Predicting the tensile properties of heat treated and non-heat treated LPBFed AlSi10Mg alloy using machine learning regression algorithms
In this study, the ability of machine learning algorithms to predict tensile properties of both heat-treated and non-heat treated LPBFed AlSi10Mg alloy is investigated. The data was analyzed using various Machine Learning Regression (MLR) models such as Linear Regression (LR), Gaussian Process Regre...
Uloženo v:
| Vydáno v: | PloS one Ročník 20; číslo 6; s. e0324049 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
02.06.2025
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!