An algorithmic approach to reducing unexplained pain disparities in underserved populations
Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients’ pain stems from factors extern...
Uloženo v:
| Vydáno v: | Nature medicine Ročník 27; číslo 1; s. 136 - 140 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Nature Publishing Group US
01.01.2021
Nature Publishing Group |
| Témata: | |
| ISSN: | 1078-8956, 1546-170X, 1546-170X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients’ pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients’ experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3–16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2–11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients’ pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm’s ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients’ pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty.
An algorithmic, machine-learning approach to measuring severe pain from osteoarthritis applied to X-ray images of knees suggests that reported disparities in knee pain in underserved populations can be reduced by comparison with use of standard radiographic measures of disease severity. |
|---|---|
| AbstractList | Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients' pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients' experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3-16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2-11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients' pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm's ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients' pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty. An algorithmic, machine-learning approach to measuring severe pain from osteoarthritis applied to X-ray images of knees suggests that reported disparities in knee pain in underserved populations can be reduced by comparison with use of standard radiographic measures of disease severity. Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients’ pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients’ experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3–16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2–11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients’ pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm’s ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients’ pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty. An algorithmic, machine-learning approach to measuring severe pain from osteoarthritis applied to X-ray images of knees suggests that reported disparities in knee pain in underserved populations can be reduced by comparison with use of standard radiographic measures of disease severity. Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients' pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients' experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3-16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2-11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients' pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm's ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients' pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty. Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients' pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients' experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3-16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2-11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients' pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm's ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients' pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty.Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients' pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients' experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3-16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2-11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients' pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm's ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients' pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty. |
| Audience | Academic |
| Author | Pierson, Emma Obermeyer, Ziad Leskovec, Jure Cutler, David M. Mullainathan, Sendhil |
| Author_xml | – sequence: 1 givenname: Emma surname: Pierson fullname: Pierson, Emma organization: Department of Computer Science, Stanford University, Microsoft Research – sequence: 2 givenname: David M. surname: Cutler fullname: Cutler, David M. organization: Department of Economics, Harvard University – sequence: 3 givenname: Jure orcidid: 0000-0002-5411-923X surname: Leskovec fullname: Leskovec, Jure organization: Department of Computer Science, Stanford University – sequence: 4 givenname: Sendhil orcidid: 0000-0001-8508-4052 surname: Mullainathan fullname: Mullainathan, Sendhil email: sendhil.mullainathan@chicagobooth.edu organization: Booth School of Business, University of Chicago – sequence: 5 givenname: Ziad surname: Obermeyer fullname: Obermeyer, Ziad organization: School of Public Health, University of California at Berkeley |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33442014$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkttq3DAQhkVJaQ7tC_SiGAqlvXCqk2Xpcgk9BAKBnij0Qsj22KuglRzJLunbV7ubkG5YQhHo-P3DaOY_Rgc-eEDoJcGnBDP5PnFSKVJiiktMiKJl_QQdkYqLktT450He41qWUlXiEB2ndIUxZrhSz9AhY5xTTPgR-rXwhXFDiHZarmxbmHGMwbTLYgpFhG5urR-K2cPN6Iz10BVjXorOptFkiYVU5OPsO4gJ4u_1exhnZyYbfHqOnvbGJXhxu56g7x8_fDv7XF5cfjo_W1yUreDVVHYKUyVNXytBOtwSJrBiDe9UU9WkrqjIEyjaiYaDERyD6huqegU9J4ZJyU7Q223cnPr1DGnSK5tacM54CHPSlNcSMyUJzejrB-hVmKPP2a2pmtWCSnFPDcaBtr4PUzTtOqheiAqTHEngTJV7qAE8RONyp3qbr3f40z18Hh3kyu8VvNsRZGaCm2kwc0r6_OuX_2cvf-yyb_5hl2DctEzBzZum7YKvbqs1Nyvo9BjtysQ_-s4-GZBboI0hpQi9bu20aX7-mnWaYL12qt46VWen6o1TdZ2l9IH0LvqjIrYVpQz7AeJ9-x5R_QWSW_VT |
| CitedBy_id | crossref_primary_10_1001_jamapediatrics_2021_3584 crossref_primary_10_1136_annrheumdis_2021_221513 crossref_primary_10_1111_isj_12572 crossref_primary_10_1146_annurev_biodatasci_103123_095332 crossref_primary_10_2106_JBJS_OA_23_00039 crossref_primary_10_3389_fpubh_2023_1211520 crossref_primary_10_1080_15265161_2025_2497972 crossref_primary_10_3390_livers4010004 crossref_primary_10_1109_ACCESS_2024_3439096 crossref_primary_10_1016_j_compbiomed_2023_107569 crossref_primary_10_1097_AOG_0000000000005563 crossref_primary_10_1093_pm_pnaf039 crossref_primary_10_1302_0301_620X_104B8_BJJ_2022_0416 crossref_primary_10_2106_JBJS_22_01186 crossref_primary_10_1371_journal_pdig_0000474 crossref_primary_10_1016_j_joca_2023_11_009 crossref_primary_10_1073_pnas_2303370120 crossref_primary_10_1371_journal_pdig_0000237 crossref_primary_10_1038_s41551_023_01049_7 crossref_primary_10_1038_s41591_024_02885_z crossref_primary_10_1038_s41591_022_01895_z crossref_primary_10_1038_s41597_022_01483_3 crossref_primary_10_1016_j_ogla_2021_03_002 crossref_primary_10_1093_jamia_ocab035 crossref_primary_10_1093_tbm_ibae075 crossref_primary_10_1016_j_csbj_2024_08_005 crossref_primary_10_1007_s43681_021_00118_4 crossref_primary_10_1016_j_jacr_2023_06_025 crossref_primary_10_1038_s42256_023_00698_2 crossref_primary_10_1016_j_jpain_2021_07_010 crossref_primary_10_1145_3650206 crossref_primary_10_3390_healthcare10040603 crossref_primary_10_1097_SLA_0000000000006309 crossref_primary_10_1038_s42256_021_00399_8 crossref_primary_10_3390_jcm10225284 crossref_primary_10_1177_1759720X241235805 crossref_primary_10_1111_acem_14962 crossref_primary_10_1001_jamahealthforum_2021_2430 crossref_primary_10_1038_s41591_020_01196_3 crossref_primary_10_1038_s41746_025_01667_2 crossref_primary_10_1136_bmjhci_2021_100459 crossref_primary_10_1146_annurev_biodatasci_122120_025806 crossref_primary_10_1016_j_inffus_2024_102690 crossref_primary_10_1080_09540121_2021_1948499 crossref_primary_10_1016_j_jacr_2022_06_008 crossref_primary_10_1007_s10067_024_06946_z crossref_primary_10_1016_j_otsr_2025_104225 crossref_primary_10_1097_SLA_0000000000005609 crossref_primary_10_1093_pnasnexus_pgae191 crossref_primary_10_3390_pharmaceutics17091119 crossref_primary_10_1016_j_artd_2024_101503 crossref_primary_10_1016_j_cll_2022_09_006 crossref_primary_10_1016_j_ebiom_2023_104467 crossref_primary_10_1093_rheumatology_keab674 crossref_primary_10_1007_s12152_022_09499_7 crossref_primary_10_1016_j_cll_2022_09_004 crossref_primary_10_1148_radiol_241087 crossref_primary_10_1016_j_engappai_2024_109801 crossref_primary_10_1093_qje_qjad055 crossref_primary_10_1109_MC_2022_3190786 crossref_primary_10_1177_20539517211065248 crossref_primary_10_1148_radiol_212830 crossref_primary_10_1080_0020174X_2024_2312207 crossref_primary_10_1038_s41746_022_00707_5 crossref_primary_10_1097_CORR_0000000000002986 crossref_primary_10_2196_43963 crossref_primary_10_1038_s41551_023_01056_8 crossref_primary_10_2106_JBJS_21_01387 crossref_primary_10_1002_jor_26082 crossref_primary_10_1017_hyp_2025_17 crossref_primary_10_1155_2021_4931437 crossref_primary_10_3390_s23020634 crossref_primary_10_1016_j_bbadis_2024_167251 crossref_primary_10_1093_jamia_ocac052 crossref_primary_10_1016_j_jvir_2022_06_003 crossref_primary_10_1016_j_jopan_2021_03_009 crossref_primary_10_1056_NEJMra2214183 crossref_primary_10_1136_bjo_2022_322237 crossref_primary_10_1038_s43856_022_00165_w crossref_primary_10_1038_s41598_024_65613_0 crossref_primary_10_1038_s41746_025_01801_0 crossref_primary_10_1371_journal_pdig_0000390 crossref_primary_10_2196_43251 crossref_primary_10_1016_j_jacc_2024_03_401 crossref_primary_10_1109_TBME_2023_3274541 crossref_primary_10_1016_j_jaip_2022_01_047 crossref_primary_10_1007_s43681_023_00302_8 crossref_primary_10_1093_jmp_jhaf020 crossref_primary_10_1148_ryai_210290 crossref_primary_10_2105_AJPH_2021_306418 crossref_primary_10_1038_s41467_024_52003_3 crossref_primary_10_1016_j_hlpt_2022_100702 crossref_primary_10_1155_2022_4138666 crossref_primary_10_1038_s41746_024_01005_y crossref_primary_10_1148_radiol_2021210566 crossref_primary_10_1001_jamahealthforum_2023_2652 crossref_primary_10_1093_eurheartj_ehae794 crossref_primary_10_1038_s41746_022_00595_9 crossref_primary_10_1111_head_14880 crossref_primary_10_1371_journal_pdig_0000023 crossref_primary_10_1038_s41746_023_00766_2 crossref_primary_10_1038_s41746_023_00913_9 crossref_primary_10_1038_s41591_022_01804_4 crossref_primary_10_1038_s41562_023_01555_3 crossref_primary_10_1016_j_joca_2023_11_022 crossref_primary_10_1136_bmjsit_2022_000141 crossref_primary_10_1186_s12889_021_11975_3 crossref_primary_10_1016_j_isci_2025_112131 crossref_primary_10_1016_S0140_6736_21_01152_1 crossref_primary_10_1007_s11926_023_01114_9 crossref_primary_10_1016_j_bonr_2025_101839 crossref_primary_10_1136_bmjopen_2022_069255 crossref_primary_10_1016_j_semarthrit_2023_152321 crossref_primary_10_1016_j_brat_2023_104443 crossref_primary_10_2147_JPR_S495934 crossref_primary_10_2196_44165 crossref_primary_10_1007_s11019_025_10264_9 crossref_primary_10_1055_a_2630_4192 crossref_primary_10_1016_j_rcl_2021_07_006 crossref_primary_10_1371_journal_pdig_0000612 crossref_primary_10_1080_17512433_2023_2294005 crossref_primary_10_1007_s10676_022_09658_7 crossref_primary_10_1038_s41746_022_00720_8 crossref_primary_10_1093_oxrep_grae035 crossref_primary_10_1097_PR9_0000000000001044 crossref_primary_10_3233_JPD_212545 crossref_primary_10_1126_science_abo2788 crossref_primary_10_1016_j_clon_2025_103758 crossref_primary_10_1093_ofid_ofad049 crossref_primary_10_1016_j_jval_2021_08_015 crossref_primary_10_1016_j_jarmac_2021_07_003 crossref_primary_10_1016_j_artmed_2022_102458 crossref_primary_10_1016_j_injury_2024_111358 crossref_primary_10_2217_pmt_2023_0098 crossref_primary_10_1016_j_jpain_2021_10_004 crossref_primary_10_1177_17456916231212138 crossref_primary_10_1007_s13721_023_00437_y crossref_primary_10_1111_vru_13069 crossref_primary_10_1016_j_ipm_2021_102657 crossref_primary_10_1117_1_JMI_10_6_061106 |
| Cites_doi | 10.1002/acr.22412 10.1073/pnas.1516047113 10.1002/acr.22428 10.1371/journal.pmed.1002699 10.1371/journal.pone.0176833 10.1016/j.joca.2011.05.004 10.1038/s41598-018-20132-7 10.1016/j.pain.2008.04.003 10.1016/j.joca.2018.01.020 10.1136/bmj.b2844 10.1002/art.11088 10.1007/s11999-016-4732-4 10.1371/journal.pone.0195075 10.1186/1471-2474-9-163 10.1001/jama.2016.17216 10.1016/j.joca.2006.11.009 10.1016/j.joca.2015.05.003 10.2106/00004623-200706000-00002 10.1016/j.joca.2009.03.003 10.1016/j.cger.2010.03.001 10.1186/1471-2474-9-116 10.5271/sjweh.196 10.1056/NEJMsa021569 10.1371/journal.pmed.1002683 10.1001/jama.2019.14735 10.1016/j.joca.2014.03.009 10.1158/1078-0432.CCR-18-2495 10.1016/j.joca.2009.09.010 10.2106/JBJS.J.01958 10.1097/PAS.0000000000001151 10.1016/j.jpain.2009.10.002 10.1136/ard.16.4.494 10.2519/jospt.1998.28.2.88 10.1109/ICPR.2016.7899799 10.1109/CVPR.2016.319 10.1111/j.2517-6161.1996.tb02080.x 10.1007/978-3-319-10590-1_53 10.1109/CVPR.2009.5206848 10.1109/CVPR.2016.90 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 COPYRIGHT 2021 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
| DOI | 10.1038/s41591-020-01192-7 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1546-170X |
| EndPage | 140 |
| ExternalDocumentID | A650181260 33442014 10_1038_s41591_020_01192_7 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: US Social Security Administration grantid: RDR18000003 |
| GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB XRW CGR CUY CVF ECM EIF NPM ACMFV 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c645t-d90298af7961d0c136093b4d9b5717526175e92d6b4ea640e9fb29f9ef41a3883 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 177 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607931400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1078-8956 1546-170X |
| IngestDate | Thu Oct 02 12:05:24 EDT 2025 Mon Oct 06 17:43:36 EDT 2025 Sat Nov 29 13:08:37 EST 2025 Sat Nov 29 11:34:51 EST 2025 Sat Nov 29 10:02:35 EST 2025 Wed Nov 26 10:27:47 EST 2025 Wed Nov 26 10:10:49 EST 2025 Thu May 22 21:32:53 EDT 2025 Wed Feb 19 02:29:10 EST 2025 Sat Nov 29 06:02:28 EST 2025 Tue Nov 18 21:04:19 EST 2025 Fri Feb 21 02:37:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c645t-d90298af7961d0c136093b4d9b5717526175e92d6b4ea640e9fb29f9ef41a3883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5411-923X 0000-0001-8508-4052 |
| PMID | 33442014 |
| PQID | 2477376286 |
| PQPubID | 33975 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_2478039812 proquest_journals_2477376286 gale_infotracmisc_A650181260 gale_infotracgeneralonefile_A650181260 gale_infotracacademiconefile_A650181260 gale_incontextgauss_ISR_A650181260 gale_incontextgauss_IOV_A650181260 gale_healthsolutions_A650181260 pubmed_primary_33442014 crossref_citationtrail_10_1038_s41591_020_01192_7 crossref_primary_10_1038_s41591_020_01192_7 springer_journals_10_1038_s41591_020_01192_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Nature medicine |
| PublicationTitleAbbrev | Nat Med |
| PublicationTitleAlternate | Nat Med |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Bolen (CR6) 2010; 7 Altman, Gold (CR24) 2007; 15 Bien (CR32) 2018; 15 CR39 CR38 CR37 CR35 CR34 Tibshirani (CR42) 1996; 58 Hoffman Kelly, Trawalter, Axt Jordan, Oliver (CR20) 2016; 113 Englund, Roos, Lohmander (CR23) 2003; 48 Kohn, Sassoon, Fernando (CR36) 2016; 474 Hochberg (CR12) 2019; 322 Anderson, Green, Payne (CR8) 2009; 10 Losina, Thornhill, Rome, Wright, Katz (CR11) 2012; 94 Krause (CR9) 1997; 23 Tiulpin, Thevenot, Rahtu, Lehenkari, Saarakkala (CR45) 2018; 8 CR48 CR46 Roos, Roos, Lohmander, Ekdahl, Beynnon (CR22) 1998; 28 CR44 CR43 CR40 Zech (CR49) 2019; 15 Lingard, Riddle (CR28) 2007; 89 Allen (CR5) 2010; 18 Collins, Katz, Dervan, Losina (CR4) 2014; 22 Rogers, Wilder (CR50) 2008; 9 Eberly (CR2) 2018; 13 CR19 Skinner, Weinstein, Sporer, Wennberg (CR29) 2003; 349 Kellgren, Lawrence (CR17) 1957; 16 CR18 Poleshuck, Green (CR7) 2008; 136 Allen (CR3) 2009; 17 CR10 Sayre (CR16) 2017; 12 Neogi (CR14) 2009; 339 Vina, Ran, Ashbeck, Kwoh (CR13) 2018; 26 Hunter (CR25) 2011; 19 Gulshan (CR41) 2016; 316 Zhang, Jordan (CR1) 2010; 26 Rankin, Alarcon, Chang, Cooney (CR26) 2004; 86 Bedson, Croft (CR15) 2008; 9 Sheehy (CR47) 2015; 23 Riddle, Perera, Jiranek, Dumenci (CR30) 2015; 67 CR21 Losina (CR27) 2015; 67 Xu (CR31) 2019; 25 Steiner (CR33) 2018; 42 L Sheehy (1192_CR47) 2015; 23 KD Allen (1192_CR3) 2009; 17 ER Vina (1192_CR13) 2018; 26 A Tiulpin (1192_CR45) 2018; 8 EA Rankin (1192_CR26) 2004; 86 M Englund (1192_CR23) 2003; 48 E Losina (1192_CR27) 2015; 67 JE Collins (1192_CR4) 2014; 22 JH Kellgren (1192_CR17) 1957; 16 1192_CR21 T Neogi (1192_CR14) 2009; 339 N Krause (1192_CR9) 1997; 23 EC Sayre (1192_CR16) 2017; 12 L Eberly (1192_CR2) 2018; 13 DL Riddle (1192_CR30) 2015; 67 R Tibshirani (1192_CR42) 1996; 58 MC Hochberg (1192_CR12) 2019; 322 J Skinner (1192_CR29) 2003; 349 V Gulshan (1192_CR41) 2016; 316 1192_CR10 EL Poleshuck (1192_CR7) 2008; 136 KD Allen (1192_CR5) 2010; 18 1192_CR18 1192_CR19 M Hoffman Kelly (1192_CR20) 2016; 113 J Bolen (1192_CR6) 2010; 7 N Bien (1192_CR32) 2018; 15 KO Anderson (1192_CR8) 2009; 10 1192_CR40 1192_CR46 1192_CR43 1192_CR44 Y Xu (1192_CR31) 2019; 25 1192_CR48 Y Zhang (1192_CR1) 2010; 26 J Bedson (1192_CR15) 2008; 9 DF Steiner (1192_CR33) 2018; 42 RD Altman (1192_CR24) 2007; 15 MD Kohn (1192_CR36) 2016; 474 MW Rogers (1192_CR50) 2008; 9 DJ Hunter (1192_CR25) 2011; 19 E Losina (1192_CR11) 2012; 94 EM Roos (1192_CR22) 1998; 28 1192_CR34 1192_CR35 1192_CR38 1192_CR39 EA Lingard (1192_CR28) 2007; 89 1192_CR37 JR Zech (1192_CR49) 2019; 15 33442017 - Nat Med. 2021 Jan;27(1):22-23 |
| References_xml | – volume: 67 start-page: 203 year: 2015 end-page: 215 ident: CR27 article-title: Lifetime medical costs of knee osteoarthritis management in the United States: impact of extending indications for total knee arthroplasty publication-title: Arthritis Care Res. doi: 10.1002/acr.22412 – volume: 113 start-page: 4296 year: 2016 end-page: 4301 ident: CR20 article-title: Racial bias in pain assessment and treatment recommendations, and false beliefs about biological differences between Blacks and whites publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1516047113 – volume: 67 start-page: 349 year: 2015 end-page: 357 ident: CR30 article-title: Using surgical appropriateness criteria to examine outcomes of total knee arthroplasty in a United States sample publication-title: Arthritis Care Res. doi: 10.1002/acr.22428 – volume: 15 start-page: e1002699 year: 2018 ident: CR32 article-title: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002699 – ident: CR39 – volume: 12 start-page: e0176833 year: 2017 ident: CR16 article-title: Associations between MRI features versus knee pain severity and progression: data from the Vancouver longitudinal study of early knee osteoarthritis publication-title: PLoS ONE doi: 10.1371/journal.pone.0176833 – volume: 19 start-page: 990 year: 2011 end-page: 1002 ident: CR25 article-title: Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score) publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2011.05.004 – volume: 8 start-page: 1 year: 2018 ident: CR45 article-title: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach publication-title: Sci. Rep. doi: 10.1038/s41598-018-20132-7 – volume: 136 start-page: 235 year: 2008 end-page: 238 ident: CR7 article-title: Socioeconomic disadvantage and pain publication-title: Pain doi: 10.1016/j.pain.2008.04.003 – ident: CR35 – volume: 26 start-page: 471 year: 2018 end-page: 479 ident: CR13 article-title: Natural history of pain and disability among African–Americans and Whites with or at risk for knee osteoarthritis: a longitudinal study publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2018.01.020 – volume: 339 start-page: b2844 year: 2009 ident: CR14 article-title: Association between radiographic features of knee osteoarthritis and pain: results from two cohort studies publication-title: BMJ doi: 10.1136/bmj.b2844 – volume: 48 start-page: 2178 year: 2003 end-page: 2187 ident: CR23 article-title: Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls publication-title: Arthritis Rheum. doi: 10.1002/art.11088 – volume: 474 start-page: 1886 year: 2016 end-page: 1893 ident: CR36 article-title: Classifications in brief: Kellgren–Lawrence classification of osteoarthritis publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-016-4732-4 – ident: CR21 – ident: CR46 – ident: CR19 – volume: 13 start-page: e0195075 year: 2018 ident: CR2 article-title: Psychosocial and demographic factors influencing pain scores of patients with knee osteoarthritis publication-title: PLoS ONE doi: 10.1371/journal.pone.0195075 – volume: 9 year: 2008 ident: CR50 article-title: The association of BMI and knee pain among persons with radiographic knee osteoarthritis: a cross-sectional study publication-title: BMC Musculoskelet. Disord. doi: 10.1186/1471-2474-9-163 – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: CR41 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 15 start-page: A1 year: 2007 end-page: A56 ident: CR24 article-title: Atlas of individual radiographic features in osteoarthritis, revised publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2006.11.009 – volume: 23 start-page: 1491 year: 2015 end-page: 1498 ident: CR47 article-title: Validity and sensitivity to change of three scales for the radiographic assessment of knee osteoarthritis using images from the Multicenter Osteoarthritis Study (MOST) publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2015.05.003 – volume: 89 start-page: 1161 year: 2007 end-page: 1169 ident: CR28 article-title: Impact of psychological distress on pain and function following knee arthroplasty publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-200706000-00002 – volume: 17 start-page: 1132 year: 2009 end-page: 1136 ident: CR3 article-title: Racial differences in self-reported pain and function among individuals with radiographic hip and knee osteoarthritis: the Johnston County Osteoarthritis Project publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2009.03.003 – ident: CR18 – ident: CR43 – volume: 26 start-page: 355 year: 2010 end-page: 369 ident: CR1 article-title: Epidemiology of osteoarthritis publication-title: Clin. Geriatr. Med. doi: 10.1016/j.cger.2010.03.001 – ident: CR37 – volume: 9 year: 2008 ident: CR15 article-title: The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature publication-title: BMC Musculoskelet. Disord. doi: 10.1186/1471-2474-9-116 – volume: 23 start-page: 179 year: 1997 end-page: 186 ident: CR9 article-title: Psychosocial job factors associated with back and neck pain in public transit operators publication-title: Scand. J. Work Env. Health doi: 10.5271/sjweh.196 – ident: CR10 – volume: 86 start-page: 1328–1335 year: 2004 ident: CR26 article-title: NIH Consensus Statement on total knee replacement December 8–10, 2003 publication-title: J. Bone Joint Surg. Am. – volume: 349 start-page: 1350 year: 2003 end-page: 1359 ident: CR29 article-title: Racial, ethnic, and geographic disparities in rates of knee arthroplasty among Medicare patients publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa021569 – volume: 15 start-page: e1002683 year: 2019 ident: CR49 article-title: Confounding variables can degrade generalization performance of radiological deep learning models publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002683 – volume: 322 start-page: 1360 year: 2019 end-page: 1370 ident: CR12 article-title: Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2019.14735 – ident: CR40 – volume: 22 start-page: 622 year: 2014 end-page: 630 ident: CR4 article-title: Trajectories and risk profiles of pain in persons with radiographic, symptomatic knee osteoarthritis: data from the Osteoarthritis Initiative publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2014.03.009 – volume: 25 start-page: 3266 year: 2019 end-page: 3275 ident: CR31 article-title: Deep learning predicts lung cancer treatment response from serial medical imaging publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-2495 – ident: CR44 – volume: 18 start-page: 160 year: 2010 end-page: 167 ident: CR5 article-title: Racial differences in osteoarthritis pain and function: potential explanatory factors publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2009.09.010 – ident: CR48 – volume: 94 start-page: 201 year: 2012 end-page: 207 ident: CR11 article-title: The dramatic increase in total knee replacement utilization rates in the United States cannot be fully explained by growth in population size and the obesity epidemic publication-title: J. Bone Joint Surg. Am. doi: 10.2106/JBJS.J.01958 – volume: 42 start-page: 1636 year: 2018 end-page: 1646 ident: CR33 article-title: Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer publication-title: Am. J. Surg. Pathol. doi: 10.1097/PAS.0000000000001151 – volume: 10 start-page: 1187 year: 2009 end-page: 1204 ident: CR8 article-title: Racial and ethnic disparities in pain: causes and consequences of unequal care publication-title: J. Pain doi: 10.1016/j.jpain.2009.10.002 – ident: CR38 – volume: 16 start-page: 494 year: 1957 end-page: 502 ident: CR17 article-title: Radiological assessment of osteo-arthrosis publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.16.4.494 – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: CR42 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Series B Stat. Methodol. – ident: CR34 – volume: 7 start-page: A64 year: 2010 ident: CR6 article-title: Differences in the prevalence and impact of arthritis among racial/ethnic groups in the United States, National Health Interview Survey, 2002, 2003, and 2006 publication-title: Prev. Chronic Dis. – volume: 28 start-page: 88 year: 1998 end-page: 96 ident: CR22 article-title: Knee injury and Osteoarthritis Outcome Score (KOOS)—development of a self-administered outcome measure publication-title: J. Orthop. Sports Phys. Ther. doi: 10.2519/jospt.1998.28.2.88 – volume: 316 start-page: 2402 year: 2016 ident: 1192_CR41 publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 15 start-page: e1002683 year: 2019 ident: 1192_CR49 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002683 – volume: 339 start-page: b2844 year: 2009 ident: 1192_CR14 publication-title: BMJ doi: 10.1136/bmj.b2844 – volume: 18 start-page: 160 year: 2010 ident: 1192_CR5 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2009.09.010 – volume: 23 start-page: 179 year: 1997 ident: 1192_CR9 publication-title: Scand. J. Work Env. Health doi: 10.5271/sjweh.196 – ident: 1192_CR46 doi: 10.1109/ICPR.2016.7899799 – ident: 1192_CR44 doi: 10.1109/CVPR.2016.319 – ident: 1192_CR39 – volume: 58 start-page: 267 year: 1996 ident: 1192_CR42 publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: 1192_CR43 doi: 10.1007/978-3-319-10590-1_53 – volume: 15 start-page: e1002699 year: 2018 ident: 1192_CR32 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002699 – ident: 1192_CR38 doi: 10.1109/CVPR.2009.5206848 – ident: 1192_CR35 – volume: 26 start-page: 355 year: 2010 ident: 1192_CR1 publication-title: Clin. Geriatr. Med. doi: 10.1016/j.cger.2010.03.001 – volume: 136 start-page: 235 year: 2008 ident: 1192_CR7 publication-title: Pain doi: 10.1016/j.pain.2008.04.003 – volume: 67 start-page: 349 year: 2015 ident: 1192_CR30 publication-title: Arthritis Care Res. doi: 10.1002/acr.22428 – volume: 42 start-page: 1636 year: 2018 ident: 1192_CR33 publication-title: Am. J. Surg. Pathol. doi: 10.1097/PAS.0000000000001151 – volume: 16 start-page: 494 year: 1957 ident: 1192_CR17 publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.16.4.494 – volume: 15 start-page: A1 year: 2007 ident: 1192_CR24 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2006.11.009 – volume: 28 start-page: 88 year: 1998 ident: 1192_CR22 publication-title: J. Orthop. Sports Phys. Ther. doi: 10.2519/jospt.1998.28.2.88 – volume: 349 start-page: 1350 year: 2003 ident: 1192_CR29 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa021569 – volume: 10 start-page: 1187 year: 2009 ident: 1192_CR8 publication-title: J. Pain doi: 10.1016/j.jpain.2009.10.002 – ident: 1192_CR19 – volume: 7 start-page: A64 year: 2010 ident: 1192_CR6 publication-title: Prev. Chronic Dis. – volume: 26 start-page: 471 year: 2018 ident: 1192_CR13 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2018.01.020 – volume: 474 start-page: 1886 year: 2016 ident: 1192_CR36 publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-016-4732-4 – volume: 9 year: 2008 ident: 1192_CR50 publication-title: BMC Musculoskelet. Disord. doi: 10.1186/1471-2474-9-163 – volume: 17 start-page: 1132 year: 2009 ident: 1192_CR3 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2009.03.003 – volume: 9 year: 2008 ident: 1192_CR15 publication-title: BMC Musculoskelet. Disord. doi: 10.1186/1471-2474-9-116 – volume: 67 start-page: 203 year: 2015 ident: 1192_CR27 publication-title: Arthritis Care Res. doi: 10.1002/acr.22412 – volume: 12 start-page: e0176833 year: 2017 ident: 1192_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0176833 – ident: 1192_CR40 – ident: 1192_CR18 – volume: 19 start-page: 990 year: 2011 ident: 1192_CR25 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2011.05.004 – volume: 22 start-page: 622 year: 2014 ident: 1192_CR4 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2014.03.009 – ident: 1192_CR21 – volume: 86 start-page: 1328–1335 year: 2004 ident: 1192_CR26 publication-title: J. Bone Joint Surg. Am. – volume: 322 start-page: 1360 year: 2019 ident: 1192_CR12 publication-title: JAMA doi: 10.1001/jama.2019.14735 – volume: 23 start-page: 1491 year: 2015 ident: 1192_CR47 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2015.05.003 – volume: 13 start-page: e0195075 year: 2018 ident: 1192_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0195075 – ident: 1192_CR48 – ident: 1192_CR10 – volume: 113 start-page: 4296 year: 2016 ident: 1192_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1516047113 – volume: 48 start-page: 2178 year: 2003 ident: 1192_CR23 publication-title: Arthritis Rheum. doi: 10.1002/art.11088 – ident: 1192_CR37 doi: 10.1109/CVPR.2016.90 – ident: 1192_CR34 – volume: 8 start-page: 1 year: 2018 ident: 1192_CR45 publication-title: Sci. Rep. doi: 10.1038/s41598-018-20132-7 – volume: 89 start-page: 1161 year: 2007 ident: 1192_CR28 publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-200706000-00002 – volume: 25 start-page: 3266 year: 2019 ident: 1192_CR31 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-2495 – volume: 94 start-page: 201 year: 2012 ident: 1192_CR11 publication-title: J. Bone Joint Surg. Am. doi: 10.2106/JBJS.J.01958 – reference: 33442017 - Nat Med. 2021 Jan;27(1):22-23 |
| SSID | ssj0003059 |
| Score | 2.6711977 |
| Snippet | Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 136 |
| SubjectTerms | 631/114/1305 706/689 Aged Algorithms Arthritis Biomedical and Life Sciences Biomedical materials Biomedicine Cancer Research Confidence intervals Deep Learning Diagnosis Female Health Status Disparities Humans Infectious Diseases Knee Learning algorithms Machine learning Male Medical imaging Metabolic Diseases Middle Aged Molecular Medicine Neurosciences Osteoarthritis Osteoarthritis, Knee - diagnostic imaging Osteoarthritis, Knee - physiopathology Pain Pain - physiopathology Pain Measurement Patients Physicians Populations Race factors Race Factors - statistics & numerical data Racial differences Severity of Illness Index Socioeconomic Factors Stems Underserved populations Vulnerable Populations - statistics & numerical data |
| Title | An algorithmic approach to reducing unexplained pain disparities in underserved populations |
| URI | https://link.springer.com/article/10.1038/s41591-020-01192-7 https://www.ncbi.nlm.nih.gov/pubmed/33442014 https://www.proquest.com/docview/2477376286 https://www.proquest.com/docview/2478039812 |
| Volume | 27 |
| WOSCitedRecordID | wos000607931400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1546-170X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M7P dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1546-170X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: 7X7 dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-170X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1546-170X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M2O dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1546-170X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M2P dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYB4gXPsZXYIyAEDxAtNpx_PGECtoED-uq8aFKe7DSxCmVSlqaFMF_z53jZmSCCYkXR5bPUeI7n-_s8-8IeSYpTZOJtJEA_yfiIs8jzQoWpVCnaDBQVrhkE3I4VOOxHvkNt8qHVW50olPU-SLDPfJ9xqWEycCUeL38FmHWKDxd9Sk0tsg2IpXxHtl-czAcnbS6GKRZN1GHKlLgCvhrM_1Y7VewdGHUD8PALLBzItlZms4r6N9WqHNHpm4lOrzxv_9wk1z3Nmg4aITmFrlkyx1ypclK-XOHXD3y5-23yemgDNP5FN5Rf_k6y8INAnlYL8IVgr7CB4br0v5YzlPokIdLeIT5rMLchgjVGkJ17e7PYGQltLf5wqo75NPhwce37yKfjiHKBE_qKNcI154WUgua9zMai76OJzzXkwR8wgSh3ROrWS4m3KaC960uJkwX2hacprFS8V3SKxelvU_CApxEWgiuqS6wUDTViWQ2RvssS0VA6IYTJvNY5ZgyY27cmXmsTMM9A9wzjntGBuRl22fZIHVcSP0YGWya26btNDcD4RAOwcsLyFNHgSAZJUbhTNN1VZn3x5__gejDSYfohScqFvAXWepvPsBYIPhWh_J5h3LaQI__iXC3Qwg6Ies2bwTQeJ1UmTPpC8iTthl7YpxdaRdrR6P6MfCDBeReI-_tYMYx52Au8oC82kyAs5f_faQfXPwtD8k1hmFCbldrl_Tq1do-Ipez7_WsWu2RLTmWrlR7fm5D7Ygdu3KEpRz9AhY-T24 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8rzwKK9AoQbxOEDUtZM48QGhFVB11XZBUNBKHIw3cZaVluyy2QX6p_iNzORVUkHFpQcuiSKPo8SeGc8kn78BeBByboJhaF2J-Y_ryyRxlUiFa_CaU8DARVoUmwj7_WgwUG9W4Ge9F4ZglbVPLBx1Mo3pG_mm8MMQjUFE8vnsq0tVo-jval1Co1SLHXvwHVO2_FnvJc7vQyG2Xu2_2HarqgJuLP1g4SaKWMdNGirJk07MPYlJ_dBP1DDA1CYghvLAKpHIoW-N9DtWpUOhUmVTnxsvijy87yk4jX48JAhZOGgSPLIdVWIcIzfCxKPapNPxos0cF0rCGAmCgWFU5YathfDocvDbenjkB22x7m1d-t9G7DJcrCJs1i1N4gqs2GwNzpY1Nw_W4NxehSa4Ch-7GTOTET7z4vOXccxqfnW2mLI5UdrigLBlZn_MJgY7JGyGJ5aMc6rcSES0DC-Xxe4gwo1ie1MNLb8G70_kJa_DajbN7E1gKabAPJW-4iqlQ8SNCkJhPYo-YyMd4PXM67hiYqeCIBNdIAK8SJfaolFbdKEtOnTgSdNnVvKQHCu9QQqly720jRPTXVnwN2IO68D9QoIoQDLCGI3MMs917_WHfxB697Yl9LgSSqf4FrGp9nXgWBC1WEvyUUtyVBKr_0lwvSWIHi9uN9cKryuPm-tDbXfgXtNMPQlFmNnpspCJOh7Oh3DgRmlfzWB6nu9jMOw78LQ2uMOb_32kbx3_LBtwfnt_b1fv9vo7t-GCIEBU8f1uHVYX86W9A2fib4txPr9beBIGn07aEH8BXuikKw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAhUXHuVlKNQgHgewkl2v194DQhElIioNEQVUicPixzpECk6IE6B_jV_HjF_FFVRceuCSyNpZyx7P0575BuCBz1joRb5xJOY_jpBJ4iiecifEY0YBA-NpMWzCHw6DgwM1WoOfdS8MlVXWNrEw1MkspnfkHS58H5WBB7KTVmURo53-8_lXhyZI0ZfWepxGKSK75vA7pm_5s8EOPuuHnPdfvnvxyqkmDDixFN7SSRQhkIepryRLujFzJSb4kUhU5GGa4xFauWcUT2QkTChF16g04ipVJhUsdIPAxfOegbO-8DzSrj0-arwA6pEq6x0DJ8AkpGrY6bpBJ0enSfVGnErCMMJy_JZTPO4afvONxz7WFj6wf-l_5t5luFhF3navVJUrsGayTThfzuI83ISNvarK4Cp87GV2OB3jNS8_f5nEdo27bi9n9oKgbpE59iozP-bTEDck9hz_7GSS00RHAqi18XBVdA1RPSmuN1PS8mvw_lRu8jqsZ7PM3AQ7xdSYpVIoplL6CVioPJ8bl6LSOJQWsFoKdFwhtNOgkKkuKgXcQJeSo1FydCE52rfgSbNnXuKTnEi9TcKlyx7bxrjpnixwHTG3teB-QUHQIBmJyThc5bkevPnwD0T7b1tEjyuidIZ3EYdVvwfygiDHWpSPWpTjEnD9T4RbLUK0hHF7uRZ-XVniXB9JvgX3mmXaSdWFmZmtCpqg6-Lz4BbcKHWtYabrCoFBsrDgaa18Ryf_O6dvnXwt27CB-qdfD4a7t-ECpzqp4rXeFqwvFytzB87F35aTfHG3MCo2fDptPfwF3pGs-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithmic+approach+to+reducing+unexplained+pain+disparities+in+underserved+populations&rft.jtitle=Nature+medicine&rft.au=Pierson%2C+Emma&rft.au=Cutler%2C+David+M&rft.au=Leskovec+Jure&rft.au=Mullainathan+Sendhil&rft.date=2021-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1078-8956&rft.eissn=1546-170X&rft.volume=27&rft.issue=1&rft.spage=136&rft.epage=140&rft_id=info:doi/10.1038%2Fs41591-020-01192-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |