System for Detecting Learner Stuck in Programming Learning

Getting stuck is an inevitable part of learning programming. Long-term stuck decreases the learner’s motivation and learning efficiency. The current approach to supporting learning in lectures involves teachers finding students who are getting stuck, reviewing their source code, and solving the prob...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 12; p. 5739
Main Authors: Oka, Hiroki, Ohnishi, Ayumi, Terada, Tsutomu, Tsukamoto, Masahiko
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01.06.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Getting stuck is an inevitable part of learning programming. Long-term stuck decreases the learner’s motivation and learning efficiency. The current approach to supporting learning in lectures involves teachers finding students who are getting stuck, reviewing their source code, and solving the problems. However, it is difficult for teachers to grasp every learner’s stuck situation and to distinguish stuck or deep thinking only by their source code. Teachers should advise learners only when there is no progress and they are psychologically stuck. This paper proposes a method for detecting when learners get stuck during programming by using multi-modal data, considering both their source code and psychological state measured by a heart rate sensor. The evaluation results of the proposed method show that it can detect more stuck situations than the method that uses only a single indicator. Furthermore, we implemented a system that aggregates the stuck situation detected by the proposed method and presents them to a teacher. In evaluations during the actual programming lecture, participants rated the notification timing of application as suitable and commented that the application was useful. The questionnaire survey showed that the application can detect situations where learners cannot find solutions to exercise problems or express them in programming.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23125739