Aging induces B cell defects and decreased antibody responses to influenza infection and vaccination
Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and...
Uloženo v:
| Vydáno v: | Immunity & ageing Ročník 17; číslo 1; s. 37 - 10 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
19.11.2020
BioMed Central Ltd BMC |
| Témata: | |
| ISSN: | 1742-4933, 1742-4933 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function.
Results
Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres.
Conclusions
Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals. |
|---|---|
| AbstractList | Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function.
Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres.
Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals. Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Results Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Conclusions Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals. Abstract Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Results Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Conclusions Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals. Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Results Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Conclusions Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals. Keywords: Aging, B cells, Antibodies, Influenza infection, Influenza vaccination Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function.BACKGROUNDAging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function.Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres.RESULTSAging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres.Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.CONCLUSIONSAlthough influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals. Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals. |
| ArticleNumber | 37 |
| Audience | Academic |
| Author | Frasca, Daniela Blomberg, Bonnie B. |
| Author_xml | – sequence: 1 givenname: Daniela surname: Frasca fullname: Frasca, Daniela email: dfrasca@med.miami.edu organization: Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine – sequence: 2 givenname: Bonnie B. surname: Blomberg fullname: Blomberg, Bonnie B. organization: Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33292323$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNURB_wB1igSGzYpPiV2N4gTSselSqxgbXlV4JHGXuwk0qdX8-dSak6CFVZ-No53_G1fc6rk5iir6q3GF1iLLqPBRPJZYMIahAiGDW7F9UZ5ow0TFJ68qQ-rc5LWSNEmezYq-qUUiIJJfSscqshxKEO0c3Wl_qqtn4ca-d7b6dS6-igttnr4h3MpmCSu6-zL9sUC-inBGg_zj7u9L4CKqR44O60tSHq_fx19bLXY_FvHsaL6ueXzz-uvzW337_eXK9uG9uxdmqcla51DgknUEcI5i0zxLZGmN7wrhdcaCytoMxxpynvuKSsN9gw7G1LiaEX1c3i65Jeq20OG53vVdJBHRZSHpTOU7CjV0wy0mEukLc981pri52QxmHjZUt6BF6fFq_tbDbeWR-nrMcj0-M_MfxSQ7pT0BdruQCDDw8GOf2efZnUJpT97ero01wUYZ3oeItEC9L3i3TQ0BpcYwJHu5erVdcisMMdB9Xlf1TwOb8JFqLRB1g_At49PcJj739fHwRkEdicSsm-f5RgpPYRU0vEFERMHSKmdgCJfyAbpsMzQzthfB6lC1pgnzj4rNZpzhEi8Rz1BzJS5pI |
| CitedBy_id | crossref_primary_10_3389_fimmu_2021_733566 crossref_primary_10_1186_s12979_025_00511_1 crossref_primary_10_1016_j_jns_2024_123314 crossref_primary_10_1186_s12979_021_00231_2 crossref_primary_10_3390_ijms23179797 crossref_primary_10_1186_s12913_021_06064_5 crossref_primary_10_3389_fimmu_2025_1596686 crossref_primary_10_1080_21645515_2022_2090176 crossref_primary_10_1002_cbf_70090 crossref_primary_10_1055_a_2500_2121 crossref_primary_10_1007_s12016_021_08905_x crossref_primary_10_1186_s12979_023_00348_6 crossref_primary_10_1016_j_phrs_2023_106916 crossref_primary_10_7554_eLife_70554 crossref_primary_10_1016_j_jvacx_2025_100662 crossref_primary_10_3389_fimmu_2022_797918 crossref_primary_10_4103_ohbl_ohbl_30_23 crossref_primary_10_3389_fimmu_2023_1231274 crossref_primary_10_1080_21645515_2023_2271304 crossref_primary_10_1016_S2213_2600_21_00158_2 crossref_primary_10_1186_s12967_025_06600_5 crossref_primary_10_3389_fimmu_2021_681449 crossref_primary_10_1038_s41573_024_01126_9 crossref_primary_10_3390_vaccines10111894 crossref_primary_10_3390_biom13071085 crossref_primary_10_3390_biomedicines9050516 crossref_primary_10_1016_j_antiviral_2021_105229 crossref_primary_10_1161_HYPERTENSIONAHA_121_18112 crossref_primary_10_1186_s12979_025_00507_x crossref_primary_10_1080_19490976_2024_2426619 crossref_primary_10_3390_vaccines12060618 crossref_primary_10_1186_s12979_023_00399_9 crossref_primary_10_1038_s43587_025_00906_1 crossref_primary_10_1016_j_ebiom_2025_105697 crossref_primary_10_1016_j_addr_2022_114175 crossref_primary_10_1097_QAD_0000000000003680 crossref_primary_10_3390_vaccines10040494 crossref_primary_10_1016_j_surg_2021_03_034 crossref_primary_10_3390_nu16040487 crossref_primary_10_1080_1750743X_2025_2546279 crossref_primary_10_1093_cid_ciab381 crossref_primary_10_1186_s12979_023_00368_2 crossref_primary_10_1016_j_vaccine_2021_12_061 crossref_primary_10_3390_vaccines13090938 crossref_primary_10_3389_fimmu_2023_1190339 crossref_primary_10_1016_j_arr_2021_101541 crossref_primary_10_1016_j_tmaid_2022_102514 crossref_primary_10_3390_vaccines10040607 crossref_primary_10_1007_s00109_022_02193_4 crossref_primary_10_1038_s41541_025_01196_9 crossref_primary_10_1186_s12979_023_00327_x crossref_primary_10_1146_annurev_immunol_090122_042631 crossref_primary_10_1097_WCO_0000000000000960 crossref_primary_10_3389_fimmu_2025_1584876 crossref_primary_10_1186_s12979_024_00444_1 crossref_primary_10_1038_s41422_025_01163_y crossref_primary_10_1007_s40472_023_00405_5 crossref_primary_10_7554_eLife_89712_3 crossref_primary_10_1002_med_21941 crossref_primary_10_1038_s41556_024_01424_9 crossref_primary_10_3389_fimmu_2024_1465006 crossref_primary_10_1016_j_smim_2023_101835 crossref_primary_10_3389_fimmu_2023_1183727 crossref_primary_10_3390_vaccines12060566 crossref_primary_10_1080_21645515_2024_2364480 crossref_primary_10_3389_fimmu_2022_1006710 crossref_primary_10_7554_eLife_89712 crossref_primary_10_1016_j_smim_2023_101842 crossref_primary_10_3390_vaccines12111289 crossref_primary_10_3390_nu15153371 crossref_primary_10_1111_febs_16385 crossref_primary_10_1186_s12979_022_00284_x crossref_primary_10_3389_fimmu_2022_917972 |
| Cites_doi | 10.1016/j.molimm.2016.10.014 10.1080/21645515.2018.1462639 10.1001/jama.1997.03540330050034 10.1016/j.exger.2016.12.001 10.1183/09031936.00186214 10.3389/fimmu.2019.00180 10.1001/jama.2020.6266 10.1038/oby.2008.379 10.1126/scitranslmed.3000799 10.1016/S0047-6374(03)00013-7 10.1007/s10522-015-9578-8 10.1002/oby.21383 10.1128/JVI.00797-19 10.1001/jama.2009.1583 10.1084/jem.20070891 10.1186/s12979-020-00181-1 10.4049/jimmunol.1502448 10.18632/aging.100720 10.1016/j.exger.2013.12.013 10.1016/S0531-5565(99)00030-3 10.3389/fimmu.2016.00450 10.1016/S0140-6736(17)33293-2 10.1128/CMR.00058-05 10.1126/sciimmunol.aal4656 10.1016/S1473-3099(07)70236-0 10.1016/j.mad.2013.11.008 10.1016/S0140-6736(20)30211-7 10.1016/j.vaccine.2015.11.058 10.1371/journal.pone.0152034 10.3389/fimmu.2014.00012 10.1093/intimm/dxr123 10.1128/IAI.41.2.540-545.1983 10.7326/0003-4819-123-7-199510010-00008 10.1128/JVI.07085-11 10.1126/scitranslmed.3004794 10.1016/j.clim.2018.02.003 10.4049/jimmunol.0803449 10.1371/journal.pone.0219545 10.1371/journal.pone.0128269 10.1038/msb.2013.15 10.1038/350569a0 10.4049/jimmunol.0901022 10.4049/jimmunol.1601106 10.1073/pnas.1321060111 10.1172/JCI41902 10.1016/j.vaccine.2013.05.003 10.1016/j.immuni.2015.11.012 10.1016/j.coi.2009.05.023 10.1016/j.cell.2014.03.031 10.1016/j.tem.2016.09.005 10.1182/blood-2011-01-330530 10.1128/JVI.02871-14 10.1084/jem.20072683 10.1111/jvh.12659 10.1016/S0140-6736(12)62167-9 10.1016/j.vaccine.2012.01.015 10.1016/j.coi.2010.04.009 10.1111/j.1365-2362.2009.02207.x 10.1038/nature21363 10.3389/fimmu.2019.02616 10.3389/fimmu.2018.00591 10.1084/jem.20030802 10.1016/j.imlet.2014.06.009 10.1084/jem.20171127 10.4049/jimmunol.1500520 10.1016/S0531-5565(01)00210-8 10.1161/HYPERTENSIONAHA.111.175315 10.1186/1742-4933-10-14 10.1038/ni923 10.1016/j.cytogfr.2016.03.008 10.1007/s10334-005-0104-x 10.1093/infdis/jiv202 10.4161/hv.4.2.5169 10.1016/S0264-410X(02)00041-5 10.1002/ca.20543 10.1016/j.vaccine.2009.01.136 10.4049/jimmunol.1202438 10.1111/j.1474-9726.2010.00608.x 10.1016/j.exger.2018.01.019 10.4049/jimmunol.1900922 10.1016/j.vaccine.2016.11.013 10.1111/j.1749-6632.2000.tb06651.x 10.1016/j.mad.2011.08.005 10.1038/nature06890 10.4049/jimmunol.1600522 10.1098/rstb.2014.0237 10.1016/j.vaccine.2010.10.023 10.1016/j.immuni.2020.03.020 10.1016/j.clim.2018.01.011 10.4049/jimmunol.180.8.5283 10.1038/sj.ijo.0800777 10.1016/j.vaccine.2020.06.047 10.1182/blood-2011-01-331462 10.1016/j.exger.2014.01.004 10.1016/j.clim.2004.05.010 10.1172/JCI57834 10.1080/21645515.2017.1338547 10.1016/j.vaccine.2012.11.041 10.1371/journal.ppat.1002920 10.4049/jimmunol.168.11.5893 10.1016/S0092-8674(00)00078-7 10.1016/j.chom.2019.01.002 10.1002/jmv.25781 10.1093/infdis/jiu573 10.1016/j.mad.2009.08.003 10.1016/j.cellimm.2017.04.007 10.4049/jimmunol.167.6.3231 10.4049/jimmunol.1301384 10.1016/j.cellimm.2017.05.009 10.1001/jama.289.2.179 10.1016/j.vaccine.2016.04.023 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2020 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1186/s12979-020-00210-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health Biology Social Welfare & Social Work |
| EISSN | 1742-4933 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_494261780ecf4eaaac1d89bd1be952f0 PMC7674578 A650457167 33292323 10_1186_s12979_020_00210_z |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: National Institute on Aging grantid: AG32576; AG059719; AG023717 funderid: http://dx.doi.org/10.13039/100000049 – fundername: NIA NIH HHS grantid: AG059719 – fundername: NIA NIH HHS grantid: AG023717 – fundername: NIA NIH HHS grantid: R01 AG023717 – fundername: NIA NIH HHS grantid: AG32576 – fundername: ; grantid: AG32576; AG059719; AG023717 |
| GroupedDBID | --- 0R~ 29I 2WC 53G 5GY 5VS 7X7 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR ITC KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M AAYXX AFFHD CITATION ALIPV NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c645t-dc9d5dd08d806221754b2c5b8bfb76f878a19c834d7da3767934fb1b41ec532b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 84 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000595108600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1742-4933 |
| IngestDate | Mon Nov 10 04:34:39 EST 2025 Tue Nov 04 01:47:21 EST 2025 Thu Sep 04 18:18:55 EDT 2025 Tue Nov 11 10:20:05 EST 2025 Tue Nov 04 17:19:33 EST 2025 Thu Apr 03 06:53:58 EDT 2025 Tue Nov 18 20:55:43 EST 2025 Sat Nov 29 03:39:05 EST 2025 Sat Sep 06 07:19:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Aging Antibodies B cells Influenza infection Influenza vaccination |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c645t-dc9d5dd08d806221754b2c5b8bfb76f878a19c834d7da3767934fb1b41ec532b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://doaj.org/article/494261780ecf4eaaac1d89bd1be952f0 |
| PMID | 33292323 |
| PQID | 2468675085 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_494261780ecf4eaaac1d89bd1be952f0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7674578 proquest_miscellaneous_2468675085 gale_infotracmisc_A650457167 gale_infotracacademiconefile_A650457167 pubmed_primary_33292323 crossref_primary_10_1186_s12979_020_00210_z crossref_citationtrail_10_1186_s12979_020_00210_z springer_journals_10_1186_s12979_020_00210_z |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-19 |
| PublicationDateYYYYMMDD | 2020-11-19 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Immunity & ageing |
| PublicationTitleAbbrev | Immun Ageing |
| PublicationTitleAlternate | Immun Ageing |
| PublicationYear | 2020 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | EA Voigt (210_CR47) 2019; 10 JK Louie (210_CR14) 2009; 302 DG Adlowitz (210_CR91) 2015; 10 A Silaghi (210_CR108) 2008; 16 DB Burlington (210_CR28) 1983; 41 C Wehr (210_CR92) 2004; 113 N Gensous (210_CR81) 2018; 105 N Claes (210_CR89) 2016; 197 D Frasca (210_CR58) 2015; 195 DK Dunn-Walters (210_CR76) 2010; 22 S Avey (210_CR48) 2020; 204 JE McElhaney (210_CR53) 2012; 30 N Jiang (210_CR75) 2013; 5 DM Murasko (210_CR27) 2002; 37 SF Andrews (210_CR33) 2015; 89 D Frasca (210_CR70) 2019; 14 S Herold (210_CR17) 2015; 45 L Simonsen (210_CR37) 2007; 7 A Clegg (210_CR15) 2013; 381 O Finco (210_CR26) 2014; 5 JA McMurry (210_CR29) 2008; 4 N Chen (210_CR19) 2020; 395 JD Allen (210_CR12) 2018; 14 S Moir (210_CR95) 2008; 205 Y Hao (210_CR96) 2011; 118 D Frasca (210_CR8) 2016; 17 CJ Wei (210_CR24) 2010; 2 D Furman (210_CR44) 2013; 9 210_CR93 E Derhovanessian (210_CR51) 2013; 31 JA McCullers (210_CR22) 2006; 19 D Corti (210_CR31) 2010; 120 EH Blackburn (210_CR111) 1991; 350 G Colonna-Romano (210_CR82) 2003; 124 D Frasca (210_CR63) 2016; 24 D Frasca (210_CR87) 2017; 87 D Frasca (210_CR65) 2008; 180 L Landro (210_CR84) 2009; 39 ST Parish (210_CR6) 2009; 182 AS Ryan (210_CR106) 1999; 23 Y Saisho (210_CR107) 2007; 20 E Beli (210_CR54) 