Enhanced YOLOv8-based pavement crack detection: A high-precision approach

At present, the repair of cracks is still implemented manually, which has the problems of low identification efficiency and high labor cost. Crack detection is the key to realize the mechanical and intelligent crack repair. To solve these problems, an improved automatic recognition algorithm based o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PloS one Ročník 20; číslo 5; s. e0324512
Hlavní autori: Zhang, ZuXuan, Zhang, HongLi, Zhang, TongJia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 22.05.2025
Public Library of Science (PLoS)
Predmet:
ISSN:1932-6203, 1932-6203
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract At present, the repair of cracks is still implemented manually, which has the problems of low identification efficiency and high labor cost. Crack detection is the key to realize the mechanical and intelligent crack repair. To solve these problems, an improved automatic recognition algorithm based on YOLOv8 model, YOLOV8-DGS is proposed in this study. Firstly, this paper introduces deep separable Convolution (DWConv) into YOLOv8 backbone network to capture crack information more flexibly and improve the recognition accuracy of the model. Secondly, GSConv is used in the neck part to reduce computation and enhance feature representation, especially in the processing of multi-scale fracture features. Through these improvements, YOLOv8-DGS not only improves the accuracy of small cracks, but also ensures the real-time and high efficiency of intelligent joint filling equipment in practical applications. Experimental results show that the Precision, Recall, F1-score, mAP50 and FPS of the YOLOv8-DGS algorithm in pavement crack detection are 91.6%, 90%, 90.8%, 92.4% and 85 frames, respectively. At the same time, the recognition rate of different types of cracks in the model reached more than 86%, which increased by 20.5% compared with the YOLO11 model. This method can provide theoretical basis for automatic crack identification and technical support for automatic seam filling machine.
AbstractList At present, the repair of cracks is still implemented manually, which has the problems of low identification efficiency and high labor cost. Crack detection is the key to realize the mechanical and intelligent crack repair. To solve these problems, an improved automatic recognition algorithm based on YOLOv8 model, YOLOV8-DGS is proposed in this study. Firstly, this paper introduces deep separable Convolution (DWConv) into YOLOv8 backbone network to capture crack information more flexibly and improve the recognition accuracy of the model. Secondly, GSConv is used in the neck part to reduce computation and enhance feature representation, especially in the processing of multi-scale fracture features. Through these improvements, YOLOv8-DGS not only improves the accuracy of small cracks, but also ensures the real-time and high efficiency of intelligent joint filling equipment in practical applications. Experimental results show that the Precision, Recall, F1-score, mAP50 and FPS of the YOLOv8-DGS algorithm in pavement crack detection are 91.6%, 90%, 90.8%, 92.4% and 85 frames, respectively. At the same time, the recognition rate of different types of cracks in the model reached more than 86%, which increased by 20.5% compared with the YOLO11 model. This method can provide theoretical basis for automatic crack identification and technical support for automatic seam filling machine.
At present, the repair of cracks is still implemented manually, which has the problems of low identification efficiency and high labor cost. Crack detection is the key to realize the mechanical and intelligent crack repair. To solve these problems, an improved automatic recognition algorithm based on YOLOv8 model, YOLOV8-DGS is proposed in this study. Firstly, this paper introduces deep separable Convolution (DWConv) into YOLOv8 backbone network to capture crack information more flexibly and improve the recognition accuracy of the model. Secondly, GSConv is used in the neck part to reduce computation and enhance feature representation, especially in the processing of multi-scale fracture features. Through these improvements, YOLOv8-DGS not only improves the accuracy of small cracks, but also ensures the real-time and high efficiency of intelligent joint filling equipment in practical applications. Experimental results show that the Precision, Recall, F1-score, mAP50 and FPS of the YOLOv8-DGS algorithm in pavement crack detection are 91.6%, 90%, 90.8%, 92.4% and 85 frames, respectively. At the same time, the recognition rate of different types of cracks in the model reached more than 86%, which increased by 20.5% compared with the YOLO11 model. This method can provide theoretical basis for automatic crack identification and technical support for automatic seam filling machine.At present, the repair of cracks is still implemented manually, which has the problems of low identification efficiency and high labor cost. Crack detection is the key to realize the mechanical and intelligent crack repair. To solve these problems, an improved automatic recognition algorithm based on YOLOv8 model, YOLOV8-DGS is proposed in this study. Firstly, this paper introduces deep separable Convolution (DWConv) into YOLOv8 backbone network to capture crack information more flexibly and improve the recognition accuracy of the model. Secondly, GSConv is used in the neck part to reduce computation and enhance feature representation, especially in the processing of multi-scale fracture features. Through these improvements, YOLOv8-DGS not only improves the accuracy of small cracks, but also ensures the real-time and high efficiency of intelligent joint filling equipment in practical applications. Experimental results show that the Precision, Recall, F1-score, mAP50 and FPS of the YOLOv8-DGS algorithm in pavement crack detection are 91.6%, 90%, 90.8%, 92.4% and 85 frames, respectively. At the same time, the recognition rate of different types of cracks in the model reached more than 86%, which increased by 20.5% compared with the YOLO11 model. This method can provide theoretical basis for automatic crack identification and technical support for automatic seam filling machine.
Audience Academic
Author Zhang, ZuXuan
Zhang, TongJia
Zhang, HongLi
AuthorAffiliation 1 School of Engineering Machinery, Shandong Jiaotong University, Jinan, China
2 School of Mechanical and Electrical Engineering, Shandong Jianzhu University, Jinan, China
Jouf University, SAUDI ARABIA
AuthorAffiliation_xml – name: 2 School of Mechanical and Electrical Engineering, Shandong Jianzhu University, Jinan, China
– name: 1 School of Engineering Machinery, Shandong Jiaotong University, Jinan, China
– name: Jouf University, SAUDI ARABIA
Author_xml – sequence: 1
  givenname: ZuXuan
  surname: Zhang
  fullname: Zhang, ZuXuan
– sequence: 2
  givenname: HongLi
  orcidid: 0009-0007-8150-1913
  surname: Zhang
  fullname: Zhang, HongLi
– sequence: 3
  givenname: TongJia
  surname: Zhang
  fullname: Zhang, TongJia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40403041$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L1DAUhousuB_6D0QLguhFx3y1ab2RYVl1YGDAL_AqpOlpm7FtatIO-u9Nne4ylb2QXCQ5efKe5OWcy-CsMx0EwVOMVphy_GZvRtvJZtX78ApRwmJMHgQXOKMkSgiiZyfr8-DSuT1CMU2T5FFwzhBDFDF8EWxuulp2Corw-267O6RRLp3f9PIALXRDqKxUP8ICBlCDNt3bcB3Wuqqj3oLSzkdC2ffWSFU_Dh6WsnHwZJ6vgq_vb75cf4y2uw-b6_U2UgljQ8SJpBlLCJdAc4ZpLgETUpA8TgHFKlWAckxJqYCSLMZxzhMqcZGnZZ5QgnN6FTw_6vaNcWJ2wQlKUJJSwnnsic2RKIzci97qVtrfwkgt_gaMrYS0g1YNCMpiwCrLOM04K8vMp2EKe3-ZKvwrE6_1bs425i0UyntiZbMQXZ50uhaVOQhMUMY5Sr3Cq1nBmp8juEG02iloGtmBGY8Pz1LKEuzRF_-g939vpirpf6C70vjEahIV65T5rHHKJ63VPZQfBbRa-ZoptY8vLrxeXPDMAL-GSo7Oic3nT__P7r4t2ZcnbA2yGWpnmnEqJ7cEn51afefxbbF6gB0BZY1zFso7BCMx9cStXWLqCTH3BP0D8T_63Q
Cites_doi 10.1016/j.engappai.2023.106217
10.1016/j.oceaneng.2022.111735
10.1016/j.infrared.2023.104894
10.1109/ICCV48922.2021.00376
10.1016/j.comnet.2024.110656
10.3390/rs15174251
10.1016/j.autcon.2023.105062
10.3390/rs15102663
10.1109/TVT.2024.3492388
10.1038/s41598-024-66234-3
10.1016/j.ssci.2024.106690
10.1007/s12008-024-01769-3
10.1109/TITS.2020.2990703
10.3390/jmse12101748
10.3390/s24144491
10.1016/j.autcon.2021.103973
ContentType Journal Article
Copyright Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Zhang et al 2025 Zhang et al
2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Zhang et al 2025 Zhang et al
– notice: 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0324512
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE
CrossRef

MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A pavement crack identification method
EISSN 1932-6203
ExternalDocumentID 3206832775
oai_doaj_org_article_345e1c9973974ff9b8f4c11374cd9466
PMC12097708
A840975871
40403041
10_1371_journal_pone_0324512
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: ZR2024QE374
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c644t-72a394627ae3b413bae122d2b58e05c8ce0b132fce329515b763a1db8fb6321b3
IEDL.DBID FPL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494040300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Fri Aug 22 23:50:16 EDT 2025
Tue Oct 14 19:07:30 EDT 2025
Tue Nov 04 02:04:44 EST 2025
Fri Sep 05 16:04:28 EDT 2025
Tue Oct 07 07:52:30 EDT 2025
Sat Nov 29 13:48:34 EST 2025
Sat Nov 29 10:29:51 EST 2025
Wed Nov 26 10:45:42 EST 2025
Wed Nov 26 10:45:47 EST 2025
Tue Jun 03 02:17:40 EDT 2025
Mon May 26 01:57:47 EDT 2025
Sat Nov 29 07:52:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-72a394627ae3b413bae122d2b58e05c8ce0b132fce329515b763a1db8fb6321b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0009-0007-8150-1913
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0324512
PMID 40403041
PQID 3206832775
PQPubID 1436336
PageCount e0324512
ParticipantIDs plos_journals_3206832775
doaj_primary_oai_doaj_org_article_345e1c9973974ff9b8f4c11374cd9466
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12097708
proquest_miscellaneous_3206983461
proquest_journals_3206832775
gale_infotracmisc_A840975871
gale_infotracacademiconefile_A840975871
gale_incontextgauss_ISR_A840975871
gale_incontextgauss_IOV_A840975871
gale_healthsolutions_A840975871
pubmed_primary_40403041
crossref_primary_10_1371_journal_pone_0324512
PublicationCentury 2000
PublicationDate 20250522
PublicationDateYYYYMMDD 2025-05-22
PublicationDate_xml – month: 5
  year: 2025
  text: 20250522
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References W Hu (pone.0324512.ref015) 2021; 132
H Zhao (pone.0324512.ref020) 2024
Y Du (pone.0324512.ref016)
Y Hu (pone.0324512.ref025) 2024; 252
J Zhong (pone.0324512.ref003) 2022
W Jiang (pone.0324512.ref009) 2024; 12
L Zhou (pone.0324512.ref004) 2023; 15
D Hang (pone.0324512.ref002) 2023
X Xu (pone.0324512.ref014) 2023; 15
pone.0324512.ref021
G Cai (pone.0324512.ref013) 2025; 181
H Li (pone.0324512.ref024) 2024; 21
Z Liu (pone.0324512.ref011) 2023
J Cai (pone.0324512.ref005) 2022; 259
pone.0324512.ref006
W Xie (pone.0324512.ref001) 2022; 37
Y Wang (pone.0324512.ref027) 2024; 24
Y Ren (pone.0324512.ref007) 2022; 234
Z Liu (pone.0324512.ref010) 2022
MK Dutta (pone.0324512.ref018) 2022
Y Jia (pone.0324512.ref008) 2024; 14
J Li (pone.0324512.ref026) 2023; 155
H Wang (pone.0324512.ref017) 2024; 18
L Kaiser (pone.0324512.ref022) 2017
Q Sun (pone.0324512.ref012) 2025; 74
F Zhang (pone.0324512.ref019) 2023; 134
G Liu (pone.0324512.ref023) 2023; 123
References_xml – year: 2024
  ident: pone.0324512.ref020
  article-title: Fsdf: A high-performance fire detection framework
  publication-title: Expert Syst Appl
– year: 2022
  ident: pone.0324512.ref018
  article-title: Application of retinex and histogram equalisation techniques for the restoration of faded and distorted artworks: a comparative analysis
  publication-title: Optik
– volume: 123
  start-page: 106217
  year: 2023
  ident: pone.0324512.ref023
  article-title: Lightweight object detection algorithm for robots with improved YOLOv5
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.106217
– volume: 259
  start-page: 111735
  year: 2022
  ident: pone.0324512.ref005
  article-title: Broken ice circumferential crack estimation via image techniques
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.111735
– volume: 134
  start-page: 104894
  year: 2023
  ident: pone.0324512.ref019
  article-title: Brightness segmentation-based plateau histogram equalization algorithm for displaying high dynamic range infrared images
  publication-title: Infrared Physics Technol
  doi: 10.1016/j.infrared.2023.104894
– year: 2017
  ident: pone.0324512.ref022
  article-title: Depthwise separable convolutions for neural machine translation
  publication-title: Comput Sci Comput Lang
– volume: 234
  year: 2022
  ident: pone.0324512.ref007
  article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks
  publication-title: Constr Build Mater
– volume: 21
  issue: 3
  year: 2024
  ident: pone.0324512.ref024
  article-title: Slim-neck by GSConv: a lightweight-design for real-time detector architectures
  publication-title: J Real-Time Image Proc
– ident: pone.0324512.ref006
  doi: 10.1109/ICCV48922.2021.00376
– year: 2023
  ident: pone.0324512.ref011
  article-title: Automatic recognition of pavement cracks from combined gpr b-scan and c-scan images using multiscale feature fusion deep neural networks
  publication-title: Autom Constr
– volume: 252
  start-page: 110656
  year: 2024
  ident: pone.0324512.ref025
  article-title: Online network traffic classification based on external attention and convolution by IP packet header
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2024.110656
– volume: 15
  start-page: 4251
  issue: 17
  year: 2023
  ident: pone.0324512.ref014
  article-title: Three-Dimensional Reconstruction and Geometric Morphology Analysis of Lunar Small Craters within the Patrol Range of the Yutu-2 Rover
  publication-title: Remote Sensing
  doi: 10.3390/rs15174251
– volume: 155
  start-page: 105062
  year: 2023
  ident: pone.0324512.ref026
  article-title: Real-time instance-level detection of asphalt pavement distress combining space-to-depth (SPD) YOLO and omni-scale network (OSNet)
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2023.105062
– start-page: 170
  year: 2023
  ident: pone.0324512.ref002
  article-title: Lightweight mesh crack detection algorithm based on efficient attention mechanism
  publication-title: Int J Robot Autom
– volume: 15
  start-page: 2663
  issue: 10
  year: 2023
  ident: pone.0324512.ref004
  article-title: The Identification of Ice Floes and Calculation of Sea Ice Concentration Based on a Deep Learning Method
  publication-title: Remote Sensing
  doi: 10.3390/rs15102663
– year: 2022
  ident: pone.0324512.ref003
  article-title: Multi-scale feature fusion network for pixel-level pavement distress detection
  publication-title: Autom Constr
– volume: 74
  start-page: 3925
  issue: 3
  year: 2025
  ident: pone.0324512.ref012
  article-title: An Improved Stereo Visual-Inertial SLAM Algorithm Based on Point-and-Line Features for Subterranean Environments
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2024.3492388
– volume: 14
  start-page: 15170
  issue: 1
  year: 2024
  ident: pone.0324512.ref008
  article-title: Defect detection of photovoltaic modules based on improved VarifocalNet
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-66234-3
– volume: 181
  start-page: 106690
  year: 2025
  ident: pone.0324512.ref013
  article-title: Real-time identification of borehole rescue environment situation in underground disaster areas based on multi-source heterogeneous data fusion
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2024.106690
– volume: 18
  start-page: 3773
  issue: 6
  year: 2024
  ident: pone.0324512.ref017
  article-title: Research on automatic pavement crack identification Based on improved YOLOv8
  publication-title: Int J Interact Des Manuf
  doi: 10.1007/s12008-024-01769-3
– ident: pone.0324512.ref021
  doi: 10.1109/TITS.2020.2990703
– ident: pone.0324512.ref016
– year: 2022
  ident: pone.0324512.ref010
  article-title: Novel YOLOv3 model with structure and hyperparameter optimization for detection of pavement concealed cracks in GPR images
  publication-title: Journal Title Abbreviation
– volume: 12
  start-page: 1748
  issue: 10
  year: 2024
  ident: pone.0324512.ref009
  article-title: Research on the Identification and Classification of Marine Debris Based on Improved YOLOv8
  publication-title: JMSE
  doi: 10.3390/jmse12101748
– volume: 24
  start-page: 4491
  issue: 14
  year: 2024
  ident: pone.0324512.ref027
  article-title: A Lightweight and Efficient Multi-Type Defect Detection Method for Transmission Lines Based on DCP-YOLOv8
  publication-title: Sensors (Basel)
  doi: 10.3390/s24144491
– volume: 37
  start-page: 372
  issue: 4
  year: 2022
  ident: pone.0324512.ref001
  article-title: Deephashing multi-label image retrieval with attention mechanism
  publication-title: Int J Robot Autom
– volume: 132
  start-page: 103973
  year: 2021
  ident: pone.0324512.ref015
  article-title: Machine vision-based surface crack analysis for transportation infrastructure
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2021.103973
SSID ssj0053866
Score 2.4842706
Snippet At present, the repair of cracks is still implemented manually, which has the problems of low identification efficiency and high labor cost. Crack detection is...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0324512
SubjectTerms Accuracy
Algorithms
Asphalt pavements
Biology and Life Sciences
Computer and Information Sciences
Computer vision
Construction Materials
Cracking
Cracks
Datasets
Deep learning
Engineering and Technology
Neural networks
Pavements
Physical Sciences
Real time
Recognition
Repair
Research and Analysis Methods
Sewing machines
Social Sciences
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHl1S4GAkICDWz9jm9uCWlEJdREvlVNkOw6tQNnVJtvfzzhxogZVggPXnYmV_cbzsDL-BqEXpWPGEi0wl3nAwlmDbcgrXFIbKFQclfC2GzahTk_12Zn5eGXUV-wJ6-mBe-AOuZCBemMUJE5RVcZpeBxWUcKXkRs9Rl-izHCY6mMweHGep4tyXNHDZJeD9aoOBwRqCEnZJBF1fP1jVJ6tf62a60rOPzsnr6Si4zvodqohs0X_7jvoRqjvop3kpU32KlFJv76HTo7q8-4Tf_Z9-WF5qXFMWmW2th1LeJv5jfU_szK0XUNW_SZbZJG_GK83afRONnCO30dfj4--vHuP0_AE7KHEabFilgM-TNnAHWQqB9gzVjIndSDSax-Ig5No5QNnUGVJB4HG0hLgdTln1PEHaFYDXLsocyQ4Jb3RNHhhiLeRM45LJz2trLV6jvCAZLHuOTKK7kOZgrNFD0kRkS8S8nP0NsI96kaG6-4HsHuR7F78ze5z9DQaq-ivi45-WiziiRUOQYrO0fNOI7Jc1LGN5ofdNk1xsvz2D0qfP02UXialagVm9zZdXYD_FNmzJpr7E03wVT8R78atNaDSFJyRHGKqUhKeHLbb9eJnozguGlvj6rDa9jpGc5HD6g_73TkiKyBEcyJAoif7dgL9VFJfnHck4_FOtVJE7_0PYz1Ct1icm0wkZmwfzdrNNjxGN_1le9FsnnSu-xugCEax
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4cAFKK8uFAgICTi4jV-xwwUtqBWVUBcVqNpTZDtOW4GSsNnt72fsOAtBFULiujMbJTPfjMfJ-BuEXpSG5jpVHDOROcyNzrF2WYVLoh2BiqPiVodhE_LgQB0f55_iC7cutlUOOTEk6rKx_h35DqNpBuiTUrxtf2A_Ncp_XY0jNK6ia8TXxoBneXg0ZGKI5SyLx-WYJDvRO9ttU7vtFCoJQehoOQqs_evcPGm_N91lheef_ZO_LUh7t_73UW6jm7EUTWY9djbQFVffQRsx2LvkVWSkfn0X7e_WZ6FTIDmZf5xfKOzXvjJpdSAbXyZ2oe23pHTL0NdVv0lmiadBxu0iTvBJBurye-jr3u6X9x9wnMGALVRKSyypZjnPqNSOGVjwDLiQ0pIaoVwqrLIuNbChraxjFIo1YSBfaVIaVZmMUWLYfTSpwd6bKDGpM1LYXBFneZ5a7annmDDCkkprraYID64o2p5qowjf2yRsUXqTFN51RXTdFL3z_lrreqLs8EOzOC1i3BWMC0dsnkuou3hV5XBj3AIIJbelp9afoqfe20V_6nQd7sXMb3xhLyXJFD0PGp4so_bdOKd61XXF_vzoH5Q-H46UXkalqgHcWB1PQMAzeRKukebWSBNC3o7Emx6bg1W64hei4J8D5i4XP1uL_UV9h13tmlWvkyvGM7j6gx7ea8tyyPQs5SBRI-CPTD-W1OdngavcH82WMlUP_35fj9AN6gcrpwJTuoUmy8XKPUbX7cXyvFs8CVH9E8iFVa8
  priority: 102
  providerName: ProQuest
Title Enhanced YOLOv8-based pavement crack detection: A high-precision approach
URI https://www.ncbi.nlm.nih.gov/pubmed/40403041
https://www.proquest.com/docview/3206832775
https://www.proquest.com/docview/3206983461
https://pubmed.ncbi.nlm.nih.gov/PMC12097708
https://doaj.org/article/345e1c9973974ff9b8f4c11374cd9466
http://dx.doi.org/10.1371/journal.pone.0324512
Volume 20
WOSCitedRecordID wos001494040300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELeg44EXYHytMEpASMBDSuKP2OGtnVpRbWujDqaOl8h2nG0aSqum3d_P2UkLmTYJXu6hPkfO-e5815x_h9CHTOFYBoL6hEXGp0rGvjRR7mehNCFEHDnV0jWb4OOxmM3i5E-ieOMLPuHhl1qm3cW8MN0Azn9mmwrvYBJFtlXDMDnaeF6w3Siqr8fdNbNx_DiU_q0vbi1-zcvbAs2b9ZJ_HUDDx_-79CfoUR1qer1KN3bRPVM8Rbu1MZfepxpx-vMzNBoUF64SwDubHE2uhW_PtsxbSAcmvvL0UuorLzMrV7dVfPV6noU59hfLukOPt4Emf45-DAffD775dY8FX0MktPI5liSmEebSEAUHmoItwjjDigkTMC20CRQkrLk2BEMwxhT4IxlmSuQqIjhU5AVqFfB6e8hTgVGc6ViERtM40NJCyxGmmA5zKaVoI38j-nRRQWmk7nsahxSkEklqJZXWkmqjvt2fLa8FwnY_gIjT2q5SQpkJdRxziKtonsewMKpByTjVmYXOb6O3dnfT6lbp1pzTnk1sIVfiYRu9dxwWDKOw1Tbncl2W6Why-g9MJ9MG08eaKZ-DnmhZ33CAd7IgWw3O_QYnmLRuDO9ZXdxIpUwJDiJwvZwzmLnRz9uH322H7UNtBV1h5uuKJxaERvD0l5U6byVLwZOTgMKIaCh6Q_TNkeLywmGR26vXnAfi1d1Lfo0eYts0OWA-xvuotVquzRv0QF-vLstlB93n01NLZ9xRAVQchB200x-Mk2nH_UnScXYO9LDfBXocHFrKE0dPgCbsJ8xIRsfJ2W-WH1BW
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLy6UGhAIODgNrGd2EFCaCmtuuqyRVBQOQXbcdoKlITNbhF_it_I2HlAUIW49MB1Z9Zyxt88nMwDoYepIrH0BcM0jAxmSsZYmijDaSBNABFHxrR0wyb4dCoODuI3S-hHWwtj0ypbm-gMdVpo-458gxI_AvRxHr4ov2I7Ncp-XW1HaNSw2DXfv8GVrXo-fgXn-4iQ7a39zR3cTBXAGnz_HHMiacwiwqWhCky4gk0RkhIVCuOHWmjjK7iiZdpQAuFHqEADZZAqkamIkkBRWPccOs8ooVaLxGaXUgK2I4qa8jzKg40GDetlkZt1HyKXMCA99-emBHS-YFB-KarTAt0_8zV_c4DbV_430V1Fl5tQ2xvVurGMlkx-DS03xqzynjQdt59eR-Ot_MhlQngf9yZ7JwJb3556pXTN1Oeenkn92UvN3OWt5c-8kWfbPONy1kwo8trW7DfQ-zN5pJtokMP5riBP-UbxUMciMJrFvpa2tR4NVaiDTEophgi3R5-UdSuRxH1P5HAFq0WSWKgkDVSG6KXFR8drG4G7H4rZYdLYlYSy0AQ6jjnElSzLYtgY06BknOnUjg4YojWLrqSuqu3MWTKyF3u4K_JgiB44DtsMJLfZRodyUVXJeO_DPzC9e9tjetwwZQXgVMumwgOeyTYZ63Gu9jjBpOkeecXqQiuVKvmFYPhni_HTyfc7sl3UZhDmpljUPLGgLILVb9Xq1EmWgSejPgOK6ClaT_R9Sn585Hqx29Jzzn1x--_7WkMXd_ZfT5LJeLp7B10idoi0H2JCVtFgPluYu-iCPpkfV7N7zqJ46NNZ6-FPx_Oxfg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGQYgXYNxWGCwgEPDgNbGdOEFCqLBVVJvaipvGU7AdZ5tASWjaIf4av45jxykETYiXPfCac2I5J9-5ODkXhB5mkiTCjxmmYaQxkyLBQkc5zgKhA4g4cqaEHTbBJ5P44CCZraEfbS2MSatsbaI11FmpzDfyASV-BOjjPBzkLi1itjN6UX3FZoKU-dPajtNoILKnv3-D41v9fLwD7_oRIaPdd69eYzdhACuIAxaYE0ETFhEuNJVgziVskJCMyDDWfqhipX0Jx7VcaUogFAklaKMIMhnnMqIkkBTWPYfOcxb5xKYNzlovAHYkilypHuXBwCFjuyoLve1DFBMGpOMK7cSAlV_oVV_K-rSg98_czd-c4ejK_yzGq-iyC8G9YaMz62hNF9fQujNytffEdeJ-eh2Nd4sjmyHhfZzuT09ibHx-5lXCNllfeGou1Gcv0wubz1Y884aeaf-Mq7mbXOS1LdtvoPdn8kg3Ua-Ad72BPOlryUOVxIFWLPGVMC33aChDFeRCiLiPcAuDtGpajKT2PyOHo1kjktTAJnWw6aOXBisrXtMg3F4o54epszcpZaEOVJJwiDdZniewMaZA-ThTmRkp0EdbBmlpU227MnPp0Bz44QzJgz56YDlMk5DC4ORQLOs6HU8__APT2zcdpseOKS8Bs0q4yg94JtN8rMO52eEEU6c65A2jF61U6vQXmuHOFu-nk--vyGZRk1lY6HLZ8CQxZRGsfqtRrZVkGXg46jOgxB2l64i-SymOj2yPdlOSzrkf3_77vrbQRVC_dH882buDLhEzW9oPMSGbqLeYL_VddEGdLI7r-T1rXDz06azV8CdtBLqK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+YOLOv8-based+pavement+crack+detection%3A+A+high-precision+approach&rft.jtitle=PloS+one&rft.au=Zhang%2C+ZuXuan&rft.au=Zhang%2C+HongLi&rft.au=Zhang%2C+TongJia&rft.date=2025-05-22&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=5&rft.spage=e0324512&rft_id=info:doi/10.1371%2Fjournal.pone.0324512&rft.externalDocID=A840975871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon