Aging induces B cell defects and decreased antibody responses to influenza infection and vaccination

Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Immunity & ageing Ročník 17; číslo 1; s. 37 - 10
Hlavní autoři: Frasca, Daniela, Blomberg, Bonnie B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 19.11.2020
BioMed Central Ltd
BMC
Témata:
ISSN:1742-4933, 1742-4933
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Results Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Conclusions Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.
AbstractList Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.
Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Results Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Conclusions Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.
Abstract Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Results Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Conclusions Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.
Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Results Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Conclusions Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals. Keywords: Aging, B cells, Antibodies, Influenza infection, Influenza vaccination
Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function.BACKGROUNDAging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function.Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres.RESULTSAging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres.Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.CONCLUSIONSAlthough influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.
Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.
ArticleNumber 37
Audience Academic
Author Frasca, Daniela
Blomberg, Bonnie B.
Author_xml – sequence: 1
  givenname: Daniela
  surname: Frasca
  fullname: Frasca, Daniela
  email: dfrasca@med.miami.edu
  organization: Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
– sequence: 2
  givenname: Bonnie B.
  surname: Blomberg
  fullname: Blomberg, Bonnie B.
  organization: Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33292323$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1igSGzYpPiV2N4gTSselSqxgbXlV4JHGXuwk0qdX8-dSak6CFVZ-No53_G1fc6rk5iir6q3GF1iLLqPBRPJZYMIahAiGDW7F9UZ5ow0TFJ68qQ-rc5LWSNEmezYq-qUUiIJJfSscqshxKEO0c3Wl_qqtn4ca-d7b6dS6-igttnr4h3MpmCSu6-zL9sUC-inBGg_zj7u9L4CKqR44O60tSHq_fx19bLXY_FvHsaL6ueXzz-uvzW337_eXK9uG9uxdmqcla51DgknUEcI5i0zxLZGmN7wrhdcaCytoMxxpynvuKSsN9gw7G1LiaEX1c3i65Jeq20OG53vVdJBHRZSHpTOU7CjV0wy0mEukLc981pri52QxmHjZUt6BF6fFq_tbDbeWR-nrMcj0-M_MfxSQ7pT0BdruQCDDw8GOf2efZnUJpT97ero01wUYZ3oeItEC9L3i3TQ0BpcYwJHu5erVdcisMMdB9Xlf1TwOb8JFqLRB1g_At49PcJj739fHwRkEdicSsm-f5RgpPYRU0vEFERMHSKmdgCJfyAbpsMzQzthfB6lC1pgnzj4rNZpzhEi8Rz1BzJS5pI
CitedBy_id crossref_primary_10_3389_fimmu_2021_733566
crossref_primary_10_1186_s12979_025_00511_1
crossref_primary_10_1016_j_jns_2024_123314
crossref_primary_10_1186_s12979_021_00231_2
crossref_primary_10_3390_ijms23179797
crossref_primary_10_1186_s12913_021_06064_5
crossref_primary_10_3389_fimmu_2025_1596686
crossref_primary_10_1080_21645515_2022_2090176
crossref_primary_10_1002_cbf_70090
crossref_primary_10_1055_a_2500_2121
crossref_primary_10_1007_s12016_021_08905_x
crossref_primary_10_1186_s12979_023_00348_6
crossref_primary_10_1016_j_phrs_2023_106916
crossref_primary_10_7554_eLife_70554
crossref_primary_10_1016_j_jvacx_2025_100662
crossref_primary_10_3389_fimmu_2022_797918
crossref_primary_10_4103_ohbl_ohbl_30_23
crossref_primary_10_3389_fimmu_2023_1231274
crossref_primary_10_1080_21645515_2023_2271304
crossref_primary_10_1016_S2213_2600_21_00158_2
crossref_primary_10_1186_s12967_025_06600_5
crossref_primary_10_3389_fimmu_2021_681449
crossref_primary_10_1038_s41573_024_01126_9
crossref_primary_10_3390_vaccines10111894
crossref_primary_10_3390_biom13071085
crossref_primary_10_3390_biomedicines9050516
crossref_primary_10_1016_j_antiviral_2021_105229
crossref_primary_10_1161_HYPERTENSIONAHA_121_18112
crossref_primary_10_1186_s12979_025_00507_x
crossref_primary_10_1080_19490976_2024_2426619
crossref_primary_10_3390_vaccines12060618
crossref_primary_10_1186_s12979_023_00399_9
crossref_primary_10_1038_s43587_025_00906_1
crossref_primary_10_1016_j_ebiom_2025_105697
crossref_primary_10_1016_j_addr_2022_114175
crossref_primary_10_1097_QAD_0000000000003680
crossref_primary_10_3390_vaccines10040494
crossref_primary_10_1016_j_surg_2021_03_034
crossref_primary_10_3390_nu16040487
crossref_primary_10_1080_1750743X_2025_2546279
crossref_primary_10_1093_cid_ciab381
crossref_primary_10_1186_s12979_023_00368_2
crossref_primary_10_1016_j_vaccine_2021_12_061
crossref_primary_10_3390_vaccines13090938
crossref_primary_10_3389_fimmu_2023_1190339
crossref_primary_10_1016_j_arr_2021_101541
crossref_primary_10_1016_j_tmaid_2022_102514
crossref_primary_10_3390_vaccines10040607
crossref_primary_10_1007_s00109_022_02193_4
crossref_primary_10_1038_s41541_025_01196_9
crossref_primary_10_1186_s12979_023_00327_x
crossref_primary_10_1146_annurev_immunol_090122_042631
crossref_primary_10_1097_WCO_0000000000000960
crossref_primary_10_3389_fimmu_2025_1584876
crossref_primary_10_1186_s12979_024_00444_1
crossref_primary_10_1038_s41422_025_01163_y
crossref_primary_10_1007_s40472_023_00405_5
crossref_primary_10_7554_eLife_89712_3
crossref_primary_10_1002_med_21941
crossref_primary_10_1038_s41556_024_01424_9
crossref_primary_10_3389_fimmu_2024_1465006
crossref_primary_10_1016_j_smim_2023_101835
crossref_primary_10_3389_fimmu_2023_1183727
crossref_primary_10_3390_vaccines12060566
crossref_primary_10_1080_21645515_2024_2364480
crossref_primary_10_3389_fimmu_2022_1006710
crossref_primary_10_7554_eLife_89712
crossref_primary_10_1016_j_smim_2023_101842
crossref_primary_10_3390_vaccines12111289
crossref_primary_10_3390_nu15153371
crossref_primary_10_1111_febs_16385
crossref_primary_10_1186_s12979_022_00284_x
crossref_primary_10_3389_fimmu_2022_917972
Cites_doi 10.1016/j.molimm.2016.10.014
10.1080/21645515.2018.1462639
10.1001/jama.1997.03540330050034
10.1016/j.exger.2016.12.001
10.1183/09031936.00186214
10.3389/fimmu.2019.00180
10.1001/jama.2020.6266
10.1038/oby.2008.379
10.1126/scitranslmed.3000799
10.1016/S0047-6374(03)00013-7
10.1007/s10522-015-9578-8
10.1002/oby.21383
10.1128/JVI.00797-19
10.1001/jama.2009.1583
10.1084/jem.20070891
10.1186/s12979-020-00181-1
10.4049/jimmunol.1502448
10.18632/aging.100720
10.1016/j.exger.2013.12.013
10.1016/S0531-5565(99)00030-3
10.3389/fimmu.2016.00450
10.1016/S0140-6736(17)33293-2
10.1128/CMR.00058-05
10.1126/sciimmunol.aal4656
10.1016/S1473-3099(07)70236-0
10.1016/j.mad.2013.11.008
10.1016/S0140-6736(20)30211-7
10.1016/j.vaccine.2015.11.058
10.1371/journal.pone.0152034
10.3389/fimmu.2014.00012
10.1093/intimm/dxr123
10.1128/IAI.41.2.540-545.1983
10.7326/0003-4819-123-7-199510010-00008
10.1128/JVI.07085-11
10.1126/scitranslmed.3004794
10.1016/j.clim.2018.02.003
10.4049/jimmunol.0803449
10.1371/journal.pone.0219545
10.1371/journal.pone.0128269
10.1038/msb.2013.15
10.1038/350569a0
10.4049/jimmunol.0901022
10.4049/jimmunol.1601106
10.1073/pnas.1321060111
10.1172/JCI41902
10.1016/j.vaccine.2013.05.003
10.1016/j.immuni.2015.11.012
10.1016/j.coi.2009.05.023
10.1016/j.cell.2014.03.031
10.1016/j.tem.2016.09.005
10.1182/blood-2011-01-330530
10.1128/JVI.02871-14
10.1084/jem.20072683
10.1111/jvh.12659
10.1016/S0140-6736(12)62167-9
10.1016/j.vaccine.2012.01.015
10.1016/j.coi.2010.04.009
10.1111/j.1365-2362.2009.02207.x
10.1038/nature21363
10.3389/fimmu.2019.02616
10.3389/fimmu.2018.00591
10.1084/jem.20030802
10.1016/j.imlet.2014.06.009
10.1084/jem.20171127
10.4049/jimmunol.1500520
10.1016/S0531-5565(01)00210-8
10.1161/HYPERTENSIONAHA.111.175315
10.1186/1742-4933-10-14
10.1038/ni923
10.1016/j.cytogfr.2016.03.008
10.1007/s10334-005-0104-x
10.1093/infdis/jiv202
10.4161/hv.4.2.5169
10.1016/S0264-410X(02)00041-5
10.1002/ca.20543
10.1016/j.vaccine.2009.01.136
10.4049/jimmunol.1202438
10.1111/j.1474-9726.2010.00608.x
10.1016/j.exger.2018.01.019
10.4049/jimmunol.1900922
10.1016/j.vaccine.2016.11.013
10.1111/j.1749-6632.2000.tb06651.x
10.1016/j.mad.2011.08.005
10.1038/nature06890
10.4049/jimmunol.1600522
10.1098/rstb.2014.0237
10.1016/j.vaccine.2010.10.023
10.1016/j.immuni.2020.03.020
10.1016/j.clim.2018.01.011
10.4049/jimmunol.180.8.5283
10.1038/sj.ijo.0800777
10.1016/j.vaccine.2020.06.047
10.1182/blood-2011-01-331462
10.1016/j.exger.2014.01.004
10.1016/j.clim.2004.05.010
10.1172/JCI57834
10.1080/21645515.2017.1338547
10.1016/j.vaccine.2012.11.041
10.1371/journal.ppat.1002920
10.4049/jimmunol.168.11.5893
10.1016/S0092-8674(00)00078-7
10.1016/j.chom.2019.01.002
10.1002/jmv.25781
10.1093/infdis/jiu573
10.1016/j.mad.2009.08.003
10.1016/j.cellimm.2017.04.007
10.4049/jimmunol.167.6.3231
10.4049/jimmunol.1301384
10.1016/j.cellimm.2017.05.009
10.1001/jama.289.2.179
10.1016/j.vaccine.2016.04.023
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1186/s12979-020-00210-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
Biology
Social Welfare & Social Work
EISSN 1742-4933
EndPage 10
ExternalDocumentID oai_doaj_org_article_494261780ecf4eaaac1d89bd1be952f0
PMC7674578
A650457167
33292323
10_1186_s12979_020_00210_z
Genre Journal Article
Review
GrantInformation_xml – fundername: National Institute on Aging
  grantid: AG32576; AG059719; AG023717
  funderid: http://dx.doi.org/10.13039/100000049
– fundername: NIA NIH HHS
  grantid: AG059719
– fundername: NIA NIH HHS
  grantid: AG023717
– fundername: NIA NIH HHS
  grantid: R01 AG023717
– fundername: NIA NIH HHS
  grantid: AG32576
– fundername: ;
  grantid: AG32576; AG059719; AG023717
GroupedDBID ---
0R~
29I
2WC
53G
5GY
5VS
7X7
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
ITC
KQ8
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
AFFHD
CITATION
ALIPV
NPM
7X8
5PM
ID FETCH-LOGICAL-c645t-dc9d5dd08d806221754b2c5b8bfb76f878a19c834d7da3767934fb1b41ec532b3
IEDL.DBID DOA
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000595108600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1742-4933
IngestDate Mon Nov 10 04:34:39 EST 2025
Tue Nov 04 01:47:21 EST 2025
Thu Sep 04 18:18:55 EDT 2025
Tue Nov 11 10:20:05 EST 2025
Tue Nov 04 17:19:33 EST 2025
Thu Apr 03 06:53:58 EDT 2025
Tue Nov 18 20:55:43 EST 2025
Sat Nov 29 03:39:05 EST 2025
Sat Sep 06 07:19:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Aging
Antibodies
B cells
Influenza infection
Influenza vaccination
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c645t-dc9d5dd08d806221754b2c5b8bfb76f878a19c834d7da3767934fb1b41ec532b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/494261780ecf4eaaac1d89bd1be952f0
PMID 33292323
PQID 2468675085
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_494261780ecf4eaaac1d89bd1be952f0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7674578
proquest_miscellaneous_2468675085
gale_infotracmisc_A650457167
gale_infotracacademiconefile_A650457167
pubmed_primary_33292323
crossref_primary_10_1186_s12979_020_00210_z
crossref_citationtrail_10_1186_s12979_020_00210_z
springer_journals_10_1186_s12979_020_00210_z
PublicationCentury 2000
PublicationDate 2020-11-19
PublicationDateYYYYMMDD 2020-11-19
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Immunity & ageing
PublicationTitleAbbrev Immun Ageing
PublicationTitleAlternate Immun Ageing
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References EA Voigt (210_CR47) 2019; 10
JK Louie (210_CR14) 2009; 302
DG Adlowitz (210_CR91) 2015; 10
A Silaghi (210_CR108) 2008; 16
DB Burlington (210_CR28) 1983; 41
C Wehr (210_CR92) 2004; 113
N Gensous (210_CR81) 2018; 105
N Claes (210_CR89) 2016; 197
D Frasca (210_CR58) 2015; 195
DK Dunn-Walters (210_CR76) 2010; 22
S Avey (210_CR48) 2020; 204
JE McElhaney (210_CR53) 2012; 30
N Jiang (210_CR75) 2013; 5
DM Murasko (210_CR27) 2002; 37
SF Andrews (210_CR33) 2015; 89
D Frasca (210_CR70) 2019; 14
S Herold (210_CR17) 2015; 45
L Simonsen (210_CR37) 2007; 7
A Clegg (210_CR15) 2013; 381
O Finco (210_CR26) 2014; 5
JA McMurry (210_CR29) 2008; 4
N Chen (210_CR19) 2020; 395
JD Allen (210_CR12) 2018; 14
S Moir (210_CR95) 2008; 205
Y Hao (210_CR96) 2011; 118
D Frasca (210_CR8) 2016; 17
CJ Wei (210_CR24) 2010; 2
D Furman (210_CR44) 2013; 9
210_CR93
E Derhovanessian (210_CR51) 2013; 31
JA McCullers (210_CR22) 2006; 19
D Corti (210_CR31) 2010; 120
EH Blackburn (210_CR111) 1991; 350
G Colonna-Romano (210_CR82) 2003; 124
D Frasca (210_CR63) 2016; 24
D Frasca (210_CR87) 2017; 87
D Frasca (210_CR65) 2008; 180
L Landro (210_CR84) 2009; 39
ST Parish (210_CR6) 2009; 182
AS Ryan (210_CR106) 1999; 23
Y Saisho (210_CR107) 2007; 20
E Beli (210_CR54) 2011; 132
210_CR62
D Frasca (210_CR71) 2016; 34
SL Swain (210_CR101) 2017; 321
PA Gross (210_CR36) 1995; 123
H Gonda (210_CR67) 2003; 198
LM Russell Knode (210_CR99) 2017; 198
C Wang (210_CR79) 2014; 192
A Didierlaurent (210_CR18) 2008; 205
M Muramatsu (210_CR64) 2000; 102
MR Castrucci (210_CR39) 2018; 14
M Saurwein-Teissl (210_CR32) 2002; 168
C Franceschi (210_CR3) 2000; 908
AJ Nipper (210_CR69) 2018; 193
S Sasaki (210_CR73) 2011; 121
AV Rubtsov (210_CR97) 2011; 118
210_CR77
JL Johnson (210_CR100) 2020; 52
J Illingworth (210_CR94) 2013; 190
T Tchkonia (210_CR102) 2010; 9
JE McElhaney (210_CR2) 2009; 21
G Colonna-Romano (210_CR90) 2009; 130
CE Sayegh (210_CR66) 2003; 4
D Frasca (210_CR88) 2017; 321
210_CR42
A Przemska-Kosicka (210_CR55) 2018; 9
K Najarro (210_CR110) 2015; 212
210_CR40
JE McElhaney (210_CR10) 2020; 17
WW Thompson (210_CR13) 2003; 289
C Franceschi (210_CR9) 2017; 28
A Mosterin Hopping (210_CR34) 2016; 34
E Bryl (210_CR4) 2001; 167
J Wrammert (210_CR30) 2008; 453
D Frasca (210_CR59) 2010; 28
GS Hotamisligil (210_CR7) 2017; 542
LRK Rogers (210_CR49) 2019; 10
D Thindwa (210_CR23) 2020; 38
MC Foster (210_CR104) 2011; 58
JE McElhaney (210_CR52) 2009; 27
JS Tsang (210_CR43) 2014; 157
L Ferrucci (210_CR1) 1997; 277
D Furman (210_CR45) 2014; 111
B Young (210_CR35) 2017; 35
C Henry (210_CR80) 2019; 25
K Haq (210_CR16) 2014; 162
J Thakar (210_CR50) 2015; 7
MT Zimmermann (210_CR86) 2016; 11
J Machann (210_CR105) 2005; 18
210_CR21
210_CR20
R Goenka (210_CR74) 2014; 54
D Frasca (210_CR61) 2013; 31
D Saleiro (210_CR85) 2016; 29
T Vu (210_CR38) 2002; 20
S Khurana (210_CR72) 2012; 8
A Panda (210_CR57) 2010; 184
M Zamboni (210_CR103) 2014; 136–137
D Frasca (210_CR5) 2014; 54
CH Ju (210_CR78) 2018; 193
RB Kennedy (210_CR46) 2016; 7
L Robert (210_CR109) 1999; 34
S Mohanty (210_CR56) 2015; 211
D Fang (210_CR83) 2018; 215
MS Naradikian (210_CR98) 2016; 197
D Frasca (210_CR60) 2013; 10
N Verma (210_CR25) 2012; 86
AD Iuliano (210_CR11) 2018; 391
HI Nakaya (210_CR41) 2015; 43
J Hauser (210_CR68) 2016; 80
References_xml – volume: 80
  start-page: 78
  year: 2016
  ident: 210_CR68
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2016.10.014
– volume: 14
  start-page: 1840
  issue: 8
  year: 2018
  ident: 210_CR12
  publication-title: Hum Vaccin Immunother.
  doi: 10.1080/21645515.2018.1462639
– volume: 277
  start-page: 728
  issue: 9
  year: 1997
  ident: 210_CR1
  publication-title: JAMA.
  doi: 10.1001/jama.1997.03540330050034
– volume: 87
  start-page: 113
  issue: Pt A
  year: 2017
  ident: 210_CR87
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2016.12.001
– volume: 45
  start-page: 1463
  issue: 5
  year: 2015
  ident: 210_CR17
  publication-title: Eur Respir J
  doi: 10.1183/09031936.00186214
– volume: 10
  start-page: 180
  year: 2019
  ident: 210_CR47
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.00180
– ident: 210_CR21
  doi: 10.1001/jama.2020.6266
– volume: 16
  start-page: 2424
  issue: 11
  year: 2008
  ident: 210_CR108
  publication-title: Obesity (Silver Spring)
  doi: 10.1038/oby.2008.379
– volume: 2
  start-page: 24ra21
  issue: 24
  year: 2010
  ident: 210_CR24
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3000799
– volume: 124
  start-page: 389
  issue: 4
  year: 2003
  ident: 210_CR82
  publication-title: Mech Ageing Dev
  doi: 10.1016/S0047-6374(03)00013-7
– volume: 17
  start-page: 7
  issue: 1
  year: 2016
  ident: 210_CR8
  publication-title: Biogerontology.
  doi: 10.1007/s10522-015-9578-8
– volume: 24
  start-page: 615
  issue: 3
  year: 2016
  ident: 210_CR63
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.21383
– ident: 210_CR40
  doi: 10.1128/JVI.00797-19
– volume: 302
  start-page: 1896
  issue: 17
  year: 2009
  ident: 210_CR14
  publication-title: JAMA.
  doi: 10.1001/jama.2009.1583
– volume: 205
  start-page: 323
  issue: 2
  year: 2008
  ident: 210_CR18
  publication-title: J Exp Med
  doi: 10.1084/jem.20070891
– volume: 17
  start-page: 10
  year: 2020
  ident: 210_CR10
  publication-title: Immun Ageing
  doi: 10.1186/s12979-020-00181-1
– volume: 197
  start-page: 4576
  issue: 12
  year: 2016
  ident: 210_CR89
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1502448
– volume: 7
  start-page: 38
  issue: 1
  year: 2015
  ident: 210_CR50
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100720
– volume: 54
  start-page: 109
  year: 2014
  ident: 210_CR74
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2013.12.013
– volume: 34
  start-page: 491
  issue: 4
  year: 1999
  ident: 210_CR109
  publication-title: Exp Gerontol
  doi: 10.1016/S0531-5565(99)00030-3
– volume: 7
  start-page: 450
  year: 2016
  ident: 210_CR46
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00450
– volume: 391
  start-page: 1285
  issue: 10127
  year: 2018
  ident: 210_CR11
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(17)33293-2
– volume: 19
  start-page: 571
  issue: 3
  year: 2006
  ident: 210_CR22
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.00058-05
– ident: 210_CR42
  doi: 10.1126/sciimmunol.aal4656
– volume: 7
  start-page: 658
  issue: 10
  year: 2007
  ident: 210_CR37
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(07)70236-0
– volume: 136–137
  start-page: 129
  year: 2014
  ident: 210_CR103
  publication-title: Mech Ageing Dev
  doi: 10.1016/j.mad.2013.11.008
– volume: 395
  start-page: 507
  issue: 10223
  year: 2020
  ident: 210_CR19
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(20)30211-7
– volume: 34
  start-page: 540
  issue: 4
  year: 2016
  ident: 210_CR34
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2015.11.058
– volume: 11
  issue: 3
  year: 2016
  ident: 210_CR86
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0152034
– volume: 5
  start-page: 12
  year: 2014
  ident: 210_CR26
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2014.00012
– ident: 210_CR62
  doi: 10.1093/intimm/dxr123
– volume: 41
  start-page: 540
  issue: 2
  year: 1983
  ident: 210_CR28
  publication-title: Infect Immun
  doi: 10.1128/IAI.41.2.540-545.1983
– volume: 123
  start-page: 518
  issue: 7
  year: 1995
  ident: 210_CR36
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-123-7-199510010-00008
– volume: 86
  start-page: 5515
  issue: 10
  year: 2012
  ident: 210_CR25
  publication-title: J Virol
  doi: 10.1128/JVI.07085-11
– volume: 5
  start-page: 171ra119
  issue: 171
  year: 2013
  ident: 210_CR75
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3004794
– volume: 193
  start-page: 80
  year: 2018
  ident: 210_CR69
  publication-title: Clin Immunol
  doi: 10.1016/j.clim.2018.02.003
– volume: 182
  start-page: 4237
  issue: 7
  year: 2009
  ident: 210_CR6
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0803449
– volume: 14
  issue: 7
  year: 2019
  ident: 210_CR70
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0219545
– volume: 10
  issue: 6
  year: 2015
  ident: 210_CR91
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0128269
– volume: 9
  start-page: 659
  year: 2013
  ident: 210_CR44
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2013.15
– volume: 350
  start-page: 569
  issue: 6319
  year: 1991
  ident: 210_CR111
  publication-title: Nature.
  doi: 10.1038/350569a0
– volume: 184
  start-page: 2518
  issue: 5
  year: 2010
  ident: 210_CR57
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0901022
– volume: 198
  start-page: 1921
  issue: 5
  year: 2017
  ident: 210_CR99
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1601106
– volume: 111
  start-page: 869
  issue: 2
  year: 2014
  ident: 210_CR45
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1321060111
– volume: 120
  start-page: 1663
  issue: 5
  year: 2010
  ident: 210_CR31
  publication-title: J Clin Invest
  doi: 10.1172/JCI41902
– volume: 31
  start-page: 3603
  issue: 35
  year: 2013
  ident: 210_CR61
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2013.05.003
– volume: 43
  start-page: 1186
  issue: 6
  year: 2015
  ident: 210_CR41
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2015.11.012
– volume: 21
  start-page: 418
  issue: 4
  year: 2009
  ident: 210_CR2
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2009.05.023
– volume: 157
  start-page: 499
  issue: 2
  year: 2014
  ident: 210_CR43
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.03.031
– volume: 28
  start-page: 199
  issue: 3
  year: 2017
  ident: 210_CR9
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2016.09.005
– volume: 118
  start-page: 1294
  issue: 5
  year: 2011
  ident: 210_CR96
  publication-title: Blood.
  doi: 10.1182/blood-2011-01-330530
– volume: 89
  start-page: 3308
  issue: 6
  year: 2015
  ident: 210_CR33
  publication-title: J Virol
  doi: 10.1128/JVI.02871-14
– volume: 205
  start-page: 1797
  issue: 8
  year: 2008
  ident: 210_CR95
  publication-title: J Exp Med
  doi: 10.1084/jem.20072683
– ident: 210_CR93
  doi: 10.1111/jvh.12659
– volume: 381
  start-page: 752
  issue: 9868
  year: 2013
  ident: 210_CR15
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(12)62167-9
– volume: 30
  start-page: 2060
  issue: 12
  year: 2012
  ident: 210_CR53
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2012.01.015
– volume: 22
  start-page: 514
  issue: 4
  year: 2010
  ident: 210_CR76
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2010.04.009
– volume: 39
  start-page: 1017
  issue: 11
  year: 2009
  ident: 210_CR84
  publication-title: Eur J Clin Investig
  doi: 10.1111/j.1365-2362.2009.02207.x
– volume: 542
  start-page: 177
  issue: 7640
  year: 2017
  ident: 210_CR7
  publication-title: Nature.
  doi: 10.1038/nature21363
– volume: 10
  start-page: 2616
  year: 2019
  ident: 210_CR49
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.02616
– volume: 9
  start-page: 591
  year: 2018
  ident: 210_CR55
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00591
– volume: 198
  start-page: 1427
  issue: 9
  year: 2003
  ident: 210_CR67
  publication-title: J Exp Med
  doi: 10.1084/jem.20030802
– volume: 162
  start-page: 323
  issue: 1 Pt B
  year: 2014
  ident: 210_CR16
  publication-title: Immunol Lett
  doi: 10.1016/j.imlet.2014.06.009
– volume: 215
  start-page: 1449
  issue: 5
  year: 2018
  ident: 210_CR83
  publication-title: J Exp Med
  doi: 10.1084/jem.20171127
– volume: 195
  start-page: 2134
  issue: 5
  year: 2015
  ident: 210_CR58
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1500520
– volume: 37
  start-page: 427
  issue: 2–3
  year: 2002
  ident: 210_CR27
  publication-title: Exp Gerontol
  doi: 10.1016/S0531-5565(01)00210-8
– volume: 58
  start-page: 784
  issue: 5
  year: 2011
  ident: 210_CR104
  publication-title: Hypertension.
  doi: 10.1161/HYPERTENSIONAHA.111.175315
– volume: 10
  start-page: 14
  issue: 1
  year: 2013
  ident: 210_CR60
  publication-title: Immun Ageing
  doi: 10.1186/1742-4933-10-14
– volume: 4
  start-page: 586
  issue: 6
  year: 2003
  ident: 210_CR66
  publication-title: Nat Immunol
  doi: 10.1038/ni923
– volume: 29
  start-page: 17
  year: 2016
  ident: 210_CR85
  publication-title: Cytokine Growth Factor Rev
  doi: 10.1016/j.cytogfr.2016.03.008
– volume: 18
  start-page: 128
  issue: 3
  year: 2005
  ident: 210_CR105
  publication-title: MAGMA.
  doi: 10.1007/s10334-005-0104-x
– volume: 212
  start-page: 1261
  issue: 8
  year: 2015
  ident: 210_CR110
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiv202
– volume: 4
  start-page: 148
  issue: 2
  year: 2008
  ident: 210_CR29
  publication-title: Hum Vaccin
  doi: 10.4161/hv.4.2.5169
– volume: 20
  start-page: 1831
  issue: 13–14
  year: 2002
  ident: 210_CR38
  publication-title: Vaccine.
  doi: 10.1016/S0264-410X(02)00041-5
– volume: 20
  start-page: 933
  issue: 8
  year: 2007
  ident: 210_CR107
  publication-title: Clin Anat
  doi: 10.1002/ca.20543
– volume: 27
  start-page: 2418
  issue: 18
  year: 2009
  ident: 210_CR52
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2009.01.136
– volume: 190
  start-page: 1038
  issue: 3
  year: 2013
  ident: 210_CR94
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1202438
– volume: 9
  start-page: 667
  issue: 5
  year: 2010
  ident: 210_CR102
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2010.00608.x
– volume: 105
  start-page: 94
  year: 2018
  ident: 210_CR81
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2018.01.019
– volume: 204
  start-page: 1661
  issue: 6
  year: 2020
  ident: 210_CR48
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1900922
– volume: 35
  start-page: 212
  issue: 2
  year: 2017
  ident: 210_CR35
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2016.11.013
– volume: 908
  start-page: 244
  year: 2000
  ident: 210_CR3
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2000.tb06651.x
– volume: 132
  start-page: 503
  issue: 10
  year: 2011
  ident: 210_CR54
  publication-title: Mech Ageing Dev
  doi: 10.1016/j.mad.2011.08.005
– volume: 453
  start-page: 667
  issue: 7195
  year: 2008
  ident: 210_CR30
  publication-title: Nature.
  doi: 10.1038/nature06890
– volume: 197
  start-page: 1023
  issue: 4
  year: 2016
  ident: 210_CR98
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1600522
– ident: 210_CR77
  doi: 10.1098/rstb.2014.0237
– volume: 28
  start-page: 8077
  issue: 51
  year: 2010
  ident: 210_CR59
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2010.10.023
– volume: 52
  start-page: 842
  issue: 5
  year: 2020
  ident: 210_CR100
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2020.03.020
– volume: 193
  start-page: 70
  year: 2018
  ident: 210_CR78
  publication-title: Clin Immunol
  doi: 10.1016/j.clim.2018.01.011
– volume: 180
  start-page: 5283
  issue: 8
  year: 2008
  ident: 210_CR65
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.8.5283
– volume: 23
  start-page: 126
  issue: 2
  year: 1999
  ident: 210_CR106
  publication-title: Int J Obes Relat Metab Disord
  doi: 10.1038/sj.ijo.0800777
– volume: 38
  start-page: 5398
  issue: 34
  year: 2020
  ident: 210_CR23
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2020.06.047
– volume: 118
  start-page: 1305
  issue: 5
  year: 2011
  ident: 210_CR97
  publication-title: Blood.
  doi: 10.1182/blood-2011-01-331462
– volume: 54
  start-page: 116
  year: 2014
  ident: 210_CR5
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2014.01.004
– volume: 113
  start-page: 161
  issue: 2
  year: 2004
  ident: 210_CR92
  publication-title: Clin Immunol
  doi: 10.1016/j.clim.2004.05.010
– volume: 121
  start-page: 3109
  issue: 8
  year: 2011
  ident: 210_CR73
  publication-title: J Clin Invest
  doi: 10.1172/JCI57834
– volume: 14
  start-page: 637
  issue: 3
  year: 2018
  ident: 210_CR39
  publication-title: Hum Vaccin Immunother
  doi: 10.1080/21645515.2017.1338547
– volume: 31
  start-page: 685
  issue: 4
  year: 2013
  ident: 210_CR51
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2012.11.041
– volume: 8
  issue: 9
  year: 2012
  ident: 210_CR72
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002920
– volume: 168
  start-page: 5893
  issue: 11
  year: 2002
  ident: 210_CR32
  publication-title: J Immunol
  doi: 10.4049/jimmunol.168.11.5893
– volume: 102
  start-page: 553
  issue: 5
  year: 2000
  ident: 210_CR64
  publication-title: Cell.
  doi: 10.1016/S0092-8674(00)00078-7
– volume: 25
  start-page: 357
  issue: 3
  year: 2019
  ident: 210_CR80
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.01.002
– ident: 210_CR20
  doi: 10.1002/jmv.25781
– volume: 211
  start-page: 1174
  issue: 7
  year: 2015
  ident: 210_CR56
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiu573
– volume: 130
  start-page: 681
  issue: 10
  year: 2009
  ident: 210_CR90
  publication-title: Mech Ageing Dev
  doi: 10.1016/j.mad.2009.08.003
– volume: 321
  start-page: 68
  year: 2017
  ident: 210_CR88
  publication-title: Cell Immunol
  doi: 10.1016/j.cellimm.2017.04.007
– volume: 167
  start-page: 3231
  issue: 6
  year: 2001
  ident: 210_CR4
  publication-title: J Immunol
  doi: 10.4049/jimmunol.167.6.3231
– volume: 192
  start-page: 603
  issue: 2
  year: 2014
  ident: 210_CR79
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1301384
– volume: 321
  start-page: 52
  year: 2017
  ident: 210_CR101
  publication-title: Cell Immunol
  doi: 10.1016/j.cellimm.2017.05.009
– volume: 289
  start-page: 179
  issue: 2
  year: 2003
  ident: 210_CR13
  publication-title: JAMA.
  doi: 10.1001/jama.289.2.179
– volume: 34
  start-page: 2834
  issue: 25
  year: 2016
  ident: 210_CR71
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2016.04.023
SSID ssj0034964
Score 2.515282
SecondaryResourceType review_article
Snippet Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to...
Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among...
Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to...
Abstract Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 37
SubjectTerms Aging
Antibodies
Antigenic determinants
B cells
Biomedical and Life Sciences
Biomedicine
Clinical Nutrition
Geriatrics/Gerontology
Immune response
Immunology
Inflammation
Influenza
Influenza infection
Influenza vaccination
Influenza vaccines
Influenza viruses
Public Health
Review
Telomeres
Vaccination
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_0_EAQP9ZTq6tEEH3Qcm2atsnjnnj44iH4dW8hX9XFo5W2d3D71ztJ28WecqBvbTOBJDuZzG8z8xuA566oHCsLEbsy0TFjDu2gy2hcJZZS4TMhjQ7FJsrDQ350JD6MSWHdFO0-XUkGSx22NS_2OjyZShF7uBOASry5DFdyzzbjMfrHL5P99QzobEqP-Wu_2REUmPr_tMe_HUjngyXP3ZiGg-jg9v9N4Q7cGh1Psho05S5ccvUCrg2lKM8WcP39eMm-gJvDX3lkyFBawHJI4SVf3XGlWkdekOlD0_64B3bl6xwRxPaoJR3ZJ_4ugFgX4kSIqi0-e9e0cxbf-rVu7Blph9BclO8b7BoKpWwUmULD6tDvVBkcUVCdXfh88PbTm3fxWLshNgXL-9gaYXNrE255UlDEPTnT1OSa60qXRcVLrlJheMZsaZVnlBEZq3SqWepMnlGd3YeduqndQyApymYK3VBEaizRVKTKsTzR2mSVSx2LIJ1-TmlGYnNfX-NYBoDDCzmsu8R1l2Hd5SaCV9s-Pwdajwul972WbCU9JXf40LTf5LjDJRMejZY8caZiTillUsuFtql2IqdVEsFLr2PSGw4cnlFj_gNO0lNwyRX6yixH-FpGsJxJ4oY3s-Znk5ZK3-Sj5GrXnHSSsoIjAEQvOoIHg9Zux5xlFH15mkVQzvR5Nql5S73-HvjGPd8TGvYIXk9aLUdD112waI_-Tfwx3KB-Y_gIS7GEnb49cU_gqjnt1137NOzwX_oKTEo
  priority: 102
  providerName: Springer Nature
Title Aging induces B cell defects and decreased antibody responses to influenza infection and vaccination
URI https://link.springer.com/article/10.1186/s12979-020-00210-z
https://www.ncbi.nlm.nih.gov/pubmed/33292323
https://www.proquest.com/docview/2468675085
https://pubmed.ncbi.nlm.nih.gov/PMC7674578
https://doaj.org/article/494261780ecf4eaaac1d89bd1be952f0
Volume 17
WOSCitedRecordID wos000595108600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1742-4933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034964
  issn: 1742-4933
  databaseCode: RBZ
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1742-4933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034964
  issn: 1742-4933
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1742-4933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034964
  issn: 1742-4933
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-4933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034964
  issn: 1742-4933
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1742-4933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034964
  issn: 1742-4933
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-4933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034964
  issn: 1742-4933
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1742-4933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034964
  issn: 1742-4933
  databaseCode: RSV
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BeYgLguUVWFZGQnCAqHk4sX3cRa3g0NWqvMrJ8itiRZVFm22l7q9n7CSrpkjlwiWKY1tyPOPxfMn4G4DXrqwcZaWIHUt0TKlDO-jyLK4Sm2XCn4Q0OiSbYPM5PzkRi0upvnxMWEsP3E7cPhXeyWc8caaiTillUsuFtql2osiqgNYTJnow1dpgz4JO-yMyvNxvcFdjIvZQKYCceDvYhgJb_982-dKmdDVg8spf07AZHT6A-50XSabt6B_CDVeP4E6bV_JiBHePuj_mIxi352_Jd3daqbUjb0j_YLX-9Qjs1CcpIgjMUcQNmRH_IZ9YF4I8iKot3nu_snEWS5ulXtkLsm7jarH9ZoVdQ5aTrSJ9XFcd-p0rgyMIcn8MXw8Pvnz4GHeJF2JT0mITWyNsYW3CLU_KDEFLQXVmCs11pVlZccZVKgzPqWVWeToYkdNKp5qmzhR5pvMnsFevavcMCEpO5Qp9SIRZNNGZSJWjRaK1ySuXOhpB2stBmo6V3CfHOJUBnfBStrKTKDsZZCe3Ebzb9fndcnJc23rmxbtr6fm0wwPUMtlpmfyXlkXw1iuH9Kseh2dUd3gBX9LzZ8kpOrq0QOzJIhgPWuJqNYPqV716SV_lQ9xqtzprZEZLjugNXeAInrbqthtznmfoiGd5BGygiIOXGtbUy5-BLNyTNaFVjuB9r7Kys1LNNZP2_H9M2gu4l_kl54MmxRj2Nusz9xJum_PNsllP4CY7YeHKJ3BrdjBfHE_CIsbS4tPR4geWjj9_-wMoIkl-
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BOSXEsVyBAkZC8AARieMk9uMWURXRrpAotG-Wr8CKKkHJtlL31zN2khVbUCV4S-yxZDsz4_niOQBeuKJyrCxE7MpEx4w51IMuo3GVWEqFj4Q0OhSbKGczfngoPg1BYd3o7T5eSQZNHcSaF287PJlKEXu4E4BKvLwIl5gvs-Mx-uevo_71GdDZGB7z13FrR1DI1P-nPv7tQDrrLHnmxjQcRNu3_m8Jt-HmYHiSac8pd-CCqydwpS9FeTqBq3vDJfsEbvS_8kgfoTSBzT6Elxy4o0q1jrwkY0PT_rgLdurrHBHE9sglHdki_i6AWBf8RIiqLT5707RzFt8Wc93YU9L2rrlIv2hwaCiUslRkdA2rw7gTZXBGgXXuwZft9_vvduKhdkNsCpYvYmuEza1NuOVJQRH35ExTk2uuK10WFS-5SoXhGbOlVT6jjMhYpVPNUmfyjOrsPmzUTe0eAkmRNlNohiJSY4mmIlWO5YnWJqtc6lgE6fg5pRkSm_v6GkcyABxeyH7fJe67DPsulxG8Xo352af1OJd6y3PJitKn5A4NTftNDhIumfBotOSJMxVzSimTWi60TbUTOa2SCF55HpNeceD0jBriH3CRPgWXnKKtzHKEr2UEm2uUKPBmrfv5yKXSd3kvudo1x52krOAIANGKjuBBz7WrOWcZRVueZhGUa_y8tqj1nnr-PeQb9_meULFH8Gbkajkouu6cTXv0b-TP4NrO_t6u3P0w-_gYrlMvJN7bUmzCxqI9dk_gsjlZzLv2aZD2X44nTy4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BgQoJcSxXYAEjIXiAqDmcxH7cAhUIWFUcpW-Wr8CKKqmStFL31zN2klW3oEqItyQeS7Z3PJ5vPfMNwDObl5YWOQ9tEamQUot20KZJWEYmSbjLhNTKF5so5nO2v893T2Xx-2j38Uqyz2lwLE1Vt3Voyn6Ls3yrxVOq4KGDPh60hMuLcIkiknFBXZ-_7I222LGh0zFV5q_91o4jz9r_p20-dTidDZw8c3vqD6WdG_8_nZtwfXBIyazXoFtwwVYTuNKXqDyZwOan4fJ9Atf6v_hIn7k0gWmf2ku-24NSNpY8J-OHuvl1G8zM1T8iiPlRe1qyTdwdATHWx48QWRl8di5raw2-dQtVmxPS9CG7KN_V2NUXUFlKMoaMVb7fsdQ4Iq9Sd-Dbztuvr9-FQ02HUOc060KjucmMiZhhUZ4gHsqoSnSmmCpVkZesYDLmmqXUFEY6phme0lLFisZWZ2mi0ruwUdWVvQ8kRtlUonuKCI5GKuGxtDSLlNJpaWNLA4jHn1bogfDc1d04EB74sFz06y5w3YVfd7EM4OWqz2FP93Gu9LbTmJWko-r2H-rmhxh2vqDcodSCRVaX1EopdWwYVyZWlmdJGQXwwumbcAYFh6flkBeBk3TUXGKGPjTNENYWAUzXJNEQ6LXmp6PGCtfkoucqWx-1IqE5Q2CI3nUA93oNXo05TRP08ZM0gGJNt9cmtd5SLX56HnLHA4UGP4BXo4aLwQC25yzag38TfwKbu292xMf38w8P4Wri9ogLwuRT2OiaI_sILuvjbtE2j_3G_w1U3lgS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging+induces+B+cell+defects+and+decreased+antibody+responses+to+influenza+infection+and+vaccination&rft.jtitle=Immunity+%26+ageing&rft.au=Frasca%2C+Daniela&rft.au=Blomberg%2C+Bonnie+B&rft.date=2020-11-19&rft.issn=1742-4933&rft.eissn=1742-4933&rft.volume=17&rft.issue=1&rft.spage=37&rft_id=info:doi/10.1186%2Fs12979-020-00210-z&rft_id=info%3Apmid%2F33292323&rft.externalDocID=33292323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-4933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-4933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-4933&client=summon