A study of gene expression programming algorithm for dynamically adjusting the parameters of genetic operators

The fast developments in artificial intelligence together with evolutionary algorithms have not solved all the difficulties that Gene Expression Programming (GEP) encounters when maintaining population diversity and preventing premature convergence. Its restrictions block GEP from successfully handl...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 20; no. 6; p. e0321711
Main Authors: Liu, Kejia, Teng, Yiping, Liu, Fang
Format: Journal Article
Language:English
Published: United States Public Library of Science 02.06.2025
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fast developments in artificial intelligence together with evolutionary algorithms have not solved all the difficulties that Gene Expression Programming (GEP) encounters when maintaining population diversity and preventing premature convergence. Its restrictions block GEP from successfully handling high-dimensional along with complex optimization problems. This research develops Dynamic Gene Expression Programming (DGEP) as an algorithm to control genetic operators dynamically thus achieving improved global search with increased population diversity. The approach operates with two unique operators which include Adaptive Regeneration Operator (DGEP-R) and Dynamically Adjusted Mutation Operator (DGEP-M) to preserve diversity while maintaining exploration-exploitation balance during evolutionary search. An extensive evaluation of DGEP occurred through symbolic regression problem tests. The study employed traditional benchmark functions and conducted evaluations versus baselines Standard GEP, NMO-SARA, and MS-GEP-A to assess fitness outcomes, R² values, population diversification, and the avoidance of local optima. All key metric evaluations showed that DGEP beat standard GEP along with alternative improved variants. DGEP produced the optimal results for 8 benchmark functions that produced 15.7% better R² scores along with 2.3 × larger population diversity. The escape rate from local optima within DGEP reached 35% higher than what standard GEP could achieve. The DGEP model serves to enhance GEP performance through the effective maintenance of diversity and improved global search functions. The results indicate that adaptive genetic methods strengthen evolutionary procedures for solving complex problems effectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0321711