The spatial distribution of planetary ion fluxes near Mars observed by MAVEN

We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net esca...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters Vol. 42; no. 21; pp. 9142 - 9148
Main Authors: Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., Bougher, S. W., Curry, S., Dong, C. F., Dong, Y., Eparvier, F., Fang, X., Fortier, K., Hara, T., Harada, Y., Jakosky, B. M., Lillis, R. J., Livi, R., Luhmann, J. G., Ma, Y., Modolo, R., Seki, K.
Format: Journal Article
Language:English
Published: Washington Blackwell Publishing Ltd 16.11.2015
John Wiley & Sons, Inc
American Geophysical Union
Subjects:
ISSN:0094-8276, 1944-8007
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3 × 1024 s−1, accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN). Key Points MAVEN ion measurements are mapped to a spherical surface around Mars Planetary ion fluxes are organized in four spatial regions on the shell Heavy ion escape rates exceed 2 × 1024 s−1 for energies >25 eV
AbstractList We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000km above the planet, we map both outgoing and incoming ion fluxes (with energies >25eV) over a 4month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~310 super(24)s super(-1), accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN). Key Points * MAVEN ion measurements are mapped to a spherical surface around Mars * Planetary ion fluxes are organized in four spatial regions on the shell * Heavy ion escape rates exceed 210 super(24)s super(-1) for energies >25eV
We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3 × 1024 s−1, accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN).
We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000km above the planet, we map both outgoing and incoming ion fluxes (with energies >25eV) over a 4month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3×1024s-1, accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN).
We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3 × 1024 s−1, accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN). Key Points MAVEN ion measurements are mapped to a spherical surface around Mars Planetary ion fluxes are organized in four spatial regions on the shell Heavy ion escape rates exceed 2 × 1024 s−1 for energies >25 eV
We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3 × 10 24  s −1 , accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN). MAVEN ion measurements are mapped to a spherical surface around Mars Planetary ion fluxes are organized in four spatial regions on the shell Heavy ion escape rates exceed 2 × 10 24  s −1 for energies >25 eV
Author Connerney, J. E. P.
Harada, Y.
Fortier, K.
Modolo, R.
Curry, S.
Luhmann, J. G.
Jakosky, B. M.
Ma, Y.
Dong, C. F.
Seki, K.
McFadden, J. P.
Bougher, S. W.
Brain, D. A.
Eparvier, F.
Hara, T.
Dong, Y.
Lillis, R. J.
Halekas, J. S.
Fang, X.
Livi, R.
Author_xml – sequence: 1
  givenname: D. A.
  surname: Brain
  fullname: Brain, D. A.
  email: david.brain@lasp.colorado.edu
  organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA
– sequence: 2
  givenname: J. P.
  surname: McFadden
  fullname: McFadden, J. P.
  organization: Space Sciences Laboratory, University of California, Berkeley, California, USA
– sequence: 3
  givenname: J. S.
  surname: Halekas
  fullname: Halekas, J. S.
  organization: Department of Physics and Astronomy, University of Iowa, Iowa, Iowa City, USA
– sequence: 4
  givenname: J. E. P.
  surname: Connerney
  fullname: Connerney, J. E. P.
  organization: NASA Goddard Space Flight Center, Maryland, Greenbelt, USA
– sequence: 5
  givenname: S. W.
  surname: Bougher
  fullname: Bougher, S. W.
  organization: Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Michigan, Ann Arbor, USA
– sequence: 6
  givenname: S.
  surname: Curry
  fullname: Curry, S.
  organization: Space Sciences Laboratory, University of California, Berkeley, California, USA
– sequence: 7
  givenname: C. F.
  surname: Dong
  fullname: Dong, C. F.
  organization: Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Michigan, Ann Arbor, USA
– sequence: 8
  givenname: Y.
  surname: Dong
  fullname: Dong, Y.
  organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA
– sequence: 9
  givenname: F.
  surname: Eparvier
  fullname: Eparvier, F.
  organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA
– sequence: 10
  givenname: X.
  surname: Fang
  fullname: Fang, X.
  organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA
– sequence: 11
  givenname: K.
  surname: Fortier
  fullname: Fortier, K.
  organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA
– sequence: 12
  givenname: T.
  surname: Hara
  fullname: Hara, T.
  organization: Space Sciences Laboratory, University of California, Berkeley, California, USA
– sequence: 13
  givenname: Y.
  surname: Harada
  fullname: Harada, Y.
  organization: Space Sciences Laboratory, University of California, Berkeley, California, USA
– sequence: 14
  givenname: B. M.
  surname: Jakosky
  fullname: Jakosky, B. M.
  organization: Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, Boulder, USA
– sequence: 15
  givenname: R. J.
  surname: Lillis
  fullname: Lillis, R. J.
  organization: Space Sciences Laboratory, University of California, Berkeley, California, USA
– sequence: 16
  givenname: R.
  surname: Livi
  fullname: Livi, R.
  organization: Space Sciences Laboratory, University of California, Berkeley, California, USA
– sequence: 17
  givenname: J. G.
  surname: Luhmann
  fullname: Luhmann, J. G.
  organization: Space Sciences Laboratory, University of California, Berkeley, California, USA
– sequence: 18
  givenname: Y.
  surname: Ma
  fullname: Ma, Y.
  organization: Institute of Geophysics and Planetary Physics, University of California, California, Los Angeles, USA
– sequence: 19
  givenname: R.
  surname: Modolo
  fullname: Modolo, R.
  organization: UVSQ/LATMOS-IPSL/CNRS-INSU, Guyancourt, France
– sequence: 20
  givenname: K.
  surname: Seki
  fullname: Seki, K.
  organization: Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Japan
BackLink https://insu.hal.science/insu-01238375$$DView record in HAL
BookMark eNqFkk9v1DAQxS1UJLaFGx_AEheE2DL-nxyX0m5BaZHYAkfLzk5UlzRZ7KR0v30dbUGoEuVka_R7M573vE_2ur5DQl4yOGQA_B0HppYVaMVL8YTMWCnlvAAwe2QGUOY7N_oZ2U_pCgAECDYj1cUl0rRxQ3AtXYc0xODHIfQd7Ru6aV2Hg4tbOhWadrzFRDt0kZ65mGjvE8YbXFO_pWeLb8fnz8nTxrUJX9yfB-TryfHF0em8-rz8eLSo5rWWRs-RSS6lV3Xh0Pma10KiRCacBO_XHhC481w0RnovSqekbKQsSqwLhkJpIQ7Im13fS9faTQzX-Ym2d8GeLiobujRaYFwUwqgbluHXO3gT-58jpsFeh1RjO-3Wj8my7JAsWaHh_6gxWutCmQl99QC96sfY5a0tKxkUGWTFo5RRmvM8V2WK76g69ilFbGwdBjeFMEQXWsvATvHav-PNorcPRL-N-Ad-P-NXaHH7KGuXXyollNBZNN-J8r_A2z8iF39YbbK79vv50n5YsU8nq9V7y8UdlnfBFg
CitedBy_id crossref_primary_10_1029_2019JA026670
crossref_primary_10_1002_2016JA023348
crossref_primary_10_1002_2016JA023347
crossref_primary_10_1016_j_asr_2023_11_032
crossref_primary_10_1029_2020JA028956
crossref_primary_10_1029_2018GL077729
crossref_primary_10_1029_2023GL106925
crossref_primary_10_3847_1538_4357_abfdaf
crossref_primary_10_1002_2015GL066170
crossref_primary_10_1002_2017JA024582
crossref_primary_10_1038_s41561_021_00701_8
crossref_primary_10_1002_2016JA023474
crossref_primary_10_1093_mnras_stad247
crossref_primary_10_1002_2016JA023513
crossref_primary_10_1016_j_pss_2019_06_002
crossref_primary_10_1002_2016JA023510
crossref_primary_10_1029_2017JA025151
crossref_primary_10_1002_2016JA023517
crossref_primary_10_1002_2016JA022548
crossref_primary_10_1002_2017JA024463
crossref_primary_10_1029_2017JA025155
crossref_primary_10_3847_1538_4357_ad84f6
crossref_primary_10_3847_1538_4357_acc655
crossref_primary_10_1038_s41467_025_58351_y
crossref_primary_10_1029_2025JA034503
crossref_primary_10_1002_2016JA023167
crossref_primary_10_1007_s11214_021_00791_1
crossref_primary_10_1016_j_icarus_2022_115288
crossref_primary_10_1029_2020GL090763
crossref_primary_10_1002_2015GL065346
crossref_primary_10_1016_j_icarus_2023_115491
crossref_primary_10_1029_2018GL077584
crossref_primary_10_1029_2018JE005895
crossref_primary_10_1029_2021GL093623
crossref_primary_10_1029_2017JA025117
crossref_primary_10_1007_s11214_023_00953_3
crossref_primary_10_1029_2019JA026522
crossref_primary_10_3847_1538_4365_aac2d5
crossref_primary_10_1002_2015JA022324
crossref_primary_10_3847_2041_8213_ac3a7d
crossref_primary_10_1029_2020JA028608
crossref_primary_10_1029_2022GL098161
crossref_primary_10_1002_2017JA024884
crossref_primary_10_1029_2022JA030427
crossref_primary_10_1002_2017JA024126
crossref_primary_10_1029_2023JA032154
crossref_primary_10_1029_2017JA024798
crossref_primary_10_1029_2021JA029224
crossref_primary_10_1029_2019GL084779
crossref_primary_10_5194_angeo_40_83_2022
crossref_primary_10_3847_1538_4357_acdcf8
crossref_primary_10_1007_s11214_022_00906_2
crossref_primary_10_1002_2016JA023461
crossref_primary_10_1029_2022GL098673
crossref_primary_10_1016_j_icarus_2021_114610
crossref_primary_10_1029_2022GL098312
crossref_primary_10_1029_2018JA025400
crossref_primary_10_1002_2017JE005426
crossref_primary_10_1029_2017JA025068
crossref_primary_10_1029_2018JA026452
crossref_primary_10_1029_2024JE008846
crossref_primary_10_1029_2021JA029635
crossref_primary_10_3847_1538_4357_aa7846
crossref_primary_10_1093_mnras_stz788
crossref_primary_10_1029_2024GL109186
crossref_primary_10_1029_2022JE007713
crossref_primary_10_3847_2041_8213_aba519
crossref_primary_10_1002_2016JE005132
crossref_primary_10_1002_2016JE005135
crossref_primary_10_1002_2016JE005134
crossref_primary_10_1029_2023JA032053
crossref_primary_10_1038_s41550_025_02572_0
crossref_primary_10_1002_2016JA022465
crossref_primary_10_1002_2016JA022349
crossref_primary_10_1002_2016GL067752
crossref_primary_10_1002_2016GL068960
crossref_primary_10_1002_2015GL065271
crossref_primary_10_1007_s11214_021_00797_9
crossref_primary_10_1093_mnras_stz1819
crossref_primary_10_1186_s40623_021_01417_0
crossref_primary_10_1186_s40623_021_01452_x
crossref_primary_10_1016_j_pss_2017_07_002
crossref_primary_10_1029_2018GL077251
crossref_primary_10_1029_2020GL090190
crossref_primary_10_1038_s41561_020_00682_0
crossref_primary_10_3847_2041_8213_aa8a60
crossref_primary_10_1002_2015GL065944
crossref_primary_10_3847_2041_8213_aa6438
crossref_primary_10_1002_2018GL077230
crossref_primary_10_1002_2016JA023488
crossref_primary_10_1002_2016JA023521
crossref_primary_10_1029_2018SW001872
crossref_primary_10_1029_2018JA025543
crossref_primary_10_1002_2015GL065304
crossref_primary_10_3847_1538_4357_abb6e9
crossref_primary_10_1029_2020JA028130
crossref_primary_10_1029_2020JA028010
crossref_primary_10_1029_2018GL079162
crossref_primary_10_1002_2016JA023371
crossref_primary_10_1002_2017JE005336
crossref_primary_10_1016_j_gsf_2016_02_001
crossref_primary_10_1029_2023JA031301
crossref_primary_10_1029_2018GL077714
crossref_primary_10_1029_2020JA028485
crossref_primary_10_1029_2018JE005750
crossref_primary_10_1029_2018GL079972
crossref_primary_10_3847_1538_4357_ab3e30
crossref_primary_10_1016_j_icarus_2018_05_030
crossref_primary_10_1029_2018JA025423
crossref_primary_10_1126_sciadv_adt1538
crossref_primary_10_1134_S1063772921030033
Cites_doi 10.1007/s11214-015-0139-x
10.1007/s11214-011-9831-7
10.1016/0019-1035(87)90147-3
10.1002/2015GL066170
10.1029/95GL02474
10.1007/s11214-015-0165-8
10.1029/2011GL049895
10.1002/2015GL065262
10.5047/eps.2011.04.011
10.1002/2015GL065005
10.1038/35084184
10.1016/j.icarus.2009.03.006
10.1002/2015GL065346
10.1029/2008GL034811
10.1029/2007JA012736
10.1002/2013JA019402
10.1002/2015JE004816
10.1002/2014GL059515
10.1016/j.icarus.2011.08.003
10.1126/science.1134358
10.1007/s11214-006-9115-9
10.1007/s11214-013-0029-z
10.1002/grl.50149
10.1007/s11214-015-0169-4
10.1016/j.pss.2010.06.009
10.1029/GL017i006p00873
ContentType Journal Article
Copyright 2015. American Geophysical Union. All Rights Reserved.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2015. American Geophysical Union. All Rights Reserved.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID BSCLL
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
1XC
VOOES
DOI 10.1002/2015GL065293
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Aerospace Database

CrossRef
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 9148
ExternalDocumentID oai:HAL:insu-01238375v1
3919718051
10_1002_2015GL065293
GRL53536
ark_67375_WNG_DS1JFSSB_2
Genre article
GrantInformation_xml – fundername: NASA
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AANHP
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACTHY
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFGKR
AFPKN
AFRAH
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
A00
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WIH
WYJ
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
1XC
31~
6TJ
7XC
88I
8FE
8FG
8FH
8G5
ABJCF
ABJNI
ABUWG
ACCMX
AEUYN
AFFHD
AFKRA
AFZJQ
AI.
AIQQE
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BDRZF
BFHJK
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
D1K
DDYGU
DWQXO
FEDTE
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
K6-
L6V
LK5
M2O
M2P
M7R
M7S
MVM
P62
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
RIWAO
RJQFR
SAMSI
UQL
VH1
VOH
VOOES
ZCG
ID FETCH-LOGICAL-c6476-e14244b5c8aeabc2c34e4e13a40bbdb0e02ab23f74bb39a544f4489ec81e35633
IEDL.DBID WIN
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368336800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Tue Nov 25 06:20:54 EST 2025
Fri Sep 05 12:40:19 EDT 2025
Tue Oct 07 09:29:18 EDT 2025
Fri Jul 25 10:29:24 EDT 2025
Fri Jul 25 10:34:16 EDT 2025
Sat Nov 29 02:18:21 EST 2025
Tue Nov 18 21:31:47 EST 2025
Wed Jan 22 17:03:17 EST 2025
Sun Sep 21 06:16:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords solar wind interaction
atmospheric escape
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6476-e14244b5c8aeabc2c34e4e13a40bbdb0e02ab23f74bb39a544f4489ec81e35633
Notes istex:F09352F0342753571B72CFBC86B4F371C38948F9
ArticleID:GRL53536
NASA
ark:/67375/WNG-DS1JFSSB-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4605-8454
0000-0002-8990-094X
0000-0002-7463-9419
0000-0001-5437-9923
0000-0002-0396-0547
0000-0002-6584-2837
0000-0001-5258-6128
OpenAccessLink https://insu.hal.science/insu-01238375
PQID 1756229185
PQPubID 54723
PageCount 7
ParticipantIDs hal_primary_oai_HAL_insu_01238375v1
proquest_miscellaneous_1800491860
proquest_miscellaneous_1776668570
proquest_journals_1910876618
proquest_journals_1756229185
crossref_citationtrail_10_1002_2015GL065293
crossref_primary_10_1002_2015GL065293
wiley_primary_10_1002_2015GL065293_GRL53536
istex_primary_ark_67375_WNG_DS1JFSSB_2
PublicationCentury 2000
PublicationDate 16 November 2015
PublicationDateYYYYMMDD 2015-11-16
PublicationDate_xml – month: 11
  year: 2015
  text: 16 November 2015
  day: 16
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: American Geophysical Union
References Lundin, R., S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, M. Fraenz, and E. M. Dubinin (2008), A comet-like escape of ionospheric plasma from Mars, Geophys. Res. Lett., 35, L18203, doi:10.1029/2008GL034811.
Leblanc, F., et al. (2015), Mars heavy ion precipitating flux as measured by MAVEN, Geophys. Res. Lett., 42, doi:10.1002/2015GL066170.
Dong, C., S. W. Bougher, Y. Ma, G. Tóth, A. F. Nagy, and D. Najib (2014), Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multifluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708-2715, doi:10.1002/2014GL059515.
Fränz, M., E. Dubinin, E. Nielsen, J. Woch, S. Barabash, R. Lundin, and A. Fedorov (2010), Transterminator ion flow in the Martian ionosphere, Planet. Space Sci., 58(1), 1442-1454, doi:10.1016/j.pss.2010.06.009.
Nilsson, H., G. Stenberg, Y. Futaana, M. Holmström, S. Barabash, R. Lundin, N. J. T. Edberg, and A. Fedorov (2012), Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes, Earth Planets Space, 64(2), 135-148, doi:10.5047/eps.2011.04.011.
Dong, Y., X. Fang, D. A. Brain, J. P. McFadden, J. S. Halekas, J. E. P. Connerney, S. M. Curry, Y. Harada, J. G. Luhmann, and B. M. Jakosky (2015), Strong plume fluxes observed by MAVEN: An important planetary ion escape channel, Geophys. Res. Lett., doi:10.1002/2015GL065346.
Connerney, J. E. P., J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, and D. Sheppard (2014), The MAVEN magnetic field investigation, Space Sci. Rev., doi:10.1007/s11214-015-0169-4.
Ma, Y. J., X. Fang, A. F. Nagy, C. T. Russell, and G. Tóth (2014), Martian ionospheric responses to dynamic pressure enhancements in the solar wind, J. Geophys. Res. Space Physics, 119, 1272-1286, doi:10.1002/2013JA019402.
Modolo, R., G. M. Chanteur, and E. Dubinin (2012), Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF, Geophys. Res. Lett., 39, L01106, doi:10.1029/2011GL049895.
Harada, Y., et al. (2015), Marsward and tailward ions in the near-Mars magnetotail: MAVEN observations, Geophys. Res. Lett., 42, doi:10.1002/2015GL065005.
Jakosky, B. M., et al. (2015), The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, Space Sci. Rev., 21, doi:10.1007/s11214-015-0139-x.
Dubinin, E., M. Fraenz, A. Fedorov, R. Lundin, N. Edberg, F. Duru, and O. Vaisberg (2011), Ion energization and escape on Mars and Venus, Space Sci. Rev., 162(1), 173-211, doi:10.1007/s11214-011-9831-7.
Kallio, E., H. Koskinen, S. Barabash, C. M. C. Nairn, and K. Schwingenschuh (1995), Oxygen outflow in the Martian magnetotail, Geophys. Res. Lett., 22(1), 2449-2452, doi:10.1029/95GL02474.
Rahmati, A., D. E. Larson, T. E. Cravens, R. J. Lillis, P. A. Dunn, J. S. Halekas, J. E. Connerney, F. G. Eparvier, E. M. B. Thiemann, and B. M. Jakosky (2015), MAVEN insights into oxygen pickup ions at Mars, Geophys. Res. Lett., 42, doi:10.1002/2015GL065262.
Nilsson, H., N. Edberg, G. Stenberg, and S. Barabash (2011), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, doi:10.1016/j.icarus.2011.08.003.
Lillis, R. J., et al. (2015), Characterizing atmospheric escape from Mars today and through time, with MAVEN, Space Sci. Rev., doi:10.1007/s11214-015-0165-8.
Ramstad, R., Y. Futaana, S. Barabash, H. Nilsson, S. M. del Campo B, R. Lundin, and K. Schwingenschuh (2013), Phobos 2/ASPERA data revisited: Planetary ion escape rate from Mars near the 1989 solar maximum, Geophys. Res. Lett., 40, 477-481, doi:10.1002/grl.50149.
Jakosky, B. M., and R. J. Phillips (2001), Mars' volatile and climate history, Nature, 412(6), 237-244.
Halekas, J. S., E. R. Taylor, G. Dalton, G. Johnson, D. W. Curtis, J. P. McFadden, D. L. Mitchell, R. P. Lin, and B. M. Jakosky (2013), The solar wind ion analyzer for MAVEN, Space Sci. Rev., 101, doi:10.1007/s11214-013-0029-z.
Lundin, R., A. Zakharov, R. Pellinen, S. W. Barabasj, H. Borg, E. M. Dubinin, B. Hultqvist, H. Koskinen, I. Liede, and N. Pissarenko (1990), ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere, Geophys. Res. Lett., 17, 873-876, doi:10.1029/GL017i006p00873.
Fränz, M., E. Dubinin, E. Roussos, J. Woch, J. D. Winningham, R. Frahm, A. J. Coates, A. Fedorov, S. Barabash, and R. Lundin (2007), Plasma moments in the environment of Mars, Space Sci. Rev., 126(1-4), 165-207, doi:10.1007/s11214-006-9115-9.
Pollack, J. B., J. F. Kasting, S. M. Richardson, and K. Poliakoff (1987), The case for a wet, warm climate on early Mars, Icarus, 71, 203-224, doi:10.1016/0019-1035(87)90147-3.
Barabash, S., A. Fedorov, R. Lundin, and J.-A. Sauvaud (2007), Martian atmospheric erosion rates, Science, 315(5811), 501-503, doi:10.1126/science.1134358.
Fang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen (2008), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113, A02210, doi:10.1029/2007JA012736.
Nilsson, H., E. Carlsson, D. A. Brain, M. Yamauchi, M. Holmström, S. Barabash, R. Lundin, and Y. Futaana (2010), Ion escape from Mars as a function of solar wind conditions: A statistical study, Icarus, 206(1), 40-49, doi:10.1016/j.icarus.2009.03.006.
Ramstad, R., S. Barabash, Y. Futaana, H. Nilsson, X. D. Wang, and M. Holmström (2015), The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: I. Seven years of Mars Express observations, J. Geophys. Res. Planets, 120, 1298-1309, doi:10.1002/2015JE004816.
2007; 126
2014; 119
2010; 58
2007; 315
2010; 206
1987; 71
2011
1990; 17
2015; 42
2013; 40
1995; 22
2015; 120
2015; 21
2013; 101
2008; 35
2015
2012; 39
2014
2008; 113
2014; 41
2011; 162
2001; 412
2012; 64
e_1_2_6_10_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Fang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen (2008), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113, A02210, doi:10.1029/2007JA012736.
– reference: Nilsson, H., G. Stenberg, Y. Futaana, M. Holmström, S. Barabash, R. Lundin, N. J. T. Edberg, and A. Fedorov (2012), Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes, Earth Planets Space, 64(2), 135-148, doi:10.5047/eps.2011.04.011.
– reference: Jakosky, B. M., et al. (2015), The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, Space Sci. Rev., 21, doi:10.1007/s11214-015-0139-x.
– reference: Ramstad, R., S. Barabash, Y. Futaana, H. Nilsson, X. D. Wang, and M. Holmström (2015), The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: I. Seven years of Mars Express observations, J. Geophys. Res. Planets, 120, 1298-1309, doi:10.1002/2015JE004816.
– reference: Barabash, S., A. Fedorov, R. Lundin, and J.-A. Sauvaud (2007), Martian atmospheric erosion rates, Science, 315(5811), 501-503, doi:10.1126/science.1134358.
– reference: Leblanc, F., et al. (2015), Mars heavy ion precipitating flux as measured by MAVEN, Geophys. Res. Lett., 42, doi:10.1002/2015GL066170.
– reference: Kallio, E., H. Koskinen, S. Barabash, C. M. C. Nairn, and K. Schwingenschuh (1995), Oxygen outflow in the Martian magnetotail, Geophys. Res. Lett., 22(1), 2449-2452, doi:10.1029/95GL02474.
– reference: Nilsson, H., E. Carlsson, D. A. Brain, M. Yamauchi, M. Holmström, S. Barabash, R. Lundin, and Y. Futaana (2010), Ion escape from Mars as a function of solar wind conditions: A statistical study, Icarus, 206(1), 40-49, doi:10.1016/j.icarus.2009.03.006.
– reference: Lundin, R., S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, M. Fraenz, and E. M. Dubinin (2008), A comet-like escape of ionospheric plasma from Mars, Geophys. Res. Lett., 35, L18203, doi:10.1029/2008GL034811.
– reference: Nilsson, H., N. Edberg, G. Stenberg, and S. Barabash (2011), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, doi:10.1016/j.icarus.2011.08.003.
– reference: Fränz, M., E. Dubinin, E. Roussos, J. Woch, J. D. Winningham, R. Frahm, A. J. Coates, A. Fedorov, S. Barabash, and R. Lundin (2007), Plasma moments in the environment of Mars, Space Sci. Rev., 126(1-4), 165-207, doi:10.1007/s11214-006-9115-9.
– reference: Halekas, J. S., E. R. Taylor, G. Dalton, G. Johnson, D. W. Curtis, J. P. McFadden, D. L. Mitchell, R. P. Lin, and B. M. Jakosky (2013), The solar wind ion analyzer for MAVEN, Space Sci. Rev., 101, doi:10.1007/s11214-013-0029-z.
– reference: Dong, Y., X. Fang, D. A. Brain, J. P. McFadden, J. S. Halekas, J. E. P. Connerney, S. M. Curry, Y. Harada, J. G. Luhmann, and B. M. Jakosky (2015), Strong plume fluxes observed by MAVEN: An important planetary ion escape channel, Geophys. Res. Lett., doi:10.1002/2015GL065346.
– reference: Fränz, M., E. Dubinin, E. Nielsen, J. Woch, S. Barabash, R. Lundin, and A. Fedorov (2010), Transterminator ion flow in the Martian ionosphere, Planet. Space Sci., 58(1), 1442-1454, doi:10.1016/j.pss.2010.06.009.
– reference: Jakosky, B. M., and R. J. Phillips (2001), Mars' volatile and climate history, Nature, 412(6), 237-244.
– reference: Dubinin, E., M. Fraenz, A. Fedorov, R. Lundin, N. Edberg, F. Duru, and O. Vaisberg (2011), Ion energization and escape on Mars and Venus, Space Sci. Rev., 162(1), 173-211, doi:10.1007/s11214-011-9831-7.
– reference: Rahmati, A., D. E. Larson, T. E. Cravens, R. J. Lillis, P. A. Dunn, J. S. Halekas, J. E. Connerney, F. G. Eparvier, E. M. B. Thiemann, and B. M. Jakosky (2015), MAVEN insights into oxygen pickup ions at Mars, Geophys. Res. Lett., 42, doi:10.1002/2015GL065262.
– reference: Pollack, J. B., J. F. Kasting, S. M. Richardson, and K. Poliakoff (1987), The case for a wet, warm climate on early Mars, Icarus, 71, 203-224, doi:10.1016/0019-1035(87)90147-3.
– reference: Dong, C., S. W. Bougher, Y. Ma, G. Tóth, A. F. Nagy, and D. Najib (2014), Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multifluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708-2715, doi:10.1002/2014GL059515.
– reference: Lundin, R., A. Zakharov, R. Pellinen, S. W. Barabasj, H. Borg, E. M. Dubinin, B. Hultqvist, H. Koskinen, I. Liede, and N. Pissarenko (1990), ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere, Geophys. Res. Lett., 17, 873-876, doi:10.1029/GL017i006p00873.
– reference: Ma, Y. J., X. Fang, A. F. Nagy, C. T. Russell, and G. Tóth (2014), Martian ionospheric responses to dynamic pressure enhancements in the solar wind, J. Geophys. Res. Space Physics, 119, 1272-1286, doi:10.1002/2013JA019402.
– reference: Harada, Y., et al. (2015), Marsward and tailward ions in the near-Mars magnetotail: MAVEN observations, Geophys. Res. Lett., 42, doi:10.1002/2015GL065005.
– reference: Ramstad, R., Y. Futaana, S. Barabash, H. Nilsson, S. M. del Campo B, R. Lundin, and K. Schwingenschuh (2013), Phobos 2/ASPERA data revisited: Planetary ion escape rate from Mars near the 1989 solar maximum, Geophys. Res. Lett., 40, 477-481, doi:10.1002/grl.50149.
– reference: Connerney, J. E. P., J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, and D. Sheppard (2014), The MAVEN magnetic field investigation, Space Sci. Rev., doi:10.1007/s11214-015-0169-4.
– reference: Lillis, R. J., et al. (2015), Characterizing atmospheric escape from Mars today and through time, with MAVEN, Space Sci. Rev., doi:10.1007/s11214-015-0165-8.
– reference: Modolo, R., G. M. Chanteur, and E. Dubinin (2012), Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF, Geophys. Res. Lett., 39, L01106, doi:10.1029/2011GL049895.
– volume: 35
  year: 2008
  article-title: A comet‐like escape of ionospheric plasma from Mars
  publication-title: Geophys. Res. Lett.
– volume: 315
  start-page: 501
  issue: 5811
  year: 2007
  end-page: 503
  article-title: Martian atmospheric erosion rates
  publication-title: Science
– volume: 22
  start-page: 2449
  issue: 1
  year: 1995
  end-page: 2452
  article-title: Oxygen outflow in the Martian magnetotail
  publication-title: Geophys. Res. Lett.
– volume: 21
  year: 2015
  article-title: The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission
  publication-title: Space Sci. Rev.
– year: 2015
  article-title: Strong plume fluxes observed by MAVEN: An important planetary ion escape channel
  publication-title: Geophys. Res. Lett.
– volume: 162
  start-page: 173
  issue: 1
  year: 2011
  end-page: 211
  article-title: Ion energization and escape on Mars and Venus
  publication-title: Space Sci. Rev.
– volume: 42
  year: 2015
  article-title: Marsward and tailward ions in the near‐Mars magnetotail: MAVEN observations
  publication-title: Geophys. Res. Lett.
– year: 2014
  article-title: The MAVEN magnetic field investigation
  publication-title: Space Sci. Rev.
– volume: 119
  start-page: 1272
  year: 2014
  end-page: 1286
  article-title: Martian ionospheric responses to dynamic pressure enhancements in the solar wind
  publication-title: J. Geophys. Res. Space Physics
– volume: 113
  year: 2008
  article-title: Pickup oxygen ion velocity space and spatial distribution around Mars
  publication-title: J. Geophys. Res.
– volume: 42
  year: 2015
  article-title: Mars heavy ion precipitating flux as measured by MAVEN
  publication-title: Geophys. Res. Lett.
– year: 2011
  article-title: Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields
  publication-title: Icarus
– volume: 120
  start-page: 1298
  year: 2015
  end-page: 1309
  article-title: The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: I. Seven years of Mars Express observations
  publication-title: J. Geophys. Res. Planets
– volume: 41
  start-page: 2708
  year: 2014
  end-page: 2715
  article-title: Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multifluid MHD model and the MTGCM model
  publication-title: Geophys. Res. Lett.
– volume: 71
  start-page: 203
  year: 1987
  end-page: 224
  article-title: The case for a wet, warm climate on early Mars
  publication-title: Icarus
– volume: 40
  start-page: 477
  year: 2013
  end-page: 481
  article-title: Phobos 2/ASPERA data revisited: Planetary ion escape rate from Mars near the 1989 solar maximum
  publication-title: Geophys. Res. Lett.
– volume: 101
  year: 2013
  article-title: The solar wind ion analyzer for MAVEN
  publication-title: Space Sci. Rev.
– volume: 39
  year: 2012
  article-title: Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF
  publication-title: Geophys. Res. Lett.
– volume: 64
  start-page: 135
  issue: 2
  year: 2012
  end-page: 148
  article-title: Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes
  publication-title: Earth Planets Space
– volume: 126
  start-page: 165
  issue: 1–4
  year: 2007
  end-page: 207
  article-title: Plasma moments in the environment of Mars
  publication-title: Space Sci. Rev.
– volume: 206
  start-page: 40
  issue: 1
  year: 2010
  end-page: 49
  article-title: Ion escape from Mars as a function of solar wind conditions: A statistical study
  publication-title: Icarus
– volume: 412
  start-page: 237
  issue: 6
  year: 2001
  end-page: 244
  article-title: Mars' volatile and climate history
  publication-title: Nature
– volume: 42
  year: 2015
  article-title: MAVEN insights into oxygen pickup ions at Mars
  publication-title: Geophys. Res. Lett.
– volume: 17
  start-page: 873
  year: 1990
  end-page: 876
  article-title: ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere
  publication-title: Geophys. Res. Lett.
– volume: 58
  start-page: 1442
  issue: 1
  year: 2010
  end-page: 1454
  article-title: Transterminator ion flow in the Martian ionosphere
  publication-title: Planet. Space Sci.
– year: 2015
  article-title: Characterizing atmospheric escape from Mars today and through time, with MAVEN
  publication-title: Space Sci. Rev.
– ident: e_1_2_6_13_1
  doi: 10.1007/s11214-015-0139-x
– ident: e_1_2_6_6_1
  doi: 10.1007/s11214-011-9831-7
– ident: e_1_2_6_24_1
  doi: 10.1016/0019-1035(87)90147-3
– ident: e_1_2_6_15_1
  doi: 10.1002/2015GL066170
– ident: e_1_2_6_14_1
  doi: 10.1029/95GL02474
– ident: e_1_2_6_16_1
  doi: 10.1007/s11214-015-0165-8
– ident: e_1_2_6_20_1
  doi: 10.1029/2011GL049895
– ident: e_1_2_6_25_1
  doi: 10.1002/2015GL065262
– ident: e_1_2_6_23_1
  doi: 10.5047/eps.2011.04.011
– ident: e_1_2_6_11_1
  doi: 10.1002/2015GL065005
– ident: e_1_2_6_12_1
  doi: 10.1038/35084184
– ident: e_1_2_6_21_1
  doi: 10.1016/j.icarus.2009.03.006
– ident: e_1_2_6_5_1
  doi: 10.1002/2015GL065346
– ident: e_1_2_6_18_1
  doi: 10.1029/2008GL034811
– ident: e_1_2_6_7_1
  doi: 10.1029/2007JA012736
– ident: e_1_2_6_19_1
  doi: 10.1002/2013JA019402
– ident: e_1_2_6_27_1
  doi: 10.1002/2015JE004816
– ident: e_1_2_6_4_1
  doi: 10.1002/2014GL059515
– ident: e_1_2_6_22_1
  doi: 10.1016/j.icarus.2011.08.003
– ident: e_1_2_6_2_1
  doi: 10.1126/science.1134358
– ident: e_1_2_6_8_1
  doi: 10.1007/s11214-006-9115-9
– ident: e_1_2_6_10_1
  doi: 10.1007/s11214-013-0029-z
– ident: e_1_2_6_26_1
  doi: 10.1002/grl.50149
– ident: e_1_2_6_3_1
  doi: 10.1007/s11214-015-0169-4
– ident: e_1_2_6_9_1
  doi: 10.1016/j.pss.2010.06.009
– ident: e_1_2_6_17_1
  doi: 10.1029/GL017i006p00873
SSID ssj0003031
Score 2.5400505
Snippet We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000...
We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9142
SubjectTerms Astrophysics
Atmosphere
atmospheric escape
Convection
Earth and Planetary Astrophysics
Electric field
Electric fields
Evolution
Fluxes
Geographical distribution
Geophysics
Ion flux
Ion fluxes
Ions
Mars
Mars (planet)
Mars atmosphere
Mars missions
Mars surface
Northern Hemisphere
Planetary evolution
Planets
Sciences of the Universe
Solar and Stellar Astrophysics
Solar wind
solar wind interaction
Spatial distribution
Spherical shells
Travel
Wind power generation
Title The spatial distribution of planetary ion fluxes near Mars observed by MAVEN
URI https://api.istex.fr/ark:/67375/WNG-DS1JFSSB-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GL065293
https://www.proquest.com/docview/1756229185
https://www.proquest.com/docview/1910876618
https://www.proquest.com/docview/1776668570
https://www.proquest.com/docview/1800491860
https://insu.hal.science/insu-01238375
Volume 42
WOSCitedRecordID wos000368336800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagBYkXbkSgVEYcL1XU-IjjPC60uwWlK9SltG-W7TiiarVbbXar9t8zk6RhK0ElxJvlfM5hz3hmnDkIea-0V2WS2VjZSsYSMLET0sbCVUG7RNrSN4HCRTYe6-Pj_Ft34IaxMG1-iP7ADTmj2a-Rwa2rt38nDQXJlY4KkKAgsGALZpJhAYOjL-N-I4bduS2Yl8tY80x1fu8wfHt18A2JdPcn-kOu4xRf3lA6V1XXRvYMH_3vWz8mDzutkw5aMnlC7oTpU3J_1FT1vYJW4wfq62ekALKhNXpZA7zEpLpdPSw6q-g5OsYu4NkUO6qz5WWo6RRYhe6DeUxnDk94Q0ndFd0f_NgdPyeHw93vn_firuBC7JXMVByasDeXem2DdZ57IYMMTFiZOFe6JCTcOi6qTDoncptKWYF1lwevWRCpEuIFWZvOpuEloanmDqwjkUnQyDhTDuvlQQvDRjDrXkS2rifd-C4bORbFODNtHmVuVmcqIh969HmbheMvuHewfj0EU2fvDQqDbv0GlUewxtMLFpGPzfr2ODs_Rf-2LDVH45HZmbCvw8nkk-ER2bgmANOxdm1A31Kc56Dn_Pky6F8gYRTTEXnbXwaexR8xsEqzJd4CAApLC9yC0Wi8Ma0As9VQ1K1fbkYHRSpSoV79E_o1eYD9GFzJ1AZZW8yX4Q255y8WJ_V8k6zvHAwPi82GrX4B8McaHg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBoIXvhGBAUZ8vEzREttxnMcCaztII0QH25tlO45ATO3UtNP233OXZKGTYBLiLWp-6Yft8_3OvbsfIa-lcrKMUhNKU4lQACa0XJiQ28orGwlTuqZQOE-LQh0dZZ87nVOshWn7Q_QHbmgZzX6NBo4H0ru_u4aC60pGObhQ8FgbZEsA10DthsP9ot-KYX9uJfMyESqWyi7zHZ7fXX_6kk_a-I4ZkVs4yGeXaOc6eW28z_DOf3_vu-R2RzzpoF0p98g1P7tPbowaYd9zuGpSQV39gOSwcmiNidYAL7GvbieJRecVPcHc2CV8OMUXquPVma_pDKyFTiBCpnOLh7y-pPacTgbf9oqH5Otw7-D9OOw0F0InRSpD31S-2cQp4411zHHhhY-5EZG1pY18xIxlvEqFtTwziRAVBHiZdyr2PJGcPyKbs_nMPyY0UcxCgMRTAaSMxdKiZB5cYeUINt4LyM7FqGvXNSRHXYxj3bZSZnp9pALypkeftI04_oJ7BRPYQ7B79niQa8zs18gfISBPTuOAvG0muMeZxU9McUsTfViM9Idp_HE4nb7TLCDbFytAd9Zda6BckrEMqM6fbwMFAycjYxWQl_1tMFv8LwZmab7CtwCARHWBKzAK47dYScDsNEvqyl-uR1_yhCdcPvkn9Atyc3wwyXW-X3x6Sm4hBmstY7lNNpeLlX9GrrvT5Y968byxrV_EnByc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYC4gXvhGBDYz4eJmiJbbjOI9lXTsgi6aVjb1ZduIIxNRWTTtt_z13SRY6CSYh3qz4ly_b57tL7u5HyDupclkEsfGlKYUvAONbLozPbemUDYQp8jpROI2zTJ2eJoctzynmwjT1IboPbigZ9X6NAu7mRbnzu2ooqK5onIIKBY21QfoCeWR6pD88Gh2n3WYMO3RDmpcIX7FYtrHvcIWd9fOvaaWN7xgT2cdhvrhmeK6br7X-GT347yd_SO63picdNGvlEbnlpo_JnXFN7XsJrToYNK-ekBTWDq0w1BrgBVbWbUmx6Kykc4yOXcLNKR4oz1YXrqJTkBd6AD4ynVn8zOsKai_pweBkL3tKjkd7X3f3_ZZ1wc-liKXv6tw3G-XKOGNzlnPhhAu5EYG1hQ1cwIxlvIyFtTwxkRAluHiJy1XoeCQ5f0Z609nUPSc0UsyCi8RjAWYZC6VF0jxoYe4Ilt7zyPbVqOu8LUmOzBhnuimmzPT6SHnkfYeeN6U4_oJ7CxPYQbB-9v4g1Rjbr9GCBJc8Og898qGe4A5nFj8xyC2O9LdsrIeT8PNoMvmomUc2r1aAbuW70mB0ScYSMHb-3A1GGKgZGSqPvOm6QXDxbwzM0myFlwCARH6BGzAKPbhQScBs10vqxjfX46M04hGXL_4J_ZrcPRyOdPop-_KS3EMIJluGcpP0louV2yK38_Plj2rxqhWuX7NLHUU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+spatial+distribution+of+planetary+ion+fluxes+near+Mars+observed+by+MAVEN&rft.jtitle=Geophysical+research+letters&rft.au=Brain%2C+D.+A.&rft.au=McFadden%2C+J.+P.&rft.au=Halekas%2C+J.+S.&rft.au=Connerney%2C+J.+E.+P.&rft.date=2015-11-16&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=42&rft.issue=21&rft.spage=9142&rft.epage=9148&rft_id=info:doi/10.1002%2F2015GL065293&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DS1JFSSB_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon