Inferring protein from transcript abundances using convolutional neural networks

Background Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BioData mining Ročník 18; číslo 1; s. 18 - 15
Hlavní autoři: Schwehn, Patrick Maximilian, Falter-Braun, Pascal
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 27.02.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1756-0381, 1756-0381
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana) . Results After hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r 2 ) of 0.30 in H. sapiens and 0.32 in A. thaliana. Conclusions For H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model’s learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation.
AbstractList BackgroundAlthough transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana).ResultsAfter hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r2) of 0.30 in H. sapiens and 0.32 in A. thaliana.ConclusionsFor H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model’s learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation.
Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana).BACKGROUNDAlthough transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana).After hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r2) of 0.30 in H. sapiens and 0.32 in A. thaliana.RESULTSAfter hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r2) of 0.30 in H. sapiens and 0.32 in A. thaliana.For H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model's learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation.CONCLUSIONSFor H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model's learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation.
Abstract Background Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana). Results After hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r2) of 0.30 in H. sapiens and 0.32 in A. thaliana. Conclusions For H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model’s learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation.
Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana). After hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r.sup.2) of 0.30 in H. sapiens and 0.32 in A. thaliana. For H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model's learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation.
Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana). After hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r ) of 0.30 in H. sapiens and 0.32 in A. thaliana. For H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model's learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation.
Background Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana) . Results After hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r 2 ) of 0.30 in H. sapiens and 0.32 in A. thaliana. Conclusions For H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model’s learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation.
Background Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana). Results After hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r.sup.2) of 0.30 in H. sapiens and 0.32 in A. thaliana. Conclusions For H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model's learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation. Keywords: Translational regulation, Protein-to-mRNA ratio, Convolutional neural networks, Regression analysis, Explainable AI
ArticleNumber 18
Audience Academic
Author Falter-Braun, Pascal
Schwehn, Patrick Maximilian
Author_xml – sequence: 1
  givenname: Patrick Maximilian
  surname: Schwehn
  fullname: Schwehn, Patrick Maximilian
  organization: Institute of Network Biology (INET), Molecular Targets and Therapies Center (MTTC), Helmholtz Munich
– sequence: 2
  givenname: Pascal
  surname: Falter-Braun
  fullname: Falter-Braun, Pascal
  email: pascal.falter-braun@helmholtz-munich.de
  organization: Institute of Network Biology (INET), Molecular Targets and Therapies Center (MTTC), Helmholtz Munich, Microbe-Host Interactions, Ludwig-Maximilians-Universität München
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40016737$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARbQd-gAWKxKYsUvyOs0JVxWOkSiAea8txbgYPGXuwnQL9epxMSzsVqrywZZ9zfO-557g4cN5BUTzH6BRjKV5HTBFDFSK8QohRVl09Ko5wzUWFqMQHd86HxXGMa4QEQZw-KQ4ZQljUtD4qPi1dDyFYtyq3wSewruyD35QpaBdNsNtU6nZ0nXYGYjnGCWi8u_TDmKx3eigdjGHe0i8ffsSnxeNeDxGeXe-L4tu7t1_PP1QXH98vz88uKiMYSZXmrCNc10i00PWQC0MgaSMMAcqIBNnkYrHUqOvyQ9vL3rSs4Z3QssWCCrooljvdzuu12ga70eGP8tqq-cKHldIhWTOAwo1EqJGEYIGYAN5SjBgXggswvcEoa73ZaW3HdgOdAZfbH_ZE91-c_a5W_lJNYxD1rHByrRD8zxFiUhsbDQyDduDHqCiuCRENr0mGvrwHXfsxZCdnFGd5nLy5Ra107sC63uePzSSqziRpcI3qPMpFcfofVF4dbGweE_Q23-8RXu0RMibB77TSY4xq-eXzPvbFXVf-2XETngyQO4AJPsYAvTI26SkWuQo7KIxmg9Qupyo3puacqqtMJfeoN-oPkuiOFLdTYCHcOvcA6y_6d_hE
CitedBy_id crossref_primary_10_3390_cimb47050380
crossref_primary_10_1016_j_flowmeasinst_2025_102968
crossref_primary_10_1021_acs_jcim_5c01033
Cites_doi 10.1126/science.aad9868
10.1101/gr.224964.117
10.1186/s13059-016-0881-8
10.1038/s41576-020-0258-4
10.1073/pnas.1000848107
10.1126/science.1158684
10.1038/nrg2484
10.1111/tpj.13520
10.1038/nature01511
10.1038/nature10098
10.1038/s41467-020-19921-4
10.1038/ncb1497
10.1093/nar/gkac958
10.1038/nrg3185
10.1007/s12064-012-0162-3
10.1093/bioinformatics/btn615
10.15252/msb.20188689
10.1093/bioinformatics/bty1050
10.1038/nbt.3300
10.1093/nargab/lqae106
10.1038/msb.2011.14
10.1073/pnas.1109683109
10.1016/j.molcel.2012.11.028
10.1038/s41586-020-2094-2
10.1016/0092-8674(86)90762-2
10.1186/s13059-021-02509-6
10.1038/nature22293
10.1038/nrm.2017.91
10.1126/science.1222794
10.1038/s41586-023-06739-5
10.1126/science.1114066
10.1145/304181.304187
10.1038/msb.2010.59
10.1101/cshperspect.a032870
10.1002/pro.4218
10.1186/s12915-019-0730-9
10.1016/j.jmb.2021.167267
10.1038/s41592-021-01128-0
10.1111/tpj.13415
10.1038/s41576-019-0122-6
10.15252/msb.20188513
10.1016/j.cell.2016.03.014
10.1371/journal.pgen.1003529
10.1093/bioinformatics/btx345
10.15252/msb.20188503
10.1371/journal.pcbi.1010702
10.1038/srep43861
10.1038/nchembio864
10.1101/2021.03.16.435663
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
8AL
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s13040-025-00434-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Public Health
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-0381
EndPage 15
ExternalDocumentID oai_doaj_org_article_19800982216046e5b310456656ecfc10
PMC11866710
A829170705
40016737
10_1186_s13040_025_00434_z
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  grantid: 01EA1803
  funderid: http://dx.doi.org/10.13039/501100002347
– fundername: Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) (4209)
– fundername: Horizon 2020 Framework Programme
  grantid: 101137201; 101003633
  funderid: http://dx.doi.org/10.13039/100010661
– fundername: Horizon 2020 Framework Programme
  grantid: 101003633
– fundername: Bundesministerium für Bildung und Forschung
  grantid: 01EA1803
– fundername: Horizon 2020 Framework Programme
  grantid: 101137201
GroupedDBID ---
0R~
23N
2WC
5GY
5VS
6J9
7X7
8C1
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DWQXO
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
ISR
ITC
K6V
K7-
KQ8
LK8
M7P
ML~
M~E
O5R
O5S
OK1
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
~8M
AAYXX
AFFHD
CITATION
ALIPV
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
M48
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c642t-a54d25a706bedfe6200e8396c2e3428e8906218a0dd0e8bf8fcb495d6a8b16363
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001434466700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1756-0381
IngestDate Fri Oct 03 12:51:54 EDT 2025
Tue Nov 04 02:05:15 EST 2025
Sun Nov 09 10:09:45 EST 2025
Tue Oct 07 05:38:17 EDT 2025
Tue Nov 11 10:50:14 EST 2025
Tue Nov 04 18:11:44 EST 2025
Thu Nov 13 15:57:43 EST 2025
Mon Jul 21 05:55:41 EDT 2025
Sat Nov 29 08:10:46 EST 2025
Tue Nov 18 22:26:22 EST 2025
Sat Sep 06 07:24:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Explainable AI
Regression analysis
Protein-to-mRNA ratio
Translational regulation
Convolutional neural networks
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-a54d25a706bedfe6200e8396c2e3428e8906218a0dd0e8bf8fcb495d6a8b16363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s13040-025-00434-z
PMID 40016737
PQID 3175402559
PQPubID 55347
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_19800982216046e5b310456656ecfc10
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11866710
proquest_miscellaneous_3172269572
proquest_journals_3175402559
gale_infotracmisc_A829170705
gale_infotracacademiconefile_A829170705
gale_incontextgauss_ISR_A829170705
pubmed_primary_40016737
crossref_citationtrail_10_1186_s13040_025_00434_z
crossref_primary_10_1186_s13040_025_00434_z
springer_journals_10_1186_s13040_025_00434_z
PublicationCentury 2000
PublicationDate 2025-02-27
PublicationDateYYYYMMDD 2025-02-27
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BioData mining
PublicationTitleAbbrev BioData Mining
PublicationTitleAlternate BioData Min
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References B Eraslan (434_CR23) 2019; 15
R Aebersold (434_CR8) 2003; 422
M Ankerst (434_CR31) 1999; 28
H Li (434_CR45) 2019; 17
G Eraslan (434_CR20) 2019; 20
CY Cheng (434_CR28) 2017; 89
BB Aldridge (434_CR7) 2006; 8
H Yu (434_CR5) 2008; 322
C Buccitelli (434_CR2) 2020; 21
AG Hinnebusch (434_CR13) 2016; 352
C Merchante (434_CR1) 2017; 90
M Hebditch (434_CR43) 2017; 33
B Schwanhausser (434_CR26) 2011; 473
PD Thomas (434_CR32) 2022; 31
J Mergner (434_CR4) 2020; 579
A Ferrer Florensa (434_CR47) 2024; 6
GP Wagner (434_CR25) 2012; 131
A Conesa (434_CR24) 2016; 17
H Srivastava (434_CR46) 2022; 18
FJ Martin (434_CR27) 2023; 51
AC Michaelis (434_CR48) 2023; 624
I Paik (434_CR10) 2012; 109
G Hanson (434_CR14) 2018; 19
H Gingold (434_CR36) 2011; 7
434_CR49
P Munusamy (434_CR17) 2017; 7
M Ferreira (434_CR44) 2021; 433
R Shalgi (434_CR11) 2013; 49
F Pedregosa (434_CR30) 2011; 12
Q Yang (434_CR39) 2010; 107
J Zrimec (434_CR21) 2020; 11
N Fortelny (434_CR42) 2017; 547
D Wang (434_CR3) 2019; 15
FC Oberstrass (434_CR38) 2005; 309
434_CR33
Z Zhuang (434_CR19) 2019; 35
M Kozak (434_CR37) 1986; 44
C Vogel (434_CR22) 2012; 13
MT Maurano (434_CR6) 2012; 337
C Barbosa (434_CR12) 2013; 9
434_CR29
A Savinov (434_CR40) 2021; 22
B Alipanahi (434_CR16) 2015; 33
S Kumari (434_CR41) 2007; 3
C Vogel (434_CR35) 2010; 6
RC Wek (434_CR15) 2018; 10
Y Liu (434_CR34) 2016; 165
JT Cuperus (434_CR18) 2017; 27
KW Brannan (434_CR50) 2021; 18
Z Wang (434_CR9) 2009; 10
V Shchepachev (434_CR51) 2019; 15
References_xml – volume: 352
  start-page: 1413
  issue: 6292
  year: 2016
  ident: 434_CR13
  publication-title: Science
  doi: 10.1126/science.aad9868
– volume: 27
  start-page: 2015
  issue: 12
  year: 2017
  ident: 434_CR18
  publication-title: Genome Res
  doi: 10.1101/gr.224964.117
– volume: 17
  start-page: 13
  issue: 1
  year: 2016
  ident: 434_CR24
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0881-8
– volume: 21
  start-page: 630
  issue: 10
  year: 2020
  ident: 434_CR2
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-020-0258-4
– volume: 107
  start-page: 10062
  issue: 22
  year: 2010
  ident: 434_CR39
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1000848107
– volume: 322
  start-page: 104
  issue: 5898
  year: 2008
  ident: 434_CR5
  publication-title: Science
  doi: 10.1126/science.1158684
– volume: 10
  start-page: 57
  issue: 1
  year: 2009
  ident: 434_CR9
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2484
– volume: 90
  start-page: 628
  issue: 4
  year: 2017
  ident: 434_CR1
  publication-title: Plant J
  doi: 10.1111/tpj.13520
– volume: 422
  start-page: 198
  issue: 6928
  year: 2003
  ident: 434_CR8
  publication-title: Nature
  doi: 10.1038/nature01511
– volume: 473
  start-page: 337
  issue: 7347
  year: 2011
  ident: 434_CR26
  publication-title: Nature
  doi: 10.1038/nature10098
– volume: 11
  start-page: 6141
  issue: 1
  year: 2020
  ident: 434_CR21
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19921-4
– volume: 8
  start-page: 1195
  issue: 11
  year: 2006
  ident: 434_CR7
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1497
– volume: 51
  start-page: D933
  issue: D1
  year: 2023
  ident: 434_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac958
– volume: 13
  start-page: 227
  issue: 4
  year: 2012
  ident: 434_CR22
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3185
– volume: 131
  start-page: 281
  issue: 4
  year: 2012
  ident: 434_CR25
  publication-title: Theory Biosci
  doi: 10.1007/s12064-012-0162-3
– ident: 434_CR33
  doi: 10.1093/bioinformatics/btn615
– volume: 15
  start-page: e8689
  issue: 4
  year: 2019
  ident: 434_CR51
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20188689
– volume: 35
  start-page: 2899
  issue: 17
  year: 2019
  ident: 434_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1050
– volume: 33
  start-page: 831
  issue: 8
  year: 2015
  ident: 434_CR16
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3300
– volume: 6
  start-page: lqae106
  issue: 3
  year: 2024
  ident: 434_CR47
  publication-title: NAR Genom Bioinform
  doi: 10.1093/nargab/lqae106
– ident: 434_CR29
– volume: 7
  start-page: 481
  issue: 1
  year: 2011
  ident: 434_CR36
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.14
– volume: 109
  start-page: 1335
  issue: 4
  year: 2012
  ident: 434_CR10
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1109683109
– volume: 49
  start-page: 439
  issue: 3
  year: 2013
  ident: 434_CR11
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.11.028
– volume: 579
  start-page: 409
  issue: 7799
  year: 2020
  ident: 434_CR4
  publication-title: Nature
  doi: 10.1038/s41586-020-2094-2
– volume: 44
  start-page: 283
  issue: 2
  year: 1986
  ident: 434_CR37
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90762-2
– volume: 22
  start-page: 293
  issue: 1
  year: 2021
  ident: 434_CR40
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02509-6
– volume: 547
  start-page: E19
  issue: 7664
  year: 2017
  ident: 434_CR42
  publication-title: Nature
  doi: 10.1038/nature22293
– volume: 19
  start-page: 20
  issue: 1
  year: 2018
  ident: 434_CR14
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2017.91
– volume: 337
  start-page: 1190
  issue: 6099
  year: 2012
  ident: 434_CR6
  publication-title: Science
  doi: 10.1126/science.1222794
– volume: 624
  start-page: 192
  issue: 7990
  year: 2023
  ident: 434_CR48
  publication-title: Nature
  doi: 10.1038/s41586-023-06739-5
– volume: 309
  start-page: 2054
  issue: 5743
  year: 2005
  ident: 434_CR38
  publication-title: Science
  doi: 10.1126/science.1114066
– volume: 28
  start-page: 49
  issue: 2
  year: 1999
  ident: 434_CR31
  publication-title: ACM SIGMOD Rec
  doi: 10.1145/304181.304187
– volume: 6
  start-page: 400
  issue: 1
  year: 2010
  ident: 434_CR35
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2010.59
– volume: 10
  start-page: a032870
  issue: 7
  year: 2018
  ident: 434_CR15
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a032870
– volume: 31
  start-page: 8
  issue: 1
  year: 2022
  ident: 434_CR32
  publication-title: Protein Sci
  doi: 10.1002/pro.4218
– volume: 17
  start-page: 107
  issue: 1
  year: 2019
  ident: 434_CR45
  publication-title: BMC Biol
  doi: 10.1186/s12915-019-0730-9
– volume: 433
  start-page: 167267
  issue: 22
  year: 2021
  ident: 434_CR44
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2021.167267
– volume: 12
  start-page: 2825
  year: 2011
  ident: 434_CR30
  publication-title: J Mach Learn Res
– volume: 18
  start-page: 507
  issue: 5
  year: 2021
  ident: 434_CR50
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01128-0
– volume: 89
  start-page: 789
  issue: 4
  year: 2017
  ident: 434_CR28
  publication-title: Plant J
  doi: 10.1111/tpj.13415
– volume: 20
  start-page: 389
  issue: 7
  year: 2019
  ident: 434_CR20
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0122-6
– volume: 15
  start-page: e8513
  issue: 2
  year: 2019
  ident: 434_CR23
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20188513
– volume: 165
  start-page: 535
  issue: 3
  year: 2016
  ident: 434_CR34
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.014
– volume: 9
  start-page: e1003529
  issue: 8
  year: 2013
  ident: 434_CR12
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003529
– volume: 33
  start-page: 3098
  issue: 19
  year: 2017
  ident: 434_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx345
– volume: 15
  start-page: e8503
  issue: 2
  year: 2019
  ident: 434_CR3
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20188503
– volume: 18
  start-page: e1010702
  issue: 11
  year: 2022
  ident: 434_CR46
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1010702
– volume: 7
  start-page: 43861
  issue: 1
  year: 2017
  ident: 434_CR17
  publication-title: Sci Rep
  doi: 10.1038/srep43861
– volume: 3
  start-page: 218
  issue: 4
  year: 2007
  ident: 434_CR41
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio864
– ident: 434_CR49
  doi: 10.1101/2021.03.16.435663
SSID ssj0062053
Score 2.3446507
Snippet Background Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological...
Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their...
Background Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological...
BackgroundAlthough transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions...
Abstract Background Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18
SubjectTerms Abundance
Algorithms
Amino acid sequence
Amino acids
Analysis
Arabidopsis thaliana
Artificial intelligence
Artificial neural networks
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Convolutional neural networks
Data Mining and Knowledge Discovery
Datasets
Experiments
Explainable AI
Genes
Genetic aspects
Identification and classification
Life Sciences
Machine learning
Methods
Neural networks
Ontology
Predictions
Protein-to-mRNA ratio
Proteins
Proteomics
Regression analysis
Regulatory sequences
Synthesis
Translational regulation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS91AEB6KtNCXYu9RW9JS8KEN5myS3c2jLRWFIlK1-LZs9qIHJEfMOYL-emd2k1NjafviUyA7G7JfZudCZr4F-GS9NpUpiqzkxmKCok1W-wnPpPdNYYuaN4Gu6dcPsb8vT07qgztHfVFNWKQHjsBtYVJMnJeMTTimcq5qMB5Bp49hiDPexOaqXNRDMhVtMGeoW0OLjORbHVpqKmNkVUa_vsrsZuSGAlv_nzb5jlO6XzB5769pcEY7q_CsjyLT7fj2z-GRa1_Ak3iu5PVLONijNj6amgYehmmbUhtJOifHFMxEqhtqAaEa6pRK309TKj_v1RCfTDSX4RKKxLtXcLzz_ejbbtYfnZAZTCjmma5Kyyotct446x3ikTsMhbhhrsCEw0miJ55InVuLA42X3jSYKlmuZYMRGi9ew0o7a91bSDXLtTCF897Y0nNTc1G60lt6Su5ElcBkQFKZnlecjrc4VyG_kFxF9BWirwL66iaBz8s5F5FV45_SX-kDLSWJETvcQD1RvZ6o_-lJAh_p8yrivGipqOZUL7pO7R3-VNuSYdKKtg_XstkL-Rmuwei-RwGRIJqskeTGSBI3pRkPD1qkeqPQKQrVypDDJfBhOUwzqdCtdbNFkMGAuK4ES-BNVLrlusvQM1KIBORIHUfAjEfa6VmgDCdkuSAUvgya-_u9_o782kMgvw5PWdh51Ae2ASvzy4V7B4_N1XzaXb4P-_YWr6pC0A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0KvTF79ZolSiCDxqabJLN5kmqWCxIKX5xb8tmP84DSerlTrB_vTObzdVU7ItPgdtJcjs7Ox_Zmd8APDdO6VLneVJwbTBAUTqpXcYT4VyTm7zmjYdr-vqhOj4Ws1l9Ej649SGtctSJXlGbTtM38n2yc4V3gF-f_kioaxSdroYWGlfhGrXNJjmvZpuAizOUsLFQRvD9HvU1JTOyMqEDsCI5mxgjj9n_t2b-wzRdTJu8cHbqTdLhrf-dzG24GZzR-GCQnjtwxbZ34cbQnvLXPTg5ompAenfs4RwWbUzVKPGK7JvXNrFqqJKEUrFjyqCfx5TFHqQZn0xomf7ic837-_Dl8N3nt--T0IEh0RiXrBJVFoaVqkp5Y42zyNDUokfFNbM5xi1WEMpxJlRqDA40TjjdYMRluBINOno834GttmvtA4gVS1Wlc-ucNoXjuuZVYQtn6CmprcoIsnEppA7w5NQl47v0YYrgclg-iWyTfvnkWQQvN_ecDuAcl1K_oRXeUBKwtv-hW85l2KcyqwVBrDKW8bTgtmzQ_UUfE71eq53O0giekXxIgs5oKTdnrtZ9L48-fZQHgmHsiyoU5_IiELkO56BVKHVAThDa1oRyb0KJe1tPh0f5kUG39PJceCJ4uhmmOylfrrXd2tOgX12XFYtgd5DazbwLX3qSVxGIiTxPGDMdaRffPPI4cZZXxIVXo-if_69_c_7h5dN4BNvMb0oqFNuDrdVybR_Ddf1zteiXT_yW_g0ByVMC
  priority: 102
  providerName: ProQuest
Title Inferring protein from transcript abundances using convolutional neural networks
URI https://link.springer.com/article/10.1186/s13040-025-00434-z
https://www.ncbi.nlm.nih.gov/pubmed/40016737
https://www.proquest.com/docview/3175402559
https://www.proquest.com/docview/3172269572
https://pubmed.ncbi.nlm.nih.gov/PMC11866710
https://doaj.org/article/19800982216046e5b310456656ecfc10
Volume 18
WOSCitedRecordID wos001434466700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: RBZ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: RSV
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDSRe-P4IjCogJB4gIp-287hNm6iAKtpgKrxYjmN3laYUNS0S--u5c5JCxocEL46UO1v15Xy-q-9-BnheWaUznSRBynSFAYrSQW4jFghry6RKclY6uKbTd3wyEdNpXnRFYU2f7d4fSTpL7Za1YK8btLaUihhnAR1fpcHFFuxkhDZDMfrJaW9_WYx61ZfH_LbfYAtySP2_2uOfNqTLyZKXTkzdRnR08_-mcAtudI6nv9dqym24Yuo7cK29ivLbXSjGVPlHo_kOumFe-1R54q9oL3OWxVclVY1Q2rVP2fIznzLWO83FkQkZ0z1cXnlzDz4eHX44eBN0ty0EGmOQVaCytIozxUNWmsoaFGNo0HtiOjYJxihGEKJxJFRYVUgorbC6xOiqYkqU6NSx5D5s14vaPARfxaHiOjHW6iq1TOeMpya1FY0SGp55EPUfQOoOipxuxDiXLiQRTLaSkigp6SQlLzx4uenzpQXi-Cv3Pn3XDSeBaLsXi-VMdmtSRrkgONU4jliYMpOV6OqiP4kertFWR6EHz0grJMFk1JSHM1PrppHjk2O5J2KMc9Fc4lxedEx2gXPQqitrQEkQstaAc3fAietYD8m98snOjjSSvLvUhX0ePN2QqSflxtVmsXY86EPnGY89eNDq6mbeqSszSbgHYqDFA8EMKfX8zKGMk2QZJym86pX5x-_6s-Qf_Rv7Y7geu_VARWK7sL1ars0TuKq_rubNcgRbfMpdK7AVB9EIdvYPJ8XxyP13gu1bHowoX7fAtsg-I70Yvy8-jZxJ-A5vR1N3
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQw0CoFBBfej0CBgEAcIGpiJ45zQKgUqq66rCooqDfj-LGshLJlswtqP4pvZMZJtqSI3nrgFGk9sTLjea7nQchT45TONGNRyrWBAEXpqHAJj4RzJTOs4KVv1_R5mI9GYn-_2F0hv7paGEyr7HSiV9RmqvE_8nW0c6l3gF8ffI9wahTernYjNBq22LGHPyFkq18N3sL5PqN0693e5nbUThWINPja80hlqaGZymNeWuMsBzax4CVwTS0DX9wK7NybCBUbAwulE06XEEUYrkQJzgtnsO85cj5llKEUic1lSglslbGuMEfw9RrsAyZP0izCC7c0OuoZPz8j4G9L8IcpPJmmeeKu1pvArav_G_GukSutsx1uNNJxnazY6ga52IzfPLxJdgdY7Yi4hr5dxaQKsdomnKP99to0VCVWymCqeYgVAuMQs_RbaYWdsRuof_hc-voW-XQm6Nwmq9W0sndJqGiscs2sc9qkjuuC56lNncFdYptnAUm6o5e6bb-OU0C-SR-GCS4bdpFwTNKzizwKyIvlOwdN85FTod8gRy0hsXG4_2E6G8tWD8mkENhCltKExym3WQnuPfjQ4NVb7XQSB-QJ8qPE1iAV5h6N1aKu5eDjB7khKMT2YCIAl-ctkJsCDlq1pRxACewm1oNc60GC7tL95Y5fZas7a3nMrAF5vFzGNzEfsLLThYeBuKHIchqQO42ULPFOfWkNywMievLTI0x_pZp89Z3VkbI8Ryq87ETt-Lv-Tfl7p6PxiFza3ns_lMPBaOc-uUy9QsCiuDWyOp8t7ANyQf-YT-rZQ69OQvLlrEXwN2Htr3c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BOcQLNyVQICAkHiBq4iSO81iOFSuq1aqFqm-W42NZqcpWm10k-uuZcZKlKYeEeIoUj614Mh7PyN98BnhpnNK5TtMo49pggqJ0VLqER8K5KjVpyStP13S0X0wm4vi4nJ6r4vdo9_5Isq1pIJamerV7aly7xAXfbdDzEiyR5REdZWXR2WW4kmEmQ6Cug8Oj3hdzhjbWl8r8tt9gO_Ks_b_65nOb00Xg5IXTU78pjW79_3Ruw80uIA33Wgu6A5dsfReutVdUfr8H0zFVBNLIoad0mNchVaSEK9rjvMcJVUXVJATHDglFPwsJyd5ZNI5MjJn-4fHmzX34Mvrw-d3HqLuFIdKYm6wilWeG5aqIeWWNs6jS2GJUxTWzKeYuVhDTcSJUbAw2VE44XWHWZbgSFQZ7PH0AW_Witg8hVCxWhU6tc9pkjuuSF5nNnKFRYlvkAST9z5C6oyinmzJOpE9VBJetpiRqSnpNybMAXm_6nLYEHX-Vfkv_eCNJ5Nr-xWI5k91alUkpiGaVsYTHGbd5hSEwxpkY-VrtdBIH8IIsRBJ9Rk34nJlaN40cHx7IPcEw_0U3inN51Qm5Bc5Bq67cATVBjFsDyZ2BJK5vPWzuDVF2_qWRFPVlPh0M4PmmmXoSZq62i7WXwdi6zAsWwHZrt5t5Z778JC0CEAOLHihm2FLPv3r2cdIsL0gLb3rD_vldf9b8o38TfwbXp-9Hcn88-fQYbjC_NKiObAe2Vsu1fQJX9bfVvFk-9ev9B7AFVZ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+protein+from+transcript+abundances+using+convolutional+neural+networks&rft.jtitle=BioData+mining&rft.au=Schwehn%2C+Patrick+Maximilian&rft.au=Falter-Braun%2C+Pascal&rft.date=2025-02-27&rft.pub=BioMed+Central+Ltd&rft.issn=1756-0381&rft.eissn=1756-0381&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs13040-025-00434-z&rft.externalDBID=ISR&rft.externalDocID=A829170705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0381&client=summon