The spatial distribution of planetary ion fluxes near Mars observed by MAVEN
We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net esca...
Saved in:
| Published in: | Geophysical research letters Vol. 42; no. 21; pp. 9142 - 9148 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington
Blackwell Publishing Ltd
16.11.2015
John Wiley & Sons, Inc American Geophysical Union |
| Subjects: | |
| ISSN: | 0094-8276, 1944-8007 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3 × 1024 s−1, accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN).
Key Points
MAVEN ion measurements are mapped to a spherical surface around Mars
Planetary ion fluxes are organized in four spatial regions on the shell
Heavy ion escape rates exceed 2 × 1024 s−1 for energies >25 eV |
|---|---|
| AbstractList | We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000km above the planet, we map both outgoing and incoming ion fluxes (with energies >25eV) over a 4month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~310 super(24)s super(-1), accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN). Key Points * MAVEN ion measurements are mapped to a spherical surface around Mars * Planetary ion fluxes are organized in four spatial regions on the shell * Heavy ion escape rates exceed 210 super(24)s super(-1) for energies >25eV We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3 × 1024 s−1, accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN). We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000km above the planet, we map both outgoing and incoming ion fluxes (with energies >25eV) over a 4month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3×1024s-1, accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN). We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3 × 1024 s−1, accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN). Key Points MAVEN ion measurements are mapped to a spherical surface around Mars Planetary ion fluxes are organized in four spatial regions on the shell Heavy ion escape rates exceed 2 × 1024 s−1 for energies >25 eV We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3 × 10 24 s −1 , accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN). MAVEN ion measurements are mapped to a spherical surface around Mars Planetary ion fluxes are organized in four spatial regions on the shell Heavy ion escape rates exceed 2 × 10 24 s −1 for energies >25 eV |
| Author | Connerney, J. E. P. Harada, Y. Fortier, K. Modolo, R. Curry, S. Luhmann, J. G. Jakosky, B. M. Ma, Y. Dong, C. F. Seki, K. McFadden, J. P. Bougher, S. W. Brain, D. A. Eparvier, F. Hara, T. Dong, Y. Lillis, R. J. Halekas, J. S. Fang, X. Livi, R. |
| Author_xml | – sequence: 1 givenname: D. A. surname: Brain fullname: Brain, D. A. email: david.brain@lasp.colorado.edu organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA – sequence: 2 givenname: J. P. surname: McFadden fullname: McFadden, J. P. organization: Space Sciences Laboratory, University of California, Berkeley, California, USA – sequence: 3 givenname: J. S. surname: Halekas fullname: Halekas, J. S. organization: Department of Physics and Astronomy, University of Iowa, Iowa, Iowa City, USA – sequence: 4 givenname: J. E. P. surname: Connerney fullname: Connerney, J. E. P. organization: NASA Goddard Space Flight Center, Maryland, Greenbelt, USA – sequence: 5 givenname: S. W. surname: Bougher fullname: Bougher, S. W. organization: Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Michigan, Ann Arbor, USA – sequence: 6 givenname: S. surname: Curry fullname: Curry, S. organization: Space Sciences Laboratory, University of California, Berkeley, California, USA – sequence: 7 givenname: C. F. surname: Dong fullname: Dong, C. F. organization: Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Michigan, Ann Arbor, USA – sequence: 8 givenname: Y. surname: Dong fullname: Dong, Y. organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA – sequence: 9 givenname: F. surname: Eparvier fullname: Eparvier, F. organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA – sequence: 10 givenname: X. surname: Fang fullname: Fang, X. organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA – sequence: 11 givenname: K. surname: Fortier fullname: Fortier, K. organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA – sequence: 12 givenname: T. surname: Hara fullname: Hara, T. organization: Space Sciences Laboratory, University of California, Berkeley, California, USA – sequence: 13 givenname: Y. surname: Harada fullname: Harada, Y. organization: Space Sciences Laboratory, University of California, Berkeley, California, USA – sequence: 14 givenname: B. M. surname: Jakosky fullname: Jakosky, B. M. organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA – sequence: 15 givenname: R. J. surname: Lillis fullname: Lillis, R. J. organization: Space Sciences Laboratory, University of California, Berkeley, California, USA – sequence: 16 givenname: R. surname: Livi fullname: Livi, R. organization: Space Sciences Laboratory, University of California, Berkeley, California, USA – sequence: 17 givenname: J. G. surname: Luhmann fullname: Luhmann, J. G. organization: Space Sciences Laboratory, University of California, Berkeley, California, USA – sequence: 18 givenname: Y. surname: Ma fullname: Ma, Y. organization: Institute of Geophysics and Planetary Physics, University of California, California, Los Angeles, USA – sequence: 19 givenname: R. surname: Modolo fullname: Modolo, R. organization: UVSQ/LATMOS-IPSL/CNRS-INSU, Guyancourt, France – sequence: 20 givenname: K. surname: Seki fullname: Seki, K. organization: Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Japan |
| BackLink | https://insu.hal.science/insu-01238375$$DView record in HAL |
| BookMark | eNqFkk9v1DAQxS1UJLaFGx_AEheE2DL-nxyX0m5BaZHYAkfLzk5UlzRZ7KR0v30dbUGoEuVka_R7M573vE_2ur5DQl4yOGQA_B0HppYVaMVL8YTMWCnlvAAwe2QGUOY7N_oZ2U_pCgAECDYj1cUl0rRxQ3AtXYc0xODHIfQd7Ru6aV2Hg4tbOhWadrzFRDt0kZ65mGjvE8YbXFO_pWeLb8fnz8nTxrUJX9yfB-TryfHF0em8-rz8eLSo5rWWRs-RSS6lV3Xh0Pma10KiRCacBO_XHhC481w0RnovSqekbKQsSqwLhkJpIQ7Im13fS9faTQzX-Ym2d8GeLiobujRaYFwUwqgbluHXO3gT-58jpsFeh1RjO-3Wj8my7JAsWaHh_6gxWutCmQl99QC96sfY5a0tKxkUGWTFo5RRmvM8V2WK76g69ilFbGwdBjeFMEQXWsvATvHav-PNorcPRL-N-Ad-P-NXaHH7KGuXXyollNBZNN-J8r_A2z8iF39YbbK79vv50n5YsU8nq9V7y8UdlnfBFg |
| CitedBy_id | crossref_primary_10_1029_2019JA026670 crossref_primary_10_1002_2016JA023348 crossref_primary_10_1002_2016JA023347 crossref_primary_10_1016_j_asr_2023_11_032 crossref_primary_10_1029_2020JA028956 crossref_primary_10_1029_2018GL077729 crossref_primary_10_1029_2023GL106925 crossref_primary_10_3847_1538_4357_abfdaf crossref_primary_10_1002_2015GL066170 crossref_primary_10_1002_2017JA024582 crossref_primary_10_1038_s41561_021_00701_8 crossref_primary_10_1002_2016JA023474 crossref_primary_10_1093_mnras_stad247 crossref_primary_10_1002_2016JA023513 crossref_primary_10_1016_j_pss_2019_06_002 crossref_primary_10_1002_2016JA023510 crossref_primary_10_1029_2017JA025151 crossref_primary_10_1002_2016JA023517 crossref_primary_10_1002_2016JA022548 crossref_primary_10_1002_2017JA024463 crossref_primary_10_1029_2017JA025155 crossref_primary_10_3847_1538_4357_ad84f6 crossref_primary_10_3847_1538_4357_acc655 crossref_primary_10_1038_s41467_025_58351_y crossref_primary_10_1029_2025JA034503 crossref_primary_10_1002_2016JA023167 crossref_primary_10_1007_s11214_021_00791_1 crossref_primary_10_1016_j_icarus_2022_115288 crossref_primary_10_1029_2020GL090763 crossref_primary_10_1002_2015GL065346 crossref_primary_10_1016_j_icarus_2023_115491 crossref_primary_10_1029_2018GL077584 crossref_primary_10_1029_2018JE005895 crossref_primary_10_1029_2021GL093623 crossref_primary_10_1029_2017JA025117 crossref_primary_10_1007_s11214_023_00953_3 crossref_primary_10_1029_2019JA026522 crossref_primary_10_3847_1538_4365_aac2d5 crossref_primary_10_1002_2015JA022324 crossref_primary_10_3847_2041_8213_ac3a7d crossref_primary_10_1029_2020JA028608 crossref_primary_10_1029_2022GL098161 crossref_primary_10_1002_2017JA024884 crossref_primary_10_1029_2022JA030427 crossref_primary_10_1002_2017JA024126 crossref_primary_10_1029_2023JA032154 crossref_primary_10_1029_2017JA024798 crossref_primary_10_1029_2021JA029224 crossref_primary_10_1029_2019GL084779 crossref_primary_10_5194_angeo_40_83_2022 crossref_primary_10_3847_1538_4357_acdcf8 crossref_primary_10_1007_s11214_022_00906_2 crossref_primary_10_1002_2016JA023461 crossref_primary_10_1029_2022GL098673 crossref_primary_10_1016_j_icarus_2021_114610 crossref_primary_10_1029_2022GL098312 crossref_primary_10_1029_2018JA025400 crossref_primary_10_1002_2017JE005426 crossref_primary_10_1029_2017JA025068 crossref_primary_10_1029_2018JA026452 crossref_primary_10_1029_2024JE008846 crossref_primary_10_1029_2021JA029635 crossref_primary_10_3847_1538_4357_aa7846 crossref_primary_10_1093_mnras_stz788 crossref_primary_10_1029_2024GL109186 crossref_primary_10_1029_2022JE007713 crossref_primary_10_3847_2041_8213_aba519 crossref_primary_10_1002_2016JE005132 crossref_primary_10_1002_2016JE005135 crossref_primary_10_1002_2016JE005134 crossref_primary_10_1029_2023JA032053 crossref_primary_10_1038_s41550_025_02572_0 crossref_primary_10_1002_2016JA022465 crossref_primary_10_1002_2016JA022349 crossref_primary_10_1002_2016GL067752 crossref_primary_10_1002_2016GL068960 crossref_primary_10_1002_2015GL065271 crossref_primary_10_1007_s11214_021_00797_9 crossref_primary_10_1093_mnras_stz1819 crossref_primary_10_1186_s40623_021_01417_0 crossref_primary_10_1186_s40623_021_01452_x crossref_primary_10_1016_j_pss_2017_07_002 crossref_primary_10_1029_2018GL077251 crossref_primary_10_1029_2020GL090190 crossref_primary_10_1038_s41561_020_00682_0 crossref_primary_10_3847_2041_8213_aa8a60 crossref_primary_10_1002_2015GL065944 crossref_primary_10_3847_2041_8213_aa6438 crossref_primary_10_1002_2018GL077230 crossref_primary_10_1002_2016JA023488 crossref_primary_10_1002_2016JA023521 crossref_primary_10_1029_2018SW001872 crossref_primary_10_1029_2018JA025543 crossref_primary_10_1002_2015GL065304 crossref_primary_10_3847_1538_4357_abb6e9 crossref_primary_10_1029_2020JA028130 crossref_primary_10_1029_2020JA028010 crossref_primary_10_1029_2018GL079162 crossref_primary_10_1002_2016JA023371 crossref_primary_10_1002_2017JE005336 crossref_primary_10_1016_j_gsf_2016_02_001 crossref_primary_10_1029_2023JA031301 crossref_primary_10_1029_2018GL077714 crossref_primary_10_1029_2020JA028485 crossref_primary_10_1029_2018JE005750 crossref_primary_10_1029_2018GL079972 crossref_primary_10_3847_1538_4357_ab3e30 crossref_primary_10_1016_j_icarus_2018_05_030 crossref_primary_10_1029_2018JA025423 crossref_primary_10_1126_sciadv_adt1538 crossref_primary_10_1134_S1063772921030033 |
| Cites_doi | 10.1007/s11214-015-0139-x 10.1007/s11214-011-9831-7 10.1016/0019-1035(87)90147-3 10.1002/2015GL066170 10.1029/95GL02474 10.1007/s11214-015-0165-8 10.1029/2011GL049895 10.1002/2015GL065262 10.5047/eps.2011.04.011 10.1002/2015GL065005 10.1038/35084184 10.1016/j.icarus.2009.03.006 10.1002/2015GL065346 10.1029/2008GL034811 10.1029/2007JA012736 10.1002/2013JA019402 10.1002/2015JE004816 10.1002/2014GL059515 10.1016/j.icarus.2011.08.003 10.1126/science.1134358 10.1007/s11214-006-9115-9 10.1007/s11214-013-0029-z 10.1002/grl.50149 10.1007/s11214-015-0169-4 10.1016/j.pss.2010.06.009 10.1029/GL017i006p00873 |
| ContentType | Journal Article |
| Copyright | 2015. American Geophysical Union. All Rights Reserved. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2015. American Geophysical Union. All Rights Reserved. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | BSCLL AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7UA C1K 1XC VOOES |
| DOI | 10.1002/2015GL065293 |
| DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database Aerospace Database CrossRef Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | 9148 |
| ExternalDocumentID | oai:HAL:insu-01238375v1 3919718051 10_1002_2015GL065293 GRL53536 ark_67375_WNG_DS1JFSSB_2 |
| Genre | article |
| GrantInformation_xml | – fundername: NASA |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AANHP AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACTHY ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFGKR AFPKN AFRAH AGQPQ AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A A00 AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WIH WYJ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7UA C1K 1XC 31~ 6TJ 7XC 88I 8FE 8FG 8FH 8G5 ABJCF ABJNI ABUWG ACCMX AEUYN AFFHD AFKRA AFZJQ AI. AIQQE ARAPS ASPBG ATCPS AVWKF AZQEC BDRZF BFHJK BGLVJ BHPHI BKSAR BPHCQ CCPQU D1K DDYGU DWQXO FEDTE GNUQQ GROUPED_DOAJ GUQSH HCIFZ HVGLF K6- L6V LK5 M2O M2P M7R M7S MVM P62 PALCI PATMY PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS RIWAO RJQFR SAMSI UQL VH1 VOH VOOES ZCG |
| ID | FETCH-LOGICAL-c6476-e14244b5c8aeabc2c34e4e13a40bbdb0e02ab23f74bb39a544f4489ec81e35633 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368336800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Tue Nov 25 06:20:54 EST 2025 Fri Sep 05 12:40:19 EDT 2025 Tue Oct 07 09:29:18 EDT 2025 Fri Jul 25 10:29:24 EDT 2025 Fri Jul 25 10:34:16 EDT 2025 Sat Nov 29 02:18:21 EST 2025 Tue Nov 18 21:31:47 EST 2025 Wed Jan 22 17:03:17 EST 2025 Sun Sep 21 06:16:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | solar wind interaction atmospheric escape |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6476-e14244b5c8aeabc2c34e4e13a40bbdb0e02ab23f74bb39a544f4489ec81e35633 |
| Notes | istex:F09352F0342753571B72CFBC86B4F371C38948F9 ArticleID:GRL53536 NASA ark:/67375/WNG-DS1JFSSB-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4605-8454 0000-0002-8990-094X 0000-0002-7463-9419 0000-0001-5437-9923 0000-0002-0396-0547 0000-0002-6584-2837 0000-0001-5258-6128 |
| OpenAccessLink | https://insu.hal.science/insu-01238375 |
| PQID | 1756229185 |
| PQPubID | 54723 |
| PageCount | 7 |
| ParticipantIDs | hal_primary_oai_HAL_insu_01238375v1 proquest_miscellaneous_1800491860 proquest_miscellaneous_1776668570 proquest_journals_1910876618 proquest_journals_1756229185 crossref_citationtrail_10_1002_2015GL065293 crossref_primary_10_1002_2015GL065293 wiley_primary_10_1002_2015GL065293_GRL53536 istex_primary_ark_67375_WNG_DS1JFSSB_2 |
| PublicationCentury | 2000 |
| PublicationDate | 16 November 2015 |
| PublicationDateYYYYMMDD | 2015-11-16 |
| PublicationDate_xml | – month: 11 year: 2015 text: 16 November 2015 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationTitleAlternate | Geophys. Res. Lett |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc American Geophysical Union |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: American Geophysical Union |
| References | Lundin, R., S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, M. Fraenz, and E. M. Dubinin (2008), A comet-like escape of ionospheric plasma from Mars, Geophys. Res. Lett., 35, L18203, doi:10.1029/2008GL034811. Leblanc, F., et al. (2015), Mars heavy ion precipitating flux as measured by MAVEN, Geophys. Res. Lett., 42, doi:10.1002/2015GL066170. Dong, C., S. W. Bougher, Y. Ma, G. Tóth, A. F. Nagy, and D. Najib (2014), Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multifluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708-2715, doi:10.1002/2014GL059515. Fränz, M., E. Dubinin, E. Nielsen, J. Woch, S. Barabash, R. Lundin, and A. Fedorov (2010), Transterminator ion flow in the Martian ionosphere, Planet. Space Sci., 58(1), 1442-1454, doi:10.1016/j.pss.2010.06.009. Nilsson, H., G. Stenberg, Y. Futaana, M. Holmström, S. Barabash, R. Lundin, N. J. T. Edberg, and A. Fedorov (2012), Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes, Earth Planets Space, 64(2), 135-148, doi:10.5047/eps.2011.04.011. Dong, Y., X. Fang, D. A. Brain, J. P. McFadden, J. S. Halekas, J. E. P. Connerney, S. M. Curry, Y. Harada, J. G. Luhmann, and B. M. Jakosky (2015), Strong plume fluxes observed by MAVEN: An important planetary ion escape channel, Geophys. Res. Lett., doi:10.1002/2015GL065346. Connerney, J. E. P., J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, and D. Sheppard (2014), The MAVEN magnetic field investigation, Space Sci. Rev., doi:10.1007/s11214-015-0169-4. Ma, Y. J., X. Fang, A. F. Nagy, C. T. Russell, and G. Tóth (2014), Martian ionospheric responses to dynamic pressure enhancements in the solar wind, J. Geophys. Res. Space Physics, 119, 1272-1286, doi:10.1002/2013JA019402. Modolo, R., G. M. Chanteur, and E. Dubinin (2012), Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF, Geophys. Res. Lett., 39, L01106, doi:10.1029/2011GL049895. Harada, Y., et al. (2015), Marsward and tailward ions in the near-Mars magnetotail: MAVEN observations, Geophys. Res. Lett., 42, doi:10.1002/2015GL065005. Jakosky, B. M., et al. (2015), The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, Space Sci. Rev., 21, doi:10.1007/s11214-015-0139-x. Dubinin, E., M. Fraenz, A. Fedorov, R. Lundin, N. Edberg, F. Duru, and O. Vaisberg (2011), Ion energization and escape on Mars and Venus, Space Sci. Rev., 162(1), 173-211, doi:10.1007/s11214-011-9831-7. Kallio, E., H. Koskinen, S. Barabash, C. M. C. Nairn, and K. Schwingenschuh (1995), Oxygen outflow in the Martian magnetotail, Geophys. Res. Lett., 22(1), 2449-2452, doi:10.1029/95GL02474. Rahmati, A., D. E. Larson, T. E. Cravens, R. J. Lillis, P. A. Dunn, J. S. Halekas, J. E. Connerney, F. G. Eparvier, E. M. B. Thiemann, and B. M. Jakosky (2015), MAVEN insights into oxygen pickup ions at Mars, Geophys. Res. Lett., 42, doi:10.1002/2015GL065262. Nilsson, H., N. Edberg, G. Stenberg, and S. Barabash (2011), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, doi:10.1016/j.icarus.2011.08.003. Lillis, R. J., et al. (2015), Characterizing atmospheric escape from Mars today and through time, with MAVEN, Space Sci. Rev., doi:10.1007/s11214-015-0165-8. Ramstad, R., Y. Futaana, S. Barabash, H. Nilsson, S. M. del Campo B, R. Lundin, and K. Schwingenschuh (2013), Phobos 2/ASPERA data revisited: Planetary ion escape rate from Mars near the 1989 solar maximum, Geophys. Res. Lett., 40, 477-481, doi:10.1002/grl.50149. Jakosky, B. M., and R. J. Phillips (2001), Mars' volatile and climate history, Nature, 412(6), 237-244. Halekas, J. S., E. R. Taylor, G. Dalton, G. Johnson, D. W. Curtis, J. P. McFadden, D. L. Mitchell, R. P. Lin, and B. M. Jakosky (2013), The solar wind ion analyzer for MAVEN, Space Sci. Rev., 101, doi:10.1007/s11214-013-0029-z. Lundin, R., A. Zakharov, R. Pellinen, S. W. Barabasj, H. Borg, E. M. Dubinin, B. Hultqvist, H. Koskinen, I. Liede, and N. Pissarenko (1990), ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere, Geophys. Res. Lett., 17, 873-876, doi:10.1029/GL017i006p00873. Fränz, M., E. Dubinin, E. Roussos, J. Woch, J. D. Winningham, R. Frahm, A. J. Coates, A. Fedorov, S. Barabash, and R. Lundin (2007), Plasma moments in the environment of Mars, Space Sci. Rev., 126(1-4), 165-207, doi:10.1007/s11214-006-9115-9. Pollack, J. B., J. F. Kasting, S. M. Richardson, and K. Poliakoff (1987), The case for a wet, warm climate on early Mars, Icarus, 71, 203-224, doi:10.1016/0019-1035(87)90147-3. Barabash, S., A. Fedorov, R. Lundin, and J.-A. Sauvaud (2007), Martian atmospheric erosion rates, Science, 315(5811), 501-503, doi:10.1126/science.1134358. Fang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen (2008), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113, A02210, doi:10.1029/2007JA012736. Nilsson, H., E. Carlsson, D. A. Brain, M. Yamauchi, M. Holmström, S. Barabash, R. Lundin, and Y. Futaana (2010), Ion escape from Mars as a function of solar wind conditions: A statistical study, Icarus, 206(1), 40-49, doi:10.1016/j.icarus.2009.03.006. Ramstad, R., S. Barabash, Y. Futaana, H. Nilsson, X. D. Wang, and M. Holmström (2015), The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: I. Seven years of Mars Express observations, J. Geophys. Res. Planets, 120, 1298-1309, doi:10.1002/2015JE004816. 2007; 126 2014; 119 2010; 58 2007; 315 2010; 206 1987; 71 2011 1990; 17 2015; 42 2013; 40 1995; 22 2015; 120 2015; 21 2013; 101 2008; 35 2015 2012; 39 2014 2008; 113 2014; 41 2011; 162 2001; 412 2012; 64 e_1_2_6_10_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – reference: Fang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen (2008), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113, A02210, doi:10.1029/2007JA012736. – reference: Nilsson, H., G. Stenberg, Y. Futaana, M. Holmström, S. Barabash, R. Lundin, N. J. T. Edberg, and A. Fedorov (2012), Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes, Earth Planets Space, 64(2), 135-148, doi:10.5047/eps.2011.04.011. – reference: Jakosky, B. M., et al. (2015), The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, Space Sci. Rev., 21, doi:10.1007/s11214-015-0139-x. – reference: Ramstad, R., S. Barabash, Y. Futaana, H. Nilsson, X. D. Wang, and M. Holmström (2015), The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: I. Seven years of Mars Express observations, J. Geophys. Res. Planets, 120, 1298-1309, doi:10.1002/2015JE004816. – reference: Barabash, S., A. Fedorov, R. Lundin, and J.-A. Sauvaud (2007), Martian atmospheric erosion rates, Science, 315(5811), 501-503, doi:10.1126/science.1134358. – reference: Leblanc, F., et al. (2015), Mars heavy ion precipitating flux as measured by MAVEN, Geophys. Res. Lett., 42, doi:10.1002/2015GL066170. – reference: Kallio, E., H. Koskinen, S. Barabash, C. M. C. Nairn, and K. Schwingenschuh (1995), Oxygen outflow in the Martian magnetotail, Geophys. Res. Lett., 22(1), 2449-2452, doi:10.1029/95GL02474. – reference: Nilsson, H., E. Carlsson, D. A. Brain, M. Yamauchi, M. Holmström, S. Barabash, R. Lundin, and Y. Futaana (2010), Ion escape from Mars as a function of solar wind conditions: A statistical study, Icarus, 206(1), 40-49, doi:10.1016/j.icarus.2009.03.006. – reference: Lundin, R., S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, M. Fraenz, and E. M. Dubinin (2008), A comet-like escape of ionospheric plasma from Mars, Geophys. Res. Lett., 35, L18203, doi:10.1029/2008GL034811. – reference: Nilsson, H., N. Edberg, G. Stenberg, and S. Barabash (2011), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, doi:10.1016/j.icarus.2011.08.003. – reference: Fränz, M., E. Dubinin, E. Roussos, J. Woch, J. D. Winningham, R. Frahm, A. J. Coates, A. Fedorov, S. Barabash, and R. Lundin (2007), Plasma moments in the environment of Mars, Space Sci. Rev., 126(1-4), 165-207, doi:10.1007/s11214-006-9115-9. – reference: Halekas, J. S., E. R. Taylor, G. Dalton, G. Johnson, D. W. Curtis, J. P. McFadden, D. L. Mitchell, R. P. Lin, and B. M. Jakosky (2013), The solar wind ion analyzer for MAVEN, Space Sci. Rev., 101, doi:10.1007/s11214-013-0029-z. – reference: Dong, Y., X. Fang, D. A. Brain, J. P. McFadden, J. S. Halekas, J. E. P. Connerney, S. M. Curry, Y. Harada, J. G. Luhmann, and B. M. Jakosky (2015), Strong plume fluxes observed by MAVEN: An important planetary ion escape channel, Geophys. Res. Lett., doi:10.1002/2015GL065346. – reference: Fränz, M., E. Dubinin, E. Nielsen, J. Woch, S. Barabash, R. Lundin, and A. Fedorov (2010), Transterminator ion flow in the Martian ionosphere, Planet. Space Sci., 58(1), 1442-1454, doi:10.1016/j.pss.2010.06.009. – reference: Jakosky, B. M., and R. J. Phillips (2001), Mars' volatile and climate history, Nature, 412(6), 237-244. – reference: Dubinin, E., M. Fraenz, A. Fedorov, R. Lundin, N. Edberg, F. Duru, and O. Vaisberg (2011), Ion energization and escape on Mars and Venus, Space Sci. Rev., 162(1), 173-211, doi:10.1007/s11214-011-9831-7. – reference: Rahmati, A., D. E. Larson, T. E. Cravens, R. J. Lillis, P. A. Dunn, J. S. Halekas, J. E. Connerney, F. G. Eparvier, E. M. B. Thiemann, and B. M. Jakosky (2015), MAVEN insights into oxygen pickup ions at Mars, Geophys. Res. Lett., 42, doi:10.1002/2015GL065262. – reference: Pollack, J. B., J. F. Kasting, S. M. Richardson, and K. Poliakoff (1987), The case for a wet, warm climate on early Mars, Icarus, 71, 203-224, doi:10.1016/0019-1035(87)90147-3. – reference: Dong, C., S. W. Bougher, Y. Ma, G. Tóth, A. F. Nagy, and D. Najib (2014), Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multifluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708-2715, doi:10.1002/2014GL059515. – reference: Lundin, R., A. Zakharov, R. Pellinen, S. W. Barabasj, H. Borg, E. M. Dubinin, B. Hultqvist, H. Koskinen, I. Liede, and N. Pissarenko (1990), ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere, Geophys. Res. Lett., 17, 873-876, doi:10.1029/GL017i006p00873. – reference: Ma, Y. J., X. Fang, A. F. Nagy, C. T. Russell, and G. Tóth (2014), Martian ionospheric responses to dynamic pressure enhancements in the solar wind, J. Geophys. Res. Space Physics, 119, 1272-1286, doi:10.1002/2013JA019402. – reference: Harada, Y., et al. (2015), Marsward and tailward ions in the near-Mars magnetotail: MAVEN observations, Geophys. Res. Lett., 42, doi:10.1002/2015GL065005. – reference: Ramstad, R., Y. Futaana, S. Barabash, H. Nilsson, S. M. del Campo B, R. Lundin, and K. Schwingenschuh (2013), Phobos 2/ASPERA data revisited: Planetary ion escape rate from Mars near the 1989 solar maximum, Geophys. Res. Lett., 40, 477-481, doi:10.1002/grl.50149. – reference: Connerney, J. E. P., J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, and D. Sheppard (2014), The MAVEN magnetic field investigation, Space Sci. Rev., doi:10.1007/s11214-015-0169-4. – reference: Lillis, R. J., et al. (2015), Characterizing atmospheric escape from Mars today and through time, with MAVEN, Space Sci. Rev., doi:10.1007/s11214-015-0165-8. – reference: Modolo, R., G. M. Chanteur, and E. Dubinin (2012), Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF, Geophys. Res. Lett., 39, L01106, doi:10.1029/2011GL049895. – volume: 35 year: 2008 article-title: A comet‐like escape of ionospheric plasma from Mars publication-title: Geophys. Res. Lett. – volume: 315 start-page: 501 issue: 5811 year: 2007 end-page: 503 article-title: Martian atmospheric erosion rates publication-title: Science – volume: 22 start-page: 2449 issue: 1 year: 1995 end-page: 2452 article-title: Oxygen outflow in the Martian magnetotail publication-title: Geophys. Res. Lett. – volume: 21 year: 2015 article-title: The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission publication-title: Space Sci. Rev. – year: 2015 article-title: Strong plume fluxes observed by MAVEN: An important planetary ion escape channel publication-title: Geophys. Res. Lett. – volume: 162 start-page: 173 issue: 1 year: 2011 end-page: 211 article-title: Ion energization and escape on Mars and Venus publication-title: Space Sci. Rev. – volume: 42 year: 2015 article-title: Marsward and tailward ions in the near‐Mars magnetotail: MAVEN observations publication-title: Geophys. Res. Lett. – year: 2014 article-title: The MAVEN magnetic field investigation publication-title: Space Sci. Rev. – volume: 119 start-page: 1272 year: 2014 end-page: 1286 article-title: Martian ionospheric responses to dynamic pressure enhancements in the solar wind publication-title: J. Geophys. Res. Space Physics – volume: 113 year: 2008 article-title: Pickup oxygen ion velocity space and spatial distribution around Mars publication-title: J. Geophys. Res. – volume: 42 year: 2015 article-title: Mars heavy ion precipitating flux as measured by MAVEN publication-title: Geophys. Res. Lett. – year: 2011 article-title: Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields publication-title: Icarus – volume: 120 start-page: 1298 year: 2015 end-page: 1309 article-title: The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: I. Seven years of Mars Express observations publication-title: J. Geophys. Res. Planets – volume: 41 start-page: 2708 year: 2014 end-page: 2715 article-title: Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multifluid MHD model and the MTGCM model publication-title: Geophys. Res. Lett. – volume: 71 start-page: 203 year: 1987 end-page: 224 article-title: The case for a wet, warm climate on early Mars publication-title: Icarus – volume: 40 start-page: 477 year: 2013 end-page: 481 article-title: Phobos 2/ASPERA data revisited: Planetary ion escape rate from Mars near the 1989 solar maximum publication-title: Geophys. Res. Lett. – volume: 101 year: 2013 article-title: The solar wind ion analyzer for MAVEN publication-title: Space Sci. Rev. – volume: 39 year: 2012 article-title: Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF publication-title: Geophys. Res. Lett. – volume: 64 start-page: 135 issue: 2 year: 2012 end-page: 148 article-title: Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes publication-title: Earth Planets Space – volume: 126 start-page: 165 issue: 1–4 year: 2007 end-page: 207 article-title: Plasma moments in the environment of Mars publication-title: Space Sci. Rev. – volume: 206 start-page: 40 issue: 1 year: 2010 end-page: 49 article-title: Ion escape from Mars as a function of solar wind conditions: A statistical study publication-title: Icarus – volume: 412 start-page: 237 issue: 6 year: 2001 end-page: 244 article-title: Mars' volatile and climate history publication-title: Nature – volume: 42 year: 2015 article-title: MAVEN insights into oxygen pickup ions at Mars publication-title: Geophys. Res. Lett. – volume: 17 start-page: 873 year: 1990 end-page: 876 article-title: ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere publication-title: Geophys. Res. Lett. – volume: 58 start-page: 1442 issue: 1 year: 2010 end-page: 1454 article-title: Transterminator ion flow in the Martian ionosphere publication-title: Planet. Space Sci. – year: 2015 article-title: Characterizing atmospheric escape from Mars today and through time, with MAVEN publication-title: Space Sci. Rev. – ident: e_1_2_6_13_1 doi: 10.1007/s11214-015-0139-x – ident: e_1_2_6_6_1 doi: 10.1007/s11214-011-9831-7 – ident: e_1_2_6_24_1 doi: 10.1016/0019-1035(87)90147-3 – ident: e_1_2_6_15_1 doi: 10.1002/2015GL066170 – ident: e_1_2_6_14_1 doi: 10.1029/95GL02474 – ident: e_1_2_6_16_1 doi: 10.1007/s11214-015-0165-8 – ident: e_1_2_6_20_1 doi: 10.1029/2011GL049895 – ident: e_1_2_6_25_1 doi: 10.1002/2015GL065262 – ident: e_1_2_6_23_1 doi: 10.5047/eps.2011.04.011 – ident: e_1_2_6_11_1 doi: 10.1002/2015GL065005 – ident: e_1_2_6_12_1 doi: 10.1038/35084184 – ident: e_1_2_6_21_1 doi: 10.1016/j.icarus.2009.03.006 – ident: e_1_2_6_5_1 doi: 10.1002/2015GL065346 – ident: e_1_2_6_18_1 doi: 10.1029/2008GL034811 – ident: e_1_2_6_7_1 doi: 10.1029/2007JA012736 – ident: e_1_2_6_19_1 doi: 10.1002/2013JA019402 – ident: e_1_2_6_27_1 doi: 10.1002/2015JE004816 – ident: e_1_2_6_4_1 doi: 10.1002/2014GL059515 – ident: e_1_2_6_22_1 doi: 10.1016/j.icarus.2011.08.003 – ident: e_1_2_6_2_1 doi: 10.1126/science.1134358 – ident: e_1_2_6_8_1 doi: 10.1007/s11214-006-9115-9 – ident: e_1_2_6_10_1 doi: 10.1007/s11214-013-0029-z – ident: e_1_2_6_26_1 doi: 10.1002/grl.50149 – ident: e_1_2_6_3_1 doi: 10.1007/s11214-015-0169-4 – ident: e_1_2_6_9_1 doi: 10.1016/j.pss.2010.06.009 – ident: e_1_2_6_17_1 doi: 10.1029/GL017i006p00873 |
| SSID | ssj0003031 |
| Score | 2.5400505 |
| Snippet | We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000... We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell... |
| SourceID | hal proquest crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9142 |
| SubjectTerms | Astrophysics Atmosphere atmospheric escape Convection Earth and Planetary Astrophysics Electric field Electric fields Evolution Fluxes Geographical distribution Geophysics Ion flux Ion fluxes Ions Mars Mars (planet) Mars atmosphere Mars missions Mars surface Northern Hemisphere Planetary evolution Planets Sciences of the Universe Solar and Stellar Astrophysics Solar wind solar wind interaction Spatial distribution Spherical shells Travel Wind power generation |
| Title | The spatial distribution of planetary ion fluxes near Mars observed by MAVEN |
| URI | https://api.istex.fr/ark:/67375/WNG-DS1JFSSB-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GL065293 https://www.proquest.com/docview/1756229185 https://www.proquest.com/docview/1910876618 https://www.proquest.com/docview/1776668570 https://www.proquest.com/docview/1800491860 https://insu.hal.science/insu-01238375 |
| Volume | 42 |
| WOSCitedRecordID | wos000368336800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-8007 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagBYkXbkSgVEYcL1XU-IjjPC60uwWlK9SltG-W7TiiarVbbXar9t8zk6RhK0ElxJvlfM5hz3hmnDkIea-0V2WS2VjZSsYSMLET0sbCVUG7RNrSN4HCRTYe6-Pj_Ft34IaxMG1-iP7ADTmj2a-Rwa2rt38nDQXJlY4KkKAgsGALZpJhAYOjL-N-I4bduS2Yl8tY80x1fu8wfHt18A2JdPcn-kOu4xRf3lA6V1XXRvYMH_3vWz8mDzutkw5aMnlC7oTpU3J_1FT1vYJW4wfq62ekALKhNXpZA7zEpLpdPSw6q-g5OsYu4NkUO6qz5WWo6RRYhe6DeUxnDk94Q0ndFd0f_NgdPyeHw93vn_firuBC7JXMVByasDeXem2DdZ57IYMMTFiZOFe6JCTcOi6qTDoncptKWYF1lwevWRCpEuIFWZvOpuEloanmDqwjkUnQyDhTDuvlQQvDRjDrXkS2rifd-C4bORbFODNtHmVuVmcqIh969HmbheMvuHewfj0EU2fvDQqDbv0GlUewxtMLFpGPzfr2ODs_Rf-2LDVH45HZmbCvw8nkk-ER2bgmANOxdm1A31Kc56Dn_Pky6F8gYRTTEXnbXwaexR8xsEqzJd4CAApLC9yC0Wi8Ma0As9VQ1K1fbkYHRSpSoV79E_o1eYD9GFzJ1AZZW8yX4Q255y8WJ_V8k6zvHAwPi82GrX4B8McaHg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBoIXvhGBAUZ8vEzREttxnMcCaztII0QH25tlO45ATO3UtNP233OXZKGTYBLiLWp-6Yft8_3OvbsfIa-lcrKMUhNKU4lQACa0XJiQ28orGwlTuqZQOE-LQh0dZZ87nVOshWn7Q_QHbmgZzX6NBo4H0ru_u4aC60pGObhQ8FgbZEsA10DthsP9ot-KYX9uJfMyESqWyi7zHZ7fXX_6kk_a-I4ZkVs4yGeXaOc6eW28z_DOf3_vu-R2RzzpoF0p98g1P7tPbowaYd9zuGpSQV39gOSwcmiNidYAL7GvbieJRecVPcHc2CV8OMUXquPVma_pDKyFTiBCpnOLh7y-pPacTgbf9oqH5Otw7-D9OOw0F0InRSpD31S-2cQp4411zHHhhY-5EZG1pY18xIxlvEqFtTwziRAVBHiZdyr2PJGcPyKbs_nMPyY0UcxCgMRTAaSMxdKiZB5cYeUINt4LyM7FqGvXNSRHXYxj3bZSZnp9pALypkeftI04_oJ7BRPYQ7B79niQa8zs18gfISBPTuOAvG0muMeZxU9McUsTfViM9Idp_HE4nb7TLCDbFytAd9Zda6BckrEMqM6fbwMFAycjYxWQl_1tMFv8LwZmab7CtwCARHWBKzAK47dYScDsNEvqyl-uR1_yhCdcPvkn9Atyc3wwyXW-X3x6Sm4hBmstY7lNNpeLlX9GrrvT5Y968byxrV_EnByc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYC4gXvhGBDYz4eJmiJbbjOI9lXTsgi6aVjb1ZduIIxNRWTTtt_z13SRY6CSYh3qz4ly_b57tL7u5HyDupclkEsfGlKYUvAONbLozPbemUDYQp8jpROI2zTJ2eJoctzynmwjT1IboPbigZ9X6NAu7mRbnzu2ooqK5onIIKBY21QfoCeWR6pD88Gh2n3WYMO3RDmpcIX7FYtrHvcIWd9fOvaaWN7xgT2cdhvrhmeK6br7X-GT347yd_SO63picdNGvlEbnlpo_JnXFN7XsJrToYNK-ekBTWDq0w1BrgBVbWbUmx6Kykc4yOXcLNKR4oz1YXrqJTkBd6AD4ynVn8zOsKai_pweBkL3tKjkd7X3f3_ZZ1wc-liKXv6tw3G-XKOGNzlnPhhAu5EYG1hQ1cwIxlvIyFtTwxkRAluHiJy1XoeCQ5f0Z609nUPSc0UsyCi8RjAWYZC6VF0jxoYe4Ilt7zyPbVqOu8LUmOzBhnuimmzPT6SHnkfYeeN6U4_oJ7CxPYQbB-9v4g1Rjbr9GCBJc8Og898qGe4A5nFj8xyC2O9LdsrIeT8PNoMvmomUc2r1aAbuW70mB0ScYSMHb-3A1GGKgZGSqPvOm6QXDxbwzM0myFlwCARH6BGzAKPbhQScBs10vqxjfX46M04hGXL_4J_ZrcPRyOdPop-_KS3EMIJluGcpP0louV2yK38_Plj2rxqhWuX7NLHUU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+spatial+distribution+of+planetary+ion+fluxes+near+Mars+observed+by+MAVEN&rft.jtitle=Geophysical+research+letters&rft.au=Brain%2C+D.+A.&rft.au=McFadden%2C+J.+P.&rft.au=Halekas%2C+J.+S.&rft.au=Connerney%2C+J.+E.+P.&rft.date=2015-11-16&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=42&rft.issue=21&rft.spage=9142&rft.epage=9148&rft_id=info:doi/10.1002%2F2015GL065293&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DS1JFSSB_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |