An algorithmic approach to reducing unexplained pain disparities in underserved populations

Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients’ pain stems from factors extern...

Full description

Saved in:
Bibliographic Details
Published in:Nature medicine Vol. 27; no. 1; pp. 136 - 140
Main Authors: Pierson, Emma, Cutler, David M., Leskovec, Jure, Mullainathan, Sendhil, Obermeyer, Ziad
Format: Journal Article
Language:English
Published: New York Nature Publishing Group US 01.01.2021
Nature Publishing Group
Subjects:
ISSN:1078-8956, 1546-170X, 1546-170X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients’ pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients’ experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3–16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2–11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients’ pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm’s ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients’ pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty. An algorithmic, machine-learning approach to measuring severe pain from osteoarthritis applied to X-ray images of knees suggests that reported disparities in knee pain in underserved populations can be reduced by comparison with use of standard radiographic measures of disease severity.
AbstractList Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients' pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients' experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3-16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2-11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients' pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm's ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients' pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty. An algorithmic, machine-learning approach to measuring severe pain from osteoarthritis applied to X-ray images of knees suggests that reported disparities in knee pain in underserved populations can be reduced by comparison with use of standard radiographic measures of disease severity.
Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients' pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients' experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3-16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2-11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients' pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm's ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients' pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty.
Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients’ pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients’ experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3–16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2–11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients’ pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm’s ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients’ pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty. An algorithmic, machine-learning approach to measuring severe pain from osteoarthritis applied to X-ray images of knees suggests that reported disparities in knee pain in underserved populations can be reduced by comparison with use of standard radiographic measures of disease severity.
Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients' pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients' experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3-16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2-11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients' pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm's ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients' pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty.Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients' pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients' experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3-16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2-11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients' pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm's ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients' pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty.
Audience Academic
Author Pierson, Emma
Obermeyer, Ziad
Leskovec, Jure
Cutler, David M.
Mullainathan, Sendhil
Author_xml – sequence: 1
  givenname: Emma
  surname: Pierson
  fullname: Pierson, Emma
  organization: Department of Computer Science, Stanford University, Microsoft Research
– sequence: 2
  givenname: David M.
  surname: Cutler
  fullname: Cutler, David M.
  organization: Department of Economics, Harvard University
– sequence: 3
  givenname: Jure
  orcidid: 0000-0002-5411-923X
  surname: Leskovec
  fullname: Leskovec, Jure
  organization: Department of Computer Science, Stanford University
– sequence: 4
  givenname: Sendhil
  orcidid: 0000-0001-8508-4052
  surname: Mullainathan
  fullname: Mullainathan, Sendhil
  email: sendhil.mullainathan@chicagobooth.edu
  organization: Booth School of Business, University of Chicago
– sequence: 5
  givenname: Ziad
  surname: Obermeyer
  fullname: Obermeyer, Ziad
  organization: School of Public Health, University of California at Berkeley
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33442014$$D View this record in MEDLINE/PubMed
BookMark eNqNkttq3DAQhkVJaQ7tC_SiGAqlvXCqk2Xpcgk9BAKBnij0Qsj22KuglRzJLunbV7ubkG5YQhHo-P3DaOY_Rgc-eEDoJcGnBDP5PnFSKVJiiktMiKJl_QQdkYqLktT450He41qWUlXiEB2ndIUxZrhSz9AhY5xTTPgR-rXwhXFDiHZarmxbmHGMwbTLYgpFhG5urR-K2cPN6Iz10BVjXorOptFkiYVU5OPsO4gJ4u_1exhnZyYbfHqOnvbGJXhxu56g7x8_fDv7XF5cfjo_W1yUreDVVHYKUyVNXytBOtwSJrBiDe9UU9WkrqjIEyjaiYaDERyD6huqegU9J4ZJyU7Q223cnPr1DGnSK5tacM54CHPSlNcSMyUJzejrB-hVmKPP2a2pmtWCSnFPDcaBtr4PUzTtOqheiAqTHEngTJV7qAE8RONyp3qbr3f40z18Hh3kyu8VvNsRZGaCm2kwc0r6_OuX_2cvf-yyb_5hl2DctEzBzZum7YKvbqs1Nyvo9BjtysQ_-s4-GZBboI0hpQi9bu20aX7-mnWaYL12qt46VWen6o1TdZ2l9IH0LvqjIrYVpQz7AeJ9-x5R_QWSW_VT
CitedBy_id crossref_primary_10_1001_jamapediatrics_2021_3584
crossref_primary_10_1136_annrheumdis_2021_221513
crossref_primary_10_1111_isj_12572
crossref_primary_10_1146_annurev_biodatasci_103123_095332
crossref_primary_10_2106_JBJS_OA_23_00039
crossref_primary_10_3389_fpubh_2023_1211520
crossref_primary_10_1080_15265161_2025_2497972
crossref_primary_10_3390_livers4010004
crossref_primary_10_1109_ACCESS_2024_3439096
crossref_primary_10_1016_j_compbiomed_2023_107569
crossref_primary_10_1097_AOG_0000000000005563
crossref_primary_10_1093_pm_pnaf039
crossref_primary_10_1302_0301_620X_104B8_BJJ_2022_0416
crossref_primary_10_2106_JBJS_22_01186
crossref_primary_10_1371_journal_pdig_0000474
crossref_primary_10_1016_j_joca_2023_11_009
crossref_primary_10_1073_pnas_2303370120
crossref_primary_10_1371_journal_pdig_0000237
crossref_primary_10_1038_s41551_023_01049_7
crossref_primary_10_1038_s41591_024_02885_z
crossref_primary_10_1038_s41591_022_01895_z
crossref_primary_10_1038_s41597_022_01483_3
crossref_primary_10_1016_j_ogla_2021_03_002
crossref_primary_10_1093_jamia_ocab035
crossref_primary_10_1093_tbm_ibae075
crossref_primary_10_1016_j_csbj_2024_08_005
crossref_primary_10_1007_s43681_021_00118_4
crossref_primary_10_1016_j_jacr_2023_06_025
crossref_primary_10_1038_s42256_023_00698_2
crossref_primary_10_1016_j_jpain_2021_07_010
crossref_primary_10_1145_3650206
crossref_primary_10_3390_healthcare10040603
crossref_primary_10_1097_SLA_0000000000006309
crossref_primary_10_1038_s42256_021_00399_8
crossref_primary_10_3390_jcm10225284
crossref_primary_10_1177_1759720X241235805
crossref_primary_10_1111_acem_14962
crossref_primary_10_1001_jamahealthforum_2021_2430
crossref_primary_10_1038_s41591_020_01196_3
crossref_primary_10_1038_s41746_025_01667_2
crossref_primary_10_1136_bmjhci_2021_100459
crossref_primary_10_1146_annurev_biodatasci_122120_025806
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_1080_09540121_2021_1948499
crossref_primary_10_1016_j_jacr_2022_06_008
crossref_primary_10_1007_s10067_024_06946_z
crossref_primary_10_1016_j_otsr_2025_104225
crossref_primary_10_1097_SLA_0000000000005609
crossref_primary_10_1093_pnasnexus_pgae191
crossref_primary_10_3390_pharmaceutics17091119
crossref_primary_10_1016_j_artd_2024_101503
crossref_primary_10_1016_j_cll_2022_09_006
crossref_primary_10_1016_j_ebiom_2023_104467
crossref_primary_10_1093_rheumatology_keab674
crossref_primary_10_1007_s12152_022_09499_7
crossref_primary_10_1016_j_cll_2022_09_004
crossref_primary_10_1148_radiol_241087
crossref_primary_10_1016_j_engappai_2024_109801
crossref_primary_10_1093_qje_qjad055
crossref_primary_10_1109_MC_2022_3190786
crossref_primary_10_1177_20539517211065248
crossref_primary_10_1148_radiol_212830
crossref_primary_10_1080_0020174X_2024_2312207
crossref_primary_10_1038_s41746_022_00707_5
crossref_primary_10_1097_CORR_0000000000002986
crossref_primary_10_2196_43963
crossref_primary_10_1038_s41551_023_01056_8
crossref_primary_10_2106_JBJS_21_01387
crossref_primary_10_1002_jor_26082
crossref_primary_10_1017_hyp_2025_17
crossref_primary_10_1155_2021_4931437
crossref_primary_10_3390_s23020634
crossref_primary_10_1016_j_bbadis_2024_167251
crossref_primary_10_1093_jamia_ocac052
crossref_primary_10_1016_j_jvir_2022_06_003
crossref_primary_10_1016_j_jopan_2021_03_009
crossref_primary_10_1056_NEJMra2214183
crossref_primary_10_1136_bjo_2022_322237
crossref_primary_10_1038_s43856_022_00165_w
crossref_primary_10_1038_s41598_024_65613_0
crossref_primary_10_1038_s41746_025_01801_0
crossref_primary_10_1371_journal_pdig_0000390
crossref_primary_10_2196_43251
crossref_primary_10_1016_j_jacc_2024_03_401
crossref_primary_10_1109_TBME_2023_3274541
crossref_primary_10_1016_j_jaip_2022_01_047
crossref_primary_10_1007_s43681_023_00302_8
crossref_primary_10_1093_jmp_jhaf020
crossref_primary_10_1148_ryai_210290
crossref_primary_10_2105_AJPH_2021_306418
crossref_primary_10_1038_s41467_024_52003_3
crossref_primary_10_1016_j_hlpt_2022_100702
crossref_primary_10_1155_2022_4138666
crossref_primary_10_1038_s41746_024_01005_y
crossref_primary_10_1148_radiol_2021210566
crossref_primary_10_1001_jamahealthforum_2023_2652
crossref_primary_10_1093_eurheartj_ehae794
crossref_primary_10_1038_s41746_022_00595_9
crossref_primary_10_1111_head_14880
crossref_primary_10_1371_journal_pdig_0000023
crossref_primary_10_1038_s41746_023_00766_2
crossref_primary_10_1038_s41746_023_00913_9
crossref_primary_10_1038_s41591_022_01804_4
crossref_primary_10_1038_s41562_023_01555_3
crossref_primary_10_1016_j_joca_2023_11_022
crossref_primary_10_1136_bmjsit_2022_000141
crossref_primary_10_1186_s12889_021_11975_3
crossref_primary_10_1016_j_isci_2025_112131
crossref_primary_10_1016_S0140_6736_21_01152_1
crossref_primary_10_1007_s11926_023_01114_9
crossref_primary_10_1016_j_bonr_2025_101839
crossref_primary_10_1136_bmjopen_2022_069255
crossref_primary_10_1016_j_semarthrit_2023_152321
crossref_primary_10_1016_j_brat_2023_104443
crossref_primary_10_2147_JPR_S495934
crossref_primary_10_2196_44165
crossref_primary_10_1007_s11019_025_10264_9
crossref_primary_10_1055_a_2630_4192
crossref_primary_10_1016_j_rcl_2021_07_006
crossref_primary_10_1371_journal_pdig_0000612
crossref_primary_10_1080_17512433_2023_2294005
crossref_primary_10_1007_s10676_022_09658_7
crossref_primary_10_1038_s41746_022_00720_8
crossref_primary_10_1093_oxrep_grae035
crossref_primary_10_1097_PR9_0000000000001044
crossref_primary_10_3233_JPD_212545
crossref_primary_10_1126_science_abo2788
crossref_primary_10_1016_j_clon_2025_103758
crossref_primary_10_1093_ofid_ofad049
crossref_primary_10_1016_j_jval_2021_08_015
crossref_primary_10_1016_j_jarmac_2021_07_003
crossref_primary_10_1016_j_artmed_2022_102458
crossref_primary_10_1016_j_injury_2024_111358
crossref_primary_10_2217_pmt_2023_0098
crossref_primary_10_1016_j_jpain_2021_10_004
crossref_primary_10_1177_17456916231212138
crossref_primary_10_1007_s13721_023_00437_y
crossref_primary_10_1111_vru_13069
crossref_primary_10_1016_j_ipm_2021_102657
crossref_primary_10_1117_1_JMI_10_6_061106
Cites_doi 10.1002/acr.22412
10.1073/pnas.1516047113
10.1002/acr.22428
10.1371/journal.pmed.1002699
10.1371/journal.pone.0176833
10.1016/j.joca.2011.05.004
10.1038/s41598-018-20132-7
10.1016/j.pain.2008.04.003
10.1016/j.joca.2018.01.020
10.1136/bmj.b2844
10.1002/art.11088
10.1007/s11999-016-4732-4
10.1371/journal.pone.0195075
10.1186/1471-2474-9-163
10.1001/jama.2016.17216
10.1016/j.joca.2006.11.009
10.1016/j.joca.2015.05.003
10.2106/00004623-200706000-00002
10.1016/j.joca.2009.03.003
10.1016/j.cger.2010.03.001
10.1186/1471-2474-9-116
10.5271/sjweh.196
10.1056/NEJMsa021569
10.1371/journal.pmed.1002683
10.1001/jama.2019.14735
10.1016/j.joca.2014.03.009
10.1158/1078-0432.CCR-18-2495
10.1016/j.joca.2009.09.010
10.2106/JBJS.J.01958
10.1097/PAS.0000000000001151
10.1016/j.jpain.2009.10.002
10.1136/ard.16.4.494
10.2519/jospt.1998.28.2.88
10.1109/ICPR.2016.7899799
10.1109/CVPR.2016.319
10.1111/j.2517-6161.1996.tb02080.x
10.1007/978-3-319-10590-1_53
10.1109/CVPR.2009.5206848
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
COPYRIGHT 2021 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/s41591-020-01192-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList





MEDLINE
Research Library Prep

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1546-170X
EndPage 140
ExternalDocumentID A650181260
33442014
10_1038_s41591_020_01192_7
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: US Social Security Administration
  grantid: RDR18000003
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
XRW
CGR
CUY
CVF
ECM
EIF
NPM
ACMFV
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c645t-d90298af7961d0c136093b4d9b5717526175e92d6b4ea640e9fb29f9ef41a3883
IEDL.DBID BENPR
ISICitedReferencesCount 177
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607931400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1078-8956
1546-170X
IngestDate Thu Oct 02 12:05:24 EDT 2025
Mon Oct 06 17:43:36 EDT 2025
Sat Nov 29 13:08:37 EST 2025
Sat Nov 29 11:34:51 EST 2025
Sat Nov 29 10:02:35 EST 2025
Wed Nov 26 10:27:47 EST 2025
Wed Nov 26 10:10:49 EST 2025
Thu May 22 21:32:53 EDT 2025
Wed Feb 19 02:29:10 EST 2025
Sat Nov 29 06:02:28 EST 2025
Tue Nov 18 21:04:19 EST 2025
Fri Feb 21 02:37:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c645t-d90298af7961d0c136093b4d9b5717526175e92d6b4ea640e9fb29f9ef41a3883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5411-923X
0000-0001-8508-4052
PMID 33442014
PQID 2477376286
PQPubID 33975
PageCount 5
ParticipantIDs proquest_miscellaneous_2478039812
proquest_journals_2477376286
gale_infotracmisc_A650181260
gale_infotracgeneralonefile_A650181260
gale_infotracacademiconefile_A650181260
gale_incontextgauss_ISR_A650181260
gale_incontextgauss_IOV_A650181260
gale_healthsolutions_A650181260
pubmed_primary_33442014
crossref_citationtrail_10_1038_s41591_020_01192_7
crossref_primary_10_1038_s41591_020_01192_7
springer_journals_10_1038_s41591_020_01192_7
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Bolen (CR6) 2010; 7
Altman, Gold (CR24) 2007; 15
Bien (CR32) 2018; 15
CR39
CR38
CR37
CR35
CR34
Tibshirani (CR42) 1996; 58
Hoffman Kelly, Trawalter, Axt Jordan, Oliver (CR20) 2016; 113
Englund, Roos, Lohmander (CR23) 2003; 48
Kohn, Sassoon, Fernando (CR36) 2016; 474
Hochberg (CR12) 2019; 322
Anderson, Green, Payne (CR8) 2009; 10
Losina, Thornhill, Rome, Wright, Katz (CR11) 2012; 94
Krause (CR9) 1997; 23
Tiulpin, Thevenot, Rahtu, Lehenkari, Saarakkala (CR45) 2018; 8
CR48
CR46
Roos, Roos, Lohmander, Ekdahl, Beynnon (CR22) 1998; 28
CR44
CR43
CR40
Zech (CR49) 2019; 15
Lingard, Riddle (CR28) 2007; 89
Allen (CR5) 2010; 18
Collins, Katz, Dervan, Losina (CR4) 2014; 22
Rogers, Wilder (CR50) 2008; 9
Eberly (CR2) 2018; 13
CR19
Skinner, Weinstein, Sporer, Wennberg (CR29) 2003; 349
Kellgren, Lawrence (CR17) 1957; 16
CR18
Poleshuck, Green (CR7) 2008; 136
Allen (CR3) 2009; 17
CR10
Sayre (CR16) 2017; 12
Neogi (CR14) 2009; 339
Vina, Ran, Ashbeck, Kwoh (CR13) 2018; 26
Hunter (CR25) 2011; 19
Gulshan (CR41) 2016; 316
Zhang, Jordan (CR1) 2010; 26
Rankin, Alarcon, Chang, Cooney (CR26) 2004; 86
Bedson, Croft (CR15) 2008; 9
Sheehy (CR47) 2015; 23
Riddle, Perera, Jiranek, Dumenci (CR30) 2015; 67
CR21
Losina (CR27) 2015; 67
Xu (CR31) 2019; 25
Steiner (CR33) 2018; 42
L Sheehy (1192_CR47) 2015; 23
KD Allen (1192_CR3) 2009; 17
ER Vina (1192_CR13) 2018; 26
A Tiulpin (1192_CR45) 2018; 8
EA Rankin (1192_CR26) 2004; 86
M Englund (1192_CR23) 2003; 48
E Losina (1192_CR27) 2015; 67
JE Collins (1192_CR4) 2014; 22
JH Kellgren (1192_CR17) 1957; 16
1192_CR21
T Neogi (1192_CR14) 2009; 339
N Krause (1192_CR9) 1997; 23
EC Sayre (1192_CR16) 2017; 12
L Eberly (1192_CR2) 2018; 13
DL Riddle (1192_CR30) 2015; 67
R Tibshirani (1192_CR42) 1996; 58
MC Hochberg (1192_CR12) 2019; 322
J Skinner (1192_CR29) 2003; 349
V Gulshan (1192_CR41) 2016; 316
1192_CR10
EL Poleshuck (1192_CR7) 2008; 136
KD Allen (1192_CR5) 2010; 18
1192_CR18
1192_CR19
M Hoffman Kelly (1192_CR20) 2016; 113
J Bolen (1192_CR6) 2010; 7
N Bien (1192_CR32) 2018; 15
KO Anderson (1192_CR8) 2009; 10
1192_CR40
1192_CR46
1192_CR43
1192_CR44
Y Xu (1192_CR31) 2019; 25
1192_CR48
Y Zhang (1192_CR1) 2010; 26
J Bedson (1192_CR15) 2008; 9
DF Steiner (1192_CR33) 2018; 42
RD Altman (1192_CR24) 2007; 15
MD Kohn (1192_CR36) 2016; 474
MW Rogers (1192_CR50) 2008; 9
DJ Hunter (1192_CR25) 2011; 19
E Losina (1192_CR11) 2012; 94
EM Roos (1192_CR22) 1998; 28
1192_CR34
1192_CR35
1192_CR38
1192_CR39
EA Lingard (1192_CR28) 2007; 89
1192_CR37
JR Zech (1192_CR49) 2019; 15
33442017 - Nat Med. 2021 Jan;27(1):22-23
References_xml – volume: 67
  start-page: 203
  year: 2015
  end-page: 215
  ident: CR27
  article-title: Lifetime medical costs of knee osteoarthritis management in the United States: impact of extending indications for total knee arthroplasty
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.22412
– volume: 113
  start-page: 4296
  year: 2016
  end-page: 4301
  ident: CR20
  article-title: Racial bias in pain assessment and treatment recommendations, and false beliefs about biological differences between Blacks and whites
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1516047113
– volume: 67
  start-page: 349
  year: 2015
  end-page: 357
  ident: CR30
  article-title: Using surgical appropriateness criteria to examine outcomes of total knee arthroplasty in a United States sample
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.22428
– volume: 15
  start-page: e1002699
  year: 2018
  ident: CR32
  article-title: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002699
– ident: CR39
– volume: 12
  start-page: e0176833
  year: 2017
  ident: CR16
  article-title: Associations between MRI features versus knee pain severity and progression: data from the Vancouver longitudinal study of early knee osteoarthritis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0176833
– volume: 19
  start-page: 990
  year: 2011
  end-page: 1002
  ident: CR25
  article-title: Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score)
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2011.05.004
– volume: 8
  start-page: 1
  year: 2018
  ident: CR45
  article-title: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20132-7
– volume: 136
  start-page: 235
  year: 2008
  end-page: 238
  ident: CR7
  article-title: Socioeconomic disadvantage and pain
  publication-title: Pain
  doi: 10.1016/j.pain.2008.04.003
– ident: CR35
– volume: 26
  start-page: 471
  year: 2018
  end-page: 479
  ident: CR13
  article-title: Natural history of pain and disability among African–Americans and Whites with or at risk for knee osteoarthritis: a longitudinal study
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2018.01.020
– volume: 339
  start-page: b2844
  year: 2009
  ident: CR14
  article-title: Association between radiographic features of knee osteoarthritis and pain: results from two cohort studies
  publication-title: BMJ
  doi: 10.1136/bmj.b2844
– volume: 48
  start-page: 2178
  year: 2003
  end-page: 2187
  ident: CR23
  article-title: Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.11088
– volume: 474
  start-page: 1886
  year: 2016
  end-page: 1893
  ident: CR36
  article-title: Classifications in brief: Kellgren–Lawrence classification of osteoarthritis
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-016-4732-4
– ident: CR21
– ident: CR46
– ident: CR19
– volume: 13
  start-page: e0195075
  year: 2018
  ident: CR2
  article-title: Psychosocial and demographic factors influencing pain scores of patients with knee osteoarthritis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0195075
– volume: 9
  year: 2008
  ident: CR50
  article-title: The association of BMI and knee pain among persons with radiographic knee osteoarthritis: a cross-sectional study
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/1471-2474-9-163
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: CR41
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 15
  start-page: A1
  year: 2007
  end-page: A56
  ident: CR24
  article-title: Atlas of individual radiographic features in osteoarthritis, revised
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2006.11.009
– volume: 23
  start-page: 1491
  year: 2015
  end-page: 1498
  ident: CR47
  article-title: Validity and sensitivity to change of three scales for the radiographic assessment of knee osteoarthritis using images from the Multicenter Osteoarthritis Study (MOST)
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2015.05.003
– volume: 89
  start-page: 1161
  year: 2007
  end-page: 1169
  ident: CR28
  article-title: Impact of psychological distress on pain and function following knee arthroplasty
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/00004623-200706000-00002
– volume: 17
  start-page: 1132
  year: 2009
  end-page: 1136
  ident: CR3
  article-title: Racial differences in self-reported pain and function among individuals with radiographic hip and knee osteoarthritis: the Johnston County Osteoarthritis Project
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2009.03.003
– ident: CR18
– ident: CR43
– volume: 26
  start-page: 355
  year: 2010
  end-page: 369
  ident: CR1
  article-title: Epidemiology of osteoarthritis
  publication-title: Clin. Geriatr. Med.
  doi: 10.1016/j.cger.2010.03.001
– ident: CR37
– volume: 9
  year: 2008
  ident: CR15
  article-title: The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/1471-2474-9-116
– volume: 23
  start-page: 179
  year: 1997
  end-page: 186
  ident: CR9
  article-title: Psychosocial job factors associated with back and neck pain in public transit operators
  publication-title: Scand. J. Work Env. Health
  doi: 10.5271/sjweh.196
– ident: CR10
– volume: 86
  start-page: 1328–1335
  year: 2004
  ident: CR26
  article-title: NIH Consensus Statement on total knee replacement December 8–10, 2003
  publication-title: J. Bone Joint Surg. Am.
– volume: 349
  start-page: 1350
  year: 2003
  end-page: 1359
  ident: CR29
  article-title: Racial, ethnic, and geographic disparities in rates of knee arthroplasty among Medicare patients
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa021569
– volume: 15
  start-page: e1002683
  year: 2019
  ident: CR49
  article-title: Confounding variables can degrade generalization performance of radiological deep learning models
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002683
– volume: 322
  start-page: 1360
  year: 2019
  end-page: 1370
  ident: CR12
  article-title: Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2019.14735
– ident: CR40
– volume: 22
  start-page: 622
  year: 2014
  end-page: 630
  ident: CR4
  article-title: Trajectories and risk profiles of pain in persons with radiographic, symptomatic knee osteoarthritis: data from the Osteoarthritis Initiative
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2014.03.009
– volume: 25
  start-page: 3266
  year: 2019
  end-page: 3275
  ident: CR31
  article-title: Deep learning predicts lung cancer treatment response from serial medical imaging
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-2495
– ident: CR44
– volume: 18
  start-page: 160
  year: 2010
  end-page: 167
  ident: CR5
  article-title: Racial differences in osteoarthritis pain and function: potential explanatory factors
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2009.09.010
– ident: CR48
– volume: 94
  start-page: 201
  year: 2012
  end-page: 207
  ident: CR11
  article-title: The dramatic increase in total knee replacement utilization rates in the United States cannot be fully explained by growth in population size and the obesity epidemic
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/JBJS.J.01958
– volume: 42
  start-page: 1636
  year: 2018
  end-page: 1646
  ident: CR33
  article-title: Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer
  publication-title: Am. J. Surg. Pathol.
  doi: 10.1097/PAS.0000000000001151
– volume: 10
  start-page: 1187
  year: 2009
  end-page: 1204
  ident: CR8
  article-title: Racial and ethnic disparities in pain: causes and consequences of unequal care
  publication-title: J. Pain
  doi: 10.1016/j.jpain.2009.10.002
– ident: CR38
– volume: 16
  start-page: 494
  year: 1957
  end-page: 502
  ident: CR17
  article-title: Radiological assessment of osteo-arthrosis
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.16.4.494
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR42
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
– ident: CR34
– volume: 7
  start-page: A64
  year: 2010
  ident: CR6
  article-title: Differences in the prevalence and impact of arthritis among racial/ethnic groups in the United States, National Health Interview Survey, 2002, 2003, and 2006
  publication-title: Prev. Chronic Dis.
– volume: 28
  start-page: 88
  year: 1998
  end-page: 96
  ident: CR22
  article-title: Knee injury and Osteoarthritis Outcome Score (KOOS)—development of a self-administered outcome measure
  publication-title: J. Orthop. Sports Phys. Ther.
  doi: 10.2519/jospt.1998.28.2.88
– volume: 316
  start-page: 2402
  year: 2016
  ident: 1192_CR41
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 15
  start-page: e1002683
  year: 2019
  ident: 1192_CR49
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002683
– volume: 339
  start-page: b2844
  year: 2009
  ident: 1192_CR14
  publication-title: BMJ
  doi: 10.1136/bmj.b2844
– volume: 18
  start-page: 160
  year: 2010
  ident: 1192_CR5
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2009.09.010
– volume: 23
  start-page: 179
  year: 1997
  ident: 1192_CR9
  publication-title: Scand. J. Work Env. Health
  doi: 10.5271/sjweh.196
– ident: 1192_CR46
  doi: 10.1109/ICPR.2016.7899799
– ident: 1192_CR44
  doi: 10.1109/CVPR.2016.319
– ident: 1192_CR39
– volume: 58
  start-page: 267
  year: 1996
  ident: 1192_CR42
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: 1192_CR43
  doi: 10.1007/978-3-319-10590-1_53
– volume: 15
  start-page: e1002699
  year: 2018
  ident: 1192_CR32
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002699
– ident: 1192_CR38
  doi: 10.1109/CVPR.2009.5206848
– ident: 1192_CR35
– volume: 26
  start-page: 355
  year: 2010
  ident: 1192_CR1
  publication-title: Clin. Geriatr. Med.
  doi: 10.1016/j.cger.2010.03.001
– volume: 136
  start-page: 235
  year: 2008
  ident: 1192_CR7
  publication-title: Pain
  doi: 10.1016/j.pain.2008.04.003
– volume: 67
  start-page: 349
  year: 2015
  ident: 1192_CR30
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.22428
– volume: 42
  start-page: 1636
  year: 2018
  ident: 1192_CR33
  publication-title: Am. J. Surg. Pathol.
  doi: 10.1097/PAS.0000000000001151
– volume: 16
  start-page: 494
  year: 1957
  ident: 1192_CR17
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.16.4.494
– volume: 15
  start-page: A1
  year: 2007
  ident: 1192_CR24
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2006.11.009
– volume: 28
  start-page: 88
  year: 1998
  ident: 1192_CR22
  publication-title: J. Orthop. Sports Phys. Ther.
  doi: 10.2519/jospt.1998.28.2.88
– volume: 349
  start-page: 1350
  year: 2003
  ident: 1192_CR29
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa021569
– volume: 10
  start-page: 1187
  year: 2009
  ident: 1192_CR8
  publication-title: J. Pain
  doi: 10.1016/j.jpain.2009.10.002
– ident: 1192_CR19
– volume: 7
  start-page: A64
  year: 2010
  ident: 1192_CR6
  publication-title: Prev. Chronic Dis.
– volume: 26
  start-page: 471
  year: 2018
  ident: 1192_CR13
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2018.01.020
– volume: 474
  start-page: 1886
  year: 2016
  ident: 1192_CR36
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-016-4732-4
– volume: 9
  year: 2008
  ident: 1192_CR50
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/1471-2474-9-163
– volume: 17
  start-page: 1132
  year: 2009
  ident: 1192_CR3
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2009.03.003
– volume: 9
  year: 2008
  ident: 1192_CR15
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/1471-2474-9-116
– volume: 67
  start-page: 203
  year: 2015
  ident: 1192_CR27
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.22412
– volume: 12
  start-page: e0176833
  year: 2017
  ident: 1192_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0176833
– ident: 1192_CR40
– ident: 1192_CR18
– volume: 19
  start-page: 990
  year: 2011
  ident: 1192_CR25
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2011.05.004
– volume: 22
  start-page: 622
  year: 2014
  ident: 1192_CR4
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2014.03.009
– ident: 1192_CR21
– volume: 86
  start-page: 1328–1335
  year: 2004
  ident: 1192_CR26
  publication-title: J. Bone Joint Surg. Am.
– volume: 322
  start-page: 1360
  year: 2019
  ident: 1192_CR12
  publication-title: JAMA
  doi: 10.1001/jama.2019.14735
– volume: 23
  start-page: 1491
  year: 2015
  ident: 1192_CR47
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2015.05.003
– volume: 13
  start-page: e0195075
  year: 2018
  ident: 1192_CR2
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0195075
– ident: 1192_CR48
– ident: 1192_CR10
– volume: 113
  start-page: 4296
  year: 2016
  ident: 1192_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1516047113
– volume: 48
  start-page: 2178
  year: 2003
  ident: 1192_CR23
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.11088
– ident: 1192_CR37
  doi: 10.1109/CVPR.2016.90
– ident: 1192_CR34
– volume: 8
  start-page: 1
  year: 2018
  ident: 1192_CR45
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20132-7
– volume: 89
  start-page: 1161
  year: 2007
  ident: 1192_CR28
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/00004623-200706000-00002
– volume: 25
  start-page: 3266
  year: 2019
  ident: 1192_CR31
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-2495
– volume: 94
  start-page: 201
  year: 2012
  ident: 1192_CR11
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/JBJS.J.01958
– reference: 33442017 - Nat Med. 2021 Jan;27(1):22-23
SSID ssj0003059
Score 2.6711977
Snippet Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 136
SubjectTerms 631/114/1305
706/689
Aged
Algorithms
Arthritis
Biomedical and Life Sciences
Biomedical materials
Biomedicine
Cancer Research
Confidence intervals
Deep Learning
Diagnosis
Female
Health Status Disparities
Humans
Infectious Diseases
Knee
Learning algorithms
Machine learning
Male
Medical imaging
Metabolic Diseases
Middle Aged
Molecular Medicine
Neurosciences
Osteoarthritis
Osteoarthritis, Knee - diagnostic imaging
Osteoarthritis, Knee - physiopathology
Pain
Pain - physiopathology
Pain Measurement
Patients
Physicians
Populations
Race factors
Race Factors - statistics & numerical data
Racial differences
Severity of Illness Index
Socioeconomic Factors
Stems
Underserved populations
Vulnerable Populations - statistics & numerical data
Title An algorithmic approach to reducing unexplained pain disparities in underserved populations
URI https://link.springer.com/article/10.1038/s41591-020-01192-7
https://www.ncbi.nlm.nih.gov/pubmed/33442014
https://www.proquest.com/docview/2477376286
https://www.proquest.com/docview/2478039812
Volume 27
WOSCitedRecordID wos000607931400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M7P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: 7X7
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M2O
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M2P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYB4gXPsZXYYyAEDxAtNR27fgJFbQJJNZV40OVeLAS2ymVSlqaFsF_z53jZmSCCYkXR5HPkeM7353t8-8IeaIscJVLEQvheMzBpseZEywGZwLkqyh4YXzWkndyOEzHYzUKG25VCKvc6ESvqO3c4B75PuVSwmSgqXi5-BZj1ig8XQ0pNLbINiKV8Q7ZfnUwHJ00uhikWdVRh2mcwlIgXJtJWLpfgenCqB-KgVnQtVi2TNNZBf2bhTpzZOot0eG1__2H6-Rq8EGjQS00N8gFV-6QS3VWyp875PJROG-_ST4PyiibTeAbqy9fpybaIJBHq3m0RNBX6GC0Lt2PxSyDBjZawCOy0wpzGyJUawSva39_BiMrob7JF1bdIh8PDz68fhOHdAyxEby_iq1CuPaskEr0bGJ6TCSK5dyqvA9rwj5Cu_edolbk3GWCJ04VOVWFcgXvZSxN2W3SKeelu0siKzNZKPCYqZVc5P2cU2MpA2-OmyTJZZf0NpzQJmCVY8qMmfZn5izVNfc0cE977mlo87xps6iROs6lfogM1vVt02aa64HwCIewyuuSx54CQTJKjMKZZOuq0m-PP_0D0fuTFtGzQFTM4S9MFm4-wFgg-FaL8mmLclJDj_-JcLdFCDrBtKs3AqiDTqr0qfR1yaOmGltinF3p5mtPkyYMOEO75E4t781gMsY5uIu8S15sJsDpx_8-0vfO78t9coVimJDf1dolndVy7R6Qi-b7alot98iWHEtfpnthbsPbET325QhLOfoFAV9QLg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4a4_rCZdwKgxkE7AGipY5rxw8IVcC0al1BMKZKPJjEdkqlkpamBfan-I0c5zYywcTLHniqKh9HyfG5-CSfvwPwSBpcVSa4x7llHsOc7kWWBx5uJtC-koQlOu9a0heDQTgcyrcr8LM6C-NglVVMzAO1mWr3jnyLMiHQGWjIX8y-eq5rlPu6WrXQKMxi1x5-x5Ite957hev7mNLt1_svd7yyq4CnOessPCMd63iUCMnbxtftgGNRHzMj4w6WNh3HUN6xkhoeMxtx5luZxFQm0iasHQVhGOB1z8BZjOPCQcjEsC7wnO_IAuMYeiEWHuUhHT8ItzJMlA5jRB0MDBXhiUYiPJ4OfsuHxz7Q5nlv-8r_prGrcLncYZNu4RLXYMWma3C-6Ll5uAYX9ko0wXX42E1JNBnhPS8-fxlrUvGrk8WUzB2lLSqELFP7YzaJcIIhM_whZpy5zo2OiJbg32V-OsjhRnG87oaW3YAPp_KQN2E1nab2NhAjIpFIrAeoEYzHnZhRbWiAe1WmfT8WLWhXK690ycTuGoJMVI4ICEJVWItCa1G5tSic87SeMyt4SE6U3nAGpYqztHUQU12e8zdiDduCh7mEowBJHcZoFC2zTPXeHPyD0Pt3DaHNUiiZ4lPoqDzXgbpw1GINyScNyVFBrP4nwfWGIEY83RyuDF6VETdTR9beggf1sJvpUISpnS5zmdAPcGVoC24V_lUrMwgYw80wa8GzyuGOLv53Td85-V424OLO_l5f9XuD3btwiTpAVP7-bh1WF_OlvQfn9LfFOJvfzyMJgU-n7Yi_AJ9NpOs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGgIkXLuMWGMwgLg8QNXUcO35AqGJUVNtKxU2TeDCJ7ZRKJS1NC-yv8es4di4jE0y87IGnqvJxlByfi0_y-TsIPRAaVpVy5jNmqE8hp_uJYaEPmwmwryyjmXJdS_b4cBgfHIjRGvpZn4WxsMo6JrpArWfKviPvEMo5OAOJWSerYBGjnf7z-VffdpCyX1rrdhqlieyaw-9QvhXPBjuw1g8J6b989-KVX3UY8BWj0dLXwjKQJxkXrKsD1Q0ZFPgp1SKNoMyJLFt5ZATRLKUmYTQwIkuJyITJaDcJ4ziE655BZzmNIutd-2TUZAHwI1HiHWM_hiKkOrAThHGngKRp8UbEQsJAKT5vJcXjqeG33HjsY63Lgf1L_7P2LqOL1c4b90pXuYLWTL6Jzpe9OA830cZ-hTK4ij72cpxMx3DPy89fJgrXvOt4OcMLS3ULysGr3PyYTxOYoPEcfrCeFLajoyWoxfB35U4NWTwpjDdd0opr6P2pPOR1tJ7PcnMTYc0TngmoE4jmlKVRSonSJIQ9LFVBkHIPdWsrkKpiaLeNQqbSIQXCWJaWI8FypLMcCXOeNHPmJT_JidLb1rhkeca2CW6yxxyvI9S2HrrvJCw1SG7NZJysikIOXn_4B6G3b1pCjyuhbAZPoZLqvAfowlKOtSQftSTHJeH6nwS3WoIQCVV7uDZ-WUXiQh5ZvofuNcN2pkUX5ma2cjJxEMLKEA_dKH2tUWYYUgqbZOqhp7XzHV3875q-dfK9bKMN8D-5Nxju3kYXiMVJudd6W2h9uViZO-ic-racFIu7Lqhg9Om0_fAXIRWtuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithmic+approach+to+reducing+unexplained+pain+disparities+in+underserved+populations&rft.jtitle=Nature+medicine&rft.au=Pierson%2C+Emma&rft.au=Cutler%2C+David+M&rft.au=Leskovec%2C+Jure&rft.au=Mullainathan%2C+Sendhil&rft.date=2021-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1078-8956&rft.volume=27&rft.issue=1&rft.spage=136&rft_id=info:doi/10.1038%2Fs41591-020-01192-7&rft.externalDocID=A650181260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon