Improved Livingness and Control over Branching in RAFT Polymerization of Acrylates: Could Microflow Synthesis Make the Difference?
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution polymerization of n‐butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies...
Uloženo v:
| Vydáno v: | Macromolecular rapid communications. Ročník 36; číslo 24; s. 2149 - 2155 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Blackwell Publishing Ltd
01.12.2015
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1022-1336, 1521-3927, 1521-3927 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution polymerization of n‐butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β‐scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA.
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer solution polymerization of n‐butyl acrylate due to isothermicity of the former. Importantly, detailed kinetic analysis also allows to determine unambiguously the different underlying causes for the effect of the microreactor conditions on the cumulative branching content and the degree of livingness. |
|---|---|
| AbstractList | The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution polymerization of n‐butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β‐scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA.
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer solution polymerization of n‐butyl acrylate due to isothermicity of the former. Importantly, detailed kinetic analysis also allows to determine unambiguously the different underlying causes for the effect of the microreactor conditions on the cumulative branching content and the degree of livingness. The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution polymerization of n ‐butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β‐scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. image The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and beta -scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer solution polymerization of n-butyl acrylate due to isothermicity of the former. Importantly, detailed kinetic analysis also allows to determine unambiguously the different underlying causes for the effect of the microreactor conditions on the cumulative branching content and the degree of livingness. The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA.The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and [beta]-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. |
| Author | Junkers, Thomas Van Steenberge, Paul H. M. D'hooge, Dagmar R. Reyniers, Marie-Francoise Marin, Guy B. Vandenbergh, Joke Derboven, Pieter |
| Author_xml | – sequence: 1 givenname: Pieter surname: Derboven fullname: Derboven, Pieter organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052, Zwijnaarde (Ghent), Belgium – sequence: 2 givenname: Paul H. M. surname: Van Steenberge fullname: Van Steenberge, Paul H. M. organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052, Zwijnaarde (Ghent), Belgium – sequence: 3 givenname: Joke surname: Vandenbergh fullname: Vandenbergh, Joke organization: Polymer Reaction Design Group, Institute for Materials Research (IMO-imomec), Universiteit Hasselt, Agoralaan Building D, B-3590, Diepenbeek, Belgium – sequence: 4 givenname: Marie-Francoise surname: Reyniers fullname: Reyniers, Marie-Francoise organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052, Zwijnaarde (Ghent), Belgium – sequence: 5 givenname: Thomas surname: Junkers fullname: Junkers, Thomas email: Thomas.Junkers@UHasselt.be organization: Polymer Reaction Design Group, Institute for Materials Research (IMO-imomec), Universiteit Hasselt, Agoralaan Building D, B-3590, Diepenbeek, Belgium – sequence: 6 givenname: Dagmar R. surname: D'hooge fullname: D'hooge, Dagmar R. email: Thomas.Junkers@UHasselt.be organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052, Zwijnaarde (Ghent), Belgium – sequence: 7 givenname: Guy B. surname: Marin fullname: Marin, Guy B. organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052, Zwijnaarde (Ghent), Belgium |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26400634$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1vEzEQhi1URNvAlSOyxIXLhvHHene5oJCSUikBVIo4Wl6vTd1u7GJvWsKRX45DSoQqQeXDjDTv49HMO4dozwdvEHpKYEwA6MulinpMgZQArKweoANSUlKwhlZ7OQdKC8KY2EeHKV0AQM2BPkL7VHAAwfgB-nmyvIrh2nR47q6d_-pNSlj5Dk-DH2Loca5F_CYqr89zGTuPTyezM_wx9Oulie6HGlzwOFg80XHdq8GkV5ld9R1eOB2D7cMN_rT2w7lJLuGFujQ45_jIWWui8dq8foweWtUn8-Q2jtDn2duz6bti_uH4ZDqZF1rwsioaW2ltLW9bDZwwYaC2QlNgHbEMaFmLulWt5WCZqnXVcC50ww0jLemoKBs2Qi-2_-aBv61MGuTSJW36XnkTVkmSGoDXGRT3SysBecUiL32Ent-RXoRV9HkQybIttILc-n8qUpX5kY0fI_TsVrVql6aTV9Flf9fyj11ZMN4K8mZTisbuJATk5h7k5h7k7h4ywO8A2g2_LRuicv2_sWaL3bjerO9pIheT0-nfbLFlXRrM9x2r4qUUFatK-eX9sTyiTTOns1LO2S8cp9c7 |
| CitedBy_id | crossref_primary_10_1002_marc_201700423 crossref_primary_10_1002_mats_202100008 crossref_primary_10_3390_polym14112152 crossref_primary_10_1039_C9RE00186G crossref_primary_10_1016_j_eurpolymj_2022_111335 crossref_primary_10_1002_marc_201800357 crossref_primary_10_3390_polym9090443 crossref_primary_10_3390_polym13183027 crossref_primary_10_1016_j_ces_2021_117045 crossref_primary_10_1016_j_cep_2016_03_010 crossref_primary_10_1039_C9RE00224C crossref_primary_10_1002_mren_201700016 crossref_primary_10_1002_aic_16111 crossref_primary_10_1016_j_progpolymsci_2020_101256 crossref_primary_10_1039_D0RE00266F crossref_primary_10_1002_mats_201600048 crossref_primary_10_1016_j_progpolymsci_2022_101555 crossref_primary_10_1016_j_cej_2018_07_166 crossref_primary_10_1016_j_ces_2019_115290 crossref_primary_10_1002_macp_201600421 crossref_primary_10_1039_D1RE00099C crossref_primary_10_1002_aic_18372 crossref_primary_10_1134_S1560090419050166 crossref_primary_10_3390_polym10111228 crossref_primary_10_1002_aic_18155 crossref_primary_10_1016_j_aca_2018_05_030 crossref_primary_10_1007_s41061_018_0224_1 crossref_primary_10_1002_cmtd_202500025 crossref_primary_10_1002_mren_201600065 crossref_primary_10_1002_macp_201900021 crossref_primary_10_1002_mren_201500080 crossref_primary_10_1016_j_eurpolymj_2016_03_004 crossref_primary_10_1039_D1RE00360G crossref_primary_10_1016_j_cej_2022_135192 crossref_primary_10_3390_polym10070711 crossref_primary_10_1002_mats_201900035 crossref_primary_10_1016_j_ces_2017_11_043 crossref_primary_10_1002_marc_201700807 crossref_primary_10_1002_mren_201700029 crossref_primary_10_1016_j_cej_2021_128970 crossref_primary_10_1039_D0PY00042F crossref_primary_10_1002_mren_202000010 crossref_primary_10_1016_j_progpolymsci_2016_04_002 crossref_primary_10_1002_mren_201700023 crossref_primary_10_1039_D1PY00151E crossref_primary_10_1556_1846_2017_00030 crossref_primary_10_1002_admi_202202125 |
| Cites_doi | 10.1002/mren.201000006 10.1021/ma201570f 10.1002/marc.200900450 10.1039/c2cs35115c 10.1039/c0cc05060a 10.1002/mren.201400061 10.1021/ma0101299 10.1021/ma502575j 10.1021/ma992053a 10.1002/pola.26593 10.1002/marc.200900445 10.1021/ma201704w 10.1002/anie.200701434 10.1002/anie.201006272 10.1002/marc.201000375 10.1016/S0009-2509(00)00230-X 10.1021/ma201345m 10.1021/cr050944c 10.1021/op1003314 10.1002/anie.201306468 10.1021/ma048369m 10.1021/ma971283r 10.1021/ma300953b 10.1002/mren.201200027 10.1021/ie4011996 10.1002/pola.23071 10.1007/s10404-010-0679-z 10.1002/anie.200906095 10.1039/C4CC10426A 10.1021/ma501267a 10.1016/0032-3861(91)90058-Q 10.1021/ma071471 10.1016/j.ces.2006.12.074 10.1002/mren.200700051 10.1021/ma0018190 10.1021/ma050402x |
| ContentType | Journal Article |
| Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
| DOI | 10.1002/marc.201500357 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Materials Research Database MEDLINE - Academic Materials Research Database Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3927 |
| EndPage | 2155 |
| ExternalDocumentID | 3923616201 26400634 10_1002_marc_201500357 MARC201500357 ark_67375_WNG_D299L2F5_L |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAHHS ABTAH ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWB RWI WRC AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
| ID | FETCH-LOGICAL-c6457-9f7ccff4bbc04136e08f6c203d1f3025868babf40f3a8c79446c94e31b1d26593 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368033500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1022-1336 1521-3927 |
| IngestDate | Fri Jul 11 12:21:20 EDT 2025 Sun Nov 09 14:25:32 EST 2025 Sun Jul 13 05:06:20 EDT 2025 Sun Jul 13 05:09:35 EDT 2025 Mon Jul 21 05:49:35 EDT 2025 Sat Nov 29 03:05:50 EST 2025 Tue Nov 18 21:36:26 EST 2025 Wed Jan 22 16:54:19 EST 2025 Sun Sep 21 06:19:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | reversible addition-fragmentation chain transfer, RAFT branching acrylates microreactors polymer kinetics |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6457-9f7ccff4bbc04136e08f6c203d1f3025868babf40f3a8c79446c94e31b1d26593 |
| Notes | istex:4D2B1F58E74467D52534363C3B0A7438E0A8DBD8 ark:/67375/WNG-D299L2F5-L ArticleID:MARC201500357 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 26400634 |
| PQID | 1757571006 |
| PQPubID | 1016394 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1800487946 proquest_miscellaneous_1760927600 proquest_journals_3015270593 proquest_journals_1757571006 pubmed_primary_26400634 crossref_primary_10_1002_marc_201500357 crossref_citationtrail_10_1002_marc_201500357 wiley_primary_10_1002_marc_201500357_MARC201500357 istex_primary_ark_67375_WNG_D299L2F5_L |
| PublicationCentury | 2000 |
| PublicationDate | December 2015 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: December 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Macromolecular rapid communications. |
| PublicationTitleAlternate | Macromol. Rapid Commun |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | B. Cortese, T. Noel, M. H. J. M. de Croon, S. Schulze, E. Klemm, V. Hessel, Macromol. Reaction Eng. 2012, 6, 507. P. A. Lovell, T. H. Shah, F. Heatley, Polym. Commun. 1991, 32, 98. Z. Gao, J. He, Macromol. Reaction Eng. 2015, DOI: 10.1002/mren.201400061. J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun. 2011, 47, 4583. J. Vandenbergh, T. Ogawa, T. d. m. Junkers, J. Polym. Sci. Part A-Polym. Chem. 2013, 51, 2366. N. M. Ahmad, F. Heatley, P. A. Lovell, Macromolecules 1998, 31, 2822. A. Postma, T. P. Davis, G. Moad, M. S. O'Shea, Macromolecules 2005, 38, 5371. H. R. Sahoo, J. G. Kralj, K. F. Jensen, Angew. Chem.-Int. Ed. 2007, 46, 5704. J. S. Moore, K. F. Jensen, Angew. Chem.-Int. Ed. 2014, 53, 470. F. Heatley, P. A. Lovell, T. Yamashita, Macromolecules 2001, 34, 7636. P. B. Palde, T. F. Jamison, Angew. Chem.-Int. Ed. 2011, 50, 3525. Y. W. Zhou, J. P. He, C. X. Li, L. X. Hong, Y. L. Yang, Macromolecules 2011, 44, 8446. C. Rosenfeld, C. Serra, C. Brochon, G. Hadziioannou, Chem. Eng. Sci. 2007, 62, 5245. N. Chan, J. Meuldijk, M. F. Cunningham, R. A. Hutchinson, Ind. Eng. Chem. Res. 2013, 52, 11931. T. Iwasaki, J. Yoshida, Macromolecules 2005, 38, 1159. M. M. Mandal, C. Serra, Y. Hoarau, K. D. P. Nigam, Microfluid. Nanofluid. 2011, 10, 415. F. Bally, C. A. Serra, V. Hessel, G. Hadziioannou, Macromol. Reaction Eng. 2010, 4, 543. Y. Guillaneuf, D. Gigmes, T. Junkers, Macromolecules 2012, 45, 5371. C. Plessis, G. Arzamendi, J. M. Alberdi, M. Agnely, J. R. Leiza, J. M. Asua, Macromolecules 2001, 34, 6138. C. Plessis, G. Arzamendi, J. R. Leiza, H. A. S. Schoonbrood, D. Charmot, J. M. Asua, Macromolecules 2000, 33, 5041. Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969. Y. Reyes, J. M. Asua, Macromol. Rapid Commun. 2011, 32, 63. B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107, 2300. A. M. Zorn, T. Junkers, C. Barner-Kowollik, Macromolecules 2011, 44, 6691. J. J. Haven, J. Vandenbergh, T. Junkers, Chem. Commun. 2015, 51, 4611. T. Junkers, S. P. S. Koo, T. P. Davis, M. H. Stenzel, C. Barner-Kowollik, Macromolecules 2007, 40, 8906. T. Junkers, C. Barner-Kowollik, J. Polym. Sci. Part A-Polym. Chem. 2008, 46, 7585. D. Konkolewicz, S. Sosnowski, D. R. D'hooge, R. Szymanski, M.-F. Reyniers, G. B. Marin, K. Matyjaszewski, Macromolecules 2011, 44, 8361. W. Wang, A. N. Nikitin, R. A. Hutchinson, Macromol. Rapid Commun. 2009, 30, 2022. F. E. Valera, M. Quaranta, A. Moran, J. Blacker, A. Armstrong, J. T. Cabral, D. G. Blackmond, Angew. Chem.-Int. Ed. 2010, 49, 2478. C. H. Hornung, C. Guerrero-Sanchez, M. Brasholz, S. Saubern, J. Chiefari, G. Moad, E. Rizzardo, S. H. Thang, Org. Proc. Res. Dev. 2011, 15, 593. W. Wang, R. A. Hutchinson, Macromol. Reaction Eng. 2008, 2, 199. K. F. Jensen, Chem. Eng. Sci. 2001, 56, 293. N. Ballard, S. Rusconi, E. Akhmatskaya, D. Sokolovski, J. C. de la Cal, J. M. Asua, Macromolecules 2014, 47, 6580. N. Ballard, J. C. de la Cal, J. M. Asua, Macromolecules 2015, 48, 987. N. M. Ahmad, B. Charleux, C. Farcet, C. J. Ferguson, S. G. Gaynor, B. S. Hawkett, F. Heatley, B. Klumperman, D. Konkolewicz, P. A. Lovell, K. Matyjaszewski, R. Venkatesh, Macromol. Rapid Commun. 2009, 30, 2002. 2007; 107 2015; 51 1991; 32 2014; 47 2011; 32 2011; 10 2011; 15 2008; 2 2015; 48 2010; 49 2009; 30 2013; 51 2000; 33 2011; 50 2013; 52 2011; 44 2008; 46 2015 2007; 62 2007; 40 2011; 47 2012; 6 2001; 56 2005; 38 2001; 34 2012; 45 2010; 4 1998; 31 2007; 46 2012; 41 2014; 53 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 |
| References_xml | – reference: J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun. 2011, 47, 4583. – reference: T. Junkers, S. P. S. Koo, T. P. Davis, M. H. Stenzel, C. Barner-Kowollik, Macromolecules 2007, 40, 8906. – reference: J. S. Moore, K. F. Jensen, Angew. Chem.-Int. Ed. 2014, 53, 470. – reference: P. A. Lovell, T. H. Shah, F. Heatley, Polym. Commun. 1991, 32, 98. – reference: A. Postma, T. P. Davis, G. Moad, M. S. O'Shea, Macromolecules 2005, 38, 5371. – reference: M. M. Mandal, C. Serra, Y. Hoarau, K. D. P. Nigam, Microfluid. Nanofluid. 2011, 10, 415. – reference: N. Chan, J. Meuldijk, M. F. Cunningham, R. A. Hutchinson, Ind. Eng. Chem. Res. 2013, 52, 11931. – reference: P. B. Palde, T. F. Jamison, Angew. Chem.-Int. Ed. 2011, 50, 3525. – reference: F. E. Valera, M. Quaranta, A. Moran, J. Blacker, A. Armstrong, J. T. Cabral, D. G. Blackmond, Angew. Chem.-Int. Ed. 2010, 49, 2478. – reference: Y. Guillaneuf, D. Gigmes, T. Junkers, Macromolecules 2012, 45, 5371. – reference: B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107, 2300. – reference: C. Rosenfeld, C. Serra, C. Brochon, G. Hadziioannou, Chem. Eng. Sci. 2007, 62, 5245. – reference: A. M. Zorn, T. Junkers, C. Barner-Kowollik, Macromolecules 2011, 44, 6691. – reference: T. Iwasaki, J. Yoshida, Macromolecules 2005, 38, 1159. – reference: Y. Reyes, J. M. Asua, Macromol. Rapid Commun. 2011, 32, 63. – reference: Z. Gao, J. He, Macromol. Reaction Eng. 2015, DOI: 10.1002/mren.201400061. – reference: F. Heatley, P. A. Lovell, T. Yamashita, Macromolecules 2001, 34, 7636. – reference: D. Konkolewicz, S. Sosnowski, D. R. D'hooge, R. Szymanski, M.-F. Reyniers, G. B. Marin, K. Matyjaszewski, Macromolecules 2011, 44, 8361. – reference: K. F. Jensen, Chem. Eng. Sci. 2001, 56, 293. – reference: Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969. – reference: C. H. Hornung, C. Guerrero-Sanchez, M. Brasholz, S. Saubern, J. Chiefari, G. Moad, E. Rizzardo, S. H. Thang, Org. Proc. Res. Dev. 2011, 15, 593. – reference: N. M. Ahmad, F. Heatley, P. A. Lovell, Macromolecules 1998, 31, 2822. – reference: N. Ballard, S. Rusconi, E. Akhmatskaya, D. Sokolovski, J. C. de la Cal, J. M. Asua, Macromolecules 2014, 47, 6580. – reference: C. Plessis, G. Arzamendi, J. M. Alberdi, M. Agnely, J. R. Leiza, J. M. Asua, Macromolecules 2001, 34, 6138. – reference: B. Cortese, T. Noel, M. H. J. M. de Croon, S. Schulze, E. Klemm, V. Hessel, Macromol. Reaction Eng. 2012, 6, 507. – reference: H. R. Sahoo, J. G. Kralj, K. F. Jensen, Angew. Chem.-Int. Ed. 2007, 46, 5704. – reference: J. J. Haven, J. Vandenbergh, T. Junkers, Chem. Commun. 2015, 51, 4611. – reference: F. Bally, C. A. Serra, V. Hessel, G. Hadziioannou, Macromol. Reaction Eng. 2010, 4, 543. – reference: W. Wang, R. A. Hutchinson, Macromol. Reaction Eng. 2008, 2, 199. – reference: N. M. Ahmad, B. Charleux, C. Farcet, C. J. Ferguson, S. G. Gaynor, B. S. Hawkett, F. Heatley, B. Klumperman, D. Konkolewicz, P. A. Lovell, K. Matyjaszewski, R. Venkatesh, Macromol. Rapid Commun. 2009, 30, 2002. – reference: C. Plessis, G. Arzamendi, J. R. Leiza, H. A. S. Schoonbrood, D. Charmot, J. M. Asua, Macromolecules 2000, 33, 5041. – reference: Y. W. Zhou, J. P. He, C. X. Li, L. X. Hong, Y. L. Yang, Macromolecules 2011, 44, 8446. – reference: N. Ballard, J. C. de la Cal, J. M. Asua, Macromolecules 2015, 48, 987. – reference: W. Wang, A. N. Nikitin, R. A. Hutchinson, Macromol. Rapid Commun. 2009, 30, 2022. – reference: T. Junkers, C. Barner-Kowollik, J. Polym. Sci. Part A-Polym. Chem. 2008, 46, 7585. – reference: J. Vandenbergh, T. Ogawa, T. d. m. Junkers, J. Polym. Sci. Part A-Polym. Chem. 2013, 51, 2366. – volume: 47 start-page: 4583 year: 2011 publication-title: Chem. Commun. – volume: 46 start-page: 5704 year: 2007 publication-title: Angew. Chem.‐Int. Ed. – volume: 34 start-page: 7636 year: 2001 publication-title: Macromolecules – volume: 62 start-page: 5245 year: 2007 publication-title: Chem. Eng. Sci. – volume: 30 start-page: 2002 year: 2009 publication-title: Macromol. Rapid Commun. – volume: 51 start-page: 4611 year: 2015 publication-title: Chem. Commun. – volume: 38 start-page: 1159 year: 2005 publication-title: Macromolecules – volume: 56 start-page: 293 year: 2001 publication-title: Chem. Eng. Sci. – volume: 51 start-page: 2366 year: 2013 publication-title: J. Polym. Sci. Part A‐Polym. Chem. – volume: 15 start-page: 593 year: 2011 publication-title: Org. Proc. Res. Dev. – volume: 52 start-page: 11931 year: 2013 publication-title: Ind. Eng. Chem. Res. – volume: 44 start-page: 6691 year: 2011 publication-title: Macromolecules – volume: 48 start-page: 987 year: 2015 publication-title: Macromolecules – volume: 41 start-page: 5969 year: 2012 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 507 year: 2012 publication-title: Macromol. Reaction Eng. – volume: 107 start-page: 2300 year: 2007 publication-title: Chem. Rev. – volume: 4 start-page: 543 year: 2010 publication-title: Macromol. Reaction Eng. – volume: 30 start-page: 2022 year: 2009 publication-title: Macromol. Rapid Commun. – volume: 32 start-page: 63 year: 2011 publication-title: Macromol. Rapid Commun. – volume: 47 start-page: 6580 year: 2014 publication-title: Macromolecules – volume: 44 start-page: 8446 year: 2011 publication-title: Macromolecules – volume: 10 start-page: 415 year: 2011 publication-title: Microfluid. Nanofluid. – volume: 40 start-page: 8906 year: 2007 publication-title: Macromolecules – volume: 53 start-page: 470 year: 2014 publication-title: Angew. Chem.‐Int. Ed. – year: 2015 publication-title: Macromol. Reaction Eng. – volume: 2 start-page: 199 year: 2008 publication-title: Macromol. Reaction Eng. – volume: 45 start-page: 5371 year: 2012 publication-title: Macromolecules – volume: 44 start-page: 8361 year: 2011 publication-title: Macromolecules – volume: 50 start-page: 3525 year: 2011 publication-title: Angew. Chem.‐Int. Ed. – volume: 32 start-page: 98 year: 1991 publication-title: Polym. Commun. – volume: 33 start-page: 5041 year: 2000 publication-title: Macromolecules – volume: 34 start-page: 6138 year: 2001 publication-title: Macromolecules – volume: 38 start-page: 5371 year: 2005 publication-title: Macromolecules – volume: 31 start-page: 2822 year: 1998 publication-title: Macromolecules – volume: 46 start-page: 7585 year: 2008 publication-title: J. Polym. Sci. Part A‐Polym. Chem. – volume: 49 start-page: 2478 year: 2010 publication-title: Angew. Chem.‐Int. Ed. – ident: e_1_2_7_9_1 doi: 10.1002/mren.201000006 – ident: e_1_2_7_32_1 doi: 10.1021/ma201570f – ident: e_1_2_7_17_1 doi: 10.1002/marc.200900450 – ident: e_1_2_7_16_1 doi: 10.1039/c2cs35115c – ident: e_1_2_7_3_1 doi: 10.1039/c0cc05060a – ident: e_1_2_7_35_1 doi: 10.1002/mren.201400061 – ident: e_1_2_7_19_1 doi: 10.1021/ma0101299 – ident: e_1_2_7_36_1 doi: 10.1021/ma502575j – ident: e_1_2_7_26_1 doi: 10.1021/ma992053a – ident: e_1_2_7_13_1 doi: 10.1002/pola.26593 – ident: e_1_2_7_24_1 doi: 10.1002/marc.200900445 – ident: e_1_2_7_29_1 doi: 10.1021/ma201704w – ident: e_1_2_7_6_1 doi: 10.1002/anie.200701434 – ident: e_1_2_7_5_1 doi: 10.1002/anie.201006272 – ident: e_1_2_7_28_1 doi: 10.1002/marc.201000375 – ident: e_1_2_7_1_1 doi: 10.1016/S0009-2509(00)00230-X – ident: e_1_2_7_25_1 doi: 10.1021/ma201345m – ident: e_1_2_7_2_1 doi: 10.1021/cr050944c – ident: e_1_2_7_12_1 doi: 10.1021/op1003314 – ident: e_1_2_7_4_1 doi: 10.1002/anie.201306468 – ident: e_1_2_7_10_1 doi: 10.1021/ma048369m – ident: e_1_2_7_18_1 doi: 10.1021/ma971283r – ident: e_1_2_7_23_1 doi: 10.1021/ma300953b – ident: e_1_2_7_33_1 doi: 10.1002/mren.201200027 – ident: e_1_2_7_14_1 doi: 10.1021/ie4011996 – ident: e_1_2_7_20_1 doi: 10.1002/pola.23071 – ident: e_1_2_7_34_1 doi: 10.1007/s10404-010-0679-z – ident: e_1_2_7_8_1 doi: 10.1002/anie.200906095 – ident: e_1_2_7_7_1 doi: 10.1039/C4CC10426A – ident: e_1_2_7_30_1 doi: 10.1021/ma501267a – ident: e_1_2_7_21_1 doi: 10.1016/0032-3861(91)90058-Q – ident: e_1_2_7_22_1 doi: 10.1021/ma071471 – ident: e_1_2_7_11_1 doi: 10.1016/j.ces.2006.12.074 – ident: e_1_2_7_15_1 doi: 10.1002/mren.200700051 – ident: e_1_2_7_27_1 doi: 10.1021/ma0018190 – ident: e_1_2_7_31_1 doi: 10.1021/ma050402x |
| SSID | ssj0008402 |
| Score | 2.42668 |
| Snippet | The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution... The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2149 |
| SubjectTerms | Acrylates Acrylic Resins - chemical synthesis Acrylic Resins - chemistry Acrylics Addition polymerization Batch reactors branching Chain transfer Chemical industry Chemical synthesis Cleavage Dilution Microreactors polymer kinetics Polymerization RAFT Rafts Reactors Reagents reversible addition-fragmentation chain transfer reversible addition–fragmentation chain transfer, RAFT Solution polymerization |
| Title | Improved Livingness and Control over Branching in RAFT Polymerization of Acrylates: Could Microflow Synthesis Make the Difference? |
| URI | https://api.istex.fr/ark:/67375/WNG-D299L2F5-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201500357 https://www.ncbi.nlm.nih.gov/pubmed/26400634 https://www.proquest.com/docview/1757571006 https://www.proquest.com/docview/3015270593 https://www.proquest.com/docview/1760927600 https://www.proquest.com/docview/1800487946 |
| Volume | 36 |
| WOSCitedRecordID | wos000368033500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3927 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008402 issn: 1022-1336 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYigQv43MQGJOREDxFS53EcXhBpSXwkFZT2aBvlmPHUrUoQc066Ct_OXdJGqg0QAJFihzZsfxxPv98d74j5IUwFvVvmRvHocUQZhpSmrs6MgLQc6B5I8r-lEazmVgs4tNfbvG3_iF6gRuujIZf4wJXWX3y02kounpA06wQlWHRHhngzSo4fg0m8-Q87bkxHGBajSccuuA8xreOGz12slvDzsY0wDH-dh3q3AWxzS6U3Pn_9t8lBx0CpaOWZO6RG3l5n9wabwO_PSDfW0FDbmi6RHEDMkOqSkPHrVk7RatP-hYjcqD4ii5LOh8lZ_S0Kjao_2kvdtLK0pFebQoEs6_h33Vh6BTN_2xRfaUfNyVAz3pZ06m6yCmk6aSL1aLzNw_JefLubPzB7UI1uJoHYeTGNtLa2iDLtAfbIs89Yblmnm-GQAssFFxkKrOBZ30lNPCAgOs4yP1hNjSMh7F_SPbLqswfE5oZGzMGLxuoIDNMcaUDX-iQ2yH3hHGIu50nqTs_5hhOo5CtB2YmcWRlP7IOedWX_9J68PhtyZfNtPfF1OoC7d6iUH6evZcT2LlTloQydcjRli5kt-RrCTgMHqiWX5sNjDQECoWuOuR5nw0ziwoaVebVGqvgXsxQVfqHMgKZLoYFcMijliT79gK4RcgZOIQ1lPeX_srpaD7uv578y09PyW1Mt_Y9R2T_crXOn5Gb-upyWa-OyV60EMfdivwBywgzow |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BizRexjcEBhgJwVO01HEchxdUWsIQaTWVju3NSpxYqhYlU7sCfeUvxxenQZUGSAhFipL4Q7F9Pv98d74DeClyjfq3zI2iQGMIM2WeFHdVmAuDnpnijSj7SxJOp-LsLDpurQnxLIz1D9EJ3HBmNPwaJzgKpA9_eQ1FXw9omxWgNiy8Dn3G_VD0oD-exSdJx47NDsaqPM2uy2zI-NZzo0cPd2vYWZn62Mnfr4Kduyi2WYbiW_-hAbdhv8WgZGiJ5g5cK6q7sDfahn67Bz-sqKHISbJAgQOyQ5JWORlZw3aCdp_kHcbkQAEWWVRkNozn5LguN6gBskc7Sa3JUC03JcLZN6bsuszJBA0AdVl_I583lQGfq8WKTNLzgphnMm6jtaji7X04id_PR0duG6zBVZwFoRvpUCmtWZYpzyyMvPCE5op6fj4w1EADwUWWZpp52k-FMlyAcRWxwh9kg5zyIPIfQK-qq-IRkCzXEaXmplnKspymPFXMFyrgesA9kTvgbgdKqtaTOQbUKKX1wUwl9qzsetaB113-C-vD47c5XzXj3mVLl-do-RYG8nT6QY7N2p3QOJCJAwdbwpDtpF9Jg8TMZarlVyYbVhrQEEMoOvCiSzYjiyqatCrqNVbBvYiisvQPeQSyXQwM4MBDS5Pd_xp4i6CTOUAb0vtLe-VkOBt1b4__pdBz2DuaTxKZfJx-egI38bu19jmA3uVyXTyFG-rr5WK1fNZOzJ_0ejar |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9Bi4AXvtkCA4yE4Cla6thOwgsqLQFEWlVlG3uzEjuWqkXJ1K5AX_nL8SVpUKUBEkKRoiT-UGyfzz_fne8AXoTaoP4tc6OIGwxhpuyTEq4KdGjRM1OiFmWfJMF0Gp6eRrPWmhDPwjT-ITqBG86Mml_jBM_PtTn85TUUfT2gbRZHbVhwFfqMR5z1oD-ex8dJx47tDqZRedpdl92Qia3nRo8e7tawszL1sZO_XwY7d1FsvQzFt_9DA-7ArRaDkmFDNHfhSl7egxujbei3-_CjETXkmiQLFDggOyRpqcmoMWwnaPdJ3mJMDhRgkUVJ5sP4iMyqYoMaoOZoJ6kMGarlpkA4-9qWXReaTNAA0BTVN_J5U1rwuVqsyCQ9y4l9JuM2WovK3zyA4_jd0eiD2wZrcJVgPHAjEyhlDMsy5dmFUeReaISinq8HlhooD0WYpZlhnvHTUFkuwISKWO4PsoGmgkf-Q-iVVZnvA8m0iSi1N8NSlmmailQxP1RcmIHwQu2Aux0oqVpP5hhQo5CND2YqsWdl17MOvOrynzc-PH6b82U97l22dHmGlm8Bl1-m7-XYrt0JjblMHDjYEoZsJ_1KWiRmL1utuDTZslJOAwyh6MDzLtmOLKpo0jKv1liF8CKKytI_5AmR7WJgAAf2Gprs_tfCWwSdzAFak95f2isnw_moe3v0L4WewfXZOJbJx-mnx3ATPzfGPgfQu1iu8ydwTX29WKyWT9t5-RMtejYm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Livingness+and+Control+over+Branching+in+RAFT+Polymerization+of+Acrylates%3A+Could+Microflow+Synthesis+Make+the+Difference%3F&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Derboven%2C+Pieter&rft.au=Van+Steenberge%2C+Paul+H.+M.&rft.au=Vandenbergh%2C+Joke&rft.au=Reyniers%2C+Marie%E2%80%90Francoise&rft.date=2015-12-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=36&rft.issue=24&rft.spage=2149&rft.epage=2155&rft_id=info:doi/10.1002%2Fmarc.201500357&rft.externalDBID=10.1002%252Fmarc.201500357&rft.externalDocID=MARC201500357 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |