.CO;2 – volume: 78 start-page: 1 year: 2006 ident: 9452_CR60 publication-title: Biogeochemistry doi: 10.1007/s10533-005-2024-2 – volume: 22 start-page: 535 year: 1996 ident: 9452_CR13 publication-title: Environ Int doi: 10.1016/0160-4120(96)00036-0 – ident: 9452_CR48 – volume: 26 start-page: 319 year: 2011 ident: 9452_CR51 publication-title: Appl Geochem doi: 10.1016/j.apgeochem.2010.12.005 – ident: 9452_CR11 doi: 10.1029/2005JG000065 – volume: 21 start-page: 1327 year: 2006 ident: 9452_CR5 publication-title: Landscape Ecol doi: 10.1007/s10980-006-0020-0 – volume: 53 start-page: 964 year: 2008 ident: 9452_CR3 publication-title: Freshw Biol doi: 10.1111/j.1365-2427.2008.01955.x – ident: 9452_CR31 doi: 10.1029/2008GB003294 – volume: 14 start-page: 938 year: 2008 ident: 9452_CR34 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2007.01530.x – ident: 9452_CR69 doi: 10.1029/2006WR005286 – volume: 4 start-page: 408 year: 2010 ident: 9452_CR8 publication-title: ISME J doi: 10.1038/ismej.2009.120 – volume: 10 start-page: 171 year: 2007 ident: 9452_CR25 publication-title: Ecosystems – volume: 25 start-page: 147 year: 1994 ident: 9452_CR46 publication-title: Biogeochemistry doi: 10.1007/BF00024390 – ident: 9452_CR20 doi: 10.1029/2006JG000218 – ident: 9452_CR61 – volume: 72 start-page: 2789 year: 2008 ident: 9452_CR16 publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2008.03.024 – volume: 65 start-page: 796 year: 2008 ident: 9452_CR35 publication-title: Can J Fish Aquat Sci doi: 10.1139/f07-194 – volume: 41 start-page: 7706 year: 2007 ident: 9452_CR32 publication-title: Environ Sci Technol doi: 10.1021/es070557f – volume: 344 start-page: 198 year: 2007 ident: 9452_CR57 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.07.010 – ident: 9452_CR77 doi: 10.1029/2002WR001404 – volume: 13 start-page: 2287 year: 2009 ident: 9452_CR78 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-13-2287-2009 – volume: 408 start-page: 2768 year: 2010 ident: 9452_CR24 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.02.046 – volume-title: SAGA: system for an automated geographical analysis year: 2008 ident: 9452_CR18 – volume: 24 start-page: 1677 year: 2009 ident: 9452_CR29 publication-title: Appl Geochem doi: 10.1016/j.apgeochem.2009.04.038 – ident: 9452_CR56 doi: 10.1029/2003WR002455 – ident: 9452_CR12 |
| SSID | ssj0015844 |
| Score | 2.5140913 |
| Snippet | We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic... |
| SourceID | swepub proquest gale pascalfrancis crossref springer jstor |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 880 |
| SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Aquatic resources Biological and medical sciences Biomedical and Life Sciences boreal forest Boreal forests Carbon cycle Catchments connectivity Creeks & streams Dissolved organic carbon Ecology Environmental Management Environmental Sciences related to Agriculture and Land-use Forest hydrology Forest soils Forested watersheds Forests Fresh water ecosystems Fundamental and applied biological sciences. Psychology General aspects Geoecology/Natural Processes High flow Hydrology Hydrology/Water Resources Krycklan catchment Landscape ecology landscapes Life Sciences Low flow Lowland forests Miljö- och naturvårdsvetenskap Plant Sciences scaling Streams Surface water Synecology temporal variation Watersheds Wetland soils Wetlands Zoology |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CARIvXAYVYTAZietYpCZxkpq30nbiaUwbTBMvlu3YqFKXoLqZhPjzHDuXUjSG4KkPPXFs58s534nPBeB5GiVG6FyGkcpFiP5XFApWyFDlJo-0KdCCK99sIj88HJ2dsaM2j9t20e7dkaTX1L8ku7lwAvdJj9EUX-PrcAOtXe6gfHxy2h8doEX1R8k0iUOG7kt3lHnZEBvGqFXJTViii5EUFrfJNP0tNghof2b6W31Rb5MO7v7Xau7BnZaCknGDmftwTZfbcGvmy1d_34bBbJ37hmLty29R5EvlRR7AjyNflbO0RJQFmTZN7S2pDJnOHZgvdEGaJE9FJmIpq5K8nn6cvCHzkryvkKbisC7C_dy-I4hTclwttLu6zVrQdp_4ABzVtLbY97c5wW3CFT6EzwezT5MPYdvFIVQZZaswNVRINkqRmVJZmFhHeZ4pWWRCoP00SWKGIznMTIHMxsgijYzMtUKaopFaSJkkA9gqq1I_AqJToxLEEFPOrc2ZFKiNMoryQsaGFgEMu8fJVVvi3HXaWPB1cWa37Ry3nbtt56MA9vpLvjX1Pa4SfuUwwt27j-Mq0aYw4OxcFS0-Ro_faUyaBDDwMOrHRJ6ERDZiAexu4KoXiFMkXgjdAHY6oPFWnViOloBRhuw6gGf9v6gH3OGOKHVVW3ThXKW1GBlfAOQPMgz55GjoZ_G2Q-X6Jlcs-0WD8n6yrib5dH465tXyK6_Pa06zLI7-Jldz5M4xzQN4eYmcXdRSLN0Pt5qjF8vix_80zR243XzwdwGAT2Brtaz1U7ipLlZzu9z1SuInxsxhdA priority: 102 providerName: Springer Nature |
| Title | Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling |
| URI | https://www.jstor.org/stable/41505919 https://link.springer.com/article/10.1007/s10021-011-9452-8 https://www.proquest.com/docview/887949054 https://www.proquest.com/docview/1490512078 https://www.proquest.com/docview/907180919 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-46621 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-159247 https://res.slu.se/id/publ/58592 |
| Volume | 14 |
| WOSCitedRecordID | wos000294683300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1435-0629 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0015844 issn: 1435-0629 databaseCode: PCBAR dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1435-0629 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0015844 issn: 1435-0629 databaseCode: PATMY dateStart: 19980101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1435-0629 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0015844 issn: 1435-0629 databaseCode: BENPR dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1435-0629 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0015844 issn: 1435-0629 databaseCode: M2O dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1435-0629 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0015844 issn: 1435-0629 databaseCode: M2P dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1435-0629 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015844 issn: 1435-0629 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYBhIvXAYVYVAZiTuLaO41L6hbO_FCV3Uw7c2yHRtV6pJRN5MQf55zEjdVEZQHXtKHnjiO-_X4Oz43Qp4nQWSEzqQfqEz4YH8FvmC59FVmskCbHHZwVTebyMbj_sUFm7jYHOvCKlc6sVbUeanwjPw9_BlYzIBgfLz67mPTKHSuug4aO2QPC5UBzPeORuPJtHUjwO5au5XjKPQZmDIrt2aTO4fRCXhCyOIEtMLGxuTUcxOiiPGSwsKSmabXxQYZbf2nv9Uarfenk7v_-Wb3yB1HTOmgQdJ9ckMX--TWqC5q_WOfdEbrjDgQcyrBPiA_J3WFzsJSUeR02DS4t7Q0dDhDYF_rnDYJn4oei4UsC_p6eHr8hs4KelQCZYXBMNr90n6ggFk6Leca73YZDNoe0joYRzVtLg7rx5zBMsFyPCRfT0Zfjj_5rqODr9KYLf3ExEKyfgIsNZa5CXWQZamSeSoE7KUmikyvL3upyYHlGJkngZGZVkBZNNAMKaOoQ3aLstCPCNWJURHgiSk0cTMmBWimNAZ5IUMT5x7prX5Orly5c-y6MefrQs2IAA4I4IgA3vfI2_aWq6bWxzbhV4gRjnoAxlXCpTPA7LCiFh-A9Y_aM4480qlh1I4JnAlIbcA80t3AVSsQJkDCALoeOVghhjvVYnkLF488a78FnYCOHlHosrJgzmHVtRDYn0foX2QYcMt-r57FuxWE1w_Z8tovGpS3k8X65MPZ-YCXi2-8uqx4nKZh8C-5igOPDuPMIy__IGfnlRQL_OBWc7BoWfh461ockNvNYT8G_z0hu8tFpZ-Sm-p6ObOLrlMLXbLzOTytrxO4Ts_OfwGnLGzw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VLQguPAoRS6EYifLsiuw7RkIoTVK1aglRKag3Y3ttFCnZLdmkKOI38R8Z7ysKgnDqgVMOmfV67ZlvZjzjGYAngeNpriJhOzLiNvpfjs1pLGwZ6chROkYNLvNmE1G_3zo7o4M1-FndhTFplRUm5kAdp9Kckb9GYaA-RQPj3fk32zSNMsHVqoNGwRVHav4dPbbs7WEXt3fHdfd7p50Du2wqYMvQp1M70D4XtBWgoeSLWLvKiaJQijjkHOFce55utkQz1DEqWi3iwNEiUhK1pkJNJ4Q5_0TE3_A9RPV12Njr9QcnddgCtXkexvY916boOlVh1OKunsmGMCeS1A8QhZYUYakOipRIk5_JM9wiXfTWWDJ-63jtb7VNc324f_M_W8lbcKM0vEm7kJTbsKaSTbjay4t2zzeh0Vvc-EOyEvKyO_BjkFcgTTLCk5h05wkfD2VGUk26QyO4FyomxYVWSTp8ItKEPO9-6Lwgw4TspWiS42Amm3-cvSEok-QkHSnzdHlDQ2W7JE82kkUbj938NR9xW3D578KnS1mSBqwnaaLuAVGBlh7KC5XGhY-o4Ii8oY_0XLjajy1oVuzDZFnO3XQVGbFFIWrDcQw5jhmOYy0LXtaPnBe1TFYRPzM8yQzO4biSl9c1cHamYhhrR45ntIPvWdDI2bYeE21CNNodasH2Eh_XBG6ARiaKigVbFYeyEjozVrOnBY_rfxHzTCCLJyqdZeiumqpyLlq3FpC_0FC0nVvNfBavKpFZvGTFZ-8UUlVP1tRf7w4_t1k6-cpm4xnzw9B1_kU3Y-gnuH5kwdM_0GWjmeAT88MyxdBjp-79lWvxCK4dnL4_ZseH_aMtuF4ENkyi4wNYn05m6iFckRfTYTbZLiGJwJfLlt1fREPIFA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqFhAXHoWIpVCMRHl21ezTaySEQh6iKoQICionY3ttFCnZLdlsUcQv498x3lcUBOHUA6ccMuv12jPfzHjGMwg9CBxPc0WE7UjCbfC_HJvTWNiSaOIoHYMGl0WzCTIcRicndLSBftZ3YUxaZY2JBVDHqTRn5AcgDNSnYGAc6CorYtQbvDz9ZpsGUibQWnfTKDnkSC2-g_eWvTjswVbvue6gf9x9bVcNBmwZ-nRuB9rngkYBGE2-iLWrHEJCKeKQc4B27Xm6HYl2qGNQulrEgaMFURI0qAKtJ4Q5CwX034pC0ga_b2vUOX77uQlhgGYvQtq-59oU3Kg6pFre2zOZEeZ0kvoBINKKUqxUQ5keaXI1eQbbpcs-GyuGcBO7_a3OaaEbB1f_41W9hq5UBjnulBJ0HW2oZBtd7BfFvBfbqNVf3gQEsgoKsxvox6ioTJpkmCcx7i0SPh3LDKca98ZGoM9UjMuLrhJ3-UykCX7ce9d9gscJfpWCqQ6DmSz_afYcg6zi9-lEmaermxsq28dFEpIs23vsF6_5AFsEW3ETfTyXJWmhzSRN1C2EVaClB3JEpXHtCRUcEDn0gZ4LV_uxhdo1KzFZlXk33UYmbFmg2nAfA-5jhvtYZKGnzSOnZY2TdcSPDH8yg38wruTVNQ6YnakkxjrE8YzW8D0LtQoWbsYEWxGMeYdaaHeFpxsCNwDjE8TGQjs1t7IKUjPWsKqF7jf_AhaaABdPVJpn4MaaanMuWL0Wwn-hoWBTR-1iFs9q8Vm-ZM1n75US1kzW1GXvjT91WDr7yvJpzvwwdJ1_0eUM_AfXJxZ6-Ae6bJILPjM_LFMMPHnq3l67FvfQJRBY9uZweLSDLpfxDpP_eAdtzme5uosuyLP5OJvtVuiE0ZfzFt1f4cHRAw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+and+Dynamics+of+Dissolved+Organic+Carbon+%28DOC%29+in+Boreal+Streams%3A+The+Role+of+Processes%2C+Connectivity%2C+and+Scaling&rft.jtitle=Ecosystems+%28New+York%29&rft.au=Laudon%2C+Hjalmar&rft.au=Berggren%2C+Martin&rft.au=%C3%85gren%2C+Anneli&rft.au=Buffam%2C+Ishi&rft.date=2011-09-01&rft.issn=1432-9840&rft.eissn=1435-0629&rft.volume=14&rft.issue=6&rft.spage=880&rft.epage=893&rft_id=info:doi/10.1007%2Fs10021-011-9452-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10021_011_9452_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-9840&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-9840&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-9840&client=summon |