Drug-target interaction prediction based on spatial consistency constraint and graph convolutional autoencoder

Background Drug-target interaction (DTI) prediction plays an important role in drug discovery and repositioning. However, most of the computational methods used for identifying relevant DTIs do not consider the invariance of the nearest neighbour relationships between drugs or targets. In other word...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 24; číslo 1; s. 151 - 21
Hlavní autori: Chen, Peng, Zheng, Haoran
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 17.04.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Background Drug-target interaction (DTI) prediction plays an important role in drug discovery and repositioning. However, most of the computational methods used for identifying relevant DTIs do not consider the invariance of the nearest neighbour relationships between drugs or targets. In other words, they do not take into account the invariance of the topological relationships between nodes during representation learning. It may limit the performance of the DTI prediction methods. Results Here, we propose a novel graph convolutional autoencoder-based model, named SDGAE, to predict DTIs. As the graph convolutional network cannot handle isolated nodes in a network, a pre-processing step was applied to reduce the number of isolated nodes in the heterogeneous network and facilitate effective exploitation of the graph convolutional network. By maintaining the graph structure during representation learning, the nearest neighbour relationships between nodes in the embedding space remained as close as possible to the original space. Conclusions Overall, we demonstrated that SDGAE can automatically learn more informative and robust feature vectors of drugs and targets, thus exhibiting significantly improved predictive accuracy for DTIs.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-023-05275-3