Improved Livingness and Control over Branching in RAFT Polymerization of Acrylates: Could Microflow Synthesis Make the Difference?

The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution polymerization of n‐butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Macromolecular rapid communications. Ročník 36; číslo 24; s. 2149 - 2155
Hlavní autoři: Derboven, Pieter, Van Steenberge, Paul H. M., Vandenbergh, Joke, Reyniers, Marie-Francoise, Junkers, Thomas, D'hooge, Dagmar R., Marin, Guy B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Blackwell Publishing Ltd 01.12.2015
Wiley Subscription Services, Inc
Témata:
ISSN:1022-1336, 1521-3927, 1521-3927
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution polymerization of n‐butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β‐scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer solution polymerization of n‐butyl acrylate due to isothermicity of the former. Importantly, detailed kinetic analysis also allows to determine unambiguously the different underlying causes for the effect of the microreactor conditions on the cumulative branching content and the degree of livingness.
AbstractList The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution polymerization of n‐butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β‐scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer solution polymerization of n‐butyl acrylate due to isothermicity of the former. Importantly, detailed kinetic analysis also allows to determine unambiguously the different underlying causes for the effect of the microreactor conditions on the cumulative branching content and the degree of livingness.
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution polymerization of n ‐butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β‐scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. image
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA.
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and beta -scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer solution polymerization of n-butyl acrylate due to isothermicity of the former. Importantly, detailed kinetic analysis also allows to determine unambiguously the different underlying causes for the effect of the microreactor conditions on the cumulative branching content and the degree of livingness.
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA.The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA.
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and [beta]-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA.
Author Junkers, Thomas
Van Steenberge, Paul H. M.
D'hooge, Dagmar R.
Reyniers, Marie-Francoise
Marin, Guy B.
Vandenbergh, Joke
Derboven, Pieter
Author_xml – sequence: 1
  givenname: Pieter
  surname: Derboven
  fullname: Derboven, Pieter
  organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052, Zwijnaarde (Ghent), Belgium
– sequence: 2
  givenname: Paul H. M.
  surname: Van Steenberge
  fullname: Van Steenberge, Paul H. M.
  organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052, Zwijnaarde (Ghent), Belgium
– sequence: 3
  givenname: Joke
  surname: Vandenbergh
  fullname: Vandenbergh, Joke
  organization: Polymer Reaction Design Group, Institute for Materials Research (IMO-imomec), Universiteit Hasselt, Agoralaan Building D, B-3590, Diepenbeek, Belgium
– sequence: 4
  givenname: Marie-Francoise
  surname: Reyniers
  fullname: Reyniers, Marie-Francoise
  organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052, Zwijnaarde (Ghent), Belgium
– sequence: 5
  givenname: Thomas
  surname: Junkers
  fullname: Junkers, Thomas
  email: Thomas.Junkers@UHasselt.be
  organization: Polymer Reaction Design Group, Institute for Materials Research (IMO-imomec), Universiteit Hasselt, Agoralaan Building D, B-3590, Diepenbeek, Belgium
– sequence: 6
  givenname: Dagmar R.
  surname: D'hooge
  fullname: D'hooge, Dagmar R.
  email: Thomas.Junkers@UHasselt.be
  organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052, Zwijnaarde (Ghent), Belgium
– sequence: 7
  givenname: Guy B.
  surname: Marin
  fullname: Marin, Guy B.
  organization: Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052, Zwijnaarde (Ghent), Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26400634$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNvAlSOyxIXLhvHHene5oJCSUikBVIo4Wl6vTd1u7GJvWsKRX45DSoQqQeXDjDTv49HMO4dozwdvEHpKYEwA6MulinpMgZQArKweoANSUlKwhlZ7OQdKC8KY2EeHKV0AQM2BPkL7VHAAwfgB-nmyvIrh2nR47q6d_-pNSlj5Dk-DH2Loca5F_CYqr89zGTuPTyezM_wx9Oulie6HGlzwOFg80XHdq8GkV5ld9R1eOB2D7cMN_rT2w7lJLuGFujQ45_jIWWui8dq8foweWtUn8-Q2jtDn2duz6bti_uH4ZDqZF1rwsioaW2ltLW9bDZwwYaC2QlNgHbEMaFmLulWt5WCZqnXVcC50ww0jLemoKBs2Qi-2_-aBv61MGuTSJW36XnkTVkmSGoDXGRT3SysBecUiL32Ent-RXoRV9HkQybIttILc-n8qUpX5kY0fI_TsVrVql6aTV9Flf9fyj11ZMN4K8mZTisbuJATk5h7k5h7k7h4ywO8A2g2_LRuicv2_sWaL3bjerO9pIheT0-nfbLFlXRrM9x2r4qUUFatK-eX9sTyiTTOns1LO2S8cp9c7
CitedBy_id crossref_primary_10_1002_marc_201700423
crossref_primary_10_1002_mats_202100008
crossref_primary_10_3390_polym14112152
crossref_primary_10_1039_C9RE00186G
crossref_primary_10_1016_j_eurpolymj_2022_111335
crossref_primary_10_1002_marc_201800357
crossref_primary_10_3390_polym9090443
crossref_primary_10_3390_polym13183027
crossref_primary_10_1016_j_ces_2021_117045
crossref_primary_10_1016_j_cep_2016_03_010
crossref_primary_10_1039_C9RE00224C
crossref_primary_10_1002_mren_201700016
crossref_primary_10_1002_aic_16111
crossref_primary_10_1016_j_progpolymsci_2020_101256
crossref_primary_10_1039_D0RE00266F
crossref_primary_10_1002_mats_201600048
crossref_primary_10_1016_j_progpolymsci_2022_101555
crossref_primary_10_1016_j_cej_2018_07_166
crossref_primary_10_1016_j_ces_2019_115290
crossref_primary_10_1002_macp_201600421
crossref_primary_10_1039_D1RE00099C
crossref_primary_10_1002_aic_18372
crossref_primary_10_1134_S1560090419050166
crossref_primary_10_3390_polym10111228
crossref_primary_10_1002_aic_18155
crossref_primary_10_1016_j_aca_2018_05_030
crossref_primary_10_1007_s41061_018_0224_1
crossref_primary_10_1002_cmtd_202500025
crossref_primary_10_1002_mren_201600065
crossref_primary_10_1002_macp_201900021
crossref_primary_10_1002_mren_201500080
crossref_primary_10_1016_j_eurpolymj_2016_03_004
crossref_primary_10_1039_D1RE00360G
crossref_primary_10_1016_j_cej_2022_135192
crossref_primary_10_3390_polym10070711
crossref_primary_10_1002_mats_201900035
crossref_primary_10_1016_j_ces_2017_11_043
crossref_primary_10_1002_marc_201700807
crossref_primary_10_1002_mren_201700029
crossref_primary_10_1016_j_cej_2021_128970
crossref_primary_10_1039_D0PY00042F
crossref_primary_10_1002_mren_202000010
crossref_primary_10_1016_j_progpolymsci_2016_04_002
crossref_primary_10_1002_mren_201700023
crossref_primary_10_1039_D1PY00151E
crossref_primary_10_1556_1846_2017_00030
crossref_primary_10_1002_admi_202202125
Cites_doi 10.1002/mren.201000006
10.1021/ma201570f
10.1002/marc.200900450
10.1039/c2cs35115c
10.1039/c0cc05060a
10.1002/mren.201400061
10.1021/ma0101299
10.1021/ma502575j
10.1021/ma992053a
10.1002/pola.26593
10.1002/marc.200900445
10.1021/ma201704w
10.1002/anie.200701434
10.1002/anie.201006272
10.1002/marc.201000375
10.1016/S0009-2509(00)00230-X
10.1021/ma201345m
10.1021/cr050944c
10.1021/op1003314
10.1002/anie.201306468
10.1021/ma048369m
10.1021/ma971283r
10.1021/ma300953b
10.1002/mren.201200027
10.1021/ie4011996
10.1002/pola.23071
10.1007/s10404-010-0679-z
10.1002/anie.200906095
10.1039/C4CC10426A
10.1021/ma501267a
10.1016/0032-3861(91)90058-Q
10.1021/ma071471
10.1016/j.ces.2006.12.074
10.1002/mren.200700051
10.1021/ma0018190
10.1021/ma050402x
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.201500357
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
Materials Research Database
MEDLINE - Academic
Materials Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage 2155
ExternalDocumentID 3923616201
26400634
10_1002_marc_201500357
MARC201500357
ark_67375_WNG_D299L2F5_L
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWB
RWI
WRC
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c6457-9f7ccff4bbc04136e08f6c203d1f3025868babf40f3a8c79446c94e31b1d26593
IEDL.DBID DRFUL
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368033500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 12:21:20 EDT 2025
Sun Nov 09 14:25:32 EST 2025
Sun Jul 13 05:06:20 EDT 2025
Sun Jul 13 05:09:35 EDT 2025
Mon Jul 21 05:49:35 EDT 2025
Sat Nov 29 03:05:50 EST 2025
Tue Nov 18 21:36:26 EST 2025
Wed Jan 22 16:54:19 EST 2025
Sun Sep 21 06:19:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords reversible addition-fragmentation chain transfer, RAFT
branching
acrylates
microreactors
polymer kinetics
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6457-9f7ccff4bbc04136e08f6c203d1f3025868babf40f3a8c79446c94e31b1d26593
Notes istex:4D2B1F58E74467D52534363C3B0A7438E0A8DBD8
ark:/67375/WNG-D299L2F5-L
ArticleID:MARC201500357
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26400634
PQID 1757571006
PQPubID 1016394
PageCount 7
ParticipantIDs proquest_miscellaneous_1800487946
proquest_miscellaneous_1760927600
proquest_journals_3015270593
proquest_journals_1757571006
pubmed_primary_26400634
crossref_primary_10_1002_marc_201500357
crossref_citationtrail_10_1002_marc_201500357
wiley_primary_10_1002_marc_201500357_MARC201500357
istex_primary_ark_67375_WNG_D299L2F5_L
PublicationCentury 2000
PublicationDate December 2015
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: December 2015
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol. Rapid Commun
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References B. Cortese, T. Noel, M. H. J. M. de Croon, S. Schulze, E. Klemm, V. Hessel, Macromol. Reaction Eng. 2012, 6, 507.
P. A. Lovell, T. H. Shah, F. Heatley, Polym. Commun. 1991, 32, 98.
Z. Gao, J. He, Macromol. Reaction Eng. 2015, DOI: 10.1002/mren.201400061.
J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun. 2011, 47, 4583.
J. Vandenbergh, T. Ogawa, T. d. m. Junkers, J. Polym. Sci. Part A-Polym. Chem. 2013, 51, 2366.
N. M. Ahmad, F. Heatley, P. A. Lovell, Macromolecules 1998, 31, 2822.
A. Postma, T. P. Davis, G. Moad, M. S. O'Shea, Macromolecules 2005, 38, 5371.
H. R. Sahoo, J. G. Kralj, K. F. Jensen, Angew. Chem.-Int. Ed. 2007, 46, 5704.
J. S. Moore, K. F. Jensen, Angew. Chem.-Int. Ed. 2014, 53, 470.
F. Heatley, P. A. Lovell, T. Yamashita, Macromolecules 2001, 34, 7636.
P. B. Palde, T. F. Jamison, Angew. Chem.-Int. Ed. 2011, 50, 3525.
Y. W. Zhou, J. P. He, C. X. Li, L. X. Hong, Y. L. Yang, Macromolecules 2011, 44, 8446.
C. Rosenfeld, C. Serra, C. Brochon, G. Hadziioannou, Chem. Eng. Sci. 2007, 62, 5245.
N. Chan, J. Meuldijk, M. F. Cunningham, R. A. Hutchinson, Ind. Eng. Chem. Res. 2013, 52, 11931.
T. Iwasaki, J. Yoshida, Macromolecules 2005, 38, 1159.
M. M. Mandal, C. Serra, Y. Hoarau, K. D. P. Nigam, Microfluid. Nanofluid. 2011, 10, 415.
F. Bally, C. A. Serra, V. Hessel, G. Hadziioannou, Macromol. Reaction Eng. 2010, 4, 543.
Y. Guillaneuf, D. Gigmes, T. Junkers, Macromolecules 2012, 45, 5371.
C. Plessis, G. Arzamendi, J. M. Alberdi, M. Agnely, J. R. Leiza, J. M. Asua, Macromolecules 2001, 34, 6138.
C. Plessis, G. Arzamendi, J. R. Leiza, H. A. S. Schoonbrood, D. Charmot, J. M. Asua, Macromolecules 2000, 33, 5041.
Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.
Y. Reyes, J. M. Asua, Macromol. Rapid Commun. 2011, 32, 63.
B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107, 2300.
A. M. Zorn, T. Junkers, C. Barner-Kowollik, Macromolecules 2011, 44, 6691.
J. J. Haven, J. Vandenbergh, T. Junkers, Chem. Commun. 2015, 51, 4611.
T. Junkers, S. P. S. Koo, T. P. Davis, M. H. Stenzel, C. Barner-Kowollik, Macromolecules 2007, 40, 8906.
T. Junkers, C. Barner-Kowollik, J. Polym. Sci. Part A-Polym. Chem. 2008, 46, 7585.
D. Konkolewicz, S. Sosnowski, D. R. D'hooge, R. Szymanski, M.-F. Reyniers, G. B. Marin, K. Matyjaszewski, Macromolecules 2011, 44, 8361.
W. Wang, A. N. Nikitin, R. A. Hutchinson, Macromol. Rapid Commun. 2009, 30, 2022.
F. E. Valera, M. Quaranta, A. Moran, J. Blacker, A. Armstrong, J. T. Cabral, D. G. Blackmond, Angew. Chem.-Int. Ed. 2010, 49, 2478.
C. H. Hornung, C. Guerrero-Sanchez, M. Brasholz, S. Saubern, J. Chiefari, G. Moad, E. Rizzardo, S. H. Thang, Org. Proc. Res. Dev. 2011, 15, 593.
W. Wang, R. A. Hutchinson, Macromol. Reaction Eng. 2008, 2, 199.
K. F. Jensen, Chem. Eng. Sci. 2001, 56, 293.
N. Ballard, S. Rusconi, E. Akhmatskaya, D. Sokolovski, J. C. de la Cal, J. M. Asua, Macromolecules 2014, 47, 6580.
N. Ballard, J. C. de la Cal, J. M. Asua, Macromolecules 2015, 48, 987.
N. M. Ahmad, B. Charleux, C. Farcet, C. J. Ferguson, S. G. Gaynor, B. S. Hawkett, F. Heatley, B. Klumperman, D. Konkolewicz, P. A. Lovell, K. Matyjaszewski, R. Venkatesh, Macromol. Rapid Commun. 2009, 30, 2002.
2007; 107
2015; 51
1991; 32
2014; 47
2011; 32
2011; 10
2011; 15
2008; 2
2015; 48
2010; 49
2009; 30
2013; 51
2000; 33
2011; 50
2013; 52
2011; 44
2008; 46
2015
2007; 62
2007; 40
2011; 47
2012; 6
2001; 56
2005; 38
2001; 34
2012; 45
2010; 4
1998; 31
2007; 46
2012; 41
2014; 53
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – reference: J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun. 2011, 47, 4583.
– reference: T. Junkers, S. P. S. Koo, T. P. Davis, M. H. Stenzel, C. Barner-Kowollik, Macromolecules 2007, 40, 8906.
– reference: J. S. Moore, K. F. Jensen, Angew. Chem.-Int. Ed. 2014, 53, 470.
– reference: P. A. Lovell, T. H. Shah, F. Heatley, Polym. Commun. 1991, 32, 98.
– reference: A. Postma, T. P. Davis, G. Moad, M. S. O'Shea, Macromolecules 2005, 38, 5371.
– reference: M. M. Mandal, C. Serra, Y. Hoarau, K. D. P. Nigam, Microfluid. Nanofluid. 2011, 10, 415.
– reference: N. Chan, J. Meuldijk, M. F. Cunningham, R. A. Hutchinson, Ind. Eng. Chem. Res. 2013, 52, 11931.
– reference: P. B. Palde, T. F. Jamison, Angew. Chem.-Int. Ed. 2011, 50, 3525.
– reference: F. E. Valera, M. Quaranta, A. Moran, J. Blacker, A. Armstrong, J. T. Cabral, D. G. Blackmond, Angew. Chem.-Int. Ed. 2010, 49, 2478.
– reference: Y. Guillaneuf, D. Gigmes, T. Junkers, Macromolecules 2012, 45, 5371.
– reference: B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107, 2300.
– reference: C. Rosenfeld, C. Serra, C. Brochon, G. Hadziioannou, Chem. Eng. Sci. 2007, 62, 5245.
– reference: A. M. Zorn, T. Junkers, C. Barner-Kowollik, Macromolecules 2011, 44, 6691.
– reference: T. Iwasaki, J. Yoshida, Macromolecules 2005, 38, 1159.
– reference: Y. Reyes, J. M. Asua, Macromol. Rapid Commun. 2011, 32, 63.
– reference: Z. Gao, J. He, Macromol. Reaction Eng. 2015, DOI: 10.1002/mren.201400061.
– reference: F. Heatley, P. A. Lovell, T. Yamashita, Macromolecules 2001, 34, 7636.
– reference: D. Konkolewicz, S. Sosnowski, D. R. D'hooge, R. Szymanski, M.-F. Reyniers, G. B. Marin, K. Matyjaszewski, Macromolecules 2011, 44, 8361.
– reference: K. F. Jensen, Chem. Eng. Sci. 2001, 56, 293.
– reference: Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.
– reference: C. H. Hornung, C. Guerrero-Sanchez, M. Brasholz, S. Saubern, J. Chiefari, G. Moad, E. Rizzardo, S. H. Thang, Org. Proc. Res. Dev. 2011, 15, 593.
– reference: N. M. Ahmad, F. Heatley, P. A. Lovell, Macromolecules 1998, 31, 2822.
– reference: N. Ballard, S. Rusconi, E. Akhmatskaya, D. Sokolovski, J. C. de la Cal, J. M. Asua, Macromolecules 2014, 47, 6580.
– reference: C. Plessis, G. Arzamendi, J. M. Alberdi, M. Agnely, J. R. Leiza, J. M. Asua, Macromolecules 2001, 34, 6138.
– reference: B. Cortese, T. Noel, M. H. J. M. de Croon, S. Schulze, E. Klemm, V. Hessel, Macromol. Reaction Eng. 2012, 6, 507.
– reference: H. R. Sahoo, J. G. Kralj, K. F. Jensen, Angew. Chem.-Int. Ed. 2007, 46, 5704.
– reference: J. J. Haven, J. Vandenbergh, T. Junkers, Chem. Commun. 2015, 51, 4611.
– reference: F. Bally, C. A. Serra, V. Hessel, G. Hadziioannou, Macromol. Reaction Eng. 2010, 4, 543.
– reference: W. Wang, R. A. Hutchinson, Macromol. Reaction Eng. 2008, 2, 199.
– reference: N. M. Ahmad, B. Charleux, C. Farcet, C. J. Ferguson, S. G. Gaynor, B. S. Hawkett, F. Heatley, B. Klumperman, D. Konkolewicz, P. A. Lovell, K. Matyjaszewski, R. Venkatesh, Macromol. Rapid Commun. 2009, 30, 2002.
– reference: C. Plessis, G. Arzamendi, J. R. Leiza, H. A. S. Schoonbrood, D. Charmot, J. M. Asua, Macromolecules 2000, 33, 5041.
– reference: Y. W. Zhou, J. P. He, C. X. Li, L. X. Hong, Y. L. Yang, Macromolecules 2011, 44, 8446.
– reference: N. Ballard, J. C. de la Cal, J. M. Asua, Macromolecules 2015, 48, 987.
– reference: W. Wang, A. N. Nikitin, R. A. Hutchinson, Macromol. Rapid Commun. 2009, 30, 2022.
– reference: T. Junkers, C. Barner-Kowollik, J. Polym. Sci. Part A-Polym. Chem. 2008, 46, 7585.
– reference: J. Vandenbergh, T. Ogawa, T. d. m. Junkers, J. Polym. Sci. Part A-Polym. Chem. 2013, 51, 2366.
– volume: 47
  start-page: 4583
  year: 2011
  publication-title: Chem. Commun.
– volume: 46
  start-page: 5704
  year: 2007
  publication-title: Angew. Chem.‐Int. Ed.
– volume: 34
  start-page: 7636
  year: 2001
  publication-title: Macromolecules
– volume: 62
  start-page: 5245
  year: 2007
  publication-title: Chem. Eng. Sci.
– volume: 30
  start-page: 2002
  year: 2009
  publication-title: Macromol. Rapid Commun.
– volume: 51
  start-page: 4611
  year: 2015
  publication-title: Chem. Commun.
– volume: 38
  start-page: 1159
  year: 2005
  publication-title: Macromolecules
– volume: 56
  start-page: 293
  year: 2001
  publication-title: Chem. Eng. Sci.
– volume: 51
  start-page: 2366
  year: 2013
  publication-title: J. Polym. Sci. Part A‐Polym. Chem.
– volume: 15
  start-page: 593
  year: 2011
  publication-title: Org. Proc. Res. Dev.
– volume: 52
  start-page: 11931
  year: 2013
  publication-title: Ind. Eng. Chem. Res.
– volume: 44
  start-page: 6691
  year: 2011
  publication-title: Macromolecules
– volume: 48
  start-page: 987
  year: 2015
  publication-title: Macromolecules
– volume: 41
  start-page: 5969
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 507
  year: 2012
  publication-title: Macromol. Reaction Eng.
– volume: 107
  start-page: 2300
  year: 2007
  publication-title: Chem. Rev.
– volume: 4
  start-page: 543
  year: 2010
  publication-title: Macromol. Reaction Eng.
– volume: 30
  start-page: 2022
  year: 2009
  publication-title: Macromol. Rapid Commun.
– volume: 32
  start-page: 63
  year: 2011
  publication-title: Macromol. Rapid Commun.
– volume: 47
  start-page: 6580
  year: 2014
  publication-title: Macromolecules
– volume: 44
  start-page: 8446
  year: 2011
  publication-title: Macromolecules
– volume: 10
  start-page: 415
  year: 2011
  publication-title: Microfluid. Nanofluid.
– volume: 40
  start-page: 8906
  year: 2007
  publication-title: Macromolecules
– volume: 53
  start-page: 470
  year: 2014
  publication-title: Angew. Chem.‐Int. Ed.
– year: 2015
  publication-title: Macromol. Reaction Eng.
– volume: 2
  start-page: 199
  year: 2008
  publication-title: Macromol. Reaction Eng.
– volume: 45
  start-page: 5371
  year: 2012
  publication-title: Macromolecules
– volume: 44
  start-page: 8361
  year: 2011
  publication-title: Macromolecules
– volume: 50
  start-page: 3525
  year: 2011
  publication-title: Angew. Chem.‐Int. Ed.
– volume: 32
  start-page: 98
  year: 1991
  publication-title: Polym. Commun.
– volume: 33
  start-page: 5041
  year: 2000
  publication-title: Macromolecules
– volume: 34
  start-page: 6138
  year: 2001
  publication-title: Macromolecules
– volume: 38
  start-page: 5371
  year: 2005
  publication-title: Macromolecules
– volume: 31
  start-page: 2822
  year: 1998
  publication-title: Macromolecules
– volume: 46
  start-page: 7585
  year: 2008
  publication-title: J. Polym. Sci. Part A‐Polym. Chem.
– volume: 49
  start-page: 2478
  year: 2010
  publication-title: Angew. Chem.‐Int. Ed.
– ident: e_1_2_7_9_1
  doi: 10.1002/mren.201000006
– ident: e_1_2_7_32_1
  doi: 10.1021/ma201570f
– ident: e_1_2_7_17_1
  doi: 10.1002/marc.200900450
– ident: e_1_2_7_16_1
  doi: 10.1039/c2cs35115c
– ident: e_1_2_7_3_1
  doi: 10.1039/c0cc05060a
– ident: e_1_2_7_35_1
  doi: 10.1002/mren.201400061
– ident: e_1_2_7_19_1
  doi: 10.1021/ma0101299
– ident: e_1_2_7_36_1
  doi: 10.1021/ma502575j
– ident: e_1_2_7_26_1
  doi: 10.1021/ma992053a
– ident: e_1_2_7_13_1
  doi: 10.1002/pola.26593
– ident: e_1_2_7_24_1
  doi: 10.1002/marc.200900445
– ident: e_1_2_7_29_1
  doi: 10.1021/ma201704w
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.200701434
– ident: e_1_2_7_5_1
  doi: 10.1002/anie.201006272
– ident: e_1_2_7_28_1
  doi: 10.1002/marc.201000375
– ident: e_1_2_7_1_1
  doi: 10.1016/S0009-2509(00)00230-X
– ident: e_1_2_7_25_1
  doi: 10.1021/ma201345m
– ident: e_1_2_7_2_1
  doi: 10.1021/cr050944c
– ident: e_1_2_7_12_1
  doi: 10.1021/op1003314
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.201306468
– ident: e_1_2_7_10_1
  doi: 10.1021/ma048369m
– ident: e_1_2_7_18_1
  doi: 10.1021/ma971283r
– ident: e_1_2_7_23_1
  doi: 10.1021/ma300953b
– ident: e_1_2_7_33_1
  doi: 10.1002/mren.201200027
– ident: e_1_2_7_14_1
  doi: 10.1021/ie4011996
– ident: e_1_2_7_20_1
  doi: 10.1002/pola.23071
– ident: e_1_2_7_34_1
  doi: 10.1007/s10404-010-0679-z
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.200906095
– ident: e_1_2_7_7_1
  doi: 10.1039/C4CC10426A
– ident: e_1_2_7_30_1
  doi: 10.1021/ma501267a
– ident: e_1_2_7_21_1
  doi: 10.1016/0032-3861(91)90058-Q
– ident: e_1_2_7_22_1
  doi: 10.1021/ma071471
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ces.2006.12.074
– ident: e_1_2_7_15_1
  doi: 10.1002/mren.200700051
– ident: e_1_2_7_27_1
  doi: 10.1021/ma0018190
– ident: e_1_2_7_31_1
  doi: 10.1021/ma050402x
SSID ssj0008402
Score 2.42668
Snippet The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition–fragmentation chain transfer (RAFT) solution...
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2149
SubjectTerms Acrylates
Acrylic Resins - chemical synthesis
Acrylic Resins - chemistry
Acrylics
Addition polymerization
Batch reactors
branching
Chain transfer
Chemical industry
Chemical synthesis
Cleavage
Dilution
Microreactors
polymer kinetics
Polymerization
RAFT
Rafts
Reactors
Reagents
reversible addition-fragmentation chain transfer
reversible addition–fragmentation chain transfer, RAFT
Solution polymerization
Title Improved Livingness and Control over Branching in RAFT Polymerization of Acrylates: Could Microflow Synthesis Make the Difference?
URI https://api.istex.fr/ark:/67375/WNG-D299L2F5-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201500357
https://www.ncbi.nlm.nih.gov/pubmed/26400634
https://www.proquest.com/docview/1757571006
https://www.proquest.com/docview/3015270593
https://www.proquest.com/docview/1760927600
https://www.proquest.com/docview/1800487946
Volume 36
WOSCitedRecordID wos000368033500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3927
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008402
  issn: 1022-1336
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYigQv43MQGJOREDxFS53EcXhBpSXwkFZT2aBvlmPHUrUoQc066Ct_OXdJGqg0QAJFihzZsfxxPv98d74j5IUwFvVvmRvHocUQZhpSmrs6MgLQc6B5I8r-lEazmVgs4tNfbvG3_iF6gRuujIZf4wJXWX3y02kounpA06wQlWHRHhngzSo4fg0m8-Q87bkxHGBajSccuuA8xreOGz12slvDzsY0wDH-dh3q3AWxzS6U3Pn_9t8lBx0CpaOWZO6RG3l5n9wabwO_PSDfW0FDbmi6RHEDMkOqSkPHrVk7RatP-hYjcqD4ii5LOh8lZ_S0Kjao_2kvdtLK0pFebQoEs6_h33Vh6BTN_2xRfaUfNyVAz3pZ06m6yCmk6aSL1aLzNw_JefLubPzB7UI1uJoHYeTGNtLa2iDLtAfbIs89Yblmnm-GQAssFFxkKrOBZ30lNPCAgOs4yP1hNjSMh7F_SPbLqswfE5oZGzMGLxuoIDNMcaUDX-iQ2yH3hHGIu50nqTs_5hhOo5CtB2YmcWRlP7IOedWX_9J68PhtyZfNtPfF1OoC7d6iUH6evZcT2LlTloQydcjRli5kt-RrCTgMHqiWX5sNjDQECoWuOuR5nw0ziwoaVebVGqvgXsxQVfqHMgKZLoYFcMijliT79gK4RcgZOIQ1lPeX_srpaD7uv578y09PyW1Mt_Y9R2T_crXOn5Gb-upyWa-OyV60EMfdivwBywgzow
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BizRexjcEBhgJwVO01HEchxdUWsIQaTWVju3NSpxYqhYlU7sCfeUvxxenQZUGSAhFipL4Q7F9Pv98d74DeClyjfq3zI2iQGMIM2WeFHdVmAuDnpnijSj7SxJOp-LsLDpurQnxLIz1D9EJ3HBmNPwaJzgKpA9_eQ1FXw9omxWgNiy8Dn3G_VD0oD-exSdJx47NDsaqPM2uy2zI-NZzo0cPd2vYWZn62Mnfr4Kduyi2WYbiW_-hAbdhv8WgZGiJ5g5cK6q7sDfahn67Bz-sqKHISbJAgQOyQ5JWORlZw3aCdp_kHcbkQAEWWVRkNozn5LguN6gBskc7Sa3JUC03JcLZN6bsuszJBA0AdVl_I583lQGfq8WKTNLzgphnMm6jtaji7X04id_PR0duG6zBVZwFoRvpUCmtWZYpzyyMvPCE5op6fj4w1EADwUWWZpp52k-FMlyAcRWxwh9kg5zyIPIfQK-qq-IRkCzXEaXmplnKspymPFXMFyrgesA9kTvgbgdKqtaTOQbUKKX1wUwl9qzsetaB113-C-vD47c5XzXj3mVLl-do-RYG8nT6QY7N2p3QOJCJAwdbwpDtpF9Jg8TMZarlVyYbVhrQEEMoOvCiSzYjiyqatCrqNVbBvYiisvQPeQSyXQwM4MBDS5Pd_xp4i6CTOUAb0vtLe-VkOBt1b4__pdBz2DuaTxKZfJx-egI38bu19jmA3uVyXTyFG-rr5WK1fNZOzJ_0ejar
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9Bi4AXvtkCA4yE4Cla6thOwgsqLQFEWlVlG3uzEjuWqkXJ1K5AX_nL8SVpUKUBEkKRoiT-UGyfzz_fne8AXoTaoP4tc6OIGwxhpuyTEq4KdGjRM1OiFmWfJMF0Gp6eRrPWmhDPwjT-ITqBG86Mml_jBM_PtTn85TUUfT2gbRZHbVhwFfqMR5z1oD-ex8dJx47tDqZRedpdl92Qia3nRo8e7tawszL1sZO_XwY7d1FsvQzFt_9DA-7ArRaDkmFDNHfhSl7egxujbei3-_CjETXkmiQLFDggOyRpqcmoMWwnaPdJ3mJMDhRgkUVJ5sP4iMyqYoMaoOZoJ6kMGarlpkA4-9qWXReaTNAA0BTVN_J5U1rwuVqsyCQ9y4l9JuM2WovK3zyA4_jd0eiD2wZrcJVgPHAjEyhlDMsy5dmFUeReaISinq8HlhooD0WYpZlhnvHTUFkuwISKWO4PsoGmgkf-Q-iVVZnvA8m0iSi1N8NSlmmailQxP1RcmIHwQu2Aux0oqVpP5hhQo5CND2YqsWdl17MOvOrynzc-PH6b82U97l22dHmGlm8Bl1-m7-XYrt0JjblMHDjYEoZsJ_1KWiRmL1utuDTZslJOAwyh6MDzLtmOLKpo0jKv1liF8CKKytI_5AmR7WJgAAf2Gprs_tfCWwSdzAFak95f2isnw_moe3v0L4WewfXZOJbJx-mnx3ATPzfGPgfQu1iu8ydwTX29WKyWT9t5-RMtejYm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Livingness+and+Control+over+Branching+in+RAFT+Polymerization+of+Acrylates%3A+Could+Microflow+Synthesis+Make+the+Difference%3F&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Derboven%2C+Pieter&rft.au=Van+Steenberge%2C+Paul+H.+M.&rft.au=Vandenbergh%2C+Joke&rft.au=Reyniers%2C+Marie%E2%80%90Francoise&rft.date=2015-12-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=36&rft.issue=24&rft.spage=2149&rft.epage=2155&rft_id=info:doi/10.1002%2Fmarc.201500357&rft.externalDBID=10.1002%252Fmarc.201500357&rft.externalDocID=MARC201500357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon