West Nile virus host-vector-pathogen interactions in a colonial raptor
Background Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case study conducted on red-footed falcons, where host-vector, vector-virus and h...
Saved in:
| Published in: | Parasites & vectors Vol. 10; no. 1; p. 449 |
|---|---|
| Main Authors: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
29.09.2017
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects: | |
| ISSN: | 1756-3305, 1756-3305 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case study conducted on red-footed falcons, where host-vector, vector-virus and host-virus interactions were simultaneously studied to evaluate host species contribution to WNV circulation qualitatively.
Results
Mosquitoes were trapped inside red-footed falcon nest-boxes by a method originally developed for the capture of blackflies and midges. We showed that this approach is also efficient for trapping mosquitoes and that the number of trapped vectors is a function of host attraction. Brood size and nestling age had a positive effect on the number of attracted
Culex pipiens
individuals while the blood-feeding success rate of both dominant
Culex
species (
Culex pipiens
and
Culex modestus
) markedly decreased after the nestlings reached 14 days of age. Using RT-PCR, we showed that WNV was present in these mosquitoes with 4.2% (CI: 0.9–7.5%) prevalence. We did not detect WNV in any of the nestling blood samples. However, a relatively high seroprevalence (25.4% CI: 18.8–33.2%) was detected with an enzyme-linked immunoabsorbent assay (ELISA). Using the ELISA OD ratios as a proxy to antibody titers, we showed that older seropositive nestlings have lower antibody levels than their younger conspecifics and that hatching order negatively influences antibody levels in broods with seropositive nestlings.
Conclusions
Red-footed falcons in the studied system are exposed to a local sylvatic WNV circulation, and the risk of infection is higher for younger nestlings. However, the lack of individuals with viremia and the high WNV seroprevalence, indicate that either host has a very short viremic period or that a large percentage of nestlings in the population receive maternal antibodies. This latter assumption is supported by the age and hatching order dependence of antibody levels found for seropositive nestlings. Considering the temporal pattern in mosquito feeding success, maternal immunity may be effective in protecting progeny against WNV infection despite the short antibody half-life measured in various other species. We conclude that red-footed falcons seem to have low WNV host competence and are unlikely to be effective virus reservoirs in the studied region. |
|---|---|
| AbstractList | Abstract Background Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case study conducted on red-footed falcons, where host-vector, vector-virus and host-virus interactions were simultaneously studied to evaluate host species contribution to WNV circulation qualitatively. Results Mosquitoes were trapped inside red-footed falcon nest-boxes by a method originally developed for the capture of blackflies and midges. We showed that this approach is also efficient for trapping mosquitoes and that the number of trapped vectors is a function of host attraction. Brood size and nestling age had a positive effect on the number of attracted Culex pipiens individuals while the blood-feeding success rate of both dominant Culex species (Culex pipiens and Culex modestus) markedly decreased after the nestlings reached 14 days of age. Using RT-PCR, we showed that WNV was present in these mosquitoes with 4.2% (CI: 0.9–7.5%) prevalence. We did not detect WNV in any of the nestling blood samples. However, a relatively high seroprevalence (25.4% CI: 18.8–33.2%) was detected with an enzyme-linked immunoabsorbent assay (ELISA). Using the ELISA OD ratios as a proxy to antibody titers, we showed that older seropositive nestlings have lower antibody levels than their younger conspecifics and that hatching order negatively influences antibody levels in broods with seropositive nestlings. Conclusions Red-footed falcons in the studied system are exposed to a local sylvatic WNV circulation, and the risk of infection is higher for younger nestlings. However, the lack of individuals with viremia and the high WNV seroprevalence, indicate that either host has a very short viremic period or that a large percentage of nestlings in the population receive maternal antibodies. This latter assumption is supported by the age and hatching order dependence of antibody levels found for seropositive nestlings. Considering the temporal pattern in mosquito feeding success, maternal immunity may be effective in protecting progeny against WNV infection despite the short antibody half-life measured in various other species. We conclude that red-footed falcons seem to have low WNV host competence and are unlikely to be effective virus reservoirs in the studied region. Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case study conducted on red-footed falcons, where host-vector, vector-virus and host-virus interactions were simultaneously studied to evaluate host species contribution to WNV circulation qualitatively.BACKGROUNDAvian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case study conducted on red-footed falcons, where host-vector, vector-virus and host-virus interactions were simultaneously studied to evaluate host species contribution to WNV circulation qualitatively.Mosquitoes were trapped inside red-footed falcon nest-boxes by a method originally developed for the capture of blackflies and midges. We showed that this approach is also efficient for trapping mosquitoes and that the number of trapped vectors is a function of host attraction. Brood size and nestling age had a positive effect on the number of attracted Culex pipiens individuals while the blood-feeding success rate of both dominant Culex species (Culex pipiens and Culex modestus) markedly decreased after the nestlings reached 14 days of age. Using RT-PCR, we showed that WNV was present in these mosquitoes with 4.2% (CI: 0.9-7.5%) prevalence. We did not detect WNV in any of the nestling blood samples. However, a relatively high seroprevalence (25.4% CI: 18.8-33.2%) was detected with an enzyme-linked immunoabsorbent assay (ELISA). Using the ELISA OD ratios as a proxy to antibody titers, we showed that older seropositive nestlings have lower antibody levels than their younger conspecifics and that hatching order negatively influences antibody levels in broods with seropositive nestlings.RESULTSMosquitoes were trapped inside red-footed falcon nest-boxes by a method originally developed for the capture of blackflies and midges. We showed that this approach is also efficient for trapping mosquitoes and that the number of trapped vectors is a function of host attraction. Brood size and nestling age had a positive effect on the number of attracted Culex pipiens individuals while the blood-feeding success rate of both dominant Culex species (Culex pipiens and Culex modestus) markedly decreased after the nestlings reached 14 days of age. Using RT-PCR, we showed that WNV was present in these mosquitoes with 4.2% (CI: 0.9-7.5%) prevalence. We did not detect WNV in any of the nestling blood samples. However, a relatively high seroprevalence (25.4% CI: 18.8-33.2%) was detected with an enzyme-linked immunoabsorbent assay (ELISA). Using the ELISA OD ratios as a proxy to antibody titers, we showed that older seropositive nestlings have lower antibody levels than their younger conspecifics and that hatching order negatively influences antibody levels in broods with seropositive nestlings.Red-footed falcons in the studied system are exposed to a local sylvatic WNV circulation, and the risk of infection is higher for younger nestlings. However, the lack of individuals with viremia and the high WNV seroprevalence, indicate that either host has a very short viremic period or that a large percentage of nestlings in the population receive maternal antibodies. This latter assumption is supported by the age and hatching order dependence of antibody levels found for seropositive nestlings. Considering the temporal pattern in mosquito feeding success, maternal immunity may be effective in protecting progeny against WNV infection despite the short antibody half-life measured in various other species. We conclude that red-footed falcons seem to have low WNV host competence and are unlikely to be effective virus reservoirs in the studied region.CONCLUSIONSRed-footed falcons in the studied system are exposed to a local sylvatic WNV circulation, and the risk of infection is higher for younger nestlings. However, the lack of individuals with viremia and the high WNV seroprevalence, indicate that either host has a very short viremic period or that a large percentage of nestlings in the population receive maternal antibodies. This latter assumption is supported by the age and hatching order dependence of antibody levels found for seropositive nestlings. Considering the temporal pattern in mosquito feeding success, maternal immunity may be effective in protecting progeny against WNV infection despite the short antibody half-life measured in various other species. We conclude that red-footed falcons seem to have low WNV host competence and are unlikely to be effective virus reservoirs in the studied region. BACKGROUND: Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case study conducted on red-footed falcons, where host-vector, vector-virus and host-virus interactions were simultaneously studied to evaluate host species contribution to WNV circulation qualitatively. RESULTS: Mosquitoes were trapped inside red-footed falcon nest-boxes by a method originally developed for the capture of blackflies and midges. We showed that this approach is also efficient for trapping mosquitoes and that the number of trapped vectors is a function of host attraction. Brood size and nestling age had a positive effect on the number of attracted Culex pipiens individuals while the blood-feeding success rate of both dominant Culex species (Culex pipiens and Culex modestus) markedly decreased after the nestlings reached 14 days of age. Using RT-PCR, we showed that WNV was present in these mosquitoes with 4.2% (CI: 0.9–7.5%) prevalence. We did not detect WNV in any of the nestling blood samples. However, a relatively high seroprevalence (25.4% CI: 18.8–33.2%) was detected with an enzyme-linked immunoabsorbent assay (ELISA). Using the ELISA OD ratios as a proxy to antibody titers, we showed that older seropositive nestlings have lower antibody levels than their younger conspecifics and that hatching order negatively influences antibody levels in broods with seropositive nestlings. CONCLUSIONS: Red-footed falcons in the studied system are exposed to a local sylvatic WNV circulation, and the risk of infection is higher for younger nestlings. However, the lack of individuals with viremia and the high WNV seroprevalence, indicate that either host has a very short viremic period or that a large percentage of nestlings in the population receive maternal antibodies. This latter assumption is supported by the age and hatching order dependence of antibody levels found for seropositive nestlings. Considering the temporal pattern in mosquito feeding success, maternal immunity may be effective in protecting progeny against WNV infection despite the short antibody half-life measured in various other species. We conclude that red-footed falcons seem to have low WNV host competence and are unlikely to be effective virus reservoirs in the studied region. Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case study conducted on red-footed falcons, where host-vector, vector-virus and host-virus interactions were simultaneously studied to evaluate host species contribution to WNV circulation qualitatively. Mosquitoes were trapped inside red-footed falcon nest-boxes by a method originally developed for the capture of blackflies and midges. We showed that this approach is also efficient for trapping mosquitoes and that the number of trapped vectors is a function of host attraction. Brood size and nestling age had a positive effect on the number of attracted Culex pipiens individuals while the blood-feeding success rate of both dominant Culex species (Culex pipiens and Culex modestus) markedly decreased after the nestlings reached 14 days of age. Using RT-PCR, we showed that WNV was present in these mosquitoes with 4.2% (CI: 0.9-7.5%) prevalence. We did not detect WNV in any of the nestling blood samples. However, a relatively high seroprevalence (25.4% CI: 18.8-33.2%) was detected with an enzyme-linked immunoabsorbent assay (ELISA). Using the ELISA OD ratios as a proxy to antibody titers, we showed that older seropositive nestlings have lower antibody levels than their younger conspecifics and that hatching order negatively influences antibody levels in broods with seropositive nestlings. Red-footed falcons in the studied system are exposed to a local sylvatic WNV circulation, and the risk of infection is higher for younger nestlings. However, the lack of individuals with viremia and the high WNV seroprevalence, indicate that either host has a very short viremic period or that a large percentage of nestlings in the population receive maternal antibodies. This latter assumption is supported by the age and hatching order dependence of antibody levels found for seropositive nestlings. Considering the temporal pattern in mosquito feeding success, maternal immunity may be effective in protecting progeny against WNV infection despite the short antibody half-life measured in various other species. We conclude that red-footed falcons seem to have low WNV host competence and are unlikely to be effective virus reservoirs in the studied region. Background Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case study conducted on red-footed falcons, where host-vector, vector-virus and host-virus interactions were simultaneously studied to evaluate host species contribution to WNV circulation qualitatively. Results Mosquitoes were trapped inside red-footed falcon nest-boxes by a method originally developed for the capture of blackflies and midges. We showed that this approach is also efficient for trapping mosquitoes and that the number of trapped vectors is a function of host attraction. Brood size and nestling age had a positive effect on the number of attracted Culex pipiens individuals while the blood-feeding success rate of both dominant Culex species ( Culex pipiens and Culex modestus ) markedly decreased after the nestlings reached 14 days of age. Using RT-PCR, we showed that WNV was present in these mosquitoes with 4.2% (CI: 0.9–7.5%) prevalence. We did not detect WNV in any of the nestling blood samples. However, a relatively high seroprevalence (25.4% CI: 18.8–33.2%) was detected with an enzyme-linked immunoabsorbent assay (ELISA). Using the ELISA OD ratios as a proxy to antibody titers, we showed that older seropositive nestlings have lower antibody levels than their younger conspecifics and that hatching order negatively influences antibody levels in broods with seropositive nestlings. Conclusions Red-footed falcons in the studied system are exposed to a local sylvatic WNV circulation, and the risk of infection is higher for younger nestlings. However, the lack of individuals with viremia and the high WNV seroprevalence, indicate that either host has a very short viremic period or that a large percentage of nestlings in the population receive maternal antibodies. This latter assumption is supported by the age and hatching order dependence of antibody levels found for seropositive nestlings. Considering the temporal pattern in mosquito feeding success, maternal immunity may be effective in protecting progeny against WNV infection despite the short antibody half-life measured in various other species. We conclude that red-footed falcons seem to have low WNV host competence and are unlikely to be effective virus reservoirs in the studied region. |
| ArticleNumber | 449 |
| Audience | Academic |
| Author | Dán, Ádám Horváth, Éva Erdélyi, Károly Kotymán, László Papp, László Barna, Mónika Palatitz, Péter Szentpáli-Gavallér, Katalin Fehérvári, Péter Soltész, Zoltán Bakonyi, Tamás Harnos, Andrea Solt, Szabolcs |
| Author_xml | – sequence: 1 givenname: Zoltán orcidid: 0000-0003-3423-9258 surname: Soltész fullname: Soltész, Zoltán email: soltesz@entomologia.hu, soltesz.zoltan@okologia.mta.hu organization: Lendület Ecosystem Services Research Group, MTA Centre for Ecological Research, Hungarian Natural History Museum – sequence: 2 givenname: Károly surname: Erdélyi fullname: Erdélyi, Károly organization: National Food Chain Safety Office, Veterinary Diagnostic Directorate – sequence: 3 givenname: Tamás surname: Bakonyi fullname: Bakonyi, Tamás organization: Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine – sequence: 4 givenname: Mónika surname: Barna fullname: Barna, Mónika organization: Department of Microbiology and Infectious Diseases, University of Veterinary Medicine – sequence: 5 givenname: Katalin surname: Szentpáli-Gavallér fullname: Szentpáli-Gavallér, Katalin organization: National Food Chain Safety Office, Veterinary Diagnostic Directorate – sequence: 6 givenname: Szabolcs surname: Solt fullname: Solt, Szabolcs organization: MME/BirdLife Hungary, Red-footed Falcon Conservation Working Group – sequence: 7 givenname: Éva surname: Horváth fullname: Horváth, Éva organization: MME/BirdLife Hungary, Red-footed Falcon Conservation Working Group – sequence: 8 givenname: Péter surname: Palatitz fullname: Palatitz, Péter organization: MME/BirdLife Hungary, Red-footed Falcon Conservation Working Group – sequence: 9 givenname: László surname: Kotymán fullname: Kotymán, László organization: Körös-Maros National Park Directorate – sequence: 10 givenname: Ádám surname: Dán fullname: Dán, Ádám organization: National Food Chain Safety Office, Veterinary Diagnostic Directorate – sequence: 11 givenname: László surname: Papp fullname: Papp, László organization: Hungarian Academy of Sciences, Biological Section – sequence: 12 givenname: Andrea surname: Harnos fullname: Harnos, Andrea organization: Department of Biomathematics and Informatics, University of Veterinary Medicine – sequence: 13 givenname: Péter surname: Fehérvári fullname: Fehérvári, Péter organization: Hungarian Natural History Museum, Department of Biomathematics and Informatics, University of Veterinary Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28962629$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkstu1DAUhiNURC_wAGxQJDZ0keJL7NgbpKqiZaQKJC5iaTkeJ-NRxh5sZwR9Gp6FJ-NMU6qZSoCycBx__59zjv_j4sAHb4viOUZnGAv-OmGKGlwh3FSEyrq6eVQc4YbxilLEDnbeD4vjlJYIcSQZf1IcEiE54UQeFVdfbcq_fr53gy03Lo6pXISUq401OcRqrfMi9NaXzmcbtcku-ASbUpcmDME7PZRRrwF9Wjzu9JDss7v1pPhy-fbzxbvq-sPV7OL8ujK8JrmSVugWE8sF1RKhxghKKEItQ1rgpuacdrVFBHWaYN7aDlozsuM1bgSRhrX0pJhNvvOgl2od3UrHHypop24_hNgrHbMzg1UC1Z2soWFqWY0xa40mTFArGy26DnPwejN5rcd2ZefG-hz1sGe6f-LdQvVhoxgnhGECBq_uDGL4NsIg1colY4dBexvGpAjC0AumnP8XxbJmhFCOBKAvH6DLMEYPU91SDeeSYgnU2UT1Gnp1vgtQooFnblfOQE46uFJ1zlAjESW3xZ7uCYDJ9nvu9ZiSmn36uM--2J3M_Uj-5AYAPAEmhpSi7e4RjNQ2m2rKpoILVNtsqhvQNA80xmW9jRRU7oZ_KsmkTPAX39u4M5G_in4DANL14A |
| CitedBy_id | crossref_primary_10_1111_tbed_14113 crossref_primary_10_1111_zph_12532 crossref_primary_10_3390_zoonoticdis5020011 crossref_primary_10_1186_s13071_023_05997_6 crossref_primary_10_3390_v14112551 crossref_primary_10_3390_vaccines8030550 |
| Cites_doi | 10.1111/izy.12031 10.4269/ajtmh.2007.76.310 10.4269/ajtmh.12-0408 10.1186/1756-3305-3-19 10.3390/v6020752 10.1128/IAI.01585-07 10.1186/1756-3305-6-129 10.1155/2015/376230 10.1098/rspb.2006.3575 10.4269/ajtmh.2009.80.268 10.1016/j.vetmic.2013.03.005 10.3201/eid1204.051379 10.3201/eid0704.017427 10.4269/ajtmh.2010.10-0048 10.1080/00207230802259691 10.3201/eid0704.017413 10.1603/ME10002 10.1089/vbz.2013.1549 10.1642/0004-8038(2007)124[1121:EOWNVT]2.0.CO;2 10.1016/S1473-3099(02)00368-7 10.18637/jss.v069.i01 10.1093/jmedent/43.3.594 10.1086/521911 10.3201/eid0704.017415 10.3201/eid0903.020628 10.1126/science.286.5448.2333 10.1089/vbz.2008.0042 10.18637/jss.v067.i01 10.1637/7509-012606R1.1 10.1007/978-1-4419-0318-1 10.4269/ajtmh.2008.79.283 10.1515/orhu-2015-0001 10.1007/s00705-004-0463-z 10.1515/orhu-2015-0007 10.1016/j.anbehav.2007.08.018 10.1146/annurev.med.57.121304.131418 10.1637/7335-012805R1.1 10.1046/j.1365-2915.1999.00163.x 10.1089/vbz.2007.0266 10.7589/2014-07-175 10.15666/aeer/0701_059069 10.4269/ajtmh.15-0809 10.3201/eid0812.020234 10.1128/IAI.74.1.257-264.2006 10.1016/j.vetmic.2012.07.041 10.1016/S0304-3800(99)00012-5 10.1038/nature05829 10.1089/vbz.2006.0586 10.1016/j.tree.2008.10.008 10.3201/eid0505.990506 10.1089/vim.2000.13.415 10.1186/s13071-016-1744-6 10.2807/1560-7917.ES2014.19.31.20867 10.1017/S1466252307001314 10.1016/j.biocon.2008.01.019 10.1641/0006-3568(2004)054[0393:WNVAW]2.0.CO;2 10.1089/vbz.2006.0602 10.1111/j.1469-1795.2012.00559.x 10.1186/s13071-016-1736-6 10.1515/orhu-2015-0006 10.1128/CDLI.12.5.665-667.2005 10.1089/vbz.2008.0147 10.1146/annurev.ento.53.103106.093258 10.1016/j.vetmic.2009.08.025 10.2478/orhu-2014-0009 10.1089/vbz.2007.0123 10.1515/orhu-2015-0003 10.1007/s10096-003-1085-1 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2017 COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 |
| Copyright_xml | – notice: The Author(s). 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7SN 7SS 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO F1W FYUFA GHDGH H95 K9. L.G M0S M1P M7N PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1186/s13071-017-2394-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Health Research Premium Collection Health Research Premium Collection (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Ecology Abstracts ProQuest Hospital Collection (Alumni) Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Zoology |
| EISSN | 1756-3305 |
| EndPage | 449 |
| ExternalDocumentID | oai_doaj_org_article_804f949563e54115bca2583e97a8ff16 PMC5622512 A507903212 28962629 10_1186_s13071_017_2394_z |
| Genre | Journal Article |
| GeographicLocations | Hungary North America |
| GeographicLocations_xml | – name: North America – name: Hungary |
| GrantInformation_xml | – fundername: University of Veterinary Medicine grantid: NKFI-120118 – fundername: ; grantid: NKFI-120118 |
| GroupedDBID | --- 0R~ 123 29O 2WC 2XV 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS ECGQY EJD EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR ISR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP ~8M AAYXX AFFHD CITATION -56 -5G -A0 -BR 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7SN 7SS 7XB 8FK AHSBF AZQEC C1K DWQXO F1W H95 K9. L.G M7N PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c642t-9e8ab12e683a9007c832300b50a8174663f4e020fa216bef017c9f6417829c5b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412089700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1756-3305 |
| IngestDate | Fri Oct 03 12:52:24 EDT 2025 Tue Nov 04 01:41:13 EST 2025 Thu Sep 04 18:57:34 EDT 2025 Thu Oct 02 11:32:11 EDT 2025 Sun Oct 19 01:34:30 EDT 2025 Tue Nov 04 17:45:07 EST 2025 Thu Nov 13 15:24:43 EST 2025 Thu Jan 02 23:10:06 EST 2025 Sat Nov 29 04:02:23 EST 2025 Tue Nov 18 21:41:36 EST 2025 Sat Sep 06 07:28:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Mosquito trap Transmission ecology Arthropod vector Antibody Culicidae Lineage 2 Passive immunity Host competence Falco vespertinus |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-9e8ab12e683a9007c832300b50a8174663f4e020fa216bef017c9f6417829c5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3423-9258 |
| OpenAccessLink | https://link.springer.com/10.1186/s13071-017-2394-z |
| PMID | 28962629 |
| PQID | 1947669319 |
| PQPubID | 55241 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_804f949563e54115bca2583e97a8ff16 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5622512 proquest_miscellaneous_2010201366 proquest_miscellaneous_1945223608 proquest_journals_1947669319 gale_infotracacademiconefile_A507903212 gale_incontextgauss_ISR_A507903212 pubmed_primary_28962629 crossref_primary_10_1186_s13071_017_2394_z crossref_citationtrail_10_1186_s13071_017_2394_z springer_journals_10_1186_s13071_017_2394_z |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-29 |
| PublicationDateYYYYMMDD | 2017-09-29 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Parasites & vectors |
| PublicationTitleAbbrev | Parasites Vectors |
| PublicationTitleAlternate | Parasit Vectors |
| PublicationYear | 2017 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | 2394_CR56 2394_CR11 SL LaDeau (2394_CR23) 2007; 447 I Victoriano Llopis (2394_CR38) 2016; 9 AM Kilpatrick (2394_CR35) 2007; 124 MA Dimenna (2394_CR69) 2006; 43 2394_CR59 NM Nemeth (2394_CR77) 2007; 76 2394_CR58 2394_CR13 2394_CR19 2394_CR18 EB Hayes (2394_CR3) 2006; 57 2394_CR17 MA Sovada (2394_CR34) 2008; 141 MKM van der (2394_CR16) 2005; 150 HG Zeller (2394_CR7) 2004; 23 G Tomás (2394_CR39) 2008; 75 K Erdélyi (2394_CR48) 2007; 7 JC Pinheiro (2394_CR51) 2000 U Ziegler (2394_CR72) 2013; 161 2394_CR6 2394_CR66 2394_CR9 2394_CR21 A Chaskopoulou (2394_CR45) 2016; 9 2394_CR20 2394_CR64 2394_CR27 2394_CR26 JE Tongren (2394_CR49) 2006; 74 2394_CR25 2394_CR24 2394_CR29 2394_CR28 C Cernescu (2394_CR10) 2008; 65 SE Gibbs (2394_CR75) 2005; 12 JJ Faraway (2394_CR55) 2006 KA Bernard (2394_CR68) 2001; 7 T Bakonyi (2394_CR8) 2006; 12 RS Lanciotti (2394_CR2) 1999; 286 FH Osier (2394_CR50) 2008; 76 P Fehérvári (2394_CR33) 2012; 15 H Wickham (2394_CR57) 2015; 1 2394_CR63 K Lebl (2394_CR44) 2013; 6 2394_CR61 I Rudolf (2394_CR12) 2014; 19 2394_CR60 J Fox (2394_CR62) 2003; 8 2394_CR32 2394_CR76 2394_CR37 EM McKee (2394_CR78) 2015; 51 2394_CR36 2394_CR79 D Bates (2394_CR53) 2015; 67 P Fehérvári (2394_CR41) 2015; 23 GL Campbell (2394_CR14) 2002; 2 LLM Messam (2394_CR54) 2008; 9 G Gibson (2394_CR65) 1999; 13 SC Trock (2394_CR15) 2001; 7 2394_CR70 Z Hubalek (2394_CR5) 2000; 13 2394_CR30 2394_CR71 WE Stout (2394_CR74) 2005; 49 2394_CR43 2394_CR42 JJ Purger (2394_CR31) 1999; 117 2394_CR46 TG Andreadis (2394_CR67) 2001; 7 N Komar (2394_CR73) 2003; 9 BM Bolker (2394_CR52) 2009; 24 NM Nemeth (2394_CR22) 2014; 48 H Weissenböck (2394_CR1) 2010; 140 DJ Gubler (2394_CR4) 2007; 45 2394_CR40 GL Hamer (2394_CR47) 2008; 8 12498650 - Emerg Infect Dis. 2002 Dec;8(12):1372-8 17507930 - Nature. 2007 Jun 7;447(7145):710-3 23530073 - Am J Trop Med Hyg. 2013 Jun;88(6):1152-8 17879923 - Clin Infect Dis. 2007 Oct 15;45(8):1039-46 16368979 - Infect Immun. 2006 Jan;74(1):257-64 11585530 - Emerg Infect Dis. 2001 Jul-Aug;7(4):670-4 24531334 - Viruses. 2014 Feb 13;6(2):752-81 23634763 - Parasit Vectors. 2013 May 02;6:129 18316390 - Infect Immun. 2008 May;76(5):2240-8 17627436 - Vector Borne Zoonotic Dis. 2007 Summer;7(2):181-8 16252490 - Avian Dis. 2005 Sep;49(3):371-5 16704810 - Emerg Infect Dis. 2006 Apr;12(4):618-23 16409144 - Annu Rev Med. 2006;57:181-94 19190226 - Am J Trop Med Hyg. 2009 Feb;80(2):268-78 15879030 - Clin Diagn Lab Immunol. 2005 May;12(5):665-7 16928635 - Proc Biol Sci. 2006 Sep 22;273(1599):2327-33 22909991 - Vet Microbiol. 2013 Jan 25;161(3-4):263-73 18759639 - Vector Borne Zoonotic Dis. 2009 Feb;9(1):13-8 11585543 - Emerg Infect Dis. 2001 Jul-Aug;7(4):745-7 20682889 - Am J Trop Med Hyg. 2010 Aug;83(2):395-9 19762169 - Vet Microbiol. 2010 Jan 27;140(3-4):271-80 27590848 - Parasit Vectors. 2016 Sep 02;9(1):482 25866777 - Biomed Res Int. 2015;2015:376230 19402766 - Vector Borne Zoonotic Dis. 2009 Dec;9(6):737-41 17297041 - Am J Trop Med Hyg. 2007 Feb;76(2):310-7 14986160 - Eur J Clin Microbiol Infect Dis. 2004 Mar;23(3):147-56 10511520 - Emerg Infect Dis. 1999 Sep-Oct;5(5):643-50 20302617 - Parasit Vectors. 2010 Mar 19;3(1):19 25138970 - Euro Surveill. 2014 Aug 07;19(31):2-5 27580694 - Parasit Vectors. 2016 Aug 31;9:479 15662484 - Arch Virol. 2005 Apr;150(4):637-57 18237262 - Vector Borne Zoonotic Dis. 2008 Spring;8(1):57-67 18346298 - Anim Health Res Rev. 2008 Jun;9(1):1-23 17767413 - Vector Borne Zoonotic Dis. 2007 Fall;7(3):365-86 12206968 - Lancet Infect Dis. 2002 Sep;2(9):519-29 10194745 - Med Vet Entomol. 1999 Feb;13(1):2-23 12643825 - Emerg Infect Dis. 2003 Mar;9(3):311-22 11585532 - Emerg Infect Dis. 2001 Jul-Aug;7(4):679-85 23570864 - Vet Microbiol. 2013 Jul 26;165(1-2):61-70 16739421 - J Med Entomol. 2006 May;43(3):594-9 18447623 - Vector Borne Zoonotic Dis. 2008 Oct;8(5):589-95 27503511 - Am J Trop Med Hyg. 2016 Nov 2;95(5):1174-1184 19185386 - Trends Ecol Evol. 2009 Mar;24(3):127-35 25229703 - Vector Borne Zoonotic Dis. 2014 Sep;14(9):648-55 21175073 - J Med Entomol. 2010 Nov;47(6):1205-11 10600742 - Science. 1999 Dec 17;286(5448):2333-7 11192288 - Viral Immunol. 2000;13(4):415-26 17645411 - Annu Rev Entomol. 2008;53:61-81 17039850 - Avian Dis. 2006 Sep;50(3):454-5 25919465 - J Wildl Dis. 2015 Jul;51(3):601-8 18689637 - Am J Trop Med Hyg. 2008 Aug;79(2):283-90 |
| References_xml | – volume: 48 start-page: 101 year: 2014 ident: 2394_CR22 publication-title: Int Zoo Yb doi: 10.1111/izy.12031 – volume: 76 start-page: 310 year: 2007 ident: 2394_CR77 publication-title: Am J Trop Med Hyg. doi: 10.4269/ajtmh.2007.76.310 – ident: 2394_CR37 doi: 10.4269/ajtmh.12-0408 – ident: 2394_CR46 doi: 10.1186/1756-3305-3-19 – ident: 2394_CR58 – ident: 2394_CR19 doi: 10.3390/v6020752 – volume: 76 start-page: 2240 year: 2008 ident: 2394_CR50 publication-title: Infect Immun doi: 10.1128/IAI.01585-07 – volume: 6 start-page: 129 year: 2013 ident: 2394_CR44 publication-title: Parasit Vectors doi: 10.1186/1756-3305-6-129 – ident: 2394_CR13 doi: 10.1155/2015/376230 – ident: 2394_CR24 doi: 10.1098/rspb.2006.3575 – ident: 2394_CR25 doi: 10.4269/ajtmh.2009.80.268 – ident: 2394_CR9 doi: 10.1016/j.vetmic.2013.03.005 – volume: 12 start-page: 618 year: 2006 ident: 2394_CR8 publication-title: Emerg Infect Dis doi: 10.3201/eid1204.051379 – volume: 7 start-page: 745 year: 2001 ident: 2394_CR15 publication-title: Emerg Infect Dis doi: 10.3201/eid0704.017427 – ident: 2394_CR66 doi: 10.4269/ajtmh.2010.10-0048 – volume: 65 start-page: 529 year: 2008 ident: 2394_CR10 publication-title: Int J Environ Studies doi: 10.1080/00207230802259691 – volume: 7 start-page: 670 year: 2001 ident: 2394_CR67 publication-title: Emerg Infect Dis doi: 10.3201/eid0704.017413 – ident: 2394_CR21 doi: 10.1603/ME10002 – ident: 2394_CR71 doi: 10.1089/vbz.2013.1549 – volume: 124 start-page: 1121 year: 2007 ident: 2394_CR35 publication-title: Auk doi: 10.1642/0004-8038(2007)124[1121:EOWNVT]2.0.CO;2 – ident: 2394_CR60 – volume: 2 start-page: 519 year: 2002 ident: 2394_CR14 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(02)00368-7 – ident: 2394_CR63 doi: 10.18637/jss.v069.i01 – volume: 43 start-page: 594 year: 2006 ident: 2394_CR69 publication-title: J Med Entomol doi: 10.1093/jmedent/43.3.594 – volume: 45 start-page: 1039 year: 2007 ident: 2394_CR4 publication-title: Clin Infect Dis doi: 10.1086/521911 – volume: 7 start-page: 679 year: 2001 ident: 2394_CR68 publication-title: Emerg Infect Dis doi: 10.3201/eid0704.017415 – volume: 9 start-page: 311 year: 2003 ident: 2394_CR73 publication-title: Emerg Infect Dis doi: 10.3201/eid0903.020628 – volume: 286 start-page: 2333 year: 1999 ident: 2394_CR2 publication-title: Science doi: 10.1126/science.286.5448.2333 – ident: 2394_CR36 doi: 10.1089/vbz.2008.0042 – volume: 67 start-page: 1 year: 2015 ident: 2394_CR53 publication-title: J Stat Softw doi: 10.18637/jss.v067.i01 – ident: 2394_CR76 doi: 10.1637/7509-012606R1.1 – volume-title: Mixed-effects models in S and S-PLUS year: 2000 ident: 2394_CR51 doi: 10.1007/978-1-4419-0318-1 – ident: 2394_CR79 doi: 10.4269/ajtmh.2008.79.283 – ident: 2394_CR40 doi: 10.1515/orhu-2015-0001 – volume: 150 start-page: 637 year: 2005 ident: 2394_CR16 publication-title: Arch Virol doi: 10.1007/s00705-004-0463-z – ident: 2394_CR28 doi: 10.1515/orhu-2015-0007 – volume: 75 start-page: 723 year: 2008 ident: 2394_CR39 publication-title: Anim Behav doi: 10.1016/j.anbehav.2007.08.018 – volume: 57 start-page: 181 year: 2006 ident: 2394_CR3 publication-title: Annu Rev Med doi: 10.1146/annurev.med.57.121304.131418 – volume: 49 start-page: 371 year: 2005 ident: 2394_CR74 publication-title: Avian Dis doi: 10.1637/7335-012805R1.1 – volume: 8 start-page: 1 year: 2003 ident: 2394_CR62 publication-title: J Stat Softw – volume: 13 start-page: 2 year: 1999 ident: 2394_CR65 publication-title: Med Vet Entomol doi: 10.1046/j.1365-2915.1999.00163.x – ident: 2394_CR64 doi: 10.1089/vbz.2007.0266 – volume: 51 start-page: 601 year: 2015 ident: 2394_CR78 publication-title: J Wild Dis doi: 10.7589/2014-07-175 – ident: 2394_CR32 doi: 10.15666/aeer/0701_059069 – ident: 2394_CR26 doi: 10.4269/ajtmh.15-0809 – ident: 2394_CR29 – ident: 2394_CR42 – ident: 2394_CR6 doi: 10.3201/eid0812.020234 – volume: 74 start-page: 257 year: 2006 ident: 2394_CR49 publication-title: Infect Immun doi: 10.1128/IAI.74.1.257-264.2006 – volume: 161 start-page: 263 year: 2013 ident: 2394_CR72 publication-title: Vet Microbiol doi: 10.1016/j.vetmic.2012.07.041 – volume: 117 start-page: 91 year: 1999 ident: 2394_CR31 publication-title: Ecol Model doi: 10.1016/S0304-3800(99)00012-5 – volume-title: Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models year: 2006 ident: 2394_CR55 – volume: 447 start-page: 710 year: 2007 ident: 2394_CR23 publication-title: Nature doi: 10.1038/nature05829 – ident: 2394_CR56 – volume: 7 start-page: 181 year: 2007 ident: 2394_CR48 publication-title: Vector Borne Zoonotic Dis. doi: 10.1089/vbz.2006.0586 – volume: 24 start-page: 127 year: 2009 ident: 2394_CR52 publication-title: Trends Ecol Evolut doi: 10.1016/j.tree.2008.10.008 – ident: 2394_CR20 doi: 10.3201/eid0505.990506 – volume: 1 start-page: 20 year: 2015 ident: 2394_CR57 publication-title: R package version 04 – ident: 2394_CR59 – volume: 13 start-page: 415 year: 2000 ident: 2394_CR5 publication-title: Viral Immunol doi: 10.1089/vim.2000.13.415 – volume: 9 start-page: 479 year: 2016 ident: 2394_CR38 publication-title: Parasit Vectors doi: 10.1186/s13071-016-1744-6 – volume: 19 start-page: 2 year: 2014 ident: 2394_CR12 publication-title: Euro Surveill doi: 10.2807/1560-7917.ES2014.19.31.20867 – volume: 9 start-page: 1 year: 2008 ident: 2394_CR54 publication-title: Anim Health Res Rev doi: 10.1017/S1466252307001314 – volume: 141 start-page: 1021 year: 2008 ident: 2394_CR34 publication-title: Biol Conserv doi: 10.1016/j.biocon.2008.01.019 – ident: 2394_CR17 doi: 10.1641/0006-3568(2004)054[0393:WNVAW]2.0.CO;2 – ident: 2394_CR70 doi: 10.1089/vbz.2006.0602 – volume: 15 start-page: 648 year: 2012 ident: 2394_CR33 publication-title: Anim Conserv doi: 10.1111/j.1469-1795.2012.00559.x – volume: 9 start-page: 482 year: 2016 ident: 2394_CR45 publication-title: Parasit Vectors doi: 10.1186/s13071-016-1736-6 – volume: 23 start-page: 66 year: 2015 ident: 2394_CR41 publication-title: Ornis Hungarica. doi: 10.1515/orhu-2015-0006 – volume: 12 start-page: 665 year: 2005 ident: 2394_CR75 publication-title: Clin Diagn Lab Immunol doi: 10.1128/CDLI.12.5.665-667.2005 – ident: 2394_CR11 doi: 10.1089/vbz.2008.0147 – ident: 2394_CR18 doi: 10.1146/annurev.ento.53.103106.093258 – volume: 140 start-page: 271 year: 2010 ident: 2394_CR1 publication-title: Vet Microbiol doi: 10.1016/j.vetmic.2009.08.025 – ident: 2394_CR30 doi: 10.2478/orhu-2014-0009 – volume: 8 start-page: 57 year: 2008 ident: 2394_CR47 publication-title: Vector Borne Zoonotic Dis. doi: 10.1089/vbz.2007.0123 – ident: 2394_CR43 doi: 10.1515/orhu-2015-0003 – volume: 23 start-page: 147 year: 2004 ident: 2394_CR7 publication-title: Eur J Clin Microbiol Infect Dis doi: 10.1007/s10096-003-1085-1 – ident: 2394_CR27 – ident: 2394_CR61 – reference: 27580694 - Parasit Vectors. 2016 Aug 31;9:479 – reference: 11192288 - Viral Immunol. 2000;13(4):415-26 – reference: 10600742 - Science. 1999 Dec 17;286(5448):2333-7 – reference: 17627436 - Vector Borne Zoonotic Dis. 2007 Summer;7(2):181-8 – reference: 23570864 - Vet Microbiol. 2013 Jul 26;165(1-2):61-70 – reference: 19402766 - Vector Borne Zoonotic Dis. 2009 Dec;9(6):737-41 – reference: 19762169 - Vet Microbiol. 2010 Jan 27;140(3-4):271-80 – reference: 11585532 - Emerg Infect Dis. 2001 Jul-Aug;7(4):679-85 – reference: 25919465 - J Wildl Dis. 2015 Jul;51(3):601-8 – reference: 16739421 - J Med Entomol. 2006 May;43(3):594-9 – reference: 20682889 - Am J Trop Med Hyg. 2010 Aug;83(2):395-9 – reference: 24531334 - Viruses. 2014 Feb 13;6(2):752-81 – reference: 19185386 - Trends Ecol Evol. 2009 Mar;24(3):127-35 – reference: 23634763 - Parasit Vectors. 2013 May 02;6:129 – reference: 23530073 - Am J Trop Med Hyg. 2013 Jun;88(6):1152-8 – reference: 12206968 - Lancet Infect Dis. 2002 Sep;2(9):519-29 – reference: 16704810 - Emerg Infect Dis. 2006 Apr;12(4):618-23 – reference: 18237262 - Vector Borne Zoonotic Dis. 2008 Spring;8(1):57-67 – reference: 25866777 - Biomed Res Int. 2015;2015:376230 – reference: 11585543 - Emerg Infect Dis. 2001 Jul-Aug;7(4):745-7 – reference: 17297041 - Am J Trop Med Hyg. 2007 Feb;76(2):310-7 – reference: 18346298 - Anim Health Res Rev. 2008 Jun;9(1):1-23 – reference: 11585530 - Emerg Infect Dis. 2001 Jul-Aug;7(4):670-4 – reference: 27590848 - Parasit Vectors. 2016 Sep 02;9(1):482 – reference: 21175073 - J Med Entomol. 2010 Nov;47(6):1205-11 – reference: 18759639 - Vector Borne Zoonotic Dis. 2009 Feb;9(1):13-8 – reference: 18689637 - Am J Trop Med Hyg. 2008 Aug;79(2):283-90 – reference: 18447623 - Vector Borne Zoonotic Dis. 2008 Oct;8(5):589-95 – reference: 18316390 - Infect Immun. 2008 May;76(5):2240-8 – reference: 10511520 - Emerg Infect Dis. 1999 Sep-Oct;5(5):643-50 – reference: 16409144 - Annu Rev Med. 2006;57:181-94 – reference: 14986160 - Eur J Clin Microbiol Infect Dis. 2004 Mar;23(3):147-56 – reference: 22909991 - Vet Microbiol. 2013 Jan 25;161(3-4):263-73 – reference: 10194745 - Med Vet Entomol. 1999 Feb;13(1):2-23 – reference: 15662484 - Arch Virol. 2005 Apr;150(4):637-57 – reference: 16928635 - Proc Biol Sci. 2006 Sep 22;273(1599):2327-33 – reference: 17039850 - Avian Dis. 2006 Sep;50(3):454-5 – reference: 17507930 - Nature. 2007 Jun 7;447(7145):710-3 – reference: 25138970 - Euro Surveill. 2014 Aug 07;19(31):2-5 – reference: 17767413 - Vector Borne Zoonotic Dis. 2007 Fall;7(3):365-86 – reference: 17879923 - Clin Infect Dis. 2007 Oct 15;45(8):1039-46 – reference: 16252490 - Avian Dis. 2005 Sep;49(3):371-5 – reference: 20302617 - Parasit Vectors. 2010 Mar 19;3(1):19 – reference: 17645411 - Annu Rev Entomol. 2008;53:61-81 – reference: 12643825 - Emerg Infect Dis. 2003 Mar;9(3):311-22 – reference: 19190226 - Am J Trop Med Hyg. 2009 Feb;80(2):268-78 – reference: 15879030 - Clin Diagn Lab Immunol. 2005 May;12(5):665-7 – reference: 12498650 - Emerg Infect Dis. 2002 Dec;8(12):1372-8 – reference: 25229703 - Vector Borne Zoonotic Dis. 2014 Sep;14(9):648-55 – reference: 27503511 - Am J Trop Med Hyg. 2016 Nov 2;95(5):1174-1184 – reference: 16368979 - Infect Immun. 2006 Jan;74(1):257-64 |
| SSID | ssj0060956 |
| Score | 2.1787627 |
| Snippet | Background
Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in... Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding... Background Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in... Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in understanding... BACKGROUND: Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is vital in... Abstract Background Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV), therefore identifying key taxa is... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 449 |
| SubjectTerms | Age Animals Antibodies Antibodies, Viral - blood Aquatic insects Arthropod vector Arthropods Biomedical and Life Sciences Biomedicine Bird Diseases - blood Bird Diseases - transmission Bird Diseases - virology Birds Birds of prey Blood Case studies Ceratopogonidae Conspecifics Culex - physiology Culex - virology Culex pipiens Culicidae Diptera Distribution DNA ELISA Entomology Enzyme-linked immunosorbent assay Epidemics Falconiformes - blood Falconiformes - virology falcons Feeding Feeding Behavior Female half life Hatching Health aspects Health risks hematophagy Host competence Host-Pathogen Interactions Host-virus relationships hosts Immunity Infections Infectious Diseases Insect Vectors - physiology Insect Vectors - virology Interactions Male maternal immunity Methods Mortality Mosquito trap Mosquitoes nest boxes Nucleotide sequence Offspring Parasitology Passive immunity PCR Polymerase chain reaction Progeny Ratios risk Seroepidemiologic Studies Serology seroprevalence Species Studies Taxa Transmission ecology Tropical Medicine Vectors Vectors (Biology) Veterinary Medicine/Veterinary Science Viremia Virology Viruses West Nile Fever - transmission West Nile Fever - veterinary West Nile Fever - virology West Nile virus West Nile virus - genetics West Nile virus - isolation & purification West Nile virus - physiology Wildlife conservation Zoonoses |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA6yKPgiut6q61JFEJSwaZumyeO67KogB_HG4ktI0mQ9IO3SnnMe9tf4W_xlzqQ9h9OV1Rcf205pMp3JfJPLN4Q8N96VLq8VdbaqKZcsgEtZSRl31guRsxCnsr--r2YzeXqqPmyV-sI9YQM98KC4A8l4UIjiC19ygC_WmbyUhVeVkSFkkWwbUM86mRrGYGRRE-MaZibFQQ8jdYVpc0WxFDi9mEShSNb_55C8FZMu75e8tGgaY9HJbXJrBJHp4dD4O-Sab3bJjW9tnCK_S95guZhfP2fg8Olq3i37FI9y0FWcoKdYg7gFs0mRKaIbzjX0cJGaFBmsGzDItDPnIHqPfDk5_nz0lo4FE6iDNGJBlZfGZrkXsjAKgr8Ddy0YsyUzEjIPABeBe8CHweSZsD6APpwKgmcAE5QrbXGf7DRt4x-SNFOhdpDL-RAsxnxjQl2XVtZccaR7TAhbK1C7kU0ci1r80DGrkEIPOtfwDY061xcJebl55Xyg0vib8Gv8KxtBZMGON8A29Ggb-l-2kZBn-E818lw0uJHmzCz7Xr_79FEfAg5WrIDAnZAXo1BooQfOjOcSQA9IjTWR3Fvbhh49vdeZ4pUQCkayhDzdPAYfxYUX0_h2GWUA5haCyatlcFdCjgR60OoHg7ltOg9JMeSdOXyhmhjiRDvTJ838e-QKB3iLCDYhr9Ymu9X0q5T_6H8o_zG5maPD4Qqe2iM7i27pn5DrbrWY991-dNffdx9BVQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgCxIX3o9AQQEhIYGs5unYJ9SirkBCq6o8VHGxbMcuK6FkSXb30F_PjOMs3aL2wjHJRIntmfE3Y_sbQl4ra0qT1YIaXdW04IkDk9KcJoXRlrEscT6V_f1zNZvxkxNxFBJufdhWOfpE76jr1mCOfA-C7YoxARrzfvGbYtUoXF0NJTSukx1kKismZOfgcHZ0PPpiZFNjYS0z5WyvB49dYfhcUSwJTs-2ZiNP2v-vaz43N13cN3lh8dTPSdM7_9uau-R2QKPx_qA-98g129wnN3-0Ptf-gEyx7kw8A8cRr-fdqo_xSAhd-0Q_xVrGLahfjIwT3XA-ooeLWMXIhN2AYsedWoDoQ_Jtevj1w0caCi9QA-HIkgrLlU4zy3iuBIAIA2afJ4kuE8UhggGQ4goLONOpLGXaOuhPIxwrUoAbwpQ6f0QmTdvYJyROhasNxITWOY3YQSlX16XmdSEKpI2MSDIOgDSBlRyLY_ySPjrhTA5jJuEbEsdMnkXk7eaVxUDJcZXwAY7qRhDZtP2NtjuVwTglTwonMFLMbVkARNZGZSXPragUdy5lEXmFOiGRL6PBDTmnatX38tOXY7kPeFokOQCAiLwJQq6FFhgVzjdAPyDF1pbk7qgUMniMXv7ViIi83DwGW8cFHNXYduVlAC7nLOGXy-DuhgyJ-OCvHw_qumk8BNcQv2bwhWpLkbd6Z_tJM__pOccBJiMSjsi7UeXP_fplnf_06oY-I7cyNEVc4xO7ZLLsVvY5uWHWy3nfvQim_AeHV1CF priority: 102 providerName: ProQuest |
| Title | West Nile virus host-vector-pathogen interactions in a colonial raptor |
| URI | https://link.springer.com/article/10.1186/s13071-017-2394-z https://www.ncbi.nlm.nih.gov/pubmed/28962629 https://www.proquest.com/docview/1947669319 https://www.proquest.com/docview/1945223608 https://www.proquest.com/docview/2010201366 https://pubmed.ncbi.nlm.nih.gov/PMC5622512 https://doaj.org/article/804f949563e54115bca2583e97a8ff16 |
| Volume | 10 |
| WOSCitedRecordID | wos000412089700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1756-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060956 issn: 1756-3305 databaseCode: RBZ dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1756-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060956 issn: 1756-3305 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1756-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060956 issn: 1756-3305 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1756-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060956 issn: 1756-3305 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1756-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060956 issn: 1756-3305 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1756-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060956 issn: 1756-3305 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1756-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060956 issn: 1756-3305 databaseCode: RSV dateStart: 20081201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-xDSRe-A8LjCogJCRQtPx17McNbTAJqqqDqfBiOY49Kk3JlLR92Kfhs_DJuHOTah0MCV4qpbko9uXu_Duf_TPAK2V0puNSBLrIyyDloUWXKngQprowjMWhdVPZJx_z4ZBPJmLU7eNu-9XufUnSRWrn1pztthhtc0p984CO8w4uNmALRztO3jg-PunDLxGosa58-cfH1gYgx9P_ezS-NBxdXSp5pV7qhqHDu__VgXtwp0Od_t7STO7DDVM9gFvfajen_hDe0_kyP38MMUL4i2kzb33a-xEs3Ix-QIcW12hnPlFLNMuNEC1e-MonyusKLdhv1DmKPoIvhwef330IuhMWAo15xywQhqsiig3jiRKIFjT6dxKGRRYqjqkKohGbGgSUVsURK4zFtmthWRohrhA6K5LHsFnVldkGPxK21Jj8GWsLAglK2bLMCl6mIiV-SA_CXu1Sd_TjdArGmXRpCGdyqR-J75CkH3nhwZvVI-dL7o2_Ce_Tt1wJEm22-6NuTmXnhZKHqRWUEiYmSxELF1rFGU-MyBW3NmIevCRLkESMUdHKm1M1b1t5dDyWewicRZjgSO_B607I1tgDrbqNDKgH4tJak9zpLUp2oaGVkUhzxgSGPg9erG6jU1OlRlWmnjsZxMUJC_n1MrSMISbGPWz1k6WRrjqPWTQmqjG-IV8z3zXtrN-ppt8duTjiYYK8HrztjfhS069T_tN_kn4Gt2PyAqrtiR3YnDVz8xxu6sVs2jYD2MgnufvlA9jaPxiOxgM3U4JXo6NPo68D5--_ALPfTK4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMEL90tgQEAgJJC1XB37AaFxmVatVAgGqngxjmOPSigpSVvEfhS_kXOcpKxD29seeExzmsTOuX059ncIeayMTnVUCKrzrKAJDyyYVM5pkOjcMBYF1n3K_jzMRiM-Hov3a-R3vxcGl1X2PtE56qLS-I18E8B2xpgAjXk5_UGxaxRWV_sWGq1a7JpfPwGyNS8Gb-D9Pomi7bd7r3do11WAasi1Z1QYrvIwMozHSkCE1KDTcRDkaaA4pOcQgW1iIImyKgpZbiyorBaWJSHEUqHTPIbrniFnwY9nuIQsGy8BHnK3sa5yGnK22UB8yBCsZxQbkNODldjnWgT8GwgORcKjqzSPlGpdBNy-_L_N3RVyqcu1_a3WOK6SNVNeI-e_VK6ScJ1sY1cdfwRu0V9M6nnj44YXunBlDIqdmiswLh_5NOp290cDB77ykee7BLP1azUF0Rvk06kM4iZZL6vS3CZ-KGyhAfEaa3PMjJSyRZHmvEhEgqSYHgn6Fy51x7mOrT--S4e9OJOtjki4h0QdkQceebb8y7QlHDlJ-BVq0VIQucLdD1W9LzvXI3mQWIE4ODZpAgAg1ypKeWxEpri1IfPII9RBiWwgJS432lfzppGDjx_kFqAFEcSQ3njkaSdkKxiBVt3uDZgHJBBbkdzolVB2_rCRfzXQIw-Xp8GTYXlKlaaaOxkAAzEL-PEyuHYjQppBeOpbrXksBx9xAeg8gjtkK4azMjurZ8rJN8eoDiAA83yPPO9N7NCjHzf5d04e6ANyYWfv3VAOB6Pdu-RihG4Aq5lig6zP6rm5R87pxWzS1PedE_HJ19O2vD8g8ajO |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELWgXMQL90ugQEBISKCouTiO_VguCxXVqqJQVX2xbMcuK6FklezuQ7-Gb-HLmHGSVVMoEuIxyUSxnZnxGY99hpAXyprcpKWIjC7KiPLYgUlpHsXUaMtYGju_lH2wW0yn_PBQ7PV1Tttht_uQkuzONCBLU7XYmpeuM3HOtlrwvAWGwUWEpb2jk4vkEsWaQRiu7x8MrhjJ1Fifyvzja6PJyHP2_-6ZT01NZ7dNnsmd-ilpcuO_O3OTXO_RaLjdqc8tcsFWt8mVo9qvtd8hH7DuzM8fU_Ac4WrWLNsQz4REK7_SH2Ex4xr0L0TKiaY7INHCRahCpMKuQLPDRs1B9C75Onn_5e3HqK-8EBmIRxaRsFzpJLWMZ0oAijBg91kc6zxWHEIYQCmOWgCaTqUJ09ZB241wjCaAN4TJdXaPbFR1ZR-QMBGuNBAUWuc0ggelXFnmmpdUUOSNDEg8_AJpelpyrI7xXfrwhDPZjY-Eb0gcH3kSkFfrV-YdJ8ffhN_gf10LIp22v1E3x7K3Tslj6gSGipnNKWBkbVSa88yKQnHnEhaQ56gVEgkzKtyRc6yWbSt39j_LbQDUIs4AAQTkZS_kauiBUf0BBxgH5NgaSW4O2iV7l9HKRNCCMQEuMSDP1o_B2DGDoypbL70M4OWMxfx8GdzekCITH7T6fqew685DdA0BbApfKEaqPBqd8ZNq9s2TjgNORigckNeDQp9q-nmD__CfpJ-Sq3vvJnJ3Z_rpEbmWokFg-k9sko1Fs7SPyWWzWsza5ok38l9f6lJm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=West+Nile+virus+host-vector-pathogen+interactions+in+a+colonial+raptor&rft.jtitle=Parasites+%26+vectors&rft.au=Soltnsz%2C+Zoltan&rft.au=Erdnlyi%2C+Karoly&rft.au=Bakonyi%2C+Tamas&rft.au=Barna%2C+Monika&rft.date=2017-09-29&rft.pub=BioMed+Central+Ltd&rft.issn=1756-3305&rft.eissn=1756-3305&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs13071-017-2394-z&rft.externalDocID=A507903212 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-3305&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-3305&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-3305&client=summon |