2011; 132 210_CR62 D Frasca (210_CR71) 2016; 34 SL Swain (210_CR101) 2017; 321 PA Gross (210_CR36) 1995; 123 H Gonda (210_CR67) 2003; 198 LM Russell Knode (210_CR99) 2017; 198 C Wang (210_CR79) 2014; 192 A Didierlaurent (210_CR18) 2008; 205 M Muramatsu (210_CR64) 2000; 102 MR Castrucci (210_CR39) 2018; 14 M Saurwein-Teissl (210_CR32) 2002; 168 C Franceschi (210_CR3) 2000; 908 AJ Nipper (210_CR69) 2018; 193 S Sasaki (210_CR73) 2011; 121 AV Rubtsov (210_CR97) 2011; 118 210_CR77 JL Johnson (210_CR100) 2020; 52 J Illingworth (210_CR94) 2013; 190 T Tchkonia (210_CR102) 2010; 9 JE McElhaney (210_CR2) 2009; 21 G Colonna-Romano (210_CR90) 2009; 130 CE Sayegh (210_CR66) 2003; 4 D Frasca (210_CR88) 2017; 321 210_CR42 A Przemska-Kosicka (210_CR55) 2018; 9 K Najarro (210_CR110) 2015; 212 210_CR40 JE McElhaney (210_CR10) 2020; 17 WW Thompson (210_CR13) 2003; 289 C Franceschi (210_CR9) 2017; 28 A Mosterin Hopping (210_CR34) 2016; 34 E Bryl (210_CR4) 2001; 167 J Wrammert (210_CR30) 2008; 453 D Frasca (210_CR59) 2010; 28 GS Hotamisligil (210_CR7) 2017; 542 LRK Rogers (210_CR49) 2019; 10 D Thindwa (210_CR23) 2020; 38 MC Foster (210_CR104) 2011; 58 JE McElhaney (210_CR52) 2009; 27 JS Tsang (210_CR43) 2014; 157 L Ferrucci (210_CR1) 1997; 277 D Furman (210_CR45) 2014; 111 B Young (210_CR35) 2017; 35 C Henry (210_CR80) 2019; 25 K Haq (210_CR16) 2014; 162 J Thakar (210_CR50) 2015; 7 MT Zimmermann (210_CR86) 2016; 11 J Machann (210_CR105) 2005; 18 210_CR21 210_CR20 R Goenka (210_CR74) 2014; 54 D Frasca (210_CR61) 2013; 31 D Saleiro (210_CR85) 2016; 29 T Vu (210_CR38) 2002; 20 S Khurana (210_CR72) 2012; 8 A Panda (210_CR57) 2010; 184 M Zamboni (210_CR103) 2014; 136–137 D Frasca (210_CR5) 2014; 54 CH Ju (210_CR78) 2018; 193 RB Kennedy (210_CR46) 2016; 7 L Robert (210_CR109) 1999; 34 S Mohanty (210_CR56) 2015; 211 D Fang (210_CR83) 2018; 215 MS Naradikian (210_CR98) 2016; 197 D Frasca (210_CR60) 2013; 10 N Verma (210_CR25) 2012; 86 AD Iuliano (210_CR11) 2018; 391 HI Nakaya (210_CR41) 2015; 43 J Hauser (210_CR68) 2016; 80 |
| References_xml | – volume: 80 start-page: 78 year: 2016 ident: 210_CR68 publication-title: Mol Immunol doi: 10.1016/j.molimm.2016.10.014 – volume: 14 start-page: 1840 issue: 8 year: 2018 ident: 210_CR12 publication-title: Hum Vaccin Immunother. doi: 10.1080/21645515.2018.1462639 – volume: 277 start-page: 728 issue: 9 year: 1997 ident: 210_CR1 publication-title: JAMA. doi: 10.1001/jama.1997.03540330050034 – volume: 87 start-page: 113 issue: Pt A year: 2017 ident: 210_CR87 publication-title: Exp Gerontol doi: 10.1016/j.exger.2016.12.001 – volume: 45 start-page: 1463 issue: 5 year: 2015 ident: 210_CR17 publication-title: Eur Respir J doi: 10.1183/09031936.00186214 – volume: 10 start-page: 180 year: 2019 ident: 210_CR47 publication-title: Front Immunol doi: 10.3389/fimmu.2019.00180 – ident: 210_CR21 doi: 10.1001/jama.2020.6266 – volume: 16 start-page: 2424 issue: 11 year: 2008 ident: 210_CR108 publication-title: Obesity (Silver Spring) doi: 10.1038/oby.2008.379 – volume: 2 start-page: 24ra21 issue: 24 year: 2010 ident: 210_CR24 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3000799 – volume: 124 start-page: 389 issue: 4 year: 2003 ident: 210_CR82 publication-title: Mech Ageing Dev doi: 10.1016/S0047-6374(03)00013-7 – volume: 17 start-page: 7 issue: 1 year: 2016 ident: 210_CR8 publication-title: Biogerontology. doi: 10.1007/s10522-015-9578-8 – volume: 24 start-page: 615 issue: 3 year: 2016 ident: 210_CR63 publication-title: Obesity (Silver Spring) doi: 10.1002/oby.21383 – ident: 210_CR40 doi: 10.1128/JVI.00797-19 – volume: 302 start-page: 1896 issue: 17 year: 2009 ident: 210_CR14 publication-title: JAMA. doi: 10.1001/jama.2009.1583 – volume: 205 start-page: 323 issue: 2 year: 2008 ident: 210_CR18 publication-title: J Exp Med doi: 10.1084/jem.20070891 – volume: 17 start-page: 10 year: 2020 ident: 210_CR10 publication-title: Immun Ageing doi: 10.1186/s12979-020-00181-1 – volume: 197 start-page: 4576 issue: 12 year: 2016 ident: 210_CR89 publication-title: J Immunol doi: 10.4049/jimmunol.1502448 – volume: 7 start-page: 38 issue: 1 year: 2015 ident: 210_CR50 publication-title: Aging (Albany NY) doi: 10.18632/aging.100720 – volume: 54 start-page: 109 year: 2014 ident: 210_CR74 publication-title: Exp Gerontol doi: 10.1016/j.exger.2013.12.013 – volume: 34 start-page: 491 issue: 4 year: 1999 ident: 210_CR109 publication-title: Exp Gerontol doi: 10.1016/S0531-5565(99)00030-3 – volume: 7 start-page: 450 year: 2016 ident: 210_CR46 publication-title: Front Immunol doi: 10.3389/fimmu.2016.00450 – volume: 391 start-page: 1285 issue: 10127 year: 2018 ident: 210_CR11 publication-title: Lancet. doi: 10.1016/S0140-6736(17)33293-2 – volume: 19 start-page: 571 issue: 3 year: 2006 ident: 210_CR22 publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00058-05 – ident: 210_CR42 doi: 10.1126/sciimmunol.aal4656 – volume: 7 start-page: 658 issue: 10 year: 2007 ident: 210_CR37 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(07)70236-0 – volume: 136–137 start-page: 129 year: 2014 ident: 210_CR103 publication-title: Mech Ageing Dev doi: 10.1016/j.mad.2013.11.008 – volume: 395 start-page: 507 issue: 10223 year: 2020 ident: 210_CR19 publication-title: Lancet. doi: 10.1016/S0140-6736(20)30211-7 – volume: 34 start-page: 540 issue: 4 year: 2016 ident: 210_CR34 publication-title: Vaccine. doi: 10.1016/j.vaccine.2015.11.058 – volume: 11 issue: 3 year: 2016 ident: 210_CR86 publication-title: PLoS One doi: 10.1371/journal.pone.0152034 – volume: 5 start-page: 12 year: 2014 ident: 210_CR26 publication-title: Front Immunol doi: 10.3389/fimmu.2014.00012 – ident: 210_CR62 doi: 10.1093/intimm/dxr123 – volume: 41 start-page: 540 issue: 2 year: 1983 ident: 210_CR28 publication-title: Infect Immun doi: 10.1128/IAI.41.2.540-545.1983 – volume: 123 start-page: 518 issue: 7 year: 1995 ident: 210_CR36 publication-title: Ann Intern Med doi: 10.7326/0003-4819-123-7-199510010-00008 – volume: 86 start-page: 5515 issue: 10 year: 2012 ident: 210_CR25 publication-title: J Virol doi: 10.1128/JVI.07085-11 – volume: 5 start-page: 171ra119 issue: 171 year: 2013 ident: 210_CR75 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3004794 – volume: 193 start-page: 80 year: 2018 ident: 210_CR69 publication-title: Clin Immunol doi: 10.1016/j.clim.2018.02.003 – volume: 182 start-page: 4237 issue: 7 year: 2009 ident: 210_CR6 publication-title: J Immunol doi: 10.4049/jimmunol.0803449 – volume: 14 issue: 7 year: 2019 ident: 210_CR70 publication-title: PLoS One doi: 10.1371/journal.pone.0219545 – volume: 10 issue: 6 year: 2015 ident: 210_CR91 publication-title: PLoS One doi: 10.1371/journal.pone.0128269 – volume: 9 start-page: 659 year: 2013 ident: 210_CR44 publication-title: Mol Syst Biol doi: 10.1038/msb.2013.15 – volume: 350 start-page: 569 issue: 6319 year: 1991 ident: 210_CR111 publication-title: Nature. doi: 10.1038/350569a0 – volume: 184 start-page: 2518 issue: 5 year: 2010 ident: 210_CR57 publication-title: J Immunol doi: 10.4049/jimmunol.0901022 – volume: 198 start-page: 1921 issue: 5 year: 2017 ident: 210_CR99 publication-title: J Immunol doi: 10.4049/jimmunol.1601106 – volume: 111 start-page: 869 issue: 2 year: 2014 ident: 210_CR45 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1321060111 – volume: 120 start-page: 1663 issue: 5 year: 2010 ident: 210_CR31 publication-title: J Clin Invest doi: 10.1172/JCI41902 – volume: 31 start-page: 3603 issue: 35 year: 2013 ident: 210_CR61 publication-title: Vaccine. doi: 10.1016/j.vaccine.2013.05.003 – volume: 43 start-page: 1186 issue: 6 year: 2015 ident: 210_CR41 publication-title: Immunity. doi: 10.1016/j.immuni.2015.11.012 – volume: 21 start-page: 418 issue: 4 year: 2009 ident: 210_CR2 publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2009.05.023 – volume: 157 start-page: 499 issue: 2 year: 2014 ident: 210_CR43 publication-title: Cell. doi: 10.1016/j.cell.2014.03.031 – volume: 28 start-page: 199 issue: 3 year: 2017 ident: 210_CR9 publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2016.09.005 – volume: 118 start-page: 1294 issue: 5 year: 2011 ident: 210_CR96 publication-title: Blood. doi: 10.1182/blood-2011-01-330530 – volume: 89 start-page: 3308 issue: 6 year: 2015 ident: 210_CR33 publication-title: J Virol doi: 10.1128/JVI.02871-14 – volume: 205 start-page: 1797 issue: 8 year: 2008 ident: 210_CR95 publication-title: J Exp Med doi: 10.1084/jem.20072683 – ident: 210_CR93 doi: 10.1111/jvh.12659 – volume: 381 start-page: 752 issue: 9868 year: 2013 ident: 210_CR15 publication-title: Lancet. doi: 10.1016/S0140-6736(12)62167-9 – volume: 30 start-page: 2060 issue: 12 year: 2012 ident: 210_CR53 publication-title: Vaccine. doi: 10.1016/j.vaccine.2012.01.015 – volume: 22 start-page: 514 issue: 4 year: 2010 ident: 210_CR76 publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2010.04.009 – volume: 39 start-page: 1017 issue: 11 year: 2009 ident: 210_CR84 publication-title: Eur J Clin Investig doi: 10.1111/j.1365-2362.2009.02207.x – volume: 542 start-page: 177 issue: 7640 year: 2017 ident: 210_CR7 publication-title: Nature. doi: 10.1038/nature21363 – volume: 10 start-page: 2616 year: 2019 ident: 210_CR49 publication-title: Front Immunol doi: 10.3389/fimmu.2019.02616 – volume: 9 start-page: 591 year: 2018 ident: 210_CR55 publication-title: Front Immunol doi: 10.3389/fimmu.2018.00591 – volume: 198 start-page: 1427 issue: 9 year: 2003 ident: 210_CR67 publication-title: J Exp Med doi: 10.1084/jem.20030802 – volume: 162 start-page: 323 issue: 1 Pt B year: 2014 ident: 210_CR16 publication-title: Immunol Lett doi: 10.1016/j.imlet.2014.06.009 – volume: 215 start-page: 1449 issue: 5 year: 2018 ident: 210_CR83 publication-title: J Exp Med doi: 10.1084/jem.20171127 – volume: 195 start-page: 2134 issue: 5 year: 2015 ident: 210_CR58 publication-title: J Immunol doi: 10.4049/jimmunol.1500520 – volume: 37 start-page: 427 issue: 2–3 year: 2002 ident: 210_CR27 publication-title: Exp Gerontol doi: 10.1016/S0531-5565(01)00210-8 – volume: 58 start-page: 784 issue: 5 year: 2011 ident: 210_CR104 publication-title: Hypertension. doi: 10.1161/HYPERTENSIONAHA.111.175315 – volume: 10 start-page: 14 issue: 1 year: 2013 ident: 210_CR60 publication-title: Immun Ageing doi: 10.1186/1742-4933-10-14 – volume: 4 start-page: 586 issue: 6 year: 2003 ident: 210_CR66 publication-title: Nat Immunol doi: 10.1038/ni923 – volume: 29 start-page: 17 year: 2016 ident: 210_CR85 publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2016.03.008 – volume: 18 start-page: 128 issue: 3 year: 2005 ident: 210_CR105 publication-title: MAGMA. doi: 10.1007/s10334-005-0104-x – volume: 212 start-page: 1261 issue: 8 year: 2015 ident: 210_CR110 publication-title: J Infect Dis doi: 10.1093/infdis/jiv202 – volume: 4 start-page: 148 issue: 2 year: 2008 ident: 210_CR29 publication-title: Hum Vaccin doi: 10.4161/hv.4.2.5169 – volume: 20 start-page: 1831 issue: 13–14 year: 2002 ident: 210_CR38 publication-title: Vaccine. doi: 10.1016/S0264-410X(02)00041-5 – volume: 20 start-page: 933 issue: 8 year: 2007 ident: 210_CR107 publication-title: Clin Anat doi: 10.1002/ca.20543 – volume: 27 start-page: 2418 issue: 18 year: 2009 ident: 210_CR52 publication-title: Vaccine. doi: 10.1016/j.vaccine.2009.01.136 – volume: 190 start-page: 1038 issue: 3 year: 2013 ident: 210_CR94 publication-title: J Immunol doi: 10.4049/jimmunol.1202438 – volume: 9 start-page: 667 issue: 5 year: 2010 ident: 210_CR102 publication-title: Aging Cell doi: 10.1111/j.1474-9726.2010.00608.x – volume: 105 start-page: 94 year: 2018 ident: 210_CR81 publication-title: Exp Gerontol doi: 10.1016/j.exger.2018.01.019 – volume: 204 start-page: 1661 issue: 6 year: 2020 ident: 210_CR48 publication-title: J Immunol doi: 10.4049/jimmunol.1900922 – volume: 35 start-page: 212 issue: 2 year: 2017 ident: 210_CR35 publication-title: Vaccine. doi: 10.1016/j.vaccine.2016.11.013 – volume: 908 start-page: 244 year: 2000 ident: 210_CR3 publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.2000.tb06651.x – volume: 132 start-page: 503 issue: 10 year: 2011 ident: 210_CR54 publication-title: Mech Ageing Dev doi: 10.1016/j.mad.2011.08.005 – volume: 453 start-page: 667 issue: 7195 year: 2008 ident: 210_CR30 publication-title: Nature. doi: 10.1038/nature06890 – volume: 197 start-page: 1023 issue: 4 year: 2016 ident: 210_CR98 publication-title: J Immunol doi: 10.4049/jimmunol.1600522 – ident: 210_CR77 doi: 10.1098/rstb.2014.0237 – volume: 28 start-page: 8077 issue: 51 year: 2010 ident: 210_CR59 publication-title: Vaccine. doi: 10.1016/j.vaccine.2010.10.023 – volume: 52 start-page: 842 issue: 5 year: 2020 ident: 210_CR100 publication-title: Immunity. doi: 10.1016/j.immuni.2020.03.020 – volume: 193 start-page: 70 year: 2018 ident: 210_CR78 publication-title: Clin Immunol doi: 10.1016/j.clim.2018.01.011 – volume: 180 start-page: 5283 issue: 8 year: 2008 ident: 210_CR65 publication-title: J Immunol doi: 10.4049/jimmunol.180.8.5283 – volume: 23 start-page: 126 issue: 2 year: 1999 ident: 210_CR106 publication-title: Int J Obes Relat Metab Disord doi: 10.1038/sj.ijo.0800777 – volume: 38 start-page: 5398 issue: 34 year: 2020 ident: 210_CR23 publication-title: Vaccine. doi: 10.1016/j.vaccine.2020.06.047 – volume: 118 start-page: 1305 issue: 5 year: 2011 ident: 210_CR97 publication-title: Blood. doi: 10.1182/blood-2011-01-331462 – volume: 54 start-page: 116 year: 2014 ident: 210_CR5 publication-title: Exp Gerontol doi: 10.1016/j.exger.2014.01.004 – volume: 113 start-page: 161 issue: 2 year: 2004 ident: 210_CR92 publication-title: Clin Immunol doi: 10.1016/j.clim.2004.05.010 – volume: 121 start-page: 3109 issue: 8 year: 2011 ident: 210_CR73 publication-title: J Clin Invest doi: 10.1172/JCI57834 – volume: 14 start-page: 637 issue: 3 year: 2018 ident: 210_CR39 publication-title: Hum Vaccin Immunother doi: 10.1080/21645515.2017.1338547 – volume: 31 start-page: 685 issue: 4 year: 2013 ident: 210_CR51 publication-title: Vaccine. doi: 10.1016/j.vaccine.2012.11.041 – volume: 8 issue: 9 year: 2012 ident: 210_CR72 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002920 – volume: 168 start-page: 5893 issue: 11 year: 2002 ident: 210_CR32 publication-title: J Immunol doi: 10.4049/jimmunol.168.11.5893 – volume: 102 start-page: 553 issue: 5 year: 2000 ident: 210_CR64 publication-title: Cell. doi: 10.1016/S0092-8674(00)00078-7 – volume: 25 start-page: 357 issue: 3 year: 2019 ident: 210_CR80 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.01.002 – ident: 210_CR20 doi: 10.1002/jmv.25781 – volume: 211 start-page: 1174 issue: 7 year: 2015 ident: 210_CR56 publication-title: J Infect Dis doi: 10.1093/infdis/jiu573 – volume: 130 start-page: 681 issue: 10 year: 2009 ident: 210_CR90 publication-title: Mech Ageing Dev doi: 10.1016/j.mad.2009.08.003 – volume: 321 start-page: 68 year: 2017 ident: 210_CR88 publication-title: Cell Immunol doi: 10.1016/j.cellimm.2017.04.007 – volume: 167 start-page: 3231 issue: 6 year: 2001 ident: 210_CR4 publication-title: J Immunol doi: 10.4049/jimmunol.167.6.3231 – volume: 192 start-page: 603 issue: 2 year: 2014 ident: 210_CR79 publication-title: J Immunol doi: 10.4049/jimmunol.1301384 – volume: 321 start-page: 52 year: 2017 ident: 210_CR101 publication-title: Cell Immunol doi: 10.1016/j.cellimm.2017.05.009 – volume: 289 start-page: 179 issue: 2 year: 2003 ident: 210_CR13 publication-title: JAMA. doi: 10.1001/jama.289.2.179 – volume: 34 start-page: 2834 issue: 25 year: 2016 ident: 210_CR71 publication-title: Vaccine. doi: 10.1016/j.vaccine.2016.04.023 |
| SSID | ssj0034964 |
| Score | 2.515282 |
| SecondaryResourceType | review_article |
| Snippet | Background
Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to... Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among... Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to... Abstract Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 37 |
| SubjectTerms | Aging Antibodies Antigenic determinants B cells Biomedical and Life Sciences Biomedicine Clinical Nutrition Geriatrics/Gerontology Immune response Immunology Inflammation Influenza Influenza infection Influenza vaccination Influenza vaccines Influenza viruses Public Health Review Telomeres Vaccination |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_0_EAQP9ZTq6tEEH3Qcm2atsnjnnj44iH4dW8hX9XFo5W2d3D71ztJ28WecqBvbTOBJDuZzG8z8xuA566oHCsLEbsy0TFjDu2gy2hcJZZS4TMhjQ7FJsrDQ350JD6MSWHdFO0-XUkGSx22NS_2OjyZShF7uBOASry5DFdyzzbjMfrHL5P99QzobEqP-Wu_2REUmPr_tMe_HUjngyXP3ZiGg-jg9v9N4Q7cGh1Psho05S5ccvUCrg2lKM8WcP39eMm-gJvDX3lkyFBawHJI4SVf3XGlWkdekOlD0_64B3bl6xwRxPaoJR3ZJ_4ugFgX4kSIqi0-e9e0cxbf-rVu7Blph9BclO8b7BoKpWwUmULD6tDvVBkcUVCdXfh88PbTm3fxWLshNgXL-9gaYXNrE255UlDEPTnT1OSa60qXRcVLrlJheMZsaZVnlBEZq3SqWepMnlGd3YeduqndQyApymYK3VBEaizRVKTKsTzR2mSVSx2LIJ1-TmlGYnNfX-NYBoDDCzmsu8R1l2Hd5SaCV9s-Pwdajwul972WbCU9JXf40LTf5LjDJRMejZY8caZiTillUsuFtql2IqdVEsFLr2PSGw4cnlFj_gNO0lNwyRX6yixH-FpGsJxJ4oY3s-Znk5ZK3-Sj5GrXnHSSsoIjAEQvOoIHg9Zux5xlFH15mkVQzvR5Nql5S73-HvjGPd8TGvYIXk9aLUdD112waI_-Tfwx3KB-Y_gIS7GEnb49cU_gqjnt1137NOzwX_oKTEo priority: 102 providerName: Springer Nature |
| Title | Aging induces B cell defects and decreased antibody responses to influenza infection and vaccination |
| URI | https://link.springer.com/article/10.1186/s12979-020-00210-z https://www.ncbi.nlm.nih.gov/pubmed/33292323 https://www.proquest.com/docview/2468675085 https://pubmed.ncbi.nlm.nih.gov/PMC7674578 https://doaj.org/article/494261780ecf4eaaac1d89bd1be952f0 |
| Volume | 17 |
| WOSCitedRecordID | wos000595108600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1742-4933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034964 issn: 1742-4933 databaseCode: RBZ dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1742-4933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034964 issn: 1742-4933 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1742-4933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034964 issn: 1742-4933 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-4933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034964 issn: 1742-4933 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1742-4933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034964 issn: 1742-4933 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-4933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034964 issn: 1742-4933 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1742-4933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034964 issn: 1742-4933 databaseCode: RSV dateStart: 20041201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BeYgLguUVWFZGQnCAqHk4sX3cRa3g0NWqvMrJ8itiRZVFm22l7q9n7CSrpkjlwiWKY1tyPOPxfMn4G4DXrqwcZaWIHUt0TKlDO-jyLK4Sm2XCn4Q0OiSbYPM5PzkRi0upvnxMWEsP3E7cPhXeyWc8caaiTillUsuFtql2osiqgNYTJnow1dpgz4JO-yMyvNxvcFdjIvZQKYCceDvYhgJb_982-dKmdDVg8spf07AZHT6A-50XSabt6B_CDVeP4E6bV_JiBHePuj_mIxi352_Jd3daqbUjb0j_YLX-9Qjs1CcpIgjMUcQNmRH_IZ9YF4I8iKot3nu_snEWS5ulXtkLsm7jarH9ZoVdQ5aTrSJ9XFcd-p0rgyMIcn8MXw8Pvnz4GHeJF2JT0mITWyNsYW3CLU_KDEFLQXVmCs11pVlZccZVKgzPqWVWeToYkdNKp5qmzhR5pvMnsFevavcMCEpO5Qp9SIRZNNGZSJWjRaK1ySuXOhpB2stBmo6V3CfHOJUBnfBStrKTKDsZZCe3Ebzb9fndcnJc23rmxbtr6fm0wwPUMtlpmfyXlkXw1iuH9Kseh2dUd3gBX9LzZ8kpOrq0QOzJIhgPWuJqNYPqV716SV_lQ9xqtzprZEZLjugNXeAInrbqthtznmfoiGd5BGygiIOXGtbUy5-BLNyTNaFVjuB9r7Kys1LNNZP2_H9M2gu4l_kl54MmxRj2Nusz9xJum_PNsllP4CY7YeHKJ3BrdjBfHE_CIsbS4tPR4geWjj9_-wMoIkl- |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BOSXEsVyBAkZC8AARieMk9uMWURXRrpAotG-Wr8CKKkHJtlL31zN2khVbUCV4S-yxZDsz4_niOQBeuKJyrCxE7MpEx4w51IMuo3GVWEqFj4Q0OhSbKGczfngoPg1BYd3o7T5eSQZNHcSaF287PJlKEXu4E4BKvLwIl5gvs-Mx-uevo_71GdDZGB7z13FrR1DI1P-nPv7tQDrrLHnmxjQcRNu3_m8Jt-HmYHiSac8pd-CCqydwpS9FeTqBq3vDJfsEbvS_8kgfoTSBzT6Elxy4o0q1jrwkY0PT_rgLdurrHBHE9sglHdki_i6AWBf8RIiqLT5707RzFt8Wc93YU9L2rrlIv2hwaCiUslRkdA2rw7gTZXBGgXXuwZft9_vvduKhdkNsCpYvYmuEza1NuOVJQRH35ExTk2uuK10WFS-5SoXhGbOlVT6jjMhYpVPNUmfyjOrsPmzUTe0eAkmRNlNohiJSY4mmIlWO5YnWJqtc6lgE6fg5pRkSm_v6GkcyABxeyH7fJe67DPsulxG8Xo352af1OJd6y3PJitKn5A4NTftNDhIumfBotOSJMxVzSimTWi60TbUTOa2SCF55HpNeceD0jBriH3CRPgWXnKKtzHKEr2UEm2uUKPBmrfv5yKXSd3kvudo1x52krOAIANGKjuBBz7WrOWcZRVueZhGUa_y8tqj1nnr-PeQb9_meULFH8Gbkajkouu6cTXv0b-TP4NrO_t6u3P0w-_gYrlMvJN7bUmzCxqI9dk_gsjlZzLv2aZD2X44nTy4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BgQoJcSxXYAEjIXiAqDmcxH7cAhUIWFUcpW-Wr8CKKqmStFL31zN2klW3oEqItyQeS7Z3PJ5vPfMNwDObl5YWOQ9tEamQUot20KZJWEYmSbjLhNTKF5so5nO2v893T2Xx-2j38Uqyz2lwLE1Vt3Voyn6Ls3yrxVOq4KGDPh60hMuLcIkiknFBXZ-_7I222LGh0zFV5q_91o4jz9r_p20-dTidDZw8c3vqD6WdG_8_nZtwfXBIyazXoFtwwVYTuNKXqDyZwOan4fJ9Atf6v_hIn7k0gWmf2ku-24NSNpY8J-OHuvl1G8zM1T8iiPlRe1qyTdwdATHWx48QWRl8di5raw2-dQtVmxPS9CG7KN_V2NUXUFlKMoaMVb7fsdQ4Iq9Sd-Dbztuvr9-FQ02HUOc060KjucmMiZhhUZ4gHsqoSnSmmCpVkZesYDLmmqXUFEY6phme0lLFisZWZ2mi0ruwUdWVvQ8kRtlUonuKCI5GKuGxtDSLlNJpaWNLA4jHn1bogfDc1d04EB74sFz06y5w3YVfd7EM4OWqz2FP93Gu9LbTmJWko-r2H-rmhxh2vqDcodSCRVaX1EopdWwYVyZWlmdJGQXwwumbcAYFh6flkBeBk3TUXGKGPjTNENYWAUzXJNEQ6LXmp6PGCtfkoucqWx-1IqE5Q2CI3nUA93oNXo05TRP08ZM0gGJNt9cmtd5SLX56HnLHA4UGP4BXo4aLwQC25yzag38TfwKbu292xMf38w8P4Wri9ogLwuRT2OiaI_sILuvjbtE2j_3G_w1U3lgS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging+induces+B+cell+defects+and+decreased+antibody+responses+to+influenza+infection+and+vaccination&rft.jtitle=Immunity+%26+ageing&rft.au=Frasca%2C+Daniela&rft.au=Blomberg%2C+Bonnie+B&rft.date=2020-11-19&rft.issn=1742-4933&rft.eissn=1742-4933&rft.volume=17&rft.issue=1&rft.spage=37&rft_id=info:doi/10.1186%2Fs12979-020-00210-z&rft_id=info%3Apmid%2F33292323&rft.externalDocID=33292323 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-4933&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-4933&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-4933&client=summon |