A study of gene expression programming algorithm for dynamically adjusting the parameters of genetic operators
The fast developments in artificial intelligence together with evolutionary algorithms have not solved all the difficulties that Gene Expression Programming (GEP) encounters when maintaining population diversity and preventing premature convergence. Its restrictions block GEP from successfully handl...
Gespeichert in:
| Veröffentlicht in: | PloS one Jg. 20; H. 6; S. e0321711 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
02.06.2025
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The fast developments in artificial intelligence together with evolutionary algorithms have not solved all the difficulties that Gene Expression Programming (GEP) encounters when maintaining population diversity and preventing premature convergence. Its restrictions block GEP from successfully handling high-dimensional along with complex optimization problems. This research develops Dynamic Gene Expression Programming (DGEP) as an algorithm to control genetic operators dynamically thus achieving improved global search with increased population diversity. The approach operates with two unique operators which include Adaptive Regeneration Operator (DGEP-R) and Dynamically Adjusted Mutation Operator (DGEP-M) to preserve diversity while maintaining exploration-exploitation balance during evolutionary search. An extensive evaluation of DGEP occurred through symbolic regression problem tests. The study employed traditional benchmark functions and conducted evaluations versus baselines Standard GEP, NMO-SARA, and MS-GEP-A to assess fitness outcomes, R² values, population diversification, and the avoidance of local optima. All key metric evaluations showed that DGEP beat standard GEP along with alternative improved variants. DGEP produced the optimal results for 8 benchmark functions that produced 15.7% better R² scores along with 2.3 × larger population diversity. The escape rate from local optima within DGEP reached 35% higher than what standard GEP could achieve. The DGEP model serves to enhance GEP performance through the effective maintenance of diversity and improved global search functions. The results indicate that adaptive genetic methods strengthen evolutionary procedures for solving complex problems effectively. |
|---|---|
| AbstractList | The fast developments in artificial intelligence together with evolutionary algorithms have not solved all the difficulties that Gene Expression Programming (GEP) encounters when maintaining population diversity and preventing premature convergence. Its restrictions block GEP from successfully handling high-dimensional along with complex optimization problems. This research develops Dynamic Gene Expression Programming (DGEP) as an algorithm to control genetic operators dynamically thus achieving improved global search with increased population diversity. The approach operates with two unique operators which include Adaptive Regeneration Operator (DGEP-R) and Dynamically Adjusted Mutation Operator (DGEP-M) to preserve diversity while maintaining exploration-exploitation balance during evolutionary search. An extensive evaluation of DGEP occurred through symbolic regression problem tests. The study employed traditional benchmark functions and conducted evaluations versus baselines Standard GEP, NMO-SARA, and MS-GEP-A to assess fitness outcomes, R² values, population diversification, and the avoidance of local optima. All key metric evaluations showed that DGEP beat standard GEP along with alternative improved variants. DGEP produced the optimal results for 8 benchmark functions that produced 15.7% better R² scores along with 2.3 × larger population diversity. The escape rate from local optima within DGEP reached 35% higher than what standard GEP could achieve. The DGEP model serves to enhance GEP performance through the effective maintenance of diversity and improved global search functions. The results indicate that adaptive genetic methods strengthen evolutionary procedures for solving complex problems effectively. The fast developments in artificial intelligence together with evolutionary algorithms have not solved all the difficulties that Gene Expression Programming (GEP) encounters when maintaining population diversity and preventing premature convergence. Its restrictions block GEP from successfully handling high-dimensional along with complex optimization problems. This research develops Dynamic Gene Expression Programming (DGEP) as an algorithm to control genetic operators dynamically thus achieving improved global search with increased population diversity. The approach operates with two unique operators which include Adaptive Regeneration Operator (DGEP-R) and Dynamically Adjusted Mutation Operator (DGEP-M) to preserve diversity while maintaining exploration-exploitation balance during evolutionary search. An extensive evaluation of DGEP occurred through symbolic regression problem tests. The study employed traditional benchmark functions and conducted evaluations versus baselines Standard GEP, NMO-SARA, and MS-GEP-A to assess fitness outcomes, R² values, population diversification, and the avoidance of local optima. All key metric evaluations showed that DGEP beat standard GEP along with alternative improved variants. DGEP produced the optimal results for 8 benchmark functions that produced 15.7% better R² scores along with 2.3 x larger population diversity. The escape rate from local optima within DGEP reached 35% higher than what standard GEP could achieve. The DGEP model serves to enhance GEP performance through the effective maintenance of diversity and improved global search functions. The results indicate that adaptive genetic methods strengthen evolutionary procedures for solving complex problems effectively. The fast developments in artificial intelligence together with evolutionary algorithms have not solved all the difficulties that Gene Expression Programming (GEP) encounters when maintaining population diversity and preventing premature convergence. Its restrictions block GEP from successfully handling high-dimensional along with complex optimization problems. This research develops Dynamic Gene Expression Programming (DGEP) as an algorithm to control genetic operators dynamically thus achieving improved global search with increased population diversity. The approach operates with two unique operators which include Adaptive Regeneration Operator (DGEP-R) and Dynamically Adjusted Mutation Operator (DGEP-M) to preserve diversity while maintaining exploration-exploitation balance during evolutionary search. An extensive evaluation of DGEP occurred through symbolic regression problem tests. The study employed traditional benchmark functions and conducted evaluations versus baselines Standard GEP, NMO-SARA, and MS-GEP-A to assess fitness outcomes, R² values, population diversification, and the avoidance of local optima. All key metric evaluations showed that DGEP beat standard GEP along with alternative improved variants. DGEP produced the optimal results for 8 benchmark functions that produced 15.7% better R² scores along with 2.3 × larger population diversity. The escape rate from local optima within DGEP reached 35% higher than what standard GEP could achieve. The DGEP model serves to enhance GEP performance through the effective maintenance of diversity and improved global search functions. The results indicate that adaptive genetic methods strengthen evolutionary procedures for solving complex problems effectively.The fast developments in artificial intelligence together with evolutionary algorithms have not solved all the difficulties that Gene Expression Programming (GEP) encounters when maintaining population diversity and preventing premature convergence. Its restrictions block GEP from successfully handling high-dimensional along with complex optimization problems. This research develops Dynamic Gene Expression Programming (DGEP) as an algorithm to control genetic operators dynamically thus achieving improved global search with increased population diversity. The approach operates with two unique operators which include Adaptive Regeneration Operator (DGEP-R) and Dynamically Adjusted Mutation Operator (DGEP-M) to preserve diversity while maintaining exploration-exploitation balance during evolutionary search. An extensive evaluation of DGEP occurred through symbolic regression problem tests. The study employed traditional benchmark functions and conducted evaluations versus baselines Standard GEP, NMO-SARA, and MS-GEP-A to assess fitness outcomes, R² values, population diversification, and the avoidance of local optima. All key metric evaluations showed that DGEP beat standard GEP along with alternative improved variants. DGEP produced the optimal results for 8 benchmark functions that produced 15.7% better R² scores along with 2.3 × larger population diversity. The escape rate from local optima within DGEP reached 35% higher than what standard GEP could achieve. The DGEP model serves to enhance GEP performance through the effective maintenance of diversity and improved global search functions. The results indicate that adaptive genetic methods strengthen evolutionary procedures for solving complex problems effectively. |
| Audience | Academic |
| Author | Teng, Yiping Liu, Kejia Liu, Fang |
| AuthorAffiliation | Sichuan University, CHINA School of Computer Science, Shenyang Aerospace University, Shenyang, China |
| AuthorAffiliation_xml | – name: School of Computer Science, Shenyang Aerospace University, Shenyang, China – name: Sichuan University, CHINA |
| Author_xml | – sequence: 1 givenname: Kejia surname: Liu fullname: Liu, Kejia – sequence: 2 givenname: Yiping orcidid: 0000-0002-5870-0646 surname: Teng fullname: Teng, Yiping – sequence: 3 givenname: Fang surname: Liu fullname: Liu, Fang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40455879$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk9tq3DAQhk1JaZJt36C0hkJpL3YryeerEkIPC4FAT7diLI29XmTJkeSSfftqu96wLrkovrA9-uaX5tfMZXSmjcYoeknJiiYF_bA1o9WgVkMIr0jCaEHpk-iCVglb5owkZyff59Glc1tCsqTM82fReUrSLCuL6iLSV7Hzo9zFpolb1Bjj_WDRuc7oeLCmtdD3nW5jUK2xnd_0cWNsLHca-k6AUrsY5HZ0fs_4DcYDhAz0aN1R0XciNgNa8Ma659HTBpTDF9N7Ef38_OnH9dflze2X9fXVzVLkaeqXUgpggHmVEUIaUeVJXdZ5I6hkKFle1IVkrKxEAnnGBErKiMCqFgBFlYWik0X0-qA7KOP4ZJXjwaWMJGmR0UCsD4Q0sOWD7XqwO26g438DxrYcbDi7Qk6blIq6oiVrSFoIVrPwC5Kwksq8LkTQ-jjtNtY9SoHaW1Az0fmK7ja8Nb85ZZRVSVYEhXeTgjV3IzrP-84JVAo0mvFwcJZktMwD-uYf9PHyJqqFUEGnGxM2FntRflWmLDBF6IZFtHqECo_EcL2hsZouxGcJ72cJgfF471sYnePr79_-n739NWffnrAbBOU3zqjRhz50c_DVqdUPHh87OgDpARDWOGexeUAo4fvBOdrF94PDp8FJ_gCTQgvg |
| Cites_doi | 10.1016/j.egyr.2023.04.003 10.1016/j.jhazmat.2019.121322 10.1007/s12008-022-01175-7 10.3390/buildings11080324 10.3389/fmats.2021.621163 10.1007/3-540-32849-1_2 10.1016/j.agwat.2017.04.009 10.1680/jgeen.22.00151 10.1109/TEVC.2008.920673 10.3139/146.111911 10.1016/j.ins.2020.08.061 10.1371/journal.pone.0146698 10.1155/2021/6618407 10.1109/TEVC.2008.2003008 10.1007/s00521-012-1127-7 10.1371/journal.pone.0290499 10.1007/s00521-019-04280-z 10.1007/s12008-022-00989-9 10.1007/s10462-024-11023-7 10.3390/polym14061074 10.1007/s00500-020-05149-3 10.1016/j.econmod.2015.12.014 10.1016/j.aei.2024.102464 10.1016/j.neucom.2013.05.062 10.1016/j.jngse.2014.10.024 10.1016/j.swevo.2022.101197 10.1109/ACCESS.2019.2911890 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Liu et al 2025 Liu et al 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Liu et al 2025 Liu et al – notice: 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0321711 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | A study of gene expression programming algorithm for dynamically adjusting the parameters of genetic operators |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3215034751 oai_doaj_org_article_1f41cb9182f047c2b21cbad0281d6b7c PMC12129357 A842475705 40455879 10_1371_journal_pone_0321711 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – grantid: 202410143274 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c644t-ddca2ae695000fc963b8b6fc1d2ed267b7d2289c3a652ced120ce9bcaa7959323 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001501444500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Wed Sep 03 00:56:07 EDT 2025 Fri Oct 03 12:52:34 EDT 2025 Tue Nov 04 02:01:57 EST 2025 Fri Sep 05 15:56:56 EDT 2025 Tue Oct 07 08:05:37 EDT 2025 Sat Nov 29 13:47:04 EST 2025 Sat Nov 29 10:33:08 EST 2025 Wed Nov 26 10:43:47 EST 2025 Wed Nov 26 10:43:52 EST 2025 Tue Jul 01 05:42:22 EDT 2025 Mon Jul 21 05:59:03 EDT 2025 Sat Nov 29 07:46:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright: © 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c644t-ddca2ae695000fc963b8b6fc1d2ed267b7d2289c3a652ced120ce9bcaa7959323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-5870-0646 |
| OpenAccessLink | https://doaj.org/article/1f41cb9182f047c2b21cbad0281d6b7c |
| PMID | 40455879 |
| PQID | 3215034751 |
| PQPubID | 1436336 |
| PageCount | e0321711 |
| ParticipantIDs | plos_journals_3215034751 doaj_primary_oai_doaj_org_article_1f41cb9182f047c2b21cbad0281d6b7c pubmedcentral_primary_oai_pubmedcentral_nih_gov_12129357 proquest_miscellaneous_3215235186 proquest_journals_3215034751 gale_infotracmisc_A842475705 gale_infotracacademiconefile_A842475705 gale_incontextgauss_ISR_A842475705 gale_incontextgauss_IOV_A842475705 gale_healthsolutions_A842475705 pubmed_primary_40455879 crossref_primary_10_1371_journal_pone_0321711 |
| PublicationCentury | 2000 |
| PublicationDate | 20250602 |
| PublicationDateYYYYMMDD | 2025-06-02 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250602 day: 2 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | K Li (pone.0321711.ref033) 2024 K Kalita (pone.0321711.ref036) 2019; 32 Q Lu (pone.0321711.ref016) 2021; 547 M Oltean (pone.0321711.ref023) 2004 MF Iqbal (pone.0321711.ref005) 2020; 384 A Ahmad (pone.0321711.ref019) 2021; 11 VK Karakasis (pone.0321711.ref030) 2008; 12 C Yuan (pone.0321711.ref012) 2019; 7 C Ferreira (pone.0321711.ref001) 2001 A Maghawry (pone.0321711.ref020) 2020; 25 RK Ghadai (pone.0321711.ref035) 2020; 111 C Ferreira (pone.0321711.ref002) 2006 N Bansal (pone.0321711.ref007) 2023; 9 C Ferreira (pone.0321711.ref037) 2002 K Kalita (pone.0321711.ref034) 2023; 17 MH Kadkhodaei (pone.0321711.ref006) 2023; 176 M Keijzer (pone.0321711.ref014) 2003 MA Khan (pone.0321711.ref004) 2021; 8 S Roy (pone.0321711.ref010) 2014; 21 S Deng (pone.0321711.ref025) 2016; 11 J Shiri (pone.0321711.ref026) 2017; 188 Y Peng (pone.0321711.ref029) 2014; 137 K Mandal (pone.0321711.ref003) 2022; 17 H Alabduljabbar (pone.0321711.ref021) 2023; 18 Y Xiao (pone.0321711.ref031) 2025; 58 Q Wang (pone.0321711.ref009) 2022; 14 MM Mostafa (pone.0321711.ref011) 2016; 54 SY Yuen (pone.0321711.ref028) 2009; 13 NQ Uy (pone.0321711.ref015) 2010; 12 A Nazari (pone.0321711.ref024) 2013; 23 JR Koza (pone.0321711.ref022) 1994 J McDermott (pone.0321711.ref038) 2012 Q Lu (pone.0321711.ref018) 2022; 75 A. Bărbulescu (pone.0321711.ref027) 2009; 3 MA Khan (pone.0321711.ref008) 2021 E Bautu (pone.0321711.ref017) 2007 J Ding (pone.0321711.ref013) 2023; 18 Y Xiao (pone.0321711.ref032) 2024; 61 |
| References_xml | – year: 2024 ident: pone.0321711.ref033 article-title: A Survey of multi-objective evolutionary algorithm based on decomposition: past and future. publication-title: IEEE Trans Evol Comput – volume: 9 start-page: 310 year: 2023 ident: pone.0321711.ref007 article-title: Computation of energy across the type-C piano key weir using gene expression programming and extreme gradient boosting (XGBoost) algorithm publication-title: Energy Rep doi: 10.1016/j.egyr.2023.04.003 – volume: 384 start-page: 121322 year: 2020 ident: pone.0321711.ref005 article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.121322 – volume: 17 start-page: 899 issue: 2 year: 2023 ident: pone.0321711.ref034 article-title: An efficient approach for metaheuristic-based optimization of composite laminates using genetic programming publication-title: Int J Interact Des Manuf doi: 10.1007/s12008-022-01175-7 – volume: 11 start-page: 324 issue: 8 year: 2021 ident: pone.0321711.ref019 article-title: Compressive strength prediction via gene expression programming (GEP) and artificial neural network (ANN) for concrete containing RCA publication-title: Buildings doi: 10.3390/buildings11080324 – volume: 8 start-page: 621163 year: 2021 ident: pone.0321711.ref004 article-title: Geopolymer concrete compressive strength via an artificial neural network, adaptive neuro-fuzzy interface system, and gene expression programming with K-fold cross-validation. publication-title: Front Materials doi: 10.3389/fmats.2021.621163 – start-page: 70 year: 2003 ident: pone.0321711.ref014 – volume-title: Gene expression programming: mathematical modeling by artificial intelligence year: 2006 ident: pone.0321711.ref002 doi: 10.1007/3-540-32849-1_2 – volume: 188 start-page: 101 year: 2017 ident: pone.0321711.ref026 article-title: Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran publication-title: Agric Water Manag doi: 10.1016/j.agwat.2017.04.009 – volume: 176 start-page: 567 issue: 6 year: 2023 ident: pone.0321711.ref006 article-title: Modelling tunnel squeezing using gene expression programming: a case study publication-title: Proc Inst Civ Eng Geotech Eng doi: 10.1680/jgeen.22.00151 – volume: 12 start-page: 662 issue: 6 year: 2008 ident: pone.0321711.ref030 article-title: Efficient evolution of accurate classification rules using a combination of gene expression programming and clonal selection publication-title: IEEE Trans Evol Computat doi: 10.1109/TEVC.2008.920673 – volume: 111 start-page: 453 issue: 6 year: 2020 ident: pone.0321711.ref035 article-title: Accurate estimation of DLC thin film hardness using genetic programming publication-title: Int J Materials Res doi: 10.3139/146.111911 – year: 2001 ident: pone.0321711.ref001 article-title: Gene expression programming: a new adaptive algorithm for solving problems – volume: 547 start-page: 553 year: 2021 ident: pone.0321711.ref016 article-title: Enhancing gene expression programming based on space partition and jump for symbolic regression publication-title: Inf Sci doi: 10.1016/j.ins.2020.08.061 – volume: 11 issue: 1 year: 2016 ident: pone.0321711.ref025 article-title: Distributed function mining for gene expression programming based on fast reduction publication-title: PLoS One doi: 10.1371/journal.pone.0146698 – start-page: 6618407 issue: 1 year: 2021 ident: pone.0321711.ref008 article-title: Compressive strength of fly‐ash‐based geopolymer concrete by gene expression programming and random forest publication-title: Adv Civ Eng doi: 10.1155/2021/6618407 – volume: 13 start-page: 454 issue: 2 year: 2009 ident: pone.0321711.ref028 article-title: A genetic algorithm that adaptively mutates and never revisits publication-title: IEEE Trans Evol Computat doi: 10.1109/TEVC.2008.2003008 – volume: 23 start-page: 1677 year: 2013 ident: pone.0321711.ref024 article-title: RETRACTED ARTICLE: Predicting the effects of nanoparticles on compressive strength of ash-based geopolymers by gene expression programming publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1127-7 – volume: 18 issue: 11 year: 2023 ident: pone.0321711.ref013 article-title: An improved gene expression programming algorithm for function mining of map-reduce job execution in catenary monitoring systems publication-title: PLoS One doi: 10.1371/journal.pone.0290499 – volume: 32 start-page: 7969 issue: 12 year: 2019 ident: pone.0321711.ref036 article-title: Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses publication-title: Neural Comput Applic doi: 10.1007/s00521-019-04280-z – volume: 17 start-page: 649 issue: 2 year: 2022 ident: pone.0321711.ref003 article-title: Gene expression programming for parametric optimization of an electrochemical machining process publication-title: Int J Interact Des Manuf doi: 10.1007/s12008-022-00989-9 – volume: 58 issue: 3 year: 2025 ident: pone.0321711.ref031 article-title: Artificial lemming algorithm: a novel bionic meta-heuristic technique for solving real-world engineering optimization problems publication-title: Artif Intell Rev doi: 10.1007/s10462-024-11023-7 – volume: 14 start-page: 1074 issue: 6 year: 2022 ident: pone.0321711.ref009 article-title: Application of soft computing techniques to predict the strength of geopolymer composites publication-title: Polymers (Basel) doi: 10.3390/polym14061074 – volume: 12 start-page: 91 issue: 2 year: 2010 ident: pone.0321711.ref015 article-title: Semantically-based crossover in genetic programming: application to real-valued symbolic regression publication-title: Genet Program Evolvable Mach – volume: 18 year: 2023 ident: pone.0321711.ref021 article-title: Forecasting compressive strength and electrical resistivity of graphite based nano-composites using novel artificial intelligence techniques. publication-title: Case Stud Constr Mat – volume: 25 start-page: 389 issue: 1 year: 2020 ident: pone.0321711.ref020 article-title: An approach for optimizing multi-objective problems using hybrid genetic algorithms publication-title: Soft Comput doi: 10.1007/s00500-020-05149-3 – volume: 54 start-page: 40 year: 2016 ident: pone.0321711.ref011 article-title: Oil price forecasting using gene expression programming and artificial neural networks publication-title: Econ Model doi: 10.1016/j.econmod.2015.12.014 – volume: 61 start-page: 102464 year: 2024 ident: pone.0321711.ref032 article-title: MSAO: A multi-strategy boosted snow ablation optimizer for global optimization and real-world engineering applications publication-title: Adv Eng Inf doi: 10.1016/j.aei.2024.102464 – volume: 3 start-page: 85 issue: 2 year: 2009 ident: pone.0321711.ref027 article-title: Time series modeling using an adaptive gene expression programming algorithm publication-title: Int J Math Models Methods Appl Sci – start-page: 1281 volume-title: International Conference on Computational Science year: 2004 ident: pone.0321711.ref023 article-title: Encoding multiple solutions in a linear genetic programming chromosome. – start-page: 791 year: 2012 ident: pone.0321711.ref038 article-title: Genetic programming needs better benchmarks. publication-title: Proceedings of the 14th annual conference on Genetic and evolutionary computation – volume: 137 start-page: 293 year: 2014 ident: pone.0321711.ref029 article-title: An improved Gene Expression Programming approach for symbolic regression problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.062 – start-page: 403 volume-title: Ninth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2007) year: 2007 ident: pone.0321711.ref017 article-title: Adagep-an adaptive gene expression programming algorithm. – volume-title: Genetic programming II: automatic discovery of reusable programs year: 1994 ident: pone.0321711.ref022 – volume: 21 start-page: 814 year: 2014 ident: pone.0321711.ref010 article-title: A comparative study of GEP and an ANN strategy to model engine performance and emission characteristics of a CRDI assisted single cylinder diesel engine under CNG dual-fuel operation publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2014.10.024 – volume: 75 start-page: 101197 year: 2022 ident: pone.0321711.ref018 article-title: AB-GEP: Adversarial bandit gene expression programming for symbolic regression publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2022.101197 – volume: 7 start-page: 53365 year: 2019 ident: pone.0321711.ref012 article-title: A novel function mining algorithm based on attribute reduction and improved gene expression programming publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2911890 – start-page: 614 volume-title: JCIS year: 2002 ident: pone.0321711.ref037 article-title: Mutation, transposition, and recombination: an analysis of the evolutionary dynamics. |
| SSID | ssj0053866 |
| Score | 2.4795413 |
| Snippet | The fast developments in artificial intelligence together with evolutionary algorithms have not solved all the difficulties that Gene Expression Programming... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0321711 |
| SubjectTerms | Ablation Accuracy Algorithms Analysis Artificial Intelligence Benchmarks Biology and Life Sciences Ecology and Environmental Sciences Efficiency Evolutionary algorithms Exploitation Gene Expression Genetic algorithms Genetic engineering Humans Models, Genetic Mutation Operators Optimization Pareto optimum Physical Sciences Population genetics Programming Research and Analysis Methods Searching |
| SummonAdditionalLinks | – databaseName: Nursing & Allied Health Database dbid: 7RV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeg8MALY3wtY4BBSMBDttj5cPKECmICCQ00YNqb5a90Q20SmhbBf89d4hSCJoTEY-urm_i-fmef7wh5woWLNDAaVNzwEPytDnWkdZgC73UiTGL66vrvxNFRfnpafPAbbq1PqxxsYmeobW1wj_wgBt8UxYlI2Yvma4hdo_B01bfQuEyuMMTGIM_i-GSwxKDLWeavy8WCHXju7Dd15fYjmFAwNnJHXdX-jW2eNPO6vQh4_pk_-ZtDOtz631e5Qa57KEqnvexsk0uuukm2vbK39JmvSP38FqmmtCtDS-uSgsA56r77_NmK-gSvBbhAquYz-J_V2YICFKa2b3av5vMfVNkv2DYMaABwUqw3vsA8nHaYER6B1o3rzvzb2-Tz4etPr96EvlFDaABOrUJrjeLKZQV2VygN6LTO8RIRs9xZngktLIfAzsQqS7lxlvHIuEIbpbDTeczjO2RSAVN2CAUEmusohdEyTYBIaYAYWS4KC4FZ4uKAhAO_ZNPX45DdoZyAOKZfN4n8lZ6_AXmJTN3QYjXt7ot6OZNeOSUrE2Z0AaFWGYF8cs3ho7IAvZjNtDABeYgiIfurqRubIKd5woGNIkoD8rijwIoaFabszNS6beXb9yf_QPTxeET01BOVNQiXUf6aBLwTVuoaUe6NKMEumNHwDgrwsCqt_CV28MtBMC8efrQZxkkxDa9y9bqn4XHK8iwgd3sd2KxsAsFBCowKSD7SjtHSj0eq87OuoDnjiDpTsfv357pHrnHsvox7YHyPTFbLtbtPrppvq_N2-aBT_Z92pmTZ priority: 102 providerName: ProQuest – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hwIELUF41BFgQEnBwsdf2rn0MiAikqlS81NtqX26DEjuKEwT_nhl7bXDVSnC0Z2Jt5uH9xjsPQp4z4SINigYXNyyE_VaHOtI6zED3OhUmNV13_UNxdJSfnBTHfwLFcyf4iYhfe5kerOvKHUQJQGgs5b3KEs4x2JofH_ZvXvBdzn153GW_HG0_bZf-4V08WS_r5iKgeT5f8q8NaH7zf5d-i9zwUJPOOtvYI1dcdZvseWdu6EvfcfrVHVLNaNtmltYlBYNy1P30-bEV9QlcK9jiqFqe1pvF9mxFAepS2w2zV8vlL6rsdxwLBjwAKCn2E19hnk3TPxGWQOu1a8_0m7vk6_zdl7fvQz-IITQAl7ahtUYx5XiB0xNKAz6rcywSii1zlnGhhWUQuJlE8YwZZ2MWGVdooxROMk9Yco9MKpDBPqGAMHMdZUAtsxSYlAYIwXNRWAi8UpcEJOz1I9ddvw3ZHroJiFM6uUkUp_TiDMgbVOLAi92y2xugB-mdT8ZlGhtdQChVRmB_TDO4VBagVWy5FiYgT9AEZFd6Ovi8nOUpS0Umoiwgz1oO7JhRYUrOqdo1jfzw8ds_MH3-NGJ64ZnKGozJKF8GAf8JO3GNOKcjTvB7MyLvo8H2UmkkCCSLEiCCUKa9EV9MfjqQ8aGYZle5etfxsCSLcx6Q-53ND5JNAfxnoKiA5CNvGIl-TKkWZ23D8pghqszEg8uX_JBcZzhZGb9vsSmZbDc794hcMz-2i2bzuHXz31FEUww priority: 102 providerName: Public Library of Science |
| Title | A study of gene expression programming algorithm for dynamically adjusting the parameters of genetic operators |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40455879 https://www.proquest.com/docview/3215034751 https://www.proquest.com/docview/3215235186 https://pubmed.ncbi.nlm.nih.gov/PMC12129357 https://doaj.org/article/1f41cb9182f047c2b21cbad0281d6b7c http://dx.doi.org/10.1371/journal.pone.0321711 |
| Volume | 20 |
| WOSCitedRecordID | wos001501444500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4MAFUV41hLAgJODg1F4_1j4mVSOqtsFKoQq9WLvrdRuU2FGcIPj3zNibqEaV4MBlpGTGljOPndl49htC3jGuHQmGhhBXzIZ8K23pSGkHYHvpc-WrBl3_lI_H0XQaJzdGfWFPWAMP3CjuwM19V8kYyuDcgWuZZPBRZJAW3SyUXOHq6_B4u5lq1mCI4jA0B-U87h4Yu_SXZaH7jgdluOu2ElGN179blTvLeVndVnL-2Tl5IxWNHpGHpoakg-bZ98gdXTwmeyZKK_rBQEl_fEKKAa3xY2mZU_AUTfVP0_haUNOZtYDcRcX8qlzN1tcLCjUszZop9WI-_0VF9h3nfYEMVIoUgcIX2EBTbe8Ij0DLpa5f1ldPydfR0ZfDT7aZsGArqIPWdpYpwYQOYxyLkCsIRhnh6R83YzpjIZc8Y7AjU54IA6Z05jJH6VgqIXBEuce8Z6RTgE73CYXSMZJOANw88EFISKgNwojHGeyofO1ZxN6qO102QBpp_TaNwwak0VuK5kmNeSwyRJvsZBEGu_4CnCM1zpH-zTks8hotmjZnSnfBnA4in_k84E5gkbe1BEJhFNhrcyU2VZUef774B6HzSUvovRHKS_ANJcz5BvhNCLHVkuy2JCGgVYu9j_631UqVgkICxwMmKKW79cnb2W92bLwp9s8Vutw0MswL3Ci0yPPGhXea9aGqD8BQFolazt1SfZtTzK5rJHKXYbkY8Bf_w1gvyQOGw5XxLy7WJZ31aqNfkfvqx3pWrXrkLp9cIJ3ymkZAo0O3R-4Nj8bJpFfHP9BRcgr0ZNgHeuacIOVJTc-BJsElXJEcnyXffgMZc2Ow |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VAQkuQHnVUOiCQMDBrb1-rHNAKDyqRg2hgoIqLmZfTosSO8QJkD_Fb2TGXgeMKsSlB47Jji3v7jcve_YbQh4wbjwJGw0qrpgL_la60pPSjWDvZchVqGp2_QEfDpOjo-7BGvnRnIXBssrGJlaGWhcK35HvBOCbvCDkkf9s-sXFrlH4dbVpoVHDYt8sv0HKVj7tv4T9fcjY7qvDF3uu7SrgKvD9c1drJZgwcRdbAWQKACgTPPHia2Y0i7nkmkEWogIRR0wZ7TNPma5UQmBb7gCJDsDknwtD5qEWHUQfG8sPtiOO7fG8gPs7Fg3b0yI32x5MgPt-y_1VXQJWvqAzHRflaYHun_WavznA3cv_29JdIZdsqE17tW6skzWTXyXr1piV9LFl3H5yjeQ9WtHs0iKjoFCGmu-2PjintoBtAi6eivEI5jU_nlAI9ale5qIiWxgvqdCfsS0ayEBATZFPfYJ1RmVzR3gEWkxNVdNQXifvz2TeN0gnBxBsEAoRdiK9CEazKAQhISGEihPe1ZB4hiZwiNvgI53WfCNp9dGRQ55Wr1uKeEotnhzyHEG0kkW28OqPYjZKrfFJ_Sz0lexCKpl5oH9MMvgpNISWvo4lVw7ZQgim9dHblc1Le0nIADbcixxyv5JAxpAcS5JGYlGWaf_Nh38Qeve2JfTICmUFgFkJewwE5oRMZC3JzZYk2D3VGt5AhWlWpUx_wRyubBTh9OF7q2G8KZYZ5qZY1DIsiPwkdsjNWudWKxtC8hPBRjkkaWlja-nbI_nJcUXY7jOMqiN-6-_PtUUu7B2-HqSD_nD_NrnIsNM0vu9jm6Qzny3MHXJefZ2flLO7ldmh5NNZK-tPPc7DnQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VASEuQHnVUOiCQMDBjb1-rHNAKFAiqlYh4qWKi9mX06LEDnEC5K_x65ix1wGjCnHpgWOyY8u7-83Lnv2GkAeMG0_CRoOKK-aCv5Wu9KR0I9h7GXIVqppd_5APh8nRUW-0QX40Z2GwrLKxiZWh1oXCd-TdAHyTF4Q88ruZLYsY7Q2ezb642EEKv7Q27TRqiByY1TdI38qn-3uw1w8ZG7x89-KVazsMuArigIWrtRJMmLiHbQEyBWCUCZ5-8TUzmsVccs0gI1GBiCOmjPaZp0xPKiGwRXeApAdg_s9xyDGxnHAUfWy8ANiROLZH9QLudy0ydmdFbnY9mAz3_ZYrrDoGrP1CZzYpytOC3j9rN39zhoPL__MyXiGXbAhO-7XObJINk18lm9bIlfSxZeJ-co3kfVrR79Iio6Bohprvtm44p7awbQqun4rJGOa1OJ5SSAGoXuWiImGYrKjQn7FdGshAoE2RZ32K9Udlc0d4BFrMTFXrUF4n789k3jdIJwdAbBEKkXcivQhGsygEISEhtIoT3tOQkIYmcIjbYCWd1TwkafUxkkP-Vq9bithKLbYc8hwBtZZFFvHqj2I-Tq1RSv0s9JXsQYqZeaCXTDL4KTSEnL6OJVcO2UE4pvWR3LUtTPtJyABC3Isccr-SQCaRHME0FsuyTPdff_gHobdvWkKPrFBWALCVsMdDYE7IUNaS3G5Jgj1UreEtVJ5mVcr0F-ThykYpTh--tx7Gm2L5YW6KZS3DgshPYofcrPVvvbIhJEURbJRDkpZmtpa-PZKfHFdE7j7DaDvit_7-XDvkAuhoerg_PLhNLjJsQI2vAdk26SzmS3OHnFdfFyfl_G5lgSj5dNa6-hONGsxn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+gene+expression+programming+algorithm+for+dynamically+adjusting+the+parameters+of+genetic+operators&rft.jtitle=PloS+one&rft.au=Liu%2C+Kejia&rft.au=Teng%2C+Yiping&rft.au=Liu%2C+Fang&rft.date=2025-06-02&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0321711&rft_id=info:doi/10.1371%2Fjournal.pone.0321711&rft_id=info%3Apmid%2F40455879&rft.externalDocID=40455879 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |