M3S-GRPred: a novel ensemble learning approach for the interpretable prediction of glucocorticoid receptor antagonists using a multi-step stacking strategy

Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds promise in advancing therapeutic development, optimizing treatment efficacy, and mitigating adverse effects. While experimental methods can accurately id...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 26; číslo 1; s. 117 - 24
Hlavní autoři: Schaduangrat, Nalini, Chuntakaruk, Hathaichanok, Rungrotmongkol, Thanyada, Mookdarsanit, Pakpoom, Shoombuatong, Watshara
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 30.04.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds promise in advancing therapeutic development, optimizing treatment efficacy, and mitigating adverse effects. While experimental methods can accurately identify GR antagonists, they are often not cost-effective for large-scale drug discovery. Thus, computational approaches leveraging SMILES information for precise in silico identification of GR antagonists are crucial, enabling efficient and scalable drug discovery. Here, we develop a new ensemble learning approach using a multi-step stacking strategy (M3S), termed M3S-GRPred, aimed at rapidly and accurately discovering novel GR antagonists. To the best of our knowledge, M3S-GRPred is the first SMILES-based predictor designed to identify GR antagonists without the use of 3D structural information. In M3S-GRPred, we first constructed different balanced subsets using an under-sampling approach. Using these balanced subsets, we explored and evaluated heterogeneous base-classifiers trained with a variety of SMILES-based feature descriptors coupled with popular ML algorithms. Finally, M3S-GRPred was constructed by integrating probabilistic feature from the selected base-classifiers derived from a two-step feature selection technique. Our comparative experiments demonstrate that M3S-GRPred can precisely identify GR antagonists and effectively address the imbalanced dataset. Compared to traditional ML classifiers, M3S-GRPred attained superior performance in terms of both the training and independent test datasets. Additionally, M3S-GRPred was applied to identify potential GR antagonists among FDA-approved drugs confirmed through molecular docking, followed by detailed MD simulation studies for drug repurposing in Cushing’s syndrome. We anticipate that M3S-GRPred will serve as an efficient screening tool for discovering novel GR antagonists from vast libraries of unknown compounds in a cost-effective manner.
AbstractList Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds promise in advancing therapeutic development, optimizing treatment efficacy, and mitigating adverse effects. While experimental methods can accurately identify GR antagonists, they are often not cost-effective for large-scale drug discovery. Thus, computational approaches leveraging SMILES information for precise in silico identification of GR antagonists are crucial, enabling efficient and scalable drug discovery. Here, we develop a new ensemble learning approach using a multi-step stacking strategy (M3S), termed M3S-GRPred, aimed at rapidly and accurately discovering novel GR antagonists. To the best of our knowledge, M3S-GRPred is the first SMILES-based predictor designed to identify GR antagonists without the use of 3D structural information. In M3S-GRPred, we first constructed different balanced subsets using an under-sampling approach. Using these balanced subsets, we explored and evaluated heterogeneous base-classifiers trained with a variety of SMILES-based feature descriptors coupled with popular ML algorithms. Finally, M3S-GRPred was constructed by integrating probabilistic feature from the selected base-classifiers derived from a two-step feature selection technique. Our comparative experiments demonstrate that M3S-GRPred can precisely identify GR antagonists and effectively address the imbalanced dataset. Compared to traditional ML classifiers, M3S-GRPred attained superior performance in terms of both the training and independent test datasets. Additionally, M3S-GRPred was applied to identify potential GR antagonists among FDA-approved drugs confirmed through molecular docking, followed by detailed MD simulation studies for drug repurposing in Cushing’s syndrome. We anticipate that M3S-GRPred will serve as an efficient screening tool for discovering novel GR antagonists from vast libraries of unknown compounds in a cost-effective manner.
Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds promise in advancing therapeutic development, optimizing treatment efficacy, and mitigating adverse effects. While experimental methods can accurately identify GR antagonists, they are often not cost-effective for large-scale drug discovery. Thus, computational approaches leveraging SMILES information for precise in silico identification of GR antagonists are crucial, enabling efficient and scalable drug discovery. Here, we develop a new ensemble learning approach using a multi-step stacking strategy (M3S), termed M3S-GRPred, aimed at rapidly and accurately discovering novel GR antagonists. To the best of our knowledge, M3S-GRPred is the first SMILES-based predictor designed to identify GR antagonists without the use of 3D structural information. In M3S-GRPred, we first constructed different balanced subsets using an under-sampling approach. Using these balanced subsets, we explored and evaluated heterogeneous base-classifiers trained with a variety of SMILES-based feature descriptors coupled with popular ML algorithms. Finally, M3S-GRPred was constructed by integrating probabilistic feature from the selected base-classifiers derived from a two-step feature selection technique. Our comparative experiments demonstrate that M3S-GRPred can precisely identify GR antagonists and effectively address the imbalanced dataset. Compared to traditional ML classifiers, M3S-GRPred attained superior performance in terms of both the training and independent test datasets. Additionally, M3S-GRPred was applied to identify potential GR antagonists among FDA-approved drugs confirmed through molecular docking, followed by detailed MD simulation studies for drug repurposing in Cushing's syndrome. We anticipate that M3S-GRPred will serve as an efficient screening tool for discovering novel GR antagonists from vast libraries of unknown compounds in a cost-effective manner. Keywords: Cushing's syndrome, Glucocorticoid receptor, QSAR, Cheminformatics, Machine learning, Feature selection, Multi-view feature
Abstract Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds promise in advancing therapeutic development, optimizing treatment efficacy, and mitigating adverse effects. While experimental methods can accurately identify GR antagonists, they are often not cost-effective for large-scale drug discovery. Thus, computational approaches leveraging SMILES information for precise in silico identification of GR antagonists are crucial, enabling efficient and scalable drug discovery. Here, we develop a new ensemble learning approach using a multi-step stacking strategy (M3S), termed M3S-GRPred, aimed at rapidly and accurately discovering novel GR antagonists. To the best of our knowledge, M3S-GRPred is the first SMILES-based predictor designed to identify GR antagonists without the use of 3D structural information. In M3S-GRPred, we first constructed different balanced subsets using an under-sampling approach. Using these balanced subsets, we explored and evaluated heterogeneous base-classifiers trained with a variety of SMILES-based feature descriptors coupled with popular ML algorithms. Finally, M3S-GRPred was constructed by integrating probabilistic feature from the selected base-classifiers derived from a two-step feature selection technique. Our comparative experiments demonstrate that M3S-GRPred can precisely identify GR antagonists and effectively address the imbalanced dataset. Compared to traditional ML classifiers, M3S-GRPred attained superior performance in terms of both the training and independent test datasets. Additionally, M3S-GRPred was applied to identify potential GR antagonists among FDA-approved drugs confirmed through molecular docking, followed by detailed MD simulation studies for drug repurposing in Cushing’s syndrome. We anticipate that M3S-GRPred will serve as an efficient screening tool for discovering novel GR antagonists from vast libraries of unknown compounds in a cost-effective manner.
Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds promise in advancing therapeutic development, optimizing treatment efficacy, and mitigating adverse effects. While experimental methods can accurately identify GR antagonists, they are often not cost-effective for large-scale drug discovery. Thus, computational approaches leveraging SMILES information for precise in silico identification of GR antagonists are crucial, enabling efficient and scalable drug discovery. Here, we develop a new ensemble learning approach using a multi-step stacking strategy (M3S), termed M3S-GRPred, aimed at rapidly and accurately discovering novel GR antagonists. To the best of our knowledge, M3S-GRPred is the first SMILES-based predictor designed to identify GR antagonists without the use of 3D structural information. In M3S-GRPred, we first constructed different balanced subsets using an under-sampling approach. Using these balanced subsets, we explored and evaluated heterogeneous base-classifiers trained with a variety of SMILES-based feature descriptors coupled with popular ML algorithms. Finally, M3S-GRPred was constructed by integrating probabilistic feature from the selected base-classifiers derived from a two-step feature selection technique. Our comparative experiments demonstrate that M3S-GRPred can precisely identify GR antagonists and effectively address the imbalanced dataset. Compared to traditional ML classifiers, M3S-GRPred attained superior performance in terms of both the training and independent test datasets. Additionally, M3S-GRPred was applied to identify potential GR antagonists among FDA-approved drugs confirmed through molecular docking, followed by detailed MD simulation studies for drug repurposing in Cushing's syndrome. We anticipate that M3S-GRPred will serve as an efficient screening tool for discovering novel GR antagonists from vast libraries of unknown compounds in a cost-effective manner.Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds promise in advancing therapeutic development, optimizing treatment efficacy, and mitigating adverse effects. While experimental methods can accurately identify GR antagonists, they are often not cost-effective for large-scale drug discovery. Thus, computational approaches leveraging SMILES information for precise in silico identification of GR antagonists are crucial, enabling efficient and scalable drug discovery. Here, we develop a new ensemble learning approach using a multi-step stacking strategy (M3S), termed M3S-GRPred, aimed at rapidly and accurately discovering novel GR antagonists. To the best of our knowledge, M3S-GRPred is the first SMILES-based predictor designed to identify GR antagonists without the use of 3D structural information. In M3S-GRPred, we first constructed different balanced subsets using an under-sampling approach. Using these balanced subsets, we explored and evaluated heterogeneous base-classifiers trained with a variety of SMILES-based feature descriptors coupled with popular ML algorithms. Finally, M3S-GRPred was constructed by integrating probabilistic feature from the selected base-classifiers derived from a two-step feature selection technique. Our comparative experiments demonstrate that M3S-GRPred can precisely identify GR antagonists and effectively address the imbalanced dataset. Compared to traditional ML classifiers, M3S-GRPred attained superior performance in terms of both the training and independent test datasets. Additionally, M3S-GRPred was applied to identify potential GR antagonists among FDA-approved drugs confirmed through molecular docking, followed by detailed MD simulation studies for drug repurposing in Cushing's syndrome. We anticipate that M3S-GRPred will serve as an efficient screening tool for discovering novel GR antagonists from vast libraries of unknown compounds in a cost-effective manner.
ArticleNumber 117
Audience Academic
Author Mookdarsanit, Pakpoom
Shoombuatong, Watshara
Chuntakaruk, Hathaichanok
Rungrotmongkol, Thanyada
Schaduangrat, Nalini
Author_xml – sequence: 1
  givenname: Nalini
  surname: Schaduangrat
  fullname: Schaduangrat, Nalini
  organization: Faculty of Medical Technology, Center for Research Innovation and Biomedical Informatics, Mahidol University
– sequence: 2
  givenname: Hathaichanok
  surname: Chuntakaruk
  fullname: Chuntakaruk, Hathaichanok
  organization: Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Faculty of Medicine, Center for Artificial Intelligence in Medicine, Chulalongkorn University, Bangkok
– sequence: 3
  givenname: Thanyada
  surname: Rungrotmongkol
  fullname: Rungrotmongkol, Thanyada
  organization: Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University
– sequence: 4
  givenname: Pakpoom
  surname: Mookdarsanit
  fullname: Mookdarsanit, Pakpoom
  organization: Faculty of Science, Computer Science and Artificial Intelligence, Chandrakasem Rajabhat University
– sequence: 5
  givenname: Watshara
  surname: Shoombuatong
  fullname: Shoombuatong, Watshara
  email: watshara.sho@mahidol.ac.th
  organization: Faculty of Medical Technology, Center for Research Innovation and Biomedical Informatics, Mahidol University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40307679$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNURH_gBVggS2xgkeKfOE7YoKqCMlIRqIW15Tg3GQ8ZO9hORZ-Fl8WZaWmnQlUWsW6-c27u9TnM9qyzkGUvCT4mpCrfBUIrXueY8hyXhNGcPMkOSCFITgnme_fO-9lhCCuMiagwf5btF5hhUYr6IPvzhV3mZxffPLTvkULWXcGAwAZYNwOgAZS3xvZIjaN3Si9R5zyKS0DGRvCjh6hmLh1ao6NxFrkO9cOknXY-Gu1MizxoGGPSKRtV76wJMaApbGzRehqiyUOEEYWo9M-5GqJXEfrr59nTTg0BXty8j7Ifnz5-P_2cn389W5yenOe6LIqYl6oVqUVZle28DxA173jdKqabSqVBWw6kEh0UoKgWpGwqQXiqsaKFpus0O8oWW9_WqZUcvVkrfy2dMnJTcL6Xah5mANlximvOMQhRFqrkDSXQ6JpqoIpWBUteH7Ze49SsodVg0zDDjunuF2uWsndXklBcFHVRJIc3Nw7e_ZogRLk2QcMwKAtuCpKRumKEV3hu9voBunKTt2lXklFM-Hzd5R3VqzSBsZ1LjfVsKk8qJkSNCROJOv4PlZ4W1ukeLXQm1XcEb3cEiYnwO_ZqCkEuLi922Vf3t_JvHbc5TEC1BbR3IXjopDZRzYFKf2EGSbCcIy-3kZcp8nITeUmSlD6Q3ro_KmJbUUiw7cHfbe4R1V-EfhRM
CitedBy_id crossref_primary_10_1038_s41598_025_08510_4
Cites_doi 10.1021/jm9602928
10.1016/j.tips.2019.04.015
10.1016/j.physbeh.2014.03.004
10.1186/s40842-020-00105-4
10.1093/bib/bbab172
10.1016/S0960-0760(00)00121-7
10.21037/gs.2019.11.03
10.1016/j.bmcl.2020.127656
10.1007/s11095-009-9975-2
10.1210/jc.2012-3582
10.1021/ci049885e
10.1016/j.chemosphere.2023.139147
10.1016/j.bmc.2021.116212
10.1038/s41598-022-20143-5
10.1186/1750-1172-7-41
10.1101/gad.9.13.1608
10.1016/S2213-8587(21)00235-7
10.1080/07391102.2021.1960608
10.1186/s13321-023-00721-z
10.1093/nar/gkm276
10.3390/molecules25122764
10.1038/s41598-022-08173-5
10.1093/nar/gkv951
10.1016/j.jsbmb.2018.10.007
10.1021/jm901452y
10.1080/07391102.2022.2123392
10.1039/D2FO03466B
10.1038/s41598-023-50393-w
10.1016/j.ejmech.2022.114382
10.1517/17460441.2015.1032936
10.1096/fj.12-208330
10.1002/jcc.21707
10.1080/07391102.2024.2318482
10.1016/j.bmcl.2007.06.036
10.1016/j.str.2005.01.010
10.1210/en.2008-1355
10.1016/j.compbiomed.2022.105704
10.1038/s41401-021-00855-6
10.1146/annurev.med.48.1.129
10.1093/nar/gky1075
10.7717/peerj.11716
10.1016/j.future.2024.07.033
10.1021/ct400341p
10.1210/clinem/dgac492
10.1021/jp003020w
10.1021/ci00046a002
10.1121/1.4865840
10.1038/s41598-022-11897-z
10.1016/j.compbiomed.2023.106784
10.1016/j.canlet.2008.10.050
10.1159/000314297
10.1021/acs.jmedchem.7b00162
10.1016/j.isci.2022.104883
10.1080/01480545.2019.1658768
10.1074/jbc.M212711200
10.1016/j.ymeth.2021.12.001
10.1093/bioinformatics/btaa702
10.1016/S1056-8719(00)00107-6
10.1002/advs.202102435
10.1038/s41598-024-55160-z
10.1210/jc.2011-3350
10.2174/1389557519666191119144100
10.1021/ci025584y
10.1002/jcc.26223
10.1093/protein/14.8.565
10.3390/ijms23042141
10.1186/s13321-016-0185-8
10.1002/cmdc.200800274
10.1093/pnasnexus/pgac198
10.1152/ajplung.00136.2022
10.1021/acs.jcim.9b00776
10.1002/jcc.20084
10.1016/j.bmcl.2015.10.097
10.1016/0021-9991(77)90098-5
10.1002/open.202100248
10.1111/bph.15254
10.1021/ci010132r
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-025-06132-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE





MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 24
ExternalDocumentID oai_doaj_org_article_f5209550e7764a65b21ebc92ce2a2843
PMC12044944
A837790137
40307679
10_1186_s12859_025_06132_1
Genre Journal Article
GeographicLocations Thailand
GeographicLocations_xml – name: Thailand
GrantInformation_xml – fundername: National Research Council of Thailand and Mahidol University
  grantid: N42A660380
– fundername: MU-KMUTT Biomedical Engineering & Biomaterials Research Consortium
– fundername: Mahidol University
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
M48
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c644t-6ad7ece686d2859e795f59da3cb8a030d5e187fe4ea2c716b87155e134debffc3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479698700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Mon Nov 10 04:28:26 EST 2025
Tue Nov 04 02:03:35 EST 2025
Fri Sep 05 17:20:03 EDT 2025
Tue Oct 07 05:20:25 EDT 2025
Tue Nov 11 10:47:53 EST 2025
Tue Nov 04 18:13:00 EST 2025
Thu Nov 13 15:58:19 EST 2025
Mon Jul 21 05:30:58 EDT 2025
Sat Nov 29 07:57:19 EST 2025
Tue Nov 18 22:20:05 EST 2025
Sat Sep 06 07:27:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cheminformatics
Feature selection
QSAR
Multi-view feature
Glucocorticoid receptor
Machine learning
Cushing’s syndrome
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-6ad7ece686d2859e795f59da3cb8a030d5e187fe4ea2c716b87155e134debffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f5209550e7764a65b21ebc92ce2a2843
PMID 40307679
PQID 3201517806
PQPubID 44065
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_f5209550e7764a65b21ebc92ce2a2843
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12044944
proquest_miscellaneous_3198315803
proquest_journals_3201517806
gale_infotracmisc_A837790137
gale_infotracacademiconefile_A837790137
gale_incontextgauss_ISR_A837790137
pubmed_primary_40307679
crossref_citationtrail_10_1186_s12859_025_06132_1
crossref_primary_10_1186_s12859_025_06132_1
springer_journals_10_1186_s12859_025_06132_1
PublicationCentury 2000
PublicationDate 2025-04-30
PublicationDateYYYYMMDD 2025-04-30
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References JP Pang (6132_CR21) 2022; 43
F Cadepond (6132_CR12) 1997; 48
P Charoenkwan (6132_CR54) 2023; 158
S Ahmad (6132_CR51) 2022; 12
6132_CR58
N Krishnamurthy (6132_CR83) 2012; 26
N Schaduangrat (6132_CR44) 2023; 15
TJ Dolinsky (6132_CR64) 2007; 35
M Cazzola (6132_CR77) 2019; 40
MJ Weiser (6132_CR80) 2009; 150
DR Brown (6132_CR7) 2020; 6
V Onnis (6132_CR27) 2010; 53
EF Pettersen (6132_CR56) 2004; 25
RE Carhart (6132_CR36) 1985; 25
X Hu (6132_CR22) 2022; 237
N Schaduangrat (6132_CR32) 2023; 15
VC Yan (6132_CR85) 2020; 30
B Kauppi (6132_CR59) 2003; 278
TJ Cole (6132_CR2) 1995; 9
CW Yap (6132_CR35) 2011; 32
F Zare (6132_CR26) 2023; 41
G Wolber (6132_CR71) 2005; 45
M Spreafico (6132_CR14) 2009; 4
AR Pfaff (6132_CR76) 2020; 20
6132_CR63
M Azadpour (6132_CR52) 2014; 135
F Castinetti (6132_CR8) 2012; 7
S Kim (6132_CR38) 2016; 44
N Schaduangrat (6132_CR33) 2023; 13
S Genheden (6132_CR69) 2015; 10
E Motylewska (6132_CR84) 2009; 276
M Savas (6132_CR4) 2022; 107
SH Shin (6132_CR16) 2023; 14
C Potamitis (6132_CR28) 2019; 186
AA Kazi (6132_CR86) 2021; 41
6132_CR60
N Schaduangrat (6132_CR34) 2021; 9
P Charoenkwan (6132_CR48) 2022; 204
M Fleseriu (6132_CR5) 2012; 97
DF Lewis (6132_CR15) 2000; 74
HJ Hunt (6132_CR1) 2017; 60
D Li (6132_CR9) 2020; 9
6132_CR30
6132_CR74
D Mendez (6132_CR29) 2019; 47
6132_CR79
Y Matsuzaka (6132_CR17) 2022; 23
6132_CR39
P Charoenkwan (6132_CR41) 2021; 22
MV Yelshanskaya (6132_CR62) 2022; 179
P Mark (6132_CR65) 2001; 105
D Zhang (6132_CR53) 2021; 37
JL Durant (6132_CR37) 2002; 42
NC Ray (6132_CR20) 2007; 17
P Charoenkwan (6132_CR55) 2022; 25
X Hu (6132_CR24) 2022; 9
N Schaduangrat (6132_CR45) 2023; 13
R Dey (6132_CR19) 2001; 14
C Steinbeck (6132_CR40) 2003; 43
C Steffensen (6132_CR3) 2010; 92
DR Roe (6132_CR68) 2013; 9
W Shoombuatong (6132_CR50) 2024; 14
M Stanojevic (6132_CR13) 2023; 336
N Schaduangrat (6132_CR31) 2022; 12
6132_CR70
AA Malik (6132_CR43) 2020; 41
M Sencanski (6132_CR61) 2022; 11
CA Lipinski (6132_CR72) 2000; 44
6132_CR42
JP Ryckaert (6132_CR67) 1977; 23
S Simeon (6132_CR75) 2016; 8
MF Sanner (6132_CR57) 2005; 13
GW Bemis (6132_CR73) 1996; 39
6132_CR46
P Charoenkwan (6132_CR49) 2022; 146
AE Kudwa (6132_CR81) 2014; 129
N Suthprasertporn (6132_CR82) 2022; 45
R Metin (6132_CR25) 2022; 40
NRC Alves (6132_CR23) 2020; 60
Y Matsuzaka (6132_CR18) 2020; 25
HJ Hunt (6132_CR6) 2015; 25
M Fleseriu (6132_CR11) 2021; 9
R Chari (6132_CR66) 2009; 26
P Charoenkwan (6132_CR47) 2022; 12
OM Dekkers (6132_CR10) 2013; 98
K Khanna (6132_CR78) 2022; 323
References_xml – volume: 39
  start-page: 2887
  issue: 15
  year: 1996
  ident: 6132_CR73
  publication-title: J Med Chem
  doi: 10.1021/jm9602928
– volume: 40
  start-page: 452
  issue: 7
  year: 2019
  ident: 6132_CR77
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2019.04.015
– volume: 129
  start-page: 287
  year: 2014
  ident: 6132_CR81
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2014.03.004
– volume: 6
  start-page: 18
  issue: 1
  year: 2020
  ident: 6132_CR7
  publication-title: Clin Diabetes Endocrinol
  doi: 10.1186/s40842-020-00105-4
– volume: 22
  start-page: bbab172
  issue: 6
  year: 2021
  ident: 6132_CR41
  publication-title: Briefings in Bioinform
  doi: 10.1093/bib/bbab172
– volume: 74
  start-page: 179
  issue: 4
  year: 2000
  ident: 6132_CR15
  publication-title: J Steroid Biochem Mol Biol
  doi: 10.1016/S0960-0760(00)00121-7
– volume: 9
  start-page: 43
  issue: 1
  year: 2020
  ident: 6132_CR9
  publication-title: Gland Surg
  doi: 10.21037/gs.2019.11.03
– volume: 30
  start-page: 127656
  issue: 24
  year: 2020
  ident: 6132_CR85
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2020.127656
– volume: 26
  start-page: 2607
  issue: 12
  year: 2009
  ident: 6132_CR66
  publication-title: Pharm Res
  doi: 10.1007/s11095-009-9975-2
– volume: 98
  start-page: 2277
  issue: 6
  year: 2013
  ident: 6132_CR10
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2012-3582
– volume: 45
  start-page: 160
  issue: 1
  year: 2005
  ident: 6132_CR71
  publication-title: J Chem Inf Model
  doi: 10.1021/ci049885e
– volume: 336
  start-page: 139147
  year: 2023
  ident: 6132_CR13
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.139147
– volume: 41
  start-page: 116212
  year: 2021
  ident: 6132_CR86
  publication-title: Bioorg Med Chem
  doi: 10.1016/j.bmc.2021.116212
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 6132_CR31
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-20143-5
– volume: 7
  start-page: 41
  year: 2012
  ident: 6132_CR8
  publication-title: Orphanet J Rare Dis
  doi: 10.1186/1750-1172-7-41
– ident: 6132_CR60
– volume: 9
  start-page: 1608
  issue: 13
  year: 1995
  ident: 6132_CR2
  publication-title: Genes Dev
  doi: 10.1101/gad.9.13.1608
– ident: 6132_CR70
– volume: 9
  start-page: 847
  issue: 12
  year: 2021
  ident: 6132_CR11
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(21)00235-7
– volume: 40
  start-page: 11418
  issue: 21
  year: 2022
  ident: 6132_CR25
  publication-title: J Biomol Struct Dyn
  doi: 10.1080/07391102.2021.1960608
– volume: 15
  start-page: 50
  issue: 1
  year: 2023
  ident: 6132_CR44
  publication-title: J Cheminform
  doi: 10.1186/s13321-023-00721-z
– volume: 35
  start-page: W522
  year: 2007
  ident: 6132_CR64
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm276
– volume: 25
  start-page: 2764
  issue: 12
  year: 2020
  ident: 6132_CR18
  publication-title: Molecules
  doi: 10.3390/molecules25122764
– volume: 12
  start-page: 4106
  issue: 1
  year: 2022
  ident: 6132_CR51
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-08173-5
– volume: 15
  start-page: 50
  issue: 1
  year: 2023
  ident: 6132_CR32
  publication-title: J Cheminform
  doi: 10.1186/s13321-023-00721-z
– volume: 44
  start-page: D1202
  issue: D1
  year: 2016
  ident: 6132_CR38
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv951
– volume: 186
  start-page: 142
  year: 2019
  ident: 6132_CR28
  publication-title: J Steroid Biochem Mol Biol
  doi: 10.1016/j.jsbmb.2018.10.007
– volume: 53
  start-page: 3065
  issue: 8
  year: 2010
  ident: 6132_CR27
  publication-title: J Med Chem
  doi: 10.1021/jm901452y
– volume: 41
  start-page: 7640
  issue: 16
  year: 2023
  ident: 6132_CR26
  publication-title: J Biomol Struct Dyn
  doi: 10.1080/07391102.2022.2123392
– volume: 14
  start-page: 1869
  issue: 4
  year: 2023
  ident: 6132_CR16
  publication-title: Food Funct
  doi: 10.1039/D2FO03466B
– volume: 13
  start-page: 22994
  issue: 1
  year: 2023
  ident: 6132_CR45
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-50393-w
– volume: 237
  start-page: 114382
  year: 2022
  ident: 6132_CR22
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2022.114382
– volume: 10
  start-page: 449
  issue: 5
  year: 2015
  ident: 6132_CR69
  publication-title: Expert Opin Drug Discov
  doi: 10.1517/17460441.2015.1032936
– volume: 26
  start-page: 3993
  issue: 10
  year: 2012
  ident: 6132_CR83
  publication-title: FASEB J
  doi: 10.1096/fj.12-208330
– volume: 32
  start-page: 1466
  issue: 7
  year: 2011
  ident: 6132_CR35
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21707
– ident: 6132_CR74
  doi: 10.1080/07391102.2024.2318482
– volume: 17
  start-page: 4901
  issue: 17
  year: 2007
  ident: 6132_CR20
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2007.06.036
– ident: 6132_CR39
– volume: 13
  start-page: 447
  issue: 3
  year: 2005
  ident: 6132_CR57
  publication-title: Structure
  doi: 10.1016/j.str.2005.01.010
– volume: 150
  start-page: 1817
  issue: 4
  year: 2009
  ident: 6132_CR80
  publication-title: Endocrinology
  doi: 10.1210/en.2008-1355
– volume: 146
  year: 2022
  ident: 6132_CR49
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105704
– volume: 43
  start-page: 2429
  issue: 9
  year: 2022
  ident: 6132_CR21
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/s41401-021-00855-6
– volume: 48
  start-page: 129
  year: 1997
  ident: 6132_CR12
  publication-title: Annu Rev Med
  doi: 10.1146/annurev.med.48.1.129
– volume: 47
  start-page: D930
  issue: D1
  year: 2019
  ident: 6132_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1075
– volume: 9
  year: 2021
  ident: 6132_CR34
  publication-title: PeerJ
  doi: 10.7717/peerj.11716
– ident: 6132_CR42
  doi: 10.1016/j.future.2024.07.033
– volume: 9
  start-page: 3084
  issue: 7
  year: 2013
  ident: 6132_CR68
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct400341p
– volume: 107
  start-page: 3162
  issue: 11
  year: 2022
  ident: 6132_CR4
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/clinem/dgac492
– volume: 105
  start-page: 9954
  issue: 43
  year: 2001
  ident: 6132_CR65
  publication-title: J Phys Chem A
  doi: 10.1021/jp003020w
– volume: 25
  start-page: 64
  issue: 2
  year: 1985
  ident: 6132_CR36
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00046a002
– ident: 6132_CR46
– volume: 135
  start-page: EL40
  issue: 3
  year: 2014
  ident: 6132_CR52
  publication-title: J Acoustical Soc Am
  doi: 10.1121/1.4865840
– volume: 12
  start-page: 7697
  issue: 1
  year: 2022
  ident: 6132_CR47
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-11897-z
– volume: 158
  year: 2023
  ident: 6132_CR54
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106784
– volume: 276
  start-page: 68
  issue: 1
  year: 2009
  ident: 6132_CR84
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2008.10.050
– volume: 92
  start-page: 1
  issue: Suppl 1
  year: 2010
  ident: 6132_CR3
  publication-title: Neuroendocrinology
  doi: 10.1159/000314297
– volume: 60
  start-page: 3405
  issue: 8
  year: 2017
  ident: 6132_CR1
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b00162
– volume: 25
  start-page: 104883
  issue: 9
  year: 2022
  ident: 6132_CR55
  publication-title: Iscience
  doi: 10.1016/j.isci.2022.104883
– volume: 45
  start-page: 44
  issue: 1
  year: 2022
  ident: 6132_CR82
  publication-title: Drug Chem Toxicol
  doi: 10.1080/01480545.2019.1658768
– volume: 278
  start-page: 22748
  issue: 25
  year: 2003
  ident: 6132_CR59
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M212711200
– volume: 204
  start-page: 189
  year: 2022
  ident: 6132_CR48
  publication-title: Methods
  doi: 10.1016/j.ymeth.2021.12.001
– volume: 37
  start-page: 171
  issue: 2
  year: 2021
  ident: 6132_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa702
– volume: 44
  start-page: 235
  issue: 1
  year: 2000
  ident: 6132_CR72
  publication-title: J Pharmacol Toxicol Methods
  doi: 10.1016/S1056-8719(00)00107-6
– volume: 9
  issue: 3
  year: 2022
  ident: 6132_CR24
  publication-title: Adv Sci (Weinh)
  doi: 10.1002/advs.202102435
– volume: 13
  start-page: 22994
  issue: 1
  year: 2023
  ident: 6132_CR33
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-50393-w
– volume: 14
  start-page: 4463
  issue: 1
  year: 2024
  ident: 6132_CR50
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-55160-z
– volume: 97
  start-page: 2039
  issue: 6
  year: 2012
  ident: 6132_CR5
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2011-3350
– volume: 20
  start-page: 513
  issue: 6
  year: 2020
  ident: 6132_CR76
  publication-title: Mini Rev Med Chem
  doi: 10.2174/1389557519666191119144100
– ident: 6132_CR30
– volume: 43
  start-page: 493
  issue: 2
  year: 2003
  ident: 6132_CR40
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci025584y
– volume: 41
  start-page: 1820
  issue: 20
  year: 2020
  ident: 6132_CR43
  publication-title: J Comput Chem
  doi: 10.1002/jcc.26223
– volume: 14
  start-page: 565
  issue: 8
  year: 2001
  ident: 6132_CR19
  publication-title: Protein Eng
  doi: 10.1093/protein/14.8.565
– volume: 23
  start-page: 2141
  issue: 4
  year: 2022
  ident: 6132_CR17
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23042141
– volume: 8
  start-page: 1
  year: 2016
  ident: 6132_CR75
  publication-title: J Cheminform
  doi: 10.1186/s13321-016-0185-8
– volume: 4
  start-page: 100
  issue: 1
  year: 2009
  ident: 6132_CR14
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.200800274
– ident: 6132_CR63
  doi: 10.1093/pnasnexus/pgac198
– volume: 323
  start-page: L372
  issue: 3
  year: 2022
  ident: 6132_CR78
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00136.2022
– volume: 60
  start-page: 794
  issue: 2
  year: 2020
  ident: 6132_CR23
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00776
– volume: 25
  start-page: 1605
  issue: 13
  year: 2004
  ident: 6132_CR56
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20084
– volume: 25
  start-page: 5720
  issue: 24
  year: 2015
  ident: 6132_CR6
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2015.10.097
– volume: 23
  start-page: 327
  issue: 3
  year: 1977
  ident: 6132_CR67
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(77)90098-5
– volume: 11
  issue: 2
  year: 2022
  ident: 6132_CR61
  publication-title: ChemistryOpen
  doi: 10.1002/open.202100248
– ident: 6132_CR58
– volume: 179
  start-page: 3628
  issue: 14
  year: 2022
  ident: 6132_CR62
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.15254
– volume: 42
  start-page: 1273
  issue: 6
  year: 2002
  ident: 6132_CR37
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci010132r
– ident: 6132_CR79
SSID ssj0017805
Score 2.481781
Snippet Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds promise in...
Abstract Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms Algorithms
Analysis
Bioinformatics
Bioinformatics and chemoinformatics in drug discovery
Biomedical and Life Sciences
Cheminformatics
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Cost effectiveness
Cushing syndrome
Cushing’s syndrome
Datasets
Diabetes
Drug development
Drug discovery
Drug Discovery - methods
Drug therapy
Ensemble Learning
Experimental methods
FDA approval
Feature selection
Glucocorticoid receptor
Glucocorticoid receptors
Glucocorticoids
Hormones
Humans
Life Sciences
Machine Learning
Methods
Microarrays
Molecular docking
Mortality
Physiological aspects
QSAR
R&D
Receptors
Receptors, Glucocorticoid - antagonists & inhibitors
Receptors, Glucocorticoid - chemistry
Research & development
Surgery
Transcription factors
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkEFIHCBqnDiOwwUVRIEDVdWC1Jvl2M6y0pIsm91K_S38WWYcJyVF9MItSiZObM_THn9DyAtXoCEF-bbclTE3uQU9mOk4EVZyJmWZGOmLTRT7-_L4uDwIC25dSKscdKJX1LY1uEa-k4GlylkhE_F2-TPGqlG4uxpKaFwmVxAlIfWpewfjLgLi9Q8HZaTY6RiitcVYwBWtWBqziTHymP1_a-Y_TNP5tMlze6feJO3d_N_O3CI3gjNKd3vuuU0uueYOudaXpzy9S359yY7ij4cHK2ffUE2b9sQtKIS97ke1cDTUm5jRAZacgv9LwZ-k8zGREengws796Qna1tSnyEPEC19s55aCvnVLCPspTLCetQjj21HMxYdmqU92jIENlxR8WIOL-rTr0XRP75Fvex--vv8Uh2IOsQGXax0LbQtoUkhhcRZcUeZ1XlqdmUpq0DQ2d0wWteNOpwaCuAoiuRzuZdy6qq5Ndp9sNW3jHhIqqqSCSNUYJjTnRaGhRWApK0xi4CtlRNgwq8oEpHMsuLFQPuKRQvWcoIATlOcExSLyanxn2eN8XEj9DpllpESMbn-jXc1UEHlVY4YRBICuKATXIod_dpUpUyzBBk5BFpHnyGoKUTgaTPOZ6U3Xqc9Hh2pXehxIlhUReRmI6hb6YHQ4NQEjgcBdE8rtCSWoCTN9PLCiCmqqU2d8GJFn42N8E1PvGtdugIaVMmM5SHBEHvQCMPabo4kQOOJyIhqTgZk-aebfPYg5SxPOS84j8nqQorP_-vfIP7q4G4_J9dTLN273bZOt9WrjnpCr5mQ971ZPvXb4DS1_bTU
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZQAYkX7iOlIIOQeICoORzb4a0gCjxQVbuA-mY5trNE2iarzW6l_hb-LDPOASmHBG-rZOzEkznX428IeeYEOlLQb8tcHjKTWbCDqQ4jbiWLpcwjI32zCXF0JE9O8uP-UFg7VLsPW5LeUnu1lny_jRFrLcT2q-iDkhBynsvg7iQ2bJjNv4x7B4jSPxyP-e24iQvySP2_2uOfHNLFYskLO6beER3e-L8l3CTX-8CTHnSScotccvVtcrVrRXl-h3z7mM7Dd7PjtbOvqKZ1c-aWFFJcd1osHe17SyzoAEFOIdalEDvSaixaRDr4YSt_UoI2JfXl8JDdwhObylKwrW4FKT6Fj6kXDUL2thTr7mFa6gsbQxC5FYV41eAf-LTtkHPP75LPh28_vXkf9o0bQgPh1Sbk2gqYkktuccFO5FmZ5VanppAarIrNXCxF6ZjTiYGErYCsLYNrKbOuKEuT3iM7dVO7B4TyIiogKzUm5poxITTMCOJjuYkMPCUPSDx8S2V6VHNsrrFUPruRXHVMV8B05Zmu4oC8GMesOkyPv1K_RhEZKRGP219o1gvVq7cqsZoIkj0nBGeaZ_DOrjB5gu3WIABIA_IUBUwh4kaNJT0LvW1b9WE-UwfSYz7GqQjI856obGANRvcnJIATCNI1odybUIJJMNPbgxyr3iS1KoVQL0Pl4AF5Mt7GkVhmV7tmCzRxLtM4A20NyP1O7Md1M3QHHDkuJwoxYcz0Tl199YDlcRIxljMWkJeDXvx4rz9zfvffyB-Sa4lXLdzq2yM7m_XWPSJXzNmmatePvY34DgxXY2Y
  priority: 102
  providerName: Springer Nature
Title M3S-GRPred: a novel ensemble learning approach for the interpretable prediction of glucocorticoid receptor antagonists using a multi-step stacking strategy
URI https://link.springer.com/article/10.1186/s12859-025-06132-1
https://www.ncbi.nlm.nih.gov/pubmed/40307679
https://www.proquest.com/docview/3201517806
https://www.proquest.com/docview/3198315803
https://pubmed.ncbi.nlm.nih.gov/PMC12044944
https://doaj.org/article/f5209550e7764a65b21ebc92ce2a2843
Volume 26
WOSCitedRecordID wos001479698700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdggMQL4j-BURmExANEixPHdnjb0AYTWhW1gAYvVuI4pVJJqqadtM_Cl-XOScoyBLzwErXxxUnuzue7-Pw7Ql5YiRMpjO-C28TnJi7ADkaZH4hCcaZUEhjlik3I8VidnibphVJfmBPWwgO3jNsrMU8D3GgrpeCZiPOQ2dwkIRayAtPqcD4DmfTBVLd-gEj9_RYZJfYahjhtPpZuxfkr9NlgGnJo_b_b5AuT0uWEyUurpm4yOrpNbnVeJN1vn_4OuWKru-RGW1fy_B75cRJN_XeTdGWLNzSjVX1mFxTiVfs9X1jaFYqY0R5PnILjSsERpPNtBiLSwY9i7rY90LqkLrcdQlW4Yz0vKBhKu4R4nYJkslmN-LsNxSR66Ja6LEUf9GdJwfk0-DWeNi0M7vl98uno8OPb935XhcE34CutfZEVEroUShTIRCuTuIyTIotMrjIwEUVsmZKl5TYLDURfOYRgMZyLeGHzsjTRA7JT1ZV9RKjIAxBfYAwTGedSZtAj6EIhTGDgLolHWC8UbTqIcqyUsdAuVFFCt4LUIEjtBKmZR15tr1m2AB1_pT5AWW8pEVzbnQCV053K6X-pnEeeo6ZohM-oMD9nlm2aRh9PJ3pfOQBHFkmPvOyIyhrewWTddgfgBCJuDSh3B5Qwvs2wuVdI3dmXRkfgt8Wo5cIjz7bNeCXmzFW23gANS1TEYhh6HnnY6u_2vTnadoEcVwPNHjBm2FLNvzn0cRYGnCece-R1Pwh-PdefOf_4f3D-CbkZukGMq3m7ZGe92tin5Lo5W8-b1YhclafSHdWIXDs4HKeTkTMLcPwg_RHm9aZwTOOv0J4en6Rf4N9k-vknhdJnjg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3bbtMw1BoDBC_cL4EBBoH2ANGaxLEdJITGZazqVk3bkPZmEtsplUZSmnZo38I_8I2c4yQdGWJve-Ctio_t-PRc43Mh5LkVqEiBvw2zic90bEAORqnf40ayQMqkp6VrNiGGQ3lwkOwskV9tLgyGVbYy0QlqU2r8Rr4WgaaKAyF7_O3ku49do_B2tW2hUZPFwB7_AJetetP_AP_vizDc-Lj_ftNvugr4GnT_zOepEVZbLrnB4m1WJHEeJyaNdCZTIHkT20CK3DKbhhq8iQxcihieRczYLM91BOteIBdZJAXy1UD4i1sL7A_QJuZIvlYFuIGPDWNRa4Z-0FF-rkfA35rgD1V4Okzz1F2tU4Eb1_835N0g1xpjm67X3HGTLNniFrlct988vk1-bkd7_qfdnak1r2lKi_LIHlJw6-237NDSpp_GiLZl1ynY9xTsZTpeBGoiHPwwY5cdQsucuhQA8Ohhx3JsKOgTO5nBPCDgdFRimeKKYq4BLEtdMKcPbDahYKNrvLSgVV0t-PgO-XwumLlLlouysPcJ5VkvA09c64CnjAmRworAMobrnoZdEo8ELRUp3VRyx4Yih8p5dJKrmvIUUJ5ylKcCj7xczJnUdUzOhH6HxLmAxBrk7kE5HalGpKkcI6jAwbVCcJbyGN7ZZjoJscUcGD2RR54haSusMlJgGNMonVeV6u_tqnXp6lwGkfDIagOUl3AGnTZZIYAJLEzWgVzpQIIY1N3hlvRVI4YrdUL3Hnm6GMaZGFpY2HIOMEEioyAGCeWRezXDLc7NUAVyxLjssGIHMd2RYvzVFWkPwh5jCWMeedVy7cl7_RvzD84-xhNyZXN_e0tt9YeDh-Rq6GQLXm2ukOXZdG4fkUv6aDaupo-dZKLky3lz828hc8wm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQOcQLNzRQwCAkHiBqsnEch7dyLFTAatWFqm-WYzvbSEuy2uxW6m_hzzLjHDTlkBBvq2TsxJM51-NvCHlmE3SkoN-G2dRnOjZgByPlB9wIFgqRBlq4ZhPJZCKOjtLpmVP8rtq925JszjQgSlO53l2avFFxwXfrEHHXfGzFiv5o5EP-c5FhIT3m67PDfh8BEfu7ozK_HTdwRw61_1fbfMY5nS-cPLd76pzS-Pr_L-cGudYGpHSvkaCb5IItb5HLTYvK09vk--do5r8_mK6seUUVLasTu6CQ-tpv2cLStufEnHbQ5BRiYAoxJS36Ykakgx-mcCcoaJVTVyYPWS88sSoMBZtrl5D6U_jIal4hlG9NsR4fpqWu4NEHUVxSiGM1_rFP6wZR9_QO-Tp-9-XNB79t6OBrCLvWPlcmgSm54AYXbJM0zuPUqEhnQoG1MbENRZJbZtVIQyKXQTYXw7WIGZvluY7ukq2yKu02oTwLMshWtQ65YixJFMwIYmW4DjQ8JfVI2H1XqVu0c2y6sZAu6xFcNkyXwHTpmC5Dj7zoxywbrI-_Ur9GcekpEafbXahWc9mqvcyxygiSQJsknCkewzvbTKcjbMMGgUHkkacobBKROEos9ZmrTV3L_dmB3BMOCzKMEo88b4nyCtagVXtyAjiB4F0Dyp0BJZgKPbzdybRsTVUtIwgBY1QU7pEn_W0cieV3pa02QBOmIgpj0GKP3GtUoF83QzfBkeNioBwDxgzvlMWxAzIPRwFjKWMeednpyM_3-jPn7_8b-WNyZfp2LD_tTz4-IFdHTstwN3CHbK1XG_uQXNIn66JePXKm4wexNW8u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M3S-GRPred%3A+a+novel+ensemble+learning+approach+for+the+interpretable+prediction+of+glucocorticoid+receptor+antagonists+using+a+multi-step+stacking+strategy&rft.jtitle=BMC+bioinformatics&rft.au=Nalini+Schaduangrat&rft.au=Hathaichanok+Chuntakaruk&rft.au=Thanyada+Rungrotmongkol&rft.au=Pakpoom+Mookdarsanit&rft.date=2025-04-30&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=26&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1186%2Fs12859-025-06132-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f5209550e7764a65b21ebc92ce2a2843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon