gcplyr: an R package for microbial growth curve data analysis

Background Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights. Results To addr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 25; číslo 1; s. 232 - 10
Hlavní autor: Blazanin, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 09.07.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights. Results To address this need, here I present a newly-developed R package: gcplyr. gcplyr can flexibly import growth curve data in common tabular formats, and reshapes it under a tidy framework that is flexible and extendable, enabling users to design custom analyses or plot data with popular visualization packages. gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. Finally, gcplyr carries out model-free (non-parametric) analyses. These analyses do not require mathematical assumptions about microbial growth dynamics, and gcplyr is able to extract a broad range of important traits, including growth rate, doubling time, lag time, maximum density and carrying capacity, diauxie, area under the curve, extinction time, and more. Conclusions gcplyr makes scripted analyses of growth curve data in R straightforward, streamlines common data wrangling and analysis steps, and easily integrates with common visualization and statistical analyses.
AbstractList Background Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights. Results To address this need, here I present a newly-developed R package: gcplyr. gcplyr can flexibly import growth curve data in common tabular formats, and reshapes it under a tidy framework that is flexible and extendable, enabling users to design custom analyses or plot data with popular visualization packages. gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. Finally, gcplyr carries out model-free (non-parametric) analyses. These analyses do not require mathematical assumptions about microbial growth dynamics, and gcplyr is able to extract a broad range of important traits, including growth rate, doubling time, lag time, maximum density and carrying capacity, diauxie, area under the curve, extinction time, and more. Conclusions gcplyr makes scripted analyses of growth curve data in R straightforward, streamlines common data wrangling and analysis steps, and easily integrates with common visualization and statistical analyses. Keywords: Microbiology, Growth, Growth rate, Doubling time, Growth curve, Carrying capacity, Lag time, Modeling, Software, Tidy data
Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights. To address this need, here I present a newly-developed R package: gcplyr. gcplyr can flexibly import growth curve data in common tabular formats, and reshapes it under a tidy framework that is flexible and extendable, enabling users to design custom analyses or plot data with popular visualization packages. gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. Finally, gcplyr carries out model-free (non-parametric) analyses. These analyses do not require mathematical assumptions about microbial growth dynamics, and gcplyr is able to extract a broad range of important traits, including growth rate, doubling time, lag time, maximum density and carrying capacity, diauxie, area under the curve, extinction time, and more. gcplyr makes scripted analyses of growth curve data in R straightforward, streamlines common data wrangling and analysis steps, and easily integrates with common visualization and statistical analyses.
Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights.BACKGROUNDCharacterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights.To address this need, here I present a newly-developed R package: gcplyr. gcplyr can flexibly import growth curve data in common tabular formats, and reshapes it under a tidy framework that is flexible and extendable, enabling users to design custom analyses or plot data with popular visualization packages. gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. Finally, gcplyr carries out model-free (non-parametric) analyses. These analyses do not require mathematical assumptions about microbial growth dynamics, and gcplyr is able to extract a broad range of important traits, including growth rate, doubling time, lag time, maximum density and carrying capacity, diauxie, area under the curve, extinction time, and more.RESULTSTo address this need, here I present a newly-developed R package: gcplyr. gcplyr can flexibly import growth curve data in common tabular formats, and reshapes it under a tidy framework that is flexible and extendable, enabling users to design custom analyses or plot data with popular visualization packages. gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. Finally, gcplyr carries out model-free (non-parametric) analyses. These analyses do not require mathematical assumptions about microbial growth dynamics, and gcplyr is able to extract a broad range of important traits, including growth rate, doubling time, lag time, maximum density and carrying capacity, diauxie, area under the curve, extinction time, and more.gcplyr makes scripted analyses of growth curve data in R straightforward, streamlines common data wrangling and analysis steps, and easily integrates with common visualization and statistical analyses.CONCLUSIONSgcplyr makes scripted analyses of growth curve data in R straightforward, streamlines common data wrangling and analysis steps, and easily integrates with common visualization and statistical analyses.
Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights. To address this need, here I present a newly-developed R package: gcplyr. gcplyr can flexibly import growth curve data in common tabular formats, and reshapes it under a tidy framework that is flexible and extendable, enabling users to design custom analyses or plot data with popular visualization packages. gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. Finally, gcplyr carries out model-free (non-parametric) analyses. These analyses do not require mathematical assumptions about microbial growth dynamics, and gcplyr is able to extract a broad range of important traits, including growth rate, doubling time, lag time, maximum density and carrying capacity, diauxie, area under the curve, extinction time, and more. gcplyr makes scripted analyses of growth curve data in R straightforward, streamlines common data wrangling and analysis steps, and easily integrates with common visualization and statistical analyses.
Abstract Background Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights. Results To address this need, here I present a newly-developed R package: gcplyr. gcplyr can flexibly import growth curve data in common tabular formats, and reshapes it under a tidy framework that is flexible and extendable, enabling users to design custom analyses or plot data with popular visualization packages. gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. Finally, gcplyr carries out model-free (non-parametric) analyses. These analyses do not require mathematical assumptions about microbial growth dynamics, and gcplyr is able to extract a broad range of important traits, including growth rate, doubling time, lag time, maximum density and carrying capacity, diauxie, area under the curve, extinction time, and more. Conclusions gcplyr makes scripted analyses of growth curve data in R straightforward, streamlines common data wrangling and analysis steps, and easily integrates with common visualization and statistical analyses.
Background Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights. Results To address this need, here I present a newly-developed R package: gcplyr. gcplyr can flexibly import growth curve data in common tabular formats, and reshapes it under a tidy framework that is flexible and extendable, enabling users to design custom analyses or plot data with popular visualization packages. gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. Finally, gcplyr carries out model-free (non-parametric) analyses. These analyses do not require mathematical assumptions about microbial growth dynamics, and gcplyr is able to extract a broad range of important traits, including growth rate, doubling time, lag time, maximum density and carrying capacity, diauxie, area under the curve, extinction time, and more. Conclusions gcplyr makes scripted analyses of growth curve data in R straightforward, streamlines common data wrangling and analysis steps, and easily integrates with common visualization and statistical analyses.
BackgroundCharacterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth curves, necessitating the development of computational tools to handle and analyze these data to produce insights.ResultsTo address this need, here I present a newly-developed R package: gcplyr. gcplyr can flexibly import growth curve data in common tabular formats, and reshapes it under a tidy framework that is flexible and extendable, enabling users to design custom analyses or plot data with popular visualization packages. gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. Finally, gcplyr carries out model-free (non-parametric) analyses. These analyses do not require mathematical assumptions about microbial growth dynamics, and gcplyr is able to extract a broad range of important traits, including growth rate, doubling time, lag time, maximum density and carrying capacity, diauxie, area under the curve, extinction time, and more.Conclusionsgcplyr makes scripted analyses of growth curve data in R straightforward, streamlines common data wrangling and analysis steps, and easily integrates with common visualization and statistical analyses.
ArticleNumber 232
Audience Academic
Author Blazanin, Michael
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0003-4630-6235
  surname: Blazanin
  fullname: Blazanin, Michael
  email: mike.blazanin@yale.edu
  organization: Department of Ecology and Evolutionary Biology, Yale University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38982382$$D View this record in MEDLINE/PubMed
BookMark eNp9kstq3DAYhU1JaS7tC3RRDN00C6e6WlKhlBB6GQgU0nYtfsuyo6nHmkh2mnn7yuOkyYQSvLCRv_NZ_nUOs73e9zbLXmN0grEs30dMJFcFIqxAXGJR0GfZAWYCFwQjvvfgeT87jHGJEBYS8RfZPpVKEirJQfaxNetuEz7k0OcX-RrMb2ht3viQr5wJvnLQ5W3wf4bL3Izh2uY1DJBg6DbRxZfZ8wa6aF_d3o-yX18-_zz7Vpx__7o4Oz0vTMnIUABWVU0JMIsBCSZkjRsmJTXCEo4NsYwrW6m0vRI1JSeGNJyWZSMraUpFOT3KFrO39rDU6-BWEDbag9PbBR9aDWFwprO6pBQQE5ySCrFScKCW4YqbildVctPk-jS71mO1srWx_RCg25HuvundpW79tcaYUEKpSoZ3t4bgr0YbB71y0diug976MWqKhFAKM0US-vYRuvRjSNPbUmo6IC7uqRbSH7i-8enDZpLqU4mQKAUS08ZP_kOlq7bprFI1GpfWdwLHO4HEDPZmaGGMUS9-XOyybx5O5d847pqSADkDqRUxBtto4wYYnJ-G5DqNkZ5KqedS6lRKvS2lntzkUfTO_mSIzqGY4L614X5yT6T-Ar-x7q4
CitedBy_id crossref_primary_10_1080_19490976_2025_2501192
crossref_primary_10_1099_mic_0_001595
crossref_primary_10_1073_pnas_2513377122
crossref_primary_10_1371_journal_pbio_3002926
crossref_primary_10_1016_j_isci_2024_111498
crossref_primary_10_1021_acssynbio_4c00654
crossref_primary_10_1210_clinem_dgaf428
crossref_primary_10_1038_s41556_024_01485_w
crossref_primary_10_1093_nar_gkae1219
crossref_primary_10_1093_genetics_iyae170
crossref_primary_10_1016_j_fbio_2025_106791
crossref_primary_10_1016_j_copbio_2025_103352
crossref_primary_10_1126_science_adk1183
crossref_primary_10_1093_bioadv_vbaf038
crossref_primary_10_1038_s44320_025_00144_y
crossref_primary_10_1073_pnas_2322440122
crossref_primary_10_1099_mic_0_001491
Cites_doi 10.1093/molbev/mst187
10.21105/joss.01686
10.1101/2023.06.29.546975
10.1093/bioinformatics/btx084
10.1186/s12859-016-1134-2
10.18637/jss.v028.i05
10.1007/s12155-015-9584-3
10.1128/AEM.02336-09
10.1038/ncomms13766
10.1186/s12859-016-1016-7
10.1371/journal.pcbi.1008366
10.1080/01621459.1979.10481038
10.1146/annurev.mi.03.100149.002103
10.1186/1471-2105-14-283
10.1128/mSystems.00508-21
10.1101/gr.210286.116
10.1038/s41596-023-00850-7
10.1007/978-3-319-24277-4
10.1002/elsc.202100108
10.1093/bioinformatics/btt291
10.1016/j.ijfoodmicro.2013.11.019
10.1101/2023.04.29.538831
10.1534/g3.119.400898
10.1089/fpd.2020.2919
10.18637/jss.v107.i01
10.1021/ac60214a047
10.1016/j.ijfoodmicro.2004.01.006
10.1186/1471-2105-11-141
10.1093/bioinformatics/btad733
10.1111/j.1467-9868.2010.00749.x
10.1371/journal.pone.0119807
10.1186/s13104-017-2945-6
10.3389/fevo.2023.1313500
10.1101/695676
10.21105/joss.00106
10.1080/01621459.1988.10478639
10.1016/j.jtbi.2006.08.017
10.1007/978-1-62703-712-9_10
10.1201/9781315370279
10.12688/f1000research.5140.2
10.1186/s12859-024-05692-y
10.1111/1467-9868.00374
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-024-05817-3
DatabaseName SpringerOpen
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1471-2105
EndPage 10
ExternalDocumentID oai_doaj_org_article_633a047532b04675a3e41b5cb5bbf653
PMC11232339
A800767073
38982382
10_1186_s12859_024_05817_3
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c642t-a19bd32a4e1a07478d1f4883c7e251c2e459eb901760f652c2f5366f8b8c69353
IEDL.DBID K7-
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001268205500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Oct 14 19:06:30 EDT 2025
Tue Nov 04 02:05:29 EST 2025
Wed Oct 01 13:54:01 EDT 2025
Tue Oct 07 06:10:23 EDT 2025
Sat Nov 29 14:01:31 EST 2025
Sat Nov 29 10:45:53 EST 2025
Wed Nov 26 11:21:55 EST 2025
Thu Apr 03 06:57:15 EDT 2025
Tue Nov 18 21:23:56 EST 2025
Sat Nov 29 05:40:17 EST 2025
Sat Sep 06 07:27:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Carrying capacity
Microbiology
Growth rate
Doubling time
Growth
Lag time
Software
Tidy data
Modeling
Growth curve
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-a19bd32a4e1a07478d1f4883c7e251c2e459eb901760f652c2f5366f8b8c69353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4630-6235
OpenAccessLink https://www.proquest.com/docview/3079147157?pq-origsite=%requestingapplication%
PMID 38982382
PQID 3079147157
PQPubID 44065
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_633a047532b04675a3e41b5cb5bbf653
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11232339
proquest_miscellaneous_3077991492
proquest_journals_3079147157
gale_infotracmisc_A800767073
gale_infotracacademiconefile_A800767073
gale_incontextgauss_ISR_A800767073
pubmed_primary_38982382
crossref_citationtrail_10_1186_s12859_024_05817_3
crossref_primary_10_1186_s12859_024_05817_3
springer_journals_10_1186_s12859_024_05817_3
PublicationCentury 2000
PublicationDate 2024-07-09
PublicationDateYYYYMMDD 2024-07-09
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References PS Swain (5817_CR20) 2016; 7
PP Jung (5817_CR22) 2015; 10
SN Wood (5817_CR42) 2011; 73
H Wickham (5817_CR31) 2016
LAI Vaas (5817_CR8) 2013; 29
A Veríssimo (5817_CR12) 2013; 14
PD Tonner (5817_CR26) 2017; 27
GT Yates (5817_CR45) 2007; 244
J Hemmerich (5817_CR27) 2017; 10
IAM Swinnen (5817_CR44) 2004; 94
E Csibra (5817_CR5) 2023; 39
MA Reiter (5817_CR19) 2024; 25
PD Tonner (5817_CR25) 2020; 16
WS Cleveland (5817_CR37) 1988; 83
NT Wirth (5817_CR3) 2023; 18
FS Midani (5817_CR24) 2021; 6
5817_CR41
EG Biesta-Peters (5817_CR47) 2010; 76
A-H Ghenu (5817_CR48) 2024; 11
K Sprouffske (5817_CR14) 2016; 17
5817_CR28
SN Wood (5817_CR40) 2003; 65
L Huang (5817_CR10) 2014; 171
DA Cuevas (5817_CR17) 2017; 33
B Olsen (5817_CR23) 2010; 11
H Wickham (5817_CR32) 2019; 4
YV Bukhman (5817_CR9) 2015; 8
5817_CR29
Y Liu (5817_CR11) 2021; 18
DA Cuevas (5817_CR18) 2016; 3
A Garre (5817_CR16) 2023; 107
L Fernandez-Ricaud (5817_CR21) 2016; 17
WS Cleveland (5817_CR38) 1979; 74
NPJ Coutin (5817_CR4) 2020; 10
5817_CR13
5817_CR35
R Core Team (5817_CR30) 2022
5817_CR34
5817_CR33
J Monod (5817_CR1) 1949; 3
M Osthege (5817_CR6) 2022; 22
SM Hughes (5817_CR2) 2016; 1
5817_CR15
AM Mackie (5817_CR46) 2014
T Hastie (5817_CR39) 1986; 1
M Kuhn (5817_CR43) 2008; 28
A Savitzky (5817_CR36) 1964; 36
BG Hall (5817_CR7) 2014; 31
References_xml – volume: 31
  start-page: 232
  year: 2014
  ident: 5817_CR7
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst187
– volume: 4
  start-page: 1686
  year: 2019
  ident: 5817_CR32
  publication-title: J Open Source Softw
  doi: 10.21105/joss.01686
– ident: 5817_CR29
  doi: 10.1101/2023.06.29.546975
– volume: 33
  start-page: 1905
  year: 2017
  ident: 5817_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx084
– volume: 17
  start-page: 249
  year: 2016
  ident: 5817_CR21
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-1134-2
– volume: 28
  start-page: 1
  year: 2008
  ident: 5817_CR43
  publication-title: J Stat Softw
  doi: 10.18637/jss.v028.i05
– volume: 8
  start-page: 1022
  year: 2015
  ident: 5817_CR9
  publication-title: Bioenergy Res
  doi: 10.1007/s12155-015-9584-3
– volume-title: R: a language and environment for statistical computing
  year: 2022
  ident: 5817_CR30
– volume: 76
  start-page: 1399
  year: 2010
  ident: 5817_CR47
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02336-09
– volume: 7
  start-page: 13766
  year: 2016
  ident: 5817_CR20
  publication-title: Nat Commun
  doi: 10.1038/ncomms13766
– volume: 17
  start-page: 17
  year: 2016
  ident: 5817_CR14
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-1016-7
– volume: 16
  year: 2020
  ident: 5817_CR25
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008366
– volume: 74
  start-page: 829
  year: 1979
  ident: 5817_CR38
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1979.10481038
– volume: 3
  start-page: 371
  year: 1949
  ident: 5817_CR1
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.mi.03.100149.002103
– volume: 14
  start-page: 1
  year: 2013
  ident: 5817_CR12
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-14-283
– ident: 5817_CR15
– volume: 6
  start-page: e00508
  year: 2021
  ident: 5817_CR24
  publication-title: Msystems
  doi: 10.1128/mSystems.00508-21
– ident: 5817_CR34
– volume: 27
  start-page: 320
  year: 2017
  ident: 5817_CR26
  publication-title: Genome Res
  doi: 10.1101/gr.210286.116
– volume: 18
  start-page: 2401
  year: 2023
  ident: 5817_CR3
  publication-title: Nat Protoc
  doi: 10.1038/s41596-023-00850-7
– volume-title: ggplot2: elegant graphics for data analysis
  year: 2016
  ident: 5817_CR31
  doi: 10.1007/978-3-319-24277-4
– volume: 22
  start-page: 242
  year: 2022
  ident: 5817_CR6
  publication-title: Eng Life Sci
  doi: 10.1002/elsc.202100108
– volume: 29
  start-page: 1823
  year: 2013
  ident: 5817_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt291
– volume: 1
  start-page: 297
  year: 1986
  ident: 5817_CR39
  publication-title: Stat Sci
– volume: 171
  start-page: 100
  year: 2014
  ident: 5817_CR10
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2013.11.019
– ident: 5817_CR28
  doi: 10.1101/2023.04.29.538831
– volume: 10
  start-page: 933
  year: 2020
  ident: 5817_CR4
  publication-title: G3
  doi: 10.1534/g3.119.400898
– volume: 18
  start-page: 607
  year: 2021
  ident: 5817_CR11
  publication-title: Foodborne Pathog Dis
  doi: 10.1089/fpd.2020.2919
– volume: 107
  start-page: 1
  issue: 1
  year: 2023
  ident: 5817_CR16
  publication-title: J Stat Softw
  doi: 10.18637/jss.v107.i01
– volume: 36
  start-page: 1627
  year: 1964
  ident: 5817_CR36
  publication-title: Anal Chem
  doi: 10.1021/ac60214a047
– volume: 94
  start-page: 137
  year: 2004
  ident: 5817_CR44
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2004.01.006
– volume: 11
  start-page: 141
  year: 2010
  ident: 5817_CR23
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-141
– ident: 5817_CR33
– volume: 39
  start-page: btad733
  year: 2023
  ident: 5817_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad733
– volume: 73
  start-page: 3
  year: 2011
  ident: 5817_CR42
  publication-title: J R Stat Soc B
  doi: 10.1111/j.1467-9868.2010.00749.x
– volume: 10
  year: 2015
  ident: 5817_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0119807
– volume: 10
  start-page: 617
  year: 2017
  ident: 5817_CR27
  publication-title: BMC Res Notes
  doi: 10.1186/s13104-017-2945-6
– volume: 11
  start-page: 1313500
  year: 2024
  ident: 5817_CR48
  publication-title: Front Ecol Evolut.
  doi: 10.3389/fevo.2023.1313500
– ident: 5817_CR13
  doi: 10.1101/695676
– volume: 1
  start-page: 106
  year: 2016
  ident: 5817_CR2
  publication-title: The J Open Source Softw
  doi: 10.21105/joss.00106
– ident: 5817_CR35
– volume: 83
  start-page: 596
  year: 1988
  ident: 5817_CR37
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1988.10478639
– volume: 244
  start-page: 511
  year: 2007
  ident: 5817_CR45
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2006.08.017
– start-page: 123
  volume-title: Environmental microbiology: methods and protocols
  year: 2014
  ident: 5817_CR46
  doi: 10.1007/978-1-62703-712-9_10
– ident: 5817_CR41
  doi: 10.1201/9781315370279
– volume: 3
  start-page: 1
  year: 2016
  ident: 5817_CR18
  publication-title: F1000Research
  doi: 10.12688/f1000research.5140.2
– volume: 25
  start-page: 67
  year: 2024
  ident: 5817_CR19
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-024-05692-y
– volume: 65
  start-page: 95
  year: 2003
  ident: 5817_CR40
  publication-title: J R Stat Soc B
  doi: 10.1111/1467-9868.00374
SSID ssj0017805
Score 2.540603
Snippet Background Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput...
Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput microbial growth...
Background Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput...
BackgroundCharacterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of high-throughput...
Abstract Background Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can automate collection of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 232
SubjectTerms Algorithms
Applications software
Bacteria
Bioinformatics
Biomedical and Life Sciences
Carrying capacity
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data Analysis
Design
Diauxie
Doubling time
Electronic data processing
Growth
Growth curve
Growth curves
Growth rate
Imports
Lag time
Life Sciences
Mathematics
Metadata
Methods
Microarrays
Microbiological research
Microbiology
Microorganisms
Population growth
R (Programming language)
Software
Statistical analysis
Technology application
Visualization
Visualization (Computers)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFH9IUfAirZ-xrUQRPGho5iszI_RQxaKXIlWht2FmdrJdWrNls1vof983k2RtKurFa-YNJL-8T-bN7wG8ppypgC4RTVzTgsugC6UnvLBcCGFl5Jjqhk3IoyN1cqK_3hj1FXvCOnrgDri9ijFbckyqqcNSTgrLAidOeCecqyuReD4x6xmKqf78IDL1D1dkVLXXksjTVmA8Kkqh0C-zURhKbP2_--QbQel2w-StU9MUjA434UGfReYH3dtvwZ3QPIR73VzJq0ewP_UX51eL97lt8uMcq-Iz9Bo5pqf5z1kiXsK9U6y_l6e5Xy0uQx77RFG44yd5DD8OP33_-Lno5yQUHquHZWGJdhNGLQ_EJj78CanRLpmXAbMXTwMXOjgM_LIqETLqaS1YVdXKKV9pJtgT2GjmTXgGuSaqlLWjlXO4S3CnlbMiUDehtnTKZUAG2IzvScTjLItzk4oJVZkOaoNQmwS1YRm8Xe-56Cg0_ir9If6NtWSkv04PUClMrxTmX0qRwav4L00kuGhiB83UrtrWfPl2bA5UPHyU6NkyeNML1XP8Bm_7CwmIROTEGknujCTRAv14eVAZ03uA1qDv1AQjv5AZvFwvx52xq60J81WSkZifc00zeNpp2Pq7MZFUmE7hihrp3giY8UozO0384CSmyYzpDN4Navrrvf6M_PP_gfw23KfJzGRR6h3YWC5WYRfu-svlrF28SEZ6DdCMOIc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BAYkX7iNQUEBIPEDUxEdsI_FQEBW8VGgLqG-W7XW2K0q2SnYr9d8zdg5IOSR4Xc-s1rNzfCOPPwM8I4xKjykRQ1yRjAmvMqnmLDOMc25E4JjqHpsQ-_vy8FB97C-FtcO0-3AkGTN1DGtZ7rRF4FrLsKZkOZeYW-lFuITlToZwnB18Gc8OAkv_cD3mt3qTEhSZ-n_Nxz8VpPPDkudOTGMh2rv-f1u4Add64Jnudp5yEy74-hZc6Z6iPLsNrxfu5PiseZWaOp2l2Eh_xUSTIqJNvy0jVxPqLrBlXx-lbtOc-jSMlqJwR2lyBz7vvfv09n3WP62QOWw41pkplJ1TYpgvTKTQnxcVhjJ1wiPgccQzrrxFrCDKvCo5caTitCwraaUrFeX0LmzVq9rfh1QVMheVJaW1qMWZVdIa7omdE5NbaRMoBmtr1_OOh-cvjnXsP2SpO7NoNIuOZtE0gRejzknHuvFX6TfhTxwlA2N2_GDVLHQfgLqk1OQMmzNicywO3FDPCsud5dbiDvFLngYX0IETow5DNwuzaVv94WCmd2U4rxSYDBN43gtVK9yDM_0dBrREoNGaSG5PJDFo3XR58DTdJ41WY7pVBYIFLhJ4Mi4HzTAIV_vVJsoIhPRMkQTudY457huxp0QEhity4rITw0xX6uVRpBQvArKmVCXwcvDcH7_rz5Z_8G_iD-Eqic4vslxtw9a62fhHcNmdrpdt8zhG8Xdo4z2e
  priority: 102
  providerName: Springer Nature
Title gcplyr: an R package for microbial growth curve data analysis
URI https://link.springer.com/article/10.1186/s12859-024-05817-3
https://www.ncbi.nlm.nih.gov/pubmed/38982382
https://www.proquest.com/docview/3079147157
https://www.proquest.com/docview/3077991492
https://pubmed.ncbi.nlm.nih.gov/PMC11232339
https://doaj.org/article/633a047532b04675a3e41b5cb5bbf653
Volume 25
WOSCitedRecordID wos001268205500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYBhIc-BgwAqMKCIkDREvsOLaRENrQJia0KuoAFS6W7TpdtZGWpp20_55nJ83IELtwiZT4OYr9Pm2__B5Cr3BKuAWTCCoucJQyKyIuRmmkUkqpYg5jqi42wfp9PhyKvNlwq5q0ypVN9IZ6NDVuj3wHZFEkYEkp-zD7FbmqUe50tSmhsYY2EowTJ-efWdSeIji8_tWPMjzbqRKH1haBV4piysE6k44z8pj9f1vmP1zT1bTJK2en3iUd3PvfwdxHd5tgNNytpecBumHLTXSrLk95sYnuHLWYrtVD9H5sZmcX83ehKsNBCEvtUzBFIcS84c-JR3OCN41hUb84Cc1yfm5Dl3wKxDXoySP09WD_y8dPUVN8ITKwJFlEKhF6RLBKbaI8yP4oKUDZiWEWQiKDbUqF1RBNsCwuMooNLijJsoJrbjJBKHmM1stpaZ-gUCQ8ZoXGmdbQi6ZacK2oxXqEVay5DlCy4oI0DTK5K5BxJv0KhWey5pwEzknPOUkC9KbtM6txOa6l3nPMbSkdprZ_MJ2PZaOiMiNExSks37COwX1QRWyaaGo01RpGCC956URDOtSM0qXljNWyquTh8UDucneiycBcBuh1Q1RMYQxGNX85wEw4oK0O5XaHEtTadJtXoiMbs1LJS7kJ0Iu22fV0qXKlnS49DYOgPxU4QFu1wLbjhuiUQ4wGLbwjyp2J6baUkxMPOp642JsQEaC3K6m__K5_z_zT64fxDN3GXh9ZFItttL6YL-1zdNOcLybVvIfW2JD5K--hjb39fj7o-U2TntfznkvUzeGa0x_Qnh8e5d_hbnD87Tf1w1TS
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAgIOPMorUCAgEAeImjhxbCNVqDyqrratUClSb8b2OtsVJVmS3Vb7p_iNjJ1HSRG99cB1PY52nJlvxvH4G4Re4CRmBiARXJzjIKGGB4yPkkAmhBBJLcdU3WyC7u6ygwP-eQn9au_C2LLKFhMdUI8Kbb-Rr4Et8giQlNB305-B7RplT1fbFhq1WQzN4gS2bNX64CO835cYb37a_7AVNF0FAg259iyQEVejGMvERNKxx4-iDKw41tRArNfYJIQbBWGSpmGWEqxxRuI0zZhiOuWuSwRA_iXQkVqu_iENulML2x-gvZjD0rUqsuxwAUTBICQMokHcC36uR8DfkeCPUHi2TPPMWa0LgZs3_7fFu4VuNMm2v1F7x220ZPIVdKVuv7lYQdd3Os7a6g5aH-vp0aJ868vc3_OnUn8HqPUhp_d_TBxbFTxpXBYns0Nfz8tj49viWhCuSV3uoq8Xosk9tJwXuXmAfB6xkGYKp0rBLJIozpQkBqsRlqFiykNR-9aFbpjXbQOQI-F2YCwVtaUIsBThLEXEHnrdzZnWvCPnSr-3xtRJWs5w90NRjkUDQSKNYxkmsD3FKoTwSGRskkgRrYhSoCE85Lk1RWFZQXJbdjSW86oSgy97YoPZE1sK4cBDrxqhrAAdtGxuccBKWCKxnuRqTxJgS_eHW1MVDWxW4tROPfSsG7YzbSlgboq5k6GwqUk49tD92kE6vSH7ZpCDwgjruU5vYfoj-eTQkapHdm8Rx9xDb1ovO_1f_175h-er8RRd3drf2Rbbg93hI3QNOyygQchX0fKsnJvH6LI-nk2q8olDEh99u2jv-w2kLqZF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagHOKF-wgUCAiJB4ia-IhtJB7KsaICraoWUN8s2-tsV5TsKslW6r9n7Bw05ZAQr_FMFE_mlMffIPQMUyIcuEQwcYkTyp1MhJzRRFPGmOYeY6odNsGnU3FwIHdP3eIP3e79kWR7p8GjNJXN1mpWtCYu8q0687hrCcSXJGUC_Cw5jy5QPzTI1-v7X4dzBI_Y31-V-S3fKBwF1P5fffOp4HS2cfLM6WkISpNr_7-d6-hql5DG260G3UDnXHkTXWpHVJ7cQq_ndnV0Ur2KdRnvxVBgfwMHFEOmG39fBAwn4J1DKd8cxnZdHbvYt5wCcQt1cht9mbz__PZD0o1cSCwUIk2iM2lmBGvqMh2g9WdZASZOLHeQCFnsKJPOQA7B87TIGba4YCTPC2GEzSVh5A7aKJelu4dimYmUFwbnxgAXo0YKo5nDZoZ1aoSJUNZLXtkOj9yPxThSoS4RuWrFokAsKohFkQi9GHhWLRrHX6nf-B86UHok7fBgWc1VZ5gqJ0SnFIo2bFIIGkwTRzPDrGHGwA7hJU-9OiiPlVH6Zpy5Xte12tnfU9vCn2NycJIRet4RFUvYg9Xd3QaQhIfXGlFujijBmO14udc61TmTWoEblhkkEYxH6Mmw7Dl9g1zplutAwyHVpxJH6G6rpMO-IScVkJnBihip70gw45VycRigxjOfcRMiI_Sy1-Kf3_Vnyd__N_LH6PLuu4n6tDP9-ABdwcEOeJLKTbTRVGv3EF20x82irh4F4_4B_VZJZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=gcplyr%3A+an+R+package+for+microbial+growth+curve+data+analysis&rft.jtitle=BMC+bioinformatics&rft.au=Blazanin%2C+Michael&rft.date=2024-07-09&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=25&rft.issue=1&rft.spage=232&rft_id=info:doi/10.1186%2Fs12859-024-05817-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon