Differentiation of COVID-19 from other types of viral pneumonia and severity scoring on baseline chest radiographs: Comparison of deep learning with multi-reader evaluation

Chest X-ray (CXR) imaging plays a pivotal role in the diagnosis and prognosis of viral pneumonia. However, distinguishing COVID-19 CXRs from other viral infections remains challenging due to highly similar radiographic features. Most existing deep learning (DL) models focus on differentiating COVID-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 20; číslo 7; s. e0328061
Hlavní autoři: Enshaei, Nastaran, Mohammadi, Arash, Naderkhani, Farnoosh, Daneman, Nick, Abu Mughli, Rawan, Anconina, Reut, Berger, Ferco H., Kozak, Robert Andrew, Mubareka, Samira, Villanueva Campos, Ana Maria, Narang, Keshav, Vivekanandan, Thayalasuthan, Chan, Adrienne Kit, Lam, Philip, Andany, Nisha, Oikonomou, Anastasia
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 29.07.2025
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Chest X-ray (CXR) imaging plays a pivotal role in the diagnosis and prognosis of viral pneumonia. However, distinguishing COVID-19 CXRs from other viral infections remains challenging due to highly similar radiographic features. Most existing deep learning (DL) models focus on differentiating COVID-19 from community-acquired pneumonia (CAP) rather than other viral pneumonias and often overlook baseline CXRs, missing the critical window for early detection and intervention. Moreover, manual severity scoring of COVID-19 CXRs by radiologists is subjective and time-intensive, highlighting the need for automated systems. This study introduces a DL system for distinguishing COVID-19 from other viral pneumonias on baseline CXRs acquired within three days of PCR testing, and for automated severity scoring of COVID-19 CXRs. The system was developed using a dataset of 2,547 patients (808 COVID-19, 936 non-COVID viral pneumonia, and 803 normal cases) and validated externally on several publicly accessible datasets. Compared to four experienced radiologists, the model achieved higher diagnostic accuracy (76.4% vs. 71.8%) and enhanced COVID-19 identification (F1-score: 74.1% vs. 61.3%), with an AUC of 93% for distinguishing between viral pneumonia and normal cases, and 89.8% for differentiating COVID-19 from other viral pneumonias. The severity-scoring module exhibited a high Pearson correlation of 93% and a low mean absolute error (MAE) of 2.35 compared to the radiologists’ consensus. External validation on independent public datasets confirmed the model’s generalizability. Subgroup analyses stratified by patient age, sex, and severity levels further demonstrated consistent performance, supporting the system’s robustness across diverse clinical populations. These findings suggest that the proposed DL system could assist radiologists in the early diagnosis and severity assessment of COVID-19 from baseline CXRs, particularly in resource-limited settings.
AbstractList Chest X-ray (CXR) imaging plays a pivotal role in the diagnosis and prognosis of viral pneumonia. However, distinguishing COVID-19 CXRs from other viral infections remains challenging due to highly similar radiographic features. Most existing deep learning (DL) models focus on differentiating COVID-19 from community-acquired pneumonia (CAP) rather than other viral pneumonias and often overlook baseline CXRs, missing the critical window for early detection and intervention. Moreover, manual severity scoring of COVID-19 CXRs by radiologists is subjective and time-intensive, highlighting the need for automated systems. This study introduces a DL system for distinguishing COVID-19 from other viral pneumonias on baseline CXRs acquired within three days of PCR testing, and for automated severity scoring of COVID-19 CXRs. The system was developed using a dataset of 2,547 patients (808 COVID-19, 936 non-COVID viral pneumonia, and 803 normal cases) and validated externally on several publicly accessible datasets. Compared to four experienced radiologists, the model achieved higher diagnostic accuracy (76.4% vs. 71.8%) and enhanced COVID-19 identification (F1-score: 74.1% vs. 61.3%), with an AUC of 93% for distinguishing between viral pneumonia and normal cases, and 89.8% for differentiating COVID-19 from other viral pneumonias. The severity-scoring module exhibited a high Pearson correlation of 93% and a low mean absolute error (MAE) of 2.35 compared to the radiologists' consensus. External validation on independent public datasets confirmed the model's generalizability. Subgroup analyses stratified by patient age, sex, and severity levels further demonstrated consistent performance, supporting the system's robustness across diverse clinical populations. These findings suggest that the proposed DL system could assist radiologists in the early diagnosis and severity assessment of COVID-19 from baseline CXRs, particularly in resource-limited settings.
Chest X-ray (CXR) imaging plays a pivotal role in the diagnosis and prognosis of viral pneumonia. However, distinguishing COVID-19 CXRs from other viral infections remains challenging due to highly similar radiographic features. Most existing deep learning (DL) models focus on differentiating COVID-19 from community-acquired pneumonia (CAP) rather than other viral pneumonias and often overlook baseline CXRs, missing the critical window for early detection and intervention. Moreover, manual severity scoring of COVID-19 CXRs by radiologists is subjective and time-intensive, highlighting the need for automated systems. This study introduces a DL system for distinguishing COVID-19 from other viral pneumonias on baseline CXRs acquired within three days of PCR testing, and for automated severity scoring of COVID-19 CXRs. The system was developed using a dataset of 2,547 patients (808 COVID-19, 936 non-COVID viral pneumonia, and 803 normal cases) and validated externally on several publicly accessible datasets. Compared to four experienced radiologists, the model achieved higher diagnostic accuracy (76.4% vs. 71.8%) and enhanced COVID-19 identification (F1-score: 74.1% vs. 61.3%), with an AUC of 93% for distinguishing between viral pneumonia and normal cases, and 89.8% for differentiating COVID-19 from other viral pneumonias. The severity-scoring module exhibited a high Pearson correlation of 93% and a low mean absolute error (MAE) of 2.35 compared to the radiologists' consensus. External validation on independent public datasets confirmed the model's generalizability. Subgroup analyses stratified by patient age, sex, and severity levels further demonstrated consistent performance, supporting the system's robustness across diverse clinical populations. These findings suggest that the proposed DL system could assist radiologists in the early diagnosis and severity assessment of COVID-19 from baseline CXRs, particularly in resource-limited settings.Chest X-ray (CXR) imaging plays a pivotal role in the diagnosis and prognosis of viral pneumonia. However, distinguishing COVID-19 CXRs from other viral infections remains challenging due to highly similar radiographic features. Most existing deep learning (DL) models focus on differentiating COVID-19 from community-acquired pneumonia (CAP) rather than other viral pneumonias and often overlook baseline CXRs, missing the critical window for early detection and intervention. Moreover, manual severity scoring of COVID-19 CXRs by radiologists is subjective and time-intensive, highlighting the need for automated systems. This study introduces a DL system for distinguishing COVID-19 from other viral pneumonias on baseline CXRs acquired within three days of PCR testing, and for automated severity scoring of COVID-19 CXRs. The system was developed using a dataset of 2,547 patients (808 COVID-19, 936 non-COVID viral pneumonia, and 803 normal cases) and validated externally on several publicly accessible datasets. Compared to four experienced radiologists, the model achieved higher diagnostic accuracy (76.4% vs. 71.8%) and enhanced COVID-19 identification (F1-score: 74.1% vs. 61.3%), with an AUC of 93% for distinguishing between viral pneumonia and normal cases, and 89.8% for differentiating COVID-19 from other viral pneumonias. The severity-scoring module exhibited a high Pearson correlation of 93% and a low mean absolute error (MAE) of 2.35 compared to the radiologists' consensus. External validation on independent public datasets confirmed the model's generalizability. Subgroup analyses stratified by patient age, sex, and severity levels further demonstrated consistent performance, supporting the system's robustness across diverse clinical populations. These findings suggest that the proposed DL system could assist radiologists in the early diagnosis and severity assessment of COVID-19 from baseline CXRs, particularly in resource-limited settings.
Audience Academic
Author Mohammadi, Arash
Daneman, Nick
Abu Mughli, Rawan
Lam, Philip
Andany, Nisha
Oikonomou, Anastasia
Mubareka, Samira
Enshaei, Nastaran
Naderkhani, Farnoosh
Berger, Ferco H.
Vivekanandan, Thayalasuthan
Villanueva Campos, Ana Maria
Anconina, Reut
Narang, Keshav
Kozak, Robert Andrew
Chan, Adrienne Kit
AuthorAffiliation 1 Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Quebec, Canada
3 Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
Najran University College of Computer Science and Information Systems, SAUDI ARABIA
2 Department of Medicine, Division of Infectious Diseases, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
4 Biological Sciences Platform, Sunnybrook Research Institute and Shared Hospital Laboratory, Toronto, Canada
5 Department of Microbiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
AuthorAffiliation_xml – name: 5 Department of Microbiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
– name: 3 Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
– name: 1 Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Quebec, Canada
– name: 4 Biological Sciences Platform, Sunnybrook Research Institute and Shared Hospital Laboratory, Toronto, Canada
– name: 2 Department of Medicine, Division of Infectious Diseases, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
– name: Najran University College of Computer Science and Information Systems, SAUDI ARABIA
Author_xml – sequence: 1
  givenname: Nastaran
  surname: Enshaei
  fullname: Enshaei, Nastaran
– sequence: 2
  givenname: Arash
  surname: Mohammadi
  fullname: Mohammadi, Arash
– sequence: 3
  givenname: Farnoosh
  surname: Naderkhani
  fullname: Naderkhani, Farnoosh
– sequence: 4
  givenname: Nick
  surname: Daneman
  fullname: Daneman, Nick
– sequence: 5
  givenname: Rawan
  surname: Abu Mughli
  fullname: Abu Mughli, Rawan
– sequence: 6
  givenname: Reut
  surname: Anconina
  fullname: Anconina, Reut
– sequence: 7
  givenname: Ferco H.
  orcidid: 0000-0003-3696-2554
  surname: Berger
  fullname: Berger, Ferco H.
– sequence: 8
  givenname: Robert Andrew
  surname: Kozak
  fullname: Kozak, Robert Andrew
– sequence: 9
  givenname: Samira
  surname: Mubareka
  fullname: Mubareka, Samira
– sequence: 10
  givenname: Ana Maria
  surname: Villanueva Campos
  fullname: Villanueva Campos, Ana Maria
– sequence: 11
  givenname: Keshav
  surname: Narang
  fullname: Narang, Keshav
– sequence: 12
  givenname: Thayalasuthan
  surname: Vivekanandan
  fullname: Vivekanandan, Thayalasuthan
– sequence: 13
  givenname: Adrienne Kit
  surname: Chan
  fullname: Chan, Adrienne Kit
– sequence: 14
  givenname: Philip
  surname: Lam
  fullname: Lam, Philip
– sequence: 15
  givenname: Nisha
  surname: Andany
  fullname: Andany, Nisha
– sequence: 16
  givenname: Anastasia
  orcidid: 0000-0001-6996-237X
  surname: Oikonomou
  fullname: Oikonomou, Anastasia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40729327$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tu1DAQhiNURA_wBggsISG42MWOvXHCDaq2HFaqVAmq3lqTeLzrKrGDnSz0nXhIvN1t1UW9QLlINPPNP54_nuPswHmHWfaS0Snjkn249mNw0E77FJ5Snpe0YE-yI1bxfFLklB88-D7MjmO8pnTGy6J4lh0KKvOUk0fZnzNrDAZ0g4XBeke8IfOLq8XZhFXEBN8RP6wwkOGmx7hJrm2AlvQOx847CwScJhHXGOxwQ2Ljg3VLknRqiNhah6RZYRxIAG39MkC_ih_J3Hc9BBu37TRiT1qE4Dalv-ywIt3YDnYSEHRqjWtox9vDPc-eGmgjvti9T7LLL58v598m5xdfF_PT80lTCDFMOMu5wZKJHCg0jGqGRssZL5iEGqhumNS6LksQBqu8garmZcOxKnNalMLwk-z1VrZvfVQ7n6PiORcFK2g5S8RiS2gP16oPtoNwozxYdRvwYakgDLZpUdVcirxGaZK6AF2kLlgCZdyIXNNZlbQ-7bqNdYe6Sb8iObwnup9xdqWWfq3SlLSQUiSFdzuF4H-OyW3V2dhg24JDP24PLiktRZHQN_-gj4-3o5aQJrDO-NS42Yiq01JURSVzKRM1fYRKj8bONulWGpviewXv9woSM-DvYQljjGrx4_v_sxdX--zbB-wKoR1W0bfj5srEffDVQ6vvPb5bhwSILdAEH2NAc48wqjZbd2eX2myd2m0d_wv-ziEb
Cites_doi 10.1016/j.eswa.2023.121724
10.1038/s41598-023-47038-3
10.1148/radiol.2020201874
10.1148/ryct.2020200210
10.1038/s41598-023-46126-8
10.1016/j.inffus.2021.04.008
10.3390/tomography8060235
10.1016/j.bpa.2020.11.009
10.1109/TCE.2024.3439719
10.1016/j.compbiomed.2023.107789
10.2214/AJR.20.23304
10.1136/thoraxjnl-2017-211280
10.1007/s00330-020-06918-2
10.1016/j.patrec.2020.09.010
10.1109/TBME.2021.3117407
10.1038/s41591-018-0300-7
10.1148/radiol.2020203511
10.1016/j.ejrad.2023.110858
10.1148/radiol.2020202944
10.1038/s41551-021-00704-1
10.1016/j.media.2021.102046
10.1016/j.health.2024.100332
10.1016/j.lanepe.2023.100664
10.3390/bioengineering11121290
10.1186/s13244-022-01250-3
10.1007/s11547-020-01200-3
10.1038/s41598-020-76550-z
10.1371/journal.pone.0252440
10.1038/s41598-023-44818-9
10.1002/qaj.481
10.1016/j.jcv.2020.104338
10.1007/s13755-021-00146-8
10.1016/j.clinimag.2020.04.001
10.1148/radiol.2462070712
10.1148/radiol.2020201365
10.1109/JBHI.2020.3037127
10.1016/j.acra.2023.03.006
10.1016/j.ejrad.2021.109548
10.1016/j.patcog.2020.107613
10.1109/ACCESS.2020.3010287
10.1109/TCE.2024.3411606
10.1148/radiol.213072
10.4103/jmp.jmp_100_21
10.1016/j.ijid.2023.10.001
10.1038/s41598-021-88538-4
10.1038/s41598-024-51317-y
10.1007/s00330-020-07018-x
10.1016/j.chaos.2024.115288
10.1007/s00530-023-01172-0
10.1148/radiol.2021204522
10.1609/aaai.v31i1.11231
ContentType Journal Article
Copyright Copyright: © 2025 Enshaei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Enshaei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Enshaei et al 2025 Enshaei et al
2025 Enshaei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Enshaei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Enshaei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Enshaei et al 2025 Enshaei et al
– notice: 2025 Enshaei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0328061
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest MSED
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database
MEDLINE - Academic

MEDLINE



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Differentiation of COVID-19 from other viral pneumonias and severity scoring on baseline chest radiographs
EISSN 1932-6203
ExternalDocumentID 3234616085
oai_doaj_org_article_b3742be7f8204ad6982e8a013f42d059
PMC12306774
A849697277
40729327
10_1371_journal_pone_0328061
Genre Journal Article
Comparative Study
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c644t-3123fe8142a0ac10d1efd753617aba0dc17ddb88a4fe92ca9b38c3e9820684f3
IEDL.DBID 7RV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001539730400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Wed Oct 29 23:52:54 EDT 2025
Mon Nov 10 04:31:29 EST 2025
Tue Nov 04 02:04:45 EST 2025
Fri Sep 05 15:32:04 EDT 2025
Tue Oct 07 07:47:02 EDT 2025
Sat Nov 29 13:45:05 EST 2025
Sat Nov 29 10:28:44 EST 2025
Wed Nov 26 10:44:55 EST 2025
Wed Nov 26 10:44:48 EST 2025
Tue Aug 12 02:17:47 EDT 2025
Sat Aug 02 01:41:25 EDT 2025
Sat Nov 29 07:43:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Copyright: © 2025 Enshaei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c644t-3123fe8142a0ac10d1efd753617aba0dc17ddb88a4fe92ca9b38c3e9820684f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-6996-237X
0000-0003-3696-2554
OpenAccessLink https://www.proquest.com/docview/3234616085?pq-origsite=%requestingapplication%
PMID 40729327
PQID 3234616085
PQPubID 1436336
PageCount e0328061
ParticipantIDs plos_journals_3234616085
doaj_primary_oai_doaj_org_article_b3742be7f8204ad6982e8a013f42d059
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12306774
proquest_miscellaneous_3234700846
proquest_journals_3234616085
gale_infotracmisc_A849697277
gale_infotracacademiconefile_A849697277
gale_incontextgauss_ISR_A849697277
gale_incontextgauss_IOV_A849697277
gale_healthsolutions_A849697277
pubmed_primary_40729327
crossref_primary_10_1371_journal_pone_0328061
PublicationCentury 2000
PublicationDate 2025-07-29
PublicationDateYYYYMMDD 2025-07-29
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Signoroni (pone.0328061.ref014) 2021; 71
K Murphy (pone.0328061.ref059) 2020; 296
S Contreras (pone.0328061.ref002) 2023; 30
G Wang (pone.0328061.ref011) 2021; 5
S Tabik (pone.0328061.ref029) 2020; 24
L Lin (pone.0328061.ref056) 2021; 216
MEH Chowdhury (pone.0328061.ref052) 2020; 8
P Sahoo (pone.0328061.ref030) 2024; 238
F Chollet (pone.0328061.ref051) 2017
S Altmayer (pone.0328061.ref054) 2020; 30
S-J Yoo (pone.0328061.ref015) 2023; 164
DM Hansell (pone.0328061.ref040) 2008; 246
HYF Wong (pone.0328061.ref010) 2020; 296
AD Kaye (pone.0328061.ref001) 2021; 35
JE Lee (pone.0328061.ref007) 2022; 303
G Wu (pone.0328061.ref009) 2020; 30
RM Wehbe (pone.0328061.ref019) 2021; 299
MA Warren (pone.0328061.ref032) 2018; 73
M Hardy-Werbin (pone.0328061.ref018) 2023; 13
AM Hussein (pone.0328061.ref021) 2024; 14
T Chen (pone.0328061.ref033) 2024; 5
G Dasegowda (pone.0328061.ref064) 2023; 30
KL Gwet (pone.0328061.ref046)
A Wong (pone.0328061.ref031) 2021; 11
A Miyazaki (pone.0328061.ref017) 2023; 13
A Jacobi (pone.0328061.ref008) 2020; 64
R Kozak (pone.0328061.ref037) 2020; 126
Z Wang (pone.0328061.ref061) 2021; 110
RR Selvaraju (pone.0328061.ref047) 2017
TR Nichols (pone.0328061.ref045) 2010; 13
C Szegedy (pone.0328061.ref050) 2016
A Sharafian (pone.0328061.ref024) 2024; 186
G Maguolo (pone.0328061.ref028) 2021; 76
EJ Topol (pone.0328061.ref063) 2019; 25
MA Talukder (pone.0328061.ref034) 2024; 168
P Afshar (pone.0328061.ref036) 2020; 138
JP Kanne (pone.0328061.ref012) 2021; 299
K Stefanidis (pone.0328061.ref039) 2021; 136
O Ronneberger (pone.0328061.ref041) 2015
A Degerli (pone.0328061.ref044) 2021; 9
GD Rubin (pone.0328061.ref053) 2020; 296
HX Bai (pone.0328061.ref005) 2020; 296
K Simonyan (pone.0328061.ref048) 2014
I Ullah (pone.0328061.ref025) 2024; 70
EJ Hwang (pone.0328061.ref020) 2021; 16
H Bilal (pone.0328061.ref026) 2024; 11
BP Kaur (pone.0328061.ref058) 2024; 14
EJ Chow (pone.0328061.ref003) 2023; 21
ML Schüz (pone.0328061.ref004) 2023; 137
S Manna (pone.0328061.ref006) 2020; 2
F Rizzetto (pone.0328061.ref055) 2022; 8
H Guan (pone.0328061.ref062) 2022; 69
R Zhang (pone.0328061.ref057) 2021; 298
N Ahmed (pone.0328061.ref027) 2023; 29
C Szegedy (pone.0328061.ref042) 2017; 31
DK Verma (pone.0328061.ref022) 2022; 47
J Sun (pone.0328061.ref016) 2022; 4
L Wang (pone.0328061.ref035) 2020; 10
A Ali (pone.0328061.ref023) 2024; 70
N Lee (pone.0328061.ref038) 2021; 193
A Borghesi (pone.0328061.ref013) 2020; 125
S Ruder (pone.0328061.ref043) 2017
K He (pone.0328061.ref049) 2016
A Albiol (pone.0328061.ref060) 2022; 13
References_xml – volume: 238
  start-page: 121724
  year: 2024
  ident: pone.0328061.ref030
  article-title: A Multi-stage framework for COVID-19 detection and severity assessment from chest radiography images using advanced fuzzy ensemble technique
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121724
– volume-title: Handbook of Inter-Rater Reliability Fifth Edition The Definitive Guide to Measuring the Extent of Agreement Among Raters Volume 1 Analysis of Categorical Ratings
  ident: pone.0328061.ref046
– volume: 4
  issue: 4
  year: 2022
  ident: pone.0328061.ref016
  article-title: Performance of a chest radiograph AI diagnostic tool for COVID-19: a prospective observational study
  publication-title: Radiol Artif Intell
– volume: 14
  start-page: 534
  issue: 1
  year: 2024
  ident: pone.0328061.ref021
  article-title: Auto-detection of the coronavirus disease by using deep convolutional neural networks and X-ray photographs
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-47038-3
– volume: 296
  issue: 3
  year: 2020
  ident: pone.0328061.ref059
  article-title: COVID-19 on chest radiographs: a multireader evaluation of an artificial intelligence system
  publication-title: Radiology
  doi: 10.1148/radiol.2020201874
– start-page: 1251
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2017
  ident: pone.0328061.ref051
  article-title: Xception: Deep Learning with Depthwise Separable Convolutions.
– volume: 2
  issue: 3
  year: 2020
  ident: pone.0328061.ref006
  article-title: COVID-19: a multimodality review of radiologic techniques, clinical utility, and imaging features
  publication-title: Radiol Cardiothorac Imaging
  doi: 10.1148/ryct.2020200210
– volume: 13
  start-page: 18761
  issue: 1
  year: 2023
  ident: pone.0328061.ref018
  article-title: MultiCOVID: a multi modal deep learning approach for COVID-19 diagnosis
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-46126-8
– volume: 76
  start-page: 1
  year: 2021
  ident: pone.0328061.ref028
  article-title: A critic evaluation of methods for COVID-19 automatic detection from X-ray images
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2021.04.008
– year: 2017
  ident: pone.0328061.ref043
  publication-title: An Overview of Multi-Task Learning in Deep Neural Networks
– volume: 8
  start-page: 2815
  issue: 6
  year: 2022
  ident: pone.0328061.ref055
  article-title: Diagnostic performance in differentiating COVID-19 from other viral pneumonias on CT imaging: multi-reader analysis compared with an artificial intelligence-based model
  publication-title: Tomography
  doi: 10.3390/tomography8060235
– volume: 35
  start-page: 293
  issue: 3
  year: 2021
  ident: pone.0328061.ref001
  article-title: Economic impact of COVID-19 pandemic on healthcare facilities and systems: International perspectives
  publication-title: Best Pract Res Clin Anaesthesiol
  doi: 10.1016/j.bpa.2020.11.009
– volume: 70
  start-page: 7252
  issue: 4
  year: 2024
  ident: pone.0328061.ref023
  article-title: A Resource-aware multi-graph neural network for urban traffic flow prediction in multi-access edge computing systems
  publication-title: IEEE Trans Consumer Electron
  doi: 10.1109/TCE.2024.3439719
– year: 2014
  ident: pone.0328061.ref048
  publication-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
– volume: 168
  start-page: 107789
  year: 2024
  ident: pone.0328061.ref034
  article-title: Empowering COVID-19 detection: Optimizing performance through fine-tuned EfficientNet deep learning architecture
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.107789
– volume: 216
  start-page: 71
  issue: 1
  year: 2021
  ident: pone.0328061.ref056
  article-title: CT manifestations of coronavirus Disease (COVID-19) pneumonia and influenza virus pneumonia: a comparative study
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.20.23304
– volume: 73
  start-page: 840
  issue: 9
  year: 2018
  ident: pone.0328061.ref032
  article-title: Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2017-211280
– volume: 30
  start-page: 5217
  issue: 9
  year: 2020
  ident: pone.0328061.ref009
  article-title: Mobile X-rays are highly valuable for critically ill COVID patients compliance with ethical standards
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06918-2
– volume: 138
  start-page: 1
  year: 2020
  ident: pone.0328061.ref036
  article-title: COVID-CAPS: a capsule network-based framework for identification of COVID-19 cases from X-ray images
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2020.09.010
– volume: 69
  start-page: 1173
  issue: 3
  year: 2022
  ident: pone.0328061.ref062
  article-title: Domain adaptation for medical image analysis: a survey
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2021.3117407
– volume: 25
  start-page: 44
  issue: 1
  year: 2019
  ident: pone.0328061.ref063
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– volume: 299
  issue: 1
  year: 2021
  ident: pone.0328061.ref019
  article-title: DeepCOVID-XR: an artificial intelligence algorithm to detect COVID-19 on chest radiographs trained and tested on a large U.S. clinical data set
  publication-title: Radiology
  doi: 10.1148/radiol.2020203511
– start-page: 234
  year: 2015
  ident: pone.0328061.ref041
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag
– volume: 164
  start-page: 110858
  year: 2023
  ident: pone.0328061.ref015
  article-title: Generative adversarial network for automatic quantification of coronavirus disease 2019 pneumonia on chest radiographs
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2023.110858
– volume: 298
  issue: 2
  year: 2021
  ident: pone.0328061.ref057
  article-title: Diagnosis of coronavirus disease 2019 pneumonia by using chest radiography: value of artificial intelligence
  publication-title: Radiology
  doi: 10.1148/radiol.2020202944
– volume: 5
  start-page: 509
  issue: 6
  year: 2021
  ident: pone.0328061.ref011
  article-title: A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-021-00704-1
– volume: 71
  start-page: 102046
  year: 2021
  ident: pone.0328061.ref014
  article-title: BS-Net: learning COVID-19 pneumonia severity on a large chest X-ray dataset
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102046
– volume: 296
  issue: 2
  year: 2020
  ident: pone.0328061.ref010
  article-title: Frequency and distribution of chest radiographic findings in patients positive for COVID-19
  publication-title: Radiology
– start-page: 2818
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2016
  ident: pone.0328061.ref050
  article-title: Rethinking the Inception Architecture for Computer Vision.
– volume: 5
  start-page: 100332
  year: 2024
  ident: pone.0328061.ref033
  article-title: A vision transformer machine learning model for COVID-19 diagnosis using chest X-ray images
  publication-title: Healthc Anal
  doi: 10.1016/j.health.2024.100332
– volume: 30
  start-page: 100664
  year: 2023
  ident: pone.0328061.ref002
  article-title: From emergency response to long-term management: the many faces of the endemic state of COVID-19
  publication-title: Lancet Reg Health Eur
  doi: 10.1016/j.lanepe.2023.100664
– volume: 11
  start-page: 1290
  issue: 12
  year: 2024
  ident: pone.0328061.ref026
  article-title: An intelligent approach for early and accurate predication of cardiac disease using hybrid artificial intelligence techniques
  publication-title: Bioengineering (Basel)
  doi: 10.3390/bioengineering11121290
– volume: 13
  start-page: 122
  issue: 1
  year: 2022
  ident: pone.0328061.ref060
  article-title: A comparison of Covid-19 early detection between convolutional neural networks and radiologists
  publication-title: Insights Imaging
  doi: 10.1186/s13244-022-01250-3
– volume: 125
  start-page: 509
  issue: 5
  year: 2020
  ident: pone.0328061.ref013
  article-title: COVID-19 outbreak in Italy: experimental chest X-ray scoring system for quantifying and monitoring disease progression
  publication-title: Radiol Med
  doi: 10.1007/s11547-020-01200-3
– volume: 10
  start-page: 19549
  issue: 1
  year: 2020
  ident: pone.0328061.ref035
  article-title: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-76550-z
– volume: 16
  issue: 6
  year: 2021
  ident: pone.0328061.ref020
  article-title: COVID-19 pneumonia on chest X-rays: performance of a deep learning-based computer-aided detection system
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0252440
– volume: 13
  issue: 1
  year: 2023
  ident: pone.0328061.ref017
  article-title: Computer-aided diagnosis of chest X-ray for COVID-19 diagnosis in external validation study by radiologists with and without deep learning system
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-44818-9
– volume: 13
  start-page: 57
  year: 2010
  ident: pone.0328061.ref045
  article-title: Putting the Kappa Statistic to Use
  publication-title: Qual Assur J
  doi: 10.1002/qaj.481
– volume: 126
  start-page: 104338
  year: 2020
  ident: pone.0328061.ref037
  article-title: Severity of coronavirus respiratory tract infections in adults admitted to acute care in Toronto, Ontario
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2020.104338
– volume: 9
  start-page: 15
  issue: 1
  year: 2021
  ident: pone.0328061.ref044
  article-title: COVID-19 infection map generation and detection from chest X-ray images
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-021-00146-8
– volume: 64
  start-page: 35
  year: 2020
  ident: pone.0328061.ref008
  article-title: Portable chest X-ray in coronavirus disease-19 (COVID-19): a pictorial review
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2020.04.001
– volume: 21
  start-page: 195
  issue: 3
  year: 2023
  ident: pone.0328061.ref003
  article-title: The effects of the COVID-19 pandemic on community respiratory virus activity
  publication-title: Nat Rev Microbiol
– volume: 246
  start-page: 697
  issue: 3
  year: 2008
  ident: pone.0328061.ref040
  article-title: Fleischner Society: glossary of terms for thoracic imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2462070712
– volume: 296
  start-page: 172
  issue: 1
  year: 2020
  ident: pone.0328061.ref053
  article-title: The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the fleischner society
  publication-title: Radiology
  doi: 10.1148/radiol.2020201365
– volume: 193
  issue: 13
  year: 2021
  ident: pone.0328061.ref038
  article-title: Burden of noninfluenza respiratory viral infections in adults admitted to hospital: analysis of a multiyear Canadian surveillance cohort from 2 centres
  publication-title: CMAJ
– volume: 24
  start-page: 3595
  issue: 12
  year: 2020
  ident: pone.0328061.ref029
  article-title: COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest x-ray images
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.3037127
– volume: 30
  start-page: 2921
  issue: 12
  year: 2023
  ident: pone.0328061.ref064
  article-title: Radiologist-trained AI model for identifying suboptimal chest-radiographs
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2023.03.006
– volume: 136
  start-page: 109548
  year: 2021
  ident: pone.0328061.ref039
  article-title: Radiological, epidemiological and clinical patterns of pulmonary viral infections
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.109548
– volume: 296
  issue: 2
  year: 2020
  ident: pone.0328061.ref005
  article-title: Performance of radiologists in differentiating COVID-19 from non-COVID-19 viral pneumonia at chest CT
  publication-title: Radiology
– start-page: 770
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2016
  ident: pone.0328061.ref049
  article-title: Deep Residual Learning for Image Recognition
– volume: 110
  start-page: 107613
  year: 2021
  ident: pone.0328061.ref061
  article-title: Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107613
– start-page: 618
  volume-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
  year: 2017
  ident: pone.0328061.ref047
  article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
– volume: 8
  start-page: 132665
  year: 2020
  ident: pone.0328061.ref052
  article-title: Can AI help in screening viral and COVID-19 pneumonia?
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010287
– volume: 70
  start-page: 6871
  issue: 4
  year: 2024
  ident: pone.0328061.ref025
  article-title: Revolutionizing e-commerce with consumer-driven energy-efficient WSNs: a multi-characteristics approach
  publication-title: IEEE Trans Consumer Electron
  doi: 10.1109/TCE.2024.3411606
– volume: 303
  start-page: 682
  issue: 3
  year: 2022
  ident: pone.0328061.ref007
  article-title: Imaging and clinical features of COVID-19 breakthrough infections: a multicenter study
  publication-title: Radiology
  doi: 10.1148/radiol.213072
– volume: 47
  start-page: 57
  issue: 1
  year: 2022
  ident: pone.0328061.ref022
  article-title: Classifying COVID-19 and viral pneumonia lung infections through deep convolutional neural network model using chest X-Ray Images
  publication-title: J Med Phys
  doi: 10.4103/jmp.jmp_100_21
– volume: 137
  start-page: 16
  year: 2023
  ident: pone.0328061.ref004
  article-title: Global prevalence of respiratory virus infections in adults and adolescents during the COVID-19 pandemic: a systematic review and meta-analysis
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2023.10.001
– volume: 11
  start-page: 9315
  issue: 1
  year: 2021
  ident: pone.0328061.ref031
  article-title: Towards computer-aided severity assessment via deep neural networks for geographic and opacity extent scoring of SARS-CoV-2 chest X-rays
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-88538-4
– volume: 14
  start-page: 1136
  issue: 1
  year: 2024
  ident: pone.0328061.ref058
  article-title: An augmentation aided concise CNN based architecture for COVID-19 diagnosis in real time
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-51317-y
– volume: 30
  start-page: 6485
  issue: 12
  year: 2020
  ident: pone.0328061.ref054
  article-title: Comparison of the computed tomography findings in COVID-19 and other viral pneumonia in immunocompetent adults: a systematic review and meta-analysis
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07018-x
– volume: 186
  start-page: 115288
  year: 2024
  ident: pone.0328061.ref024
  article-title: Adaptive fuzzy backstepping secure control for incommensurate fractional order cyber–physical power systems under intermittent denial of service attacks
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2024.115288
– volume: 29
  start-page: 3877
  issue: 6
  year: 2023
  ident: pone.0328061.ref027
  article-title: Images denoising for COVID-19 chest X-ray based on multi-scale parallel convolutional neural network
  publication-title: Multimedia Syst
  doi: 10.1007/s00530-023-01172-0
– volume: 299
  issue: 3
  year: 2021
  ident: pone.0328061.ref012
  article-title: COVID-19 imaging: what we know now and what remains unknown
  publication-title: Radiology
  doi: 10.1148/radiol.2021204522
– volume: 31
  issue: 1
  year: 2017
  ident: pone.0328061.ref042
  article-title: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v31i1.11231
SSID ssj0053866
Score 2.4895089
Snippet Chest X-ray (CXR) imaging plays a pivotal role in the diagnosis and prognosis of viral pneumonia. However, distinguishing COVID-19 CXRs from other viral...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0328061
SubjectTerms Accuracy
Adult
Aged
Automation
Biology and Life Sciences
Chest
Classification
Community-Acquired Infections - diagnostic imaging
Comparative analysis
COVID-19
COVID-19 - diagnosis
COVID-19 - diagnostic imaging
Datasets
Deep Learning
Development and progression
Diagnosis
Diagnosis, Differential
Disease transmission
Female
Health aspects
Humans
Infections
Machine learning
Male
Medicine and Health Sciences
Methods
Middle Aged
Pandemics
People and Places
Physical Sciences
Pneumonia
Pneumonia, Viral - diagnosis
Pneumonia, Viral - diagnostic imaging
Radiography, Thoracic - methods
Research and Analysis Methods
SARS-CoV-2 - isolation & purification
Severe acute respiratory syndrome coronavirus 2
Severity of Illness Index
Subgroups
Technology application
Viral infections
Viral pneumonia
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQxIELorwaaMEgJOCw7T6cXZtbSanopUVQVb2t_GwjVburbMKv4kd2xnaWLqoEB66ZiZN4xjPfbMbfEPLOcZ_FRJK72SxhmTKJ1GmaCDErUmmUkdz5YRPVyQm_uBDfbo36wp6wQA8cNm5fFVC8KVs5SFVMmlLw3HIJwMWx3AA2wOibVmJTTIUYDKe4LONFuaLK9qNd9rq2sXvIIJeW2SgReb7-ISpPuuu2vwty_tk5eSsVHT0iDyOGpAfhu2-Re7Z5TLbiKe3ph0gl_fEJ-XUY55-sggVo6-j89Pz4MMkExZsl1F_Aovggtkchtvxe066xa3DPhaSyMRRyp8URd7TXvluPwjqY_BCgUj9viy6lWQTu6_4TnQ-jDXFFY21H42yKS4qPfalvYkyWvoma_qYbf0rOjr6czb8mcT5DogFFrSB854WzPGO5TKXOUpNZZ6D8AVAklUyNzipjFOeSOStyLYUquC6sQMp4zlzxjEwaMMg2oUpoJxXABQBvjFVWKoORQiteOqYYn5JkY6u6Cywctf8rroLqJWx6jbato22n5DMadNBFDm3_AnhWHT2r_ptnTclrdIc6XEgdIkF9wJkoBeC-akreeg3k0WiwUedSrvu-Pj49_welH99HSu-jkmvBsbSMlyPgNyE_10hzZ6QJ0UCPxNvovJtd6esiL1iZlYCs4Z0bh75b_GYQ46LYfNfYdh10Khy8UE7J8-D_w84ivx6UAPC5fHQyRls_ljSLK09jnmH1C9XHi_9hrJfkQY6TmdMqycUOmayWa7tL7uufq0W_fOWDww0dL2xV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQwoELUF4NFDAICTik5OFNbG5ly4pKqK2gqnqL_CwrVUm02eVX8SOZcbwpqVoJrutJ1hnPjL9Jxt8Q8tZxv4uJOHPTacxSZWKpkyQWYpon0igjufPNJsrDQ352Jo4vE8UrX_DzMv0YdLrbNrXdRfa3BLOd21leFJhszY-_bSIv-G5RhONxN1052n48S_8QiyftRdNdBzSv1kv-tQHN7__v1B-QewFq0r3eNrbILVs_JFvBmTv6PjBOf3hEfu-HNimrfqFo4-js6PRgP04FxQMo1J_Tovi-tsNBrAy-oG1t12DFC0llbShssRY74dFO-6I-CvfBPRJxLPVtuehSmkVPkd19orOhAyLe0Vjb0tDC4pzi22Hqax3jpa-1ppes5I_JyfzLyexrHNo4xBrA1gqifJY7y1OWyUTqNDGpdQayJMBOUsnE6LQ0RnEumbMi01KonOvcCmSW58zlT8ikBgVuE6qEdlIBqgCMx1hppTIYULTihWOK8YjEm8Wt2p6so_Jf7EpIcnqlV7gWVViLiHxGCxhkkWrb_wCLWAXPrVReskzZ0sF8mDQFzMtyCcjZscwAOI3IK7Sfqj-3OgSMao8zUQiAh2VE3ngJpNuosZ7nXK67rjo4Ov0HoR_fR0LvgpBrwBK1DGco4JmQxmskuTOShKChR8PbaO0brXRVnuWsSAsA4HDlxgOuH349DONNsUavts26lymxP0MRkae9wwyaRRo-yBTgf_nIlUaqH4_Ui5-e7TzFJBmSlGc3T_k5uZthW-akjDOxQyar5dq-IHf0r9WiW770MeIPNIVpUQ
  priority: 102
  providerName: Public Library of Science
Title Differentiation of COVID-19 from other types of viral pneumonia and severity scoring on baseline chest radiographs: Comparison of deep learning with multi-reader evaluation
URI https://www.ncbi.nlm.nih.gov/pubmed/40729327
https://www.proquest.com/docview/3234616085
https://www.proquest.com/docview/3234700846
https://pubmed.ncbi.nlm.nih.gov/PMC12306774
https://doaj.org/article/b3742be7f8204ad6982e8a013f42d059
http://dx.doi.org/10.1371/journal.pone.0328061
Volume 20
WOSCitedRecordID wos001539730400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4ELUF5dKItBSMAhbR7e2OGC2m0rqtI2aquqcIkcP8pKVbJsdvlV_EhmHO-WoAohcZlDPEkcezz-7Iy_IeSNFW4Wy4LYDocBi0odSBWGQZYNk1DqUkthXbIJfnQkLi6y3G-4NT6scuETnaPWtcI98s0kTlgapYAQPk6-B5g1Cv-u-hQat8lKhNgY7JmfnC88MYzlNPXH5RIebfre2ZjUldlAHrkwjTrTkWPtX_rm3uSqbm4Cnn_GT_42Ie3d_99PeUDueShKt1rbWSW3TPWQrPrB3tB3npH6_SPyc8enUZm1HUlrS0fH5_s7QZRRPKBC3Tkuivu5DRZi5PAVnVRmDu8aSyorTWEKNpgpjzbKBf1ReA7OoYhzqUvbRadSj1sK7eYDHS0zJOITtTET6lNcXFLcPaYuFjKYulhses1a_pic7e2ejT4FPs1DoACMzWAWiBNrRMRiGUoVhToyVsMqCrCVLGWoVcS1LoWQzJosVjIrE6ESkyHzvGA2eUJ6FfToGqFlpqwsAXUABmSMG1lqdDiqFKllJRN9Eiw6u5i0ZB6F-6PHYRHUNnqBxlF44-iTbbSIpS5ScbsL9fSy8CO7KBPO4tJwC_VhUqdQLyMkIGvLYg3gtU9eoj0V7bnWpUMptgTL0gzgI--T104D6TgqjPe5lPOmKfaPz_9B6fSko_TWK9kaLFNJf8YCvglpvjqa6x1NcCqqU7yG1r9olaa4tlm4c2HVNxe_WhbjQzGGrzL1vNXhmL8h7ZOn7QBatizS9MFKAt4rOkOr0_Tdkmr8zbGhR7iIhkXMs7_X6zm5G2Pq5pAHcbZOerPp3Lwgd9SP2biZDpzfQHnBnRQgxSgakJXt3aP8ZOC2akDu5Z9BHmxvgDwMD1Dy3MlTkPnwK9yR7x_mX34B-meHtA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgAQXoLwaKHRBIODg1o-NvUZCqCRUjVraCqKq4mKt9xEiVbaJExD_Cf4jM-tHMaoQlx64Zieb9WSe65n5CHlquPViseObwcBhXqocIV3XieNB4AqVKsGNBZuIDg74yUl8tEJ-Nr0wWFbZ2ERrqFUu8Y58K_ADFnohRAhvii8Ookbh29UGQqMSiz39_RukbOXr8Qj-32e-v_NuMtx1alQBR4LvX4DR8QOjucd84QrpucrTRkHQDq5cpMJV0ouUSjkXzOjYlyJOAy4DHeOgc85MANteIpcZ811UoqPBp8bwg-kIw7o7L4i8rVoYNos805s4ts4NvY73syABrSvoFad5eV6c-2e55m_-b-fGf8a5m-R6HWjT7UozVsmKzm6R1dqUlfRFPW_75W3yY1SDxCwqMaW5ocPD4_HI8WKK7TfUdqlRvK0ucRHrok9pkeklPNpMUJEpCgGGRhxAWkpb0khhH4wQMIqnFpSMzoWaVQPCy1d02OI_4o5K64LWAB5Tinfj1FZ6OnNbaU7PZrLfIZOLYNpd0stAgNYITWNpRAoxFUS4jEVapArNqUx5aFjKeJ84jWwlRTWqJLHvKyNI8SqmJyiLSS2LffIWBbClxUHj9oN8Pk1qu5WkQcT8VEcGzsOECuFcmgvIGwzzFYTmfbKB4ptUXbutuUy2OYvDGILjqE-eWAocNpJhNdNULMsyGR8e_wPRxw8douc1kclBEaSoO0jgmXCIWYdyvUMJJlN2ltdQ2RqulMmZisA3GyU6f_lxu4ybYoVipvNlRRMhOkXYJ_cqfW05i0MIIU-C3-UdTe6wvruSzT7bWe8eXhFAinb_7-faIFd3J-_3k_3xwd4Dcs1HkGo3cvx4nfQW86V-SK7Ir4tZOX9kTRYlyQUr-i9_GtgS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAXoLwaKHRBIODgxo-NvUZCqDRUREVpRKuq4mKt91EiVbaJExD_iT_Av2NmvU4xqhCXHrhmJ5v1ZB7frOdByFPDrRdLvdAMBh4LcuUJ6ftemg4iX6hcCW7ssIlkPObHx-lkhfxsa2EwrbK1idZQq1LiHXk_CiMWBzEghL5xaRGT4e6b6ouHE6TwTWs7TqMRkT39_RuEb_Xr0RD-62dhuPvucOe95yYMeBJwwBwMUBgZzQMWCl_IwFeBNgoAPLh1kQtfySBRKudcMKPTUIo0j7iMdIpNzzkzEWx7iVxOIMTEbMLJ4FPrBMCMxLGr1IuSoO8EY6sqC72FLez8OOh4QjswYOkWVqvTsj4P8_6ZuvmbL9y98R9z8Sa57gA43W40Zo2s6OIWWXMmrqYvXB_ul7fJj6EbHjNvxJeWhu7sH42GXpBSLMuhtnqN4i12jYuYL31Kq0Iv4NGmgopCUQAeGucD0lraVEcK-yByQHRP7bAyOhNq2jQOr1_RneVcSNxRaV1RN9jjhOKdObUZoN7MZqDTs17td8jhRTDtLlktQJjWCc1TaUQOWAuQL2OJFrlCMytzHhuWM94jXitnWdW0MMnse8wEQr-G6RnKZebkskfeojAuabEBuf2gnJ1kzp5leZSwMNeJgfMwoWI4l-YC4gnDQgWQvUc2UZSzppp3aUazbc7SOAXQnPTIE0uBTUgKFMQTsajrbLR_9A9EBx87RM8dkSlBKaRwlSXwTNjcrEO50aEEUyo7y-uoeC1X6uxMXeCbrUKdv_x4uYybYuZioctFQ5Pg1Iq4R-41urvkLDYnhPgJfpd3tLrD-u5KMf1se8AHeHUAodv9v59rk1wF_c4-jMZ7D8i1EGdX-4kXphtkdT5b6Ifkivw6n9azR9Z6UZJdsJ7_AtUW4Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiation+of+COVID-19+from+other+types+of+viral+pneumonia+and+severity+scoring+on+baseline+chest+radiographs%3A+Comparison+of+deep+learning+with+multi-reader+evaluation&rft.jtitle=PloS+one&rft.au=Enshaei%2C+Nastaran&rft.au=Mohammadi%2C+Arash&rft.au=Naderkhani%2C+Farnoosh&rft.au=Daneman%2C+Nick&rft.date=2025-07-29&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=7&rft.spage=e0328061&rft_id=info:doi/10.1371%2Fjournal.pone.0328061&rft.externalDBID=IOV&rft.externalDocID=A849697277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon