Cluster energy prediction based on multiple strategy fusion whale optimization algorithm and light gradient boosting machine

Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stabili...

Full description

Saved in:
Bibliographic Details
Published in:BMC chemistry Vol. 18; no. 1; pp. 24 - 18
Main Authors: Wei, Wu, Mengshan, Li, Yan, Wu, Lixin, Guan
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 30.01.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:2661-801X, 2661-801X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning. Results This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster. Conclusions The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R 2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas. Graphical Abstract
AbstractList Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning. Results This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster. Conclusions The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R 2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas. Graphical Abstract
Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning. This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster. The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R.sup.2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas.
Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning. Results This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster. Conclusions The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R.sup.2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas. Graphical Keywords: Cluster, LightGBM, Energy prediction, Machine Learning
Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning. This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster. The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas.
Abstract Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning. Results This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster. Conclusions The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas. Graphical Abstract
Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning.BACKGROUNDClusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning.This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster.RESULTSThis paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster.The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas.CONCLUSIONSThe experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas.
BackgroundClusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning.ResultsThis paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster.ConclusionsThe experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas.
ArticleNumber 24
Audience Academic
Author Yan, Wu
Lixin, Guan
Mengshan, Li
Wei, Wu
Author_xml – sequence: 1
  givenname: Wu
  surname: Wei
  fullname: Wei, Wu
  organization: School of Physics and Electronic Information, Gannan Normal University
– sequence: 2
  givenname: Li
  surname: Mengshan
  fullname: Mengshan, Li
  email: msli@gnnu.edu.cn
  organization: School of Physics and Electronic Information, Gannan Normal University
– sequence: 3
  givenname: Wu
  surname: Yan
  fullname: Yan, Wu
  organization: School of Mathematics and Computer Science, Gannan Normal University
– sequence: 4
  givenname: Guan
  surname: Lixin
  fullname: Lixin, Guan
  organization: School of Physics and Electronic Information, Gannan Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38291518$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhgep2Fr7B7yQAW_0YmqS-UjmSsrix0JB8AO8C0nmzGzKTLImGbXij_fsbqu7RUouEk6e901y8j7Ojpx3kGVPKTmnVDSvIi1JUxeEVQWhlPGCPMhOWNPQQhD69WhvfZydxXhFCGG0JrysHmXHpWAtrak4yX4vxjkmCDk4CMN1vg7QWZOsd7lWEbocF9M8JrseIY8pqARI9XPcED9WCqt-nexkf6mtSI2DDzatply5Lh_tsEr5EFRnwaVcex-TdUM-KbOyDp5kD3s1Rji7mU-zL2_ffF68Ly4_vFsuLi4L01QsFa1oq04JTXUjKOhKQFUZqEilKDStENQ0mjWMV8r0vRaqI5wLxYER1NWkL0-z5c638-pKroOdVLiWXlm5LfgwSBWSNSNIJaA0vdZM93VVa6614FxzpijXlEOHXq93XutZT9AZfFdQ44Hp4Y6zKzn475LSsuGClejw4sYh-G8zxCQnGw2Mo3Lg5yhZy0jN8TkNos_voFd-Dg57taHw19t6nxrwO6R1vceDzcZUXuCJtOWCCqTO_0Ph6GCyBsPVW6wfCF4eCJBJ8DMNao5RLj99PGSf7Xflbztug4aA2AEm-BgD9NLYtI0M3sKOkhK5ibXcxVpirOU21pKglN2R3rrfKyp3ooiwGyD869w9qj9q6gqp
CitedBy_id crossref_primary_10_1016_j_net_2025_103562
crossref_primary_10_1177_16878132241282933
Cites_doi 10.1039/D2CP01407F
10.1371/journal.pone.0261629
10.1016/j.comptc.2021.113569
10.1186/s13065-021-00767-w
10.3390/w15142656
10.1016/j.wneu.2022.04.044
10.1021/acs.jctc.2c01149
10.1021/jp050061p
10.1080/10106049.2021.1920638
10.1186/s12951-022-01575-7
10.1039/D1CP03524J
10.1021/acs.jpca.8b09822
10.1186/s13065-020-00697-z
10.1021/acs.jpcc.6b04584
10.1007/s00366-021-01393-9
10.1109/ACCESS.2022.3204663
10.1109/ACCESS.2021.3092509
10.1039/D2CP05833B
10.1039/D3DD00051F
10.1093/bioinformatics/btaa918
10.1021/jp054295k
10.1039/D1CP04922D
10.1021/acs.jcim.2c01120
10.1186/s13065-023-01037-7
10.1021/jacs.6b06004
10.1021/acs.jpcc.6b06000
10.1039/D2CS00582D
10.1016/j.jallcom.2022.165439
10.1021/acs.jpcb.2c08893
10.1007/s00214-016-1872-2
10.1007/s11227-020-03481-x
10.1002/jcc.26814
10.1007/s00170-022-09669-0
10.1021/jp406665m
10.1186/s13065-021-00737-2
10.1016/j.apsusc.2016.09.129
10.1021/acsomega.2c03885
10.1021/acsaem.2c01909
10.1016/j.mne.2022.100105
10.1021/jacs.1c10778
10.1021/acs.jcim.5b00140
10.1007/s11069-022-05424-6
10.1016/j.conbuildmat.2022.128296
10.1021/acs.jcim.8b00413
10.1016/j.advengsoft.2016.01.008
10.1021/acs.jpca.3c01399
10.1021/acs.jpca.6b02958
10.1088/1402-4896/ac3b31
10.1103/PhysRevLett.108.058301
10.1051/epjap/2022220030
10.1186/s13065-019-0573-z
10.1021/acsnano.1c08485
10.26599/BDMA.2020.9020016
10.1016/j.adhoc.2021.102473
10.1088/2515-7639/ab084b
10.1214/aos/1013203451
10.1021/acs.jctc.2c00751
10.1039/D2TA00198E
10.1021/acs.jcim.1c00097
10.1021/ct400195d
10.1021/jacs.9b04555
10.1021/acs.jctc.1c01298
10.1016/j.compstruct.2022.115184
10.1021/jp412355b
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
Copyright Springer Nature B.V. Dec 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: Copyright Springer Nature B.V. Dec 2024
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7SR
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JG9
K9.
KB.
M0S
M2O
MBDVC
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s13065-024-01127-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Health & Medical Collection
ProQuest research library
Research Library (Corporate)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
ProQuest Research Library
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


PubMed

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2661-801X
EndPage 18
ExternalDocumentID oai_doaj_org_article_a8e3cfbb2bf545b7bb877b72a17b17ed
PMC11367823
A782197818
38291518
10_1186_s13065_024_01127_0
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51663001, 52063002, 42061067
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 51663001, 52063002, 42061067
GroupedDBID 0R~
7X7
8AO
8FE
8FG
8FI
8FJ
8G5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACUHS
ACULB
ADBBV
ADUKV
AFGXO
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BFQNJ
BGLVJ
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
D1I
DWQXO
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HH5
HMCUK
HYE
IAO
IGS
IHR
ISE
ISR
ITC
KB.
M2O
ML-
M~E
OK1
PDBOC
PGMZT
PIMPY
PQQKQ
PROAC
RBZ
RPM
RSV
SOJ
TUS
UKHRP
AASML
AAYXX
CITATION
NPM
3V.
7SR
7XB
8BQ
8FD
8FK
COVID
JG9
K9.
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c642t-9894da8b1b681eb48e44ce404a1e69881c6b26274acffb8ad0778a7e2094d50f3
IEDL.DBID C24
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001151613500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2661-801X
IngestDate Fri Oct 03 12:38:58 EDT 2025
Tue Nov 04 02:05:26 EST 2025
Thu Oct 02 09:08:52 EDT 2025
Sat Nov 29 14:35:16 EST 2025
Mon Nov 24 16:08:24 EST 2025
Sat Nov 29 10:42:46 EST 2025
Wed Nov 26 11:14:57 EST 2025
Mon Jul 21 06:07:21 EDT 2025
Tue Nov 18 21:33:07 EST 2025
Sat Nov 29 03:45:08 EST 2025
Fri Feb 21 02:39:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Energy prediction
Cluster
Machine Learning
LightGBM
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-9894da8b1b681eb48e44ce404a1e69881c6b26274acffb8ad0778a7e2094d50f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s13065-024-01127-0
PMID 38291518
PQID 2921279546
PQPubID 54776
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_a8e3cfbb2bf545b7bb877b72a17b17ed
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11367823
proquest_miscellaneous_2920572746
proquest_journals_2921279546
gale_infotracmisc_A782197818
gale_infotracacademiconefile_A782197818
gale_incontextgauss_ISR_A782197818
pubmed_primary_38291518
crossref_citationtrail_10_1186_s13065_024_01127_0
crossref_primary_10_1186_s13065_024_01127_0
springer_journals_10_1186_s13065_024_01127_0
PublicationCentury 2000
PublicationDate 2024-01-30
PublicationDateYYYYMMDD 2024-01-30
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-30
  day: 30
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: London
PublicationTitle BMC chemistry
PublicationTitleAbbrev BMC Chemistry
PublicationTitleAlternate BMC Chem
PublicationYear 2024
Publisher Springer International Publishing
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: Springer International Publishing
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References Xi, Zheng, Gao, Song, Zhang, Dong, Du, Wang (CR7) 2022; 18
Zhao, Li, Gao (CR13) 2022; 915
Nguyen, Izgorodina (CR34) 2022; 43
Friedman (CR64) 2001; 29
Chin, Yang, Hsu, Hsu, Chang, Chen, Chen, Chia, Hung, Su, Chiu, Huang, Liao (CR14) 2022; 20
Schleder, Padilha, Acosta, Costa, Fazzio (CR1) 2019; 2
Batista, Soares, Quiles, Piotrowski, Da Silva (CR5) 2021; 61
Roman, Klokishner (CR4) 2018; 122
Liu, Yan, Ni (CR61) 2022; 121
Fang, Guo, Todorovic, Rinke, Chen (CR6) 2023; 63
Zhang, Li, Yang, Yang, Dong, Lin, Xia, Fan (CR16) 2022; 5
Luo, Li, Dong, Zang (CR3) 2023; 52
Qamar, Mrovec, Lysogorskiy, Bochkarev, Drautz (CR46) 2023; 19
Hou, Zhai, Sun, Zhang, Li (CR41) 2022; 24
Yang, Fan, Shi, Huang, Zheng (CR44) 2017; 392
Yoon, Lee, Yang, Choi, Jung, Park, Park, Kim, Park (CR56) 2023; 13
Alonso, Lopez (CR10) 2022; 24
Mondal, Banerjee, Ghanty (CR24) 2014; 118
Rezaie, Panahi, Bateni, Jun, Neale, Lee (CR58) 2022; 114
Al-Otaibi, Mary, Mary, Thomas (CR21) 2022; 1208
Li, Chen, Zhang, Zeng, Chen, Guan (CR67) 2022; 7
Chen, Luo, Yao (CR9) 2016; 120
Murcia-Galán, Durán, Leal-Pinto, Roa-Cordero, Vargas, Herrera, Muñoz-Castro, MacLeod-Carey, Naranjo, Rodríguez-Kessler, Hurtado (CR32) 2023; 17
Iida, Hiratsuka, Miyahara, Watanabe (CR40) 2023; 127
Gupta, Gupta, Kumar, Sardana (CR49) 2021; 4
Meng, Xu, Zhao (CR52) 2021; 16
Qiu, Zhou, Khandelwal, Yang, Yang, Li (CR66) 2022; 38
Zhang, Liu, Pan, Yin (CR57) 2022; 10
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (CR63) 2017; 30
Marinescu, Cinteza, Marton, Chifiriuc, Popa, Stanculescu, Zlaru, Stavarache (CR33) 2020; 14
Rupp, Tkatchenko, Müller, Anatole von Lilienfeld (CR62) 2012; 108
Zapata-Torres, Fierro, Barriga-Gonzalez, Salgado, Celis-Barros (CR19) 2015; 55
Mondal, Agrawal, Manna, Banerjee, Ghanty (CR29) 2016; 120
Shaker, Yu, Song, Ahn, Ryu, Oh, Na (CR53) 2021; 37
Patty, Havenridge, Tietje-Mckinney, Siegler, Singh, Hosseini, Ghabin, Aikens, Das (CR27) 2022; 144
Guleria, Verma, Goyal, Sharma, Benslimane, Singh (CR42) 2021; 116
Santana, Silva De (CR12) 2021; 15
Ren, Chen, Li, He (CR26) 2019; 13
Zhokh, Strizhak, Goryuk, Narivskiy (CR45) 2021; 96
Bintrim, Berkelbach, Ye (CR35) 2022; 18
Wang, Wang, Zhang, He, Xu (CR51) 2022; 163
Samantaray, Sahoo (CR59) 2022; 37
Chen, Xiong, Wang, Ma, Jin, Sheng, Pei, Zhu (CR28) 2016; 138
Saikia, Seel, Pandey (CR30) 2016; 120
Hu, Johannesen, Graham, Goodpaster (CR37) 2023; 2
Goncalves, Galvao, Braga (CR38) 2016; 135
Grimsley, Mayhall (CR18) 2022; 18
Merabtine, Djenouri, Zegour (CR2) 2021; 9
Aghajamali, Karton (CR47) 2022; 14
Wang, Zhang, Yin (CR60) 2023; 15
Mirjalili, Lewis (CR65) 2016; 95
Surber, Mabbs, Habteyes, Sanov (CR17) 2005; 109
Alabdullah, Iqbal, Zahid, Khan, Amin, Jalal (CR55) 2022; 345
Jackins, Vimal, Kaliappan, Lee (CR50) 2021; 77
Liu, Liu, Feng (CR54) 2022; 284
Dânoun, Tabit, Laghzizil, Zahouily (CR11) 2021; 15
Greenwell, Rezac, Beran (CR36) 2022; 24
Garip, Gocen (CR43) 2022; 97
Rutledge, Rittle, Williamson, Xu, Gagnon, Tezcan (CR8) 2019; 141
Khatun, Sarkar, Panda, Sherpa, Anoop (CR20) 2023; 25
Tlahuice-Flores, Santiago, Bahena, Vinogradova, Conroy, Ahuja, Bach, Ponce, Wang, Jose-Yacaman, Whetten (CR25) 2013; 117
Karttunen, Rowley, Pakkanen (CR31) 2005; 109
Lu, Tong, Luo, Jiang, Wei, Huang, Jiang, Lu, Ni (CR15) 2022; 10
Cao, Li, Mueller (CR23) 2018; 58
Chen, Gong, Fan, Feng, Han, Xin, Cao, Zhang, Zhang, Lei, Yin (CR22) 2022; 16
John, Swathi (CR39) 2023; 127
Hansen, Montavon, Biegler, Fazli, Rupp, Scheffler, von Lilienfeld, Tkatchenko, Muller (CR48) 2013; 9
XM Luo (1127_CR3) 2023; 52
GM Yang (1127_CR44) 2017; 392
QH Hu (1127_CR37) 2023; 2
X Liu (1127_CR54) 2022; 284
AJ Karttunen (1127_CR31) 2005; 109
K Mondal (1127_CR29) 2016; 120
N Saikia (1127_CR30) 2016; 120
A Zhokh (1127_CR45) 2021; 96
A Aghajamali (1127_CR47) 2022; 14
M Rupp (1127_CR62) 2012; 108
N Merabtine (1127_CR2) 2021; 9
K Mondal (1127_CR24) 2014; 118
K Hansen (1127_CR48) 2013; 9
JS Al-Otaibi (1127_CR21) 2022; 1208
HR Grimsley (1127_CR18) 2022; 18
S Samantaray (1127_CR59) 2022; 37
KEA Batista (1127_CR5) 2021; 61
C Xi (1127_CR7) 2022; 18
Y Iida (1127_CR40) 2023; 127
JA Alonso (1127_CR10) 2022; 24
JX Chen (1127_CR22) 2022; 16
J Zhang (1127_CR16) 2022; 5
S Wang (1127_CR60) 2023; 15
D Hou (1127_CR41) 2022; 24
M Li (1127_CR67) 2022; 7
V Jackins (1127_CR50) 2021; 77
F Rezaie (1127_CR58) 2022; 114
MVS Santana (1127_CR12) 2021; 15
L Cao (1127_CR23) 2018; 58
DL Meng (1127_CR52) 2021; 16
B Shaker (1127_CR53) 2021; 37
RR Wang (1127_CR51) 2022; 163
LC Fang (1127_CR6) 2023; 63
GR Schleder (1127_CR1) 2019; 2
Y Qiu (1127_CR66) 2022; 38
AA Alabdullah (1127_CR55) 2022; 345
G Ke (1127_CR63) 2017; 30
JB Patty (1127_CR27) 2022; 144
CEM Goncalves (1127_CR38) 2016; 135
VK Gupta (1127_CR49) 2021; 4
M Marinescu (1127_CR33) 2020; 14
HI Yoon (1127_CR56) 2023; 13
S Chen (1127_CR28) 2016; 138
R Zhang (1127_CR57) 2022; 10
AK Garip (1127_CR43) 2022; 97
M Roman (1127_CR4) 2018; 122
A Tlahuice-Flores (1127_CR25) 2013; 117
S Mirjalili (1127_CR65) 2016; 95
XY Lu (1127_CR15) 2022; 10
G Zapata-Torres (1127_CR19) 2015; 55
YC Chin (1127_CR14) 2022; 20
M Khatun (1127_CR20) 2023; 25
E Surber (1127_CR17) 2005; 109
RA Murcia-Galán (1127_CR32) 2023; 17
ALP Nguyen (1127_CR34) 2022; 43
SJ Bintrim (1127_CR35) 2022; 18
C John (1127_CR39) 2023; 127
K Dânoun (1127_CR11) 2021; 15
YF Liu (1127_CR61) 2022; 121
J Chen (1127_CR9) 2016; 120
K Guleria (1127_CR42) 2021; 116
HJ Ren (1127_CR26) 2019; 13
M Qamar (1127_CR46) 2023; 19
JH Friedman (1127_CR64) 2001; 29
C Greenwell (1127_CR36) 2022; 24
HL Rutledge (1127_CR8) 2019; 141
J Zhao (1127_CR13) 2022; 915
References_xml – volume: 24
  start-page: 12937
  issue: 21
  year: 2022
  end-page: 12949
  ident: CR41
  article-title: Vibrationally excited intermolecular potential energy surfaces and the predicted near infrared overtone (v(OH) = 2 <– 0) spectra of a H(2)O-Ne complex
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D2CP01407F
– volume: 16
  start-page: E0261629
  issue: 12
  year: 2021
  ident: CR52
  article-title: Analysis and prediction of hand, foot and mouth disease incidence in China using random forest and XGBoost
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0261629
– volume: 1208
  year: 2022
  ident: CR21
  article-title: Evidence of cluster formation of pyrrole with mixed silver metal clusters, Agx-My (x = 4,5, y = 2/1 and M = Au/Ni/Cu) using DFT/SERS analysis
  publication-title: Comput Theor Chem
  doi: 10.1016/j.comptc.2021.113569
– volume: 15
  start-page: 42
  issue: 1
  year: 2021
  ident: CR11
  article-title: A novel approach for the synthesis of nanostructured Ag PO from phosphate rock: high catalytic and antibacterial activities
  publication-title: Bmc Chem
  doi: 10.1186/s13065-021-00767-w
– volume: 15
  start-page: 2656
  issue: 14
  year: 2023
  ident: CR60
  article-title: Vibration prediction and evaluation system of the pumping station based on ARIMA–ANFIS–WOA hybrid model and D-S evidence theory
  publication-title: Water
  doi: 10.3390/w15142656
– volume: 163
  start-page: E617
  year: 2022
  end-page: E622
  ident: CR51
  article-title: XGBoost machine learning algorism performed better than regression models in predicting mortality of moderate-to-severe traumatic brain injury
  publication-title: World Neurosur
  doi: 10.1016/j.wneu.2022.04.044
– volume: 19
  start-page: 5151
  issue: 15
  year: 2023
  end-page: 5167
  ident: CR46
  article-title: Atomic cluster expansion for quantum-accurate large-scale simulations of carbon
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.2c01149
– volume: 109
  start-page: 4452
  issue: 20
  year: 2005
  end-page: 4458
  ident: CR17
  article-title: Photoelectron imaging of hydrated carbon dioxide cluster anions
  publication-title: J Phys Chem A
  doi: 10.1021/jp050061p
– volume: 37
  start-page: 5609
  issue: 19
  year: 2022
  end-page: 5635
  ident: CR59
  article-title: Prediction of suspended sediment concentration using hybrid SVM-WOA approaches
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2021.1920638
– volume: 20
  start-page: 373
  issue: 1
  year: 2022
  ident: CR14
  article-title: Iron oxide@chlorophyll clustered nanoparticles eliminate bladder cancer by photodynamic immunotherapy-initiated ferroptosis and immunostimulation
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-022-01575-7
– volume: 24
  start-page: 2729
  issue: 5
  year: 2022
  end-page: 2751
  ident: CR10
  article-title: Palladium clusters, free and supported on surfaces, and their applications in hydrogen storage
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D1CP03524J
– volume: 122
  start-page: 9093
  issue: 46
  year: 2018
  end-page: 9099
  ident: CR4
  article-title: Electric field effects on magnetic and polarizability properties of clusters with two-electron transfer
  publication-title: J Phys Chem A
  doi: 10.1021/acs.jpca.8b09822
– volume: 14
  start-page: 45
  issue: 1
  year: 2020
  ident: CR33
  article-title: Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases
  publication-title: Bmc Chem
  doi: 10.1186/s13065-020-00697-z
– volume: 120
  start-page: 18588
  issue: 33
  year: 2016
  end-page: 18594
  ident: CR29
  article-title: Effect of hydrogen atom doping on the structure and electronic properties of 20-atom gold cluster
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b04584
– volume: 38
  start-page: 4145
  issue: SUPPL 5
  year: 2022
  end-page: 4162
  ident: CR66
  article-title: Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01393-9
– volume: 10
  start-page: 96273
  year: 2022
  end-page: 96283
  ident: CR57
  article-title: Network security situation assessment based on improved WOA-SVM
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2022.3204663
– volume: 9
  start-page: 92688
  year: 2021
  end-page: 92705
  ident: CR2
  article-title: Towards energy efficient clustering in wireless sensor networks: a comprehensive review
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2021.3092509
– volume: 25
  start-page: 19986
  issue: 29
  year: 2023
  end-page: 20000
  ident: CR20
  article-title: Nanoclusters and nanoalloys of group 13 elements (B, Al, and Ga): benchmarking of methods and analysis of their structures and energies
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D2CP05833B
– volume: 2
  start-page: 1058
  issue: 4
  year: 2023
  end-page: 1069
  ident: CR37
  article-title: Neural network potentials for reactive chemistry: CASPT2 quality potential energy surfaces for bond breaking
  publication-title: Digital Discov
  doi: 10.1039/D3DD00051F
– volume: 37
  start-page: 1135
  issue: 8
  year: 2021
  end-page: 1139
  ident: CR53
  article-title: LightBBB: computational prediction model of blood-brain-barrier penetration based on LightGBM
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa918
– volume: 109
  start-page: 23983
  issue: 50
  year: 2005
  end-page: 23992
  ident: CR31
  article-title: Ab initio study on adsorption of hydrated Na+ and Cu+ cations on the Cu(111) surface
  publication-title: J Phys Chem B
  doi: 10.1021/jp054295k
– volume: 24
  start-page: 3695
  issue: 6
  year: 2022
  end-page: 3712
  ident: CR36
  article-title: Spin-component-scaled and dispersion-corrected second-order Moller-Plesset perturbation theory: a path toward chemical accuracy
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D1CP04922D
– volume: 63
  start-page: 745
  issue: 3
  year: 2023
  end-page: 752
  ident: CR6
  article-title: Exploring the conformers of an organic molecule on a metal cluster with bayesian optimization
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.2c01120
– volume: 17
  start-page: 135
  issue: 1
  year: 2023
  ident: CR32
  article-title: Antifungal activity of Co(II) and Cu(II) complexes containing 1,3-bis(benzotriazol-1-yl)-propan-2-ol on the growth and virulence traits of fluconazole-resistant Candida species: synthesis, DFT calculations, and biological activity
  publication-title: Bmc Chem
  doi: 10.1186/s13065-023-01037-7
– volume: 138
  start-page: 10754
  issue: 34
  year: 2016
  end-page: 10757
  ident: CR28
  article-title: Total structure determination of Au-21(S-Adm)(15) and geometrical/electronic structure evolution of thiolated gold nanoclusters
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b06004
– volume: 120
  start-page: 20323
  issue: 36
  year: 2016
  end-page: 20332
  ident: CR30
  article-title: Stability and electronic properties of 2D nanomaterials conjugated with pyrazinamide chemotherapeutic: a first-principles cluster study
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b06000
– volume: 52
  start-page: 383
  issue: 1
  year: 2023
  end-page: 444
  ident: CR3
  article-title: Platonic and archimedean solids in discrete metal-containing clusters
  publication-title: Chem Soc Rev
  doi: 10.1039/D2CS00582D
– volume: 13
  start-page: 1477
  issue: 8
  year: 2023
  ident: CR56
  article-title: Predicting models for plant metabolites based on PLSR, AdaBoost, XGBoost, and LightGBM algorithms using hyperspectral imaging of Brassica juncea
  publication-title: Agri Basel
– volume: 915
  year: 2022
  ident: CR13
  article-title: Construction of SnO2 nanoparticle cluster@PANI core-shell microspheres for efficient X-band electromagnetic wave absorption
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2022.165439
– volume: 127
  start-page: 3524
  issue: 15
  year: 2023
  end-page: 3533
  ident: CR40
  article-title: Mechanism of nucleation pathway selection in binary lennard-jones solution: a combined study of molecular dynamics simulation and free energy analysis
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.2c08893
– volume: 135
  start-page: 116
  issue: 5
  year: 2016
  ident: CR38
  article-title: Accurate multi-reference study of Si electronic manifold
  publication-title: Theoret Chem Acc
  doi: 10.1007/s00214-016-1872-2
– volume: 77
  start-page: 5198
  issue: 5
  year: 2021
  end-page: 5219
  ident: CR50
  article-title: AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03481-x
– volume: 43
  start-page: 568
  issue: 8
  year: 2022
  end-page: 576
  ident: CR34
  article-title: Behavior of counterpoise correction in many-body molecular clusters of organic compounds: Hartree-Fock interaction energy perspective
  publication-title: J Comput Chem
  doi: 10.1002/jcc.26814
– volume: 18
  start-page: 5374
  issue: 9
  year: 2022
  end-page: 5381
  ident: CR35
  article-title: Integral-direct Hartree-Fock and M{\o}ller-plesset perturbation theory for periodic systems with density fitting: application to the benzene crystal
  publication-title: Arxiv
– volume: 121
  start-page: 6073
  issue: 9–10
  year: 2022
  end-page: 6094
  ident: CR61
  article-title: The approach to multi-objective optimization for process parameters of dry hobbing under carbon quota policy
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-022-09669-0
– volume: 117
  start-page: 10470
  issue: 40
  year: 2013
  end-page: 10476
  ident: CR25
  article-title: Structure of the thiolated Au cluster
  publication-title: J Phys Chem A
  doi: 10.1021/jp406665m
– volume: 30
  start-page: 3146
  year: 2017
  end-page: 3154
  ident: CR63
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Adv Neural Informat Process Syst
– volume: 15
  start-page: 8
  issue: 1
  year: 2021
  ident: CR12
  article-title: novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning
  publication-title: Bmc Chem
  doi: 10.1186/s13065-021-00737-2
– volume: 392
  start-page: 936
  year: 2017
  end-page: 941
  ident: CR44
  article-title: Stability of Pt-n cluster on free/defective graphene: a first-principles study
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.09.129
– volume: 7
  start-page: 42027
  issue: 46
  year: 2022
  end-page: 42035
  ident: CR67
  article-title: Prediction of the aqueous solubility of compounds based on light gradient boosting machines with molecular fingerprints and the cuckoo search algorithm
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c03885
– volume: 5
  start-page: 13318
  issue: 11
  year: 2022
  end-page: 13326
  ident: CR16
  article-title: Functionalized rare-earth metal cluster-based materials as additives for enhancing the efficiency of perovskite solar cells
  publication-title: Acs Appl Ener Mater
  doi: 10.1021/acsaem.2c01909
– volume: 14
  year: 2022
  ident: CR47
  article-title: Correlation between the energetic and thermal properties of C40 fullerene isomers: an accurate machine-learning force field study
  publication-title: Micro Nano Eng
  doi: 10.1016/j.mne.2022.100105
– volume: 144
  start-page: 478
  issue: 1
  year: 2022
  end-page: 484
  ident: CR27
  article-title: Crystal structure and optical properties of a chiral mixed thiolate/stibine-protected Au-18 cluster
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c10778
– volume: 55
  start-page: 1349
  issue: 7
  year: 2015
  end-page: 1360
  ident: CR19
  article-title: Revealing monoamine oxidase B catalytic mechanisms by means of the quantum chemical cluster approach
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00140
– volume: 114
  start-page: 1247
  issue: 2
  year: 2022
  end-page: 1283
  ident: CR58
  article-title: Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping
  publication-title: Nat Hazards
  doi: 10.1007/s11069-022-05424-6
– volume: 345
  year: 2022
  ident: CR55
  article-title: Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.128296
– volume: 58
  start-page: 2401
  issue: 12
  year: 2018
  end-page: 2413
  ident: CR23
  article-title: The use of cluster expansions to predict the structures and properties of surfaces and nanostructured materials
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00413
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR65
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 127
  start-page: 4632
  issue: 21
  year: 2023
  end-page: 4642
  ident: CR39
  article-title: Global optimization of dinitrogen clusters bound to monolayer and bilayer graphene: a swarm intelligence approach
  publication-title: J Phys Chem A
  doi: 10.1021/acs.jpca.3c01399
– volume: 120
  start-page: 3950
  issue: 22
  year: 2016
  end-page: 3957
  ident: CR9
  article-title: Theoretical study of tetrahydrofuran-stabilized Al superatom cluster
  publication-title: J Phys Chem A
  doi: 10.1021/acs.jpca.6b02958
– volume: 96
  issue: 12
  year: 2021
  ident: CR45
  article-title: Thermodynamic analysis of Al clusters formation over aluminum melt
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ac3b31
– volume: 108
  start-page: 058301
  issue: 5
  year: 2012
  ident: CR62
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys Revi Lett
  doi: 10.1103/PhysRevLett.108.058301
– volume: 97
  start-page: 30
  year: 2022
  ident: CR43
  article-title: The local atomic pressures in 79 atom Pd-Ag-Pt truncated octahedron structure
  publication-title: Eur Phys J Appl Phys
  doi: 10.1051/epjap/2022220030
– volume: 13
  start-page: 55
  year: 2019
  ident: CR26
  article-title: A new insight of structures, bonding and electronic properties for 6-mercaptopurine and Ag clusters configurations: a theoretical perspective
  publication-title: Bmc Chem
  doi: 10.1186/s13065-019-0573-z
– volume: 16
  start-page: 910
  issue: 1
  year: 2022
  end-page: 920
  ident: CR22
  article-title: Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c08485
– volume: 4
  start-page: 116
  issue: 2
  year: 2021
  end-page: 123
  ident: CR49
  article-title: Prediction of COVID-19 confirmed, death, and cured cases in India using random forest model
  publication-title: Big Data Min Analyt
  doi: 10.26599/BDMA.2020.9020016
– volume: 116
  year: 2021
  ident: CR42
  article-title: An enhanced energy proficient clustering (EEPC) algorithm for relay selection in heterogeneous WSNs
  publication-title: Ad Hoc Netw
  doi: 10.1016/j.adhoc.2021.102473
– volume: 2
  issue: 3
  year: 2019
  ident: CR1
  article-title: From DFT to machine learning: recent approaches to materials science-a review
  publication-title: J Phys Mater
  doi: 10.1088/2515-7639/ab084b
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: CR64
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Annals Stat
  doi: 10.1214/aos/1013203451
– volume: 18
  start-page: 7350
  issue: 12
  year: 2022
  end-page: 7358
  ident: CR18
  article-title: New local explorations of the unitary coupled cluster energy landscape
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.2c00751
– volume: 10
  start-page: 4594
  issue: 9
  year: 2022
  end-page: 4600
  ident: CR15
  article-title: Confining single Pt atoms from Pt clusters on multi-armed CdS for enhanced photocatalytic hydrogen evolution
  publication-title: J Mater Chem A
  doi: 10.1039/D2TA00198E
– volume: 61
  start-page: 2294
  issue: 5
  year: 2021
  end-page: 2301
  ident: CR5
  article-title: Energy decomposition to access the stability changes induced by CO adsorption on transition-metal 13-atom clusters
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.1c00097
– volume: 9
  start-page: 3404
  issue: 8
  year: 2013
  end-page: 3419
  ident: CR48
  article-title: Assessment and validation of machine learning methods for predicting molecular atomization energies
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct400195d
– volume: 141
  start-page: 10091
  issue: 25
  year: 2019
  end-page: 10098
  ident: CR8
  article-title: Redox-dependent metastability of the nitrogenase P-cluster
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b04555
– volume: 18
  start-page: 6878
  issue: 11
  year: 2022
  end-page: 6891
  ident: CR7
  article-title: Ion solvation free energy calculation based on Ab initio molecular dynamics using a hybrid solvent model
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.1c01298
– volume: 284
  year: 2022
  ident: CR54
  article-title: Long-term performance prediction framework based on XGBoost decision tree for pultruded FRP composites exposed to water, humidity and alkaline solution
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2022.115184
– volume: 118
  start-page: 11935
  issue: 22
  year: 2014
  end-page: 11945
  ident: CR24
  article-title: Structural and chemical properties of subnanometer-sized bimetallic Au19Pt cluster
  publication-title: J Phys Chem C
  doi: 10.1021/jp412355b
– volume: 14
  year: 2022
  ident: 1127_CR47
  publication-title: Micro Nano Eng
  doi: 10.1016/j.mne.2022.100105
– volume: 109
  start-page: 23983
  issue: 50
  year: 2005
  ident: 1127_CR31
  publication-title: J Phys Chem B
  doi: 10.1021/jp054295k
– volume: 37
  start-page: 1135
  issue: 8
  year: 2021
  ident: 1127_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa918
– volume: 5
  start-page: 13318
  issue: 11
  year: 2022
  ident: 1127_CR16
  publication-title: Acs Appl Ener Mater
  doi: 10.1021/acsaem.2c01909
– volume: 24
  start-page: 12937
  issue: 21
  year: 2022
  ident: 1127_CR41
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D2CP01407F
– volume: 135
  start-page: 116
  issue: 5
  year: 2016
  ident: 1127_CR38
  publication-title: Theoret Chem Acc
  doi: 10.1007/s00214-016-1872-2
– volume: 30
  start-page: 3146
  year: 2017
  ident: 1127_CR63
  publication-title: Adv Neural Informat Process Syst
– volume: 144
  start-page: 478
  issue: 1
  year: 2022
  ident: 1127_CR27
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c10778
– volume: 52
  start-page: 383
  issue: 1
  year: 2023
  ident: 1127_CR3
  publication-title: Chem Soc Rev
  doi: 10.1039/D2CS00582D
– volume: 15
  start-page: 8
  issue: 1
  year: 2021
  ident: 1127_CR12
  publication-title: Bmc Chem
  doi: 10.1186/s13065-021-00737-2
– volume: 122
  start-page: 9093
  issue: 46
  year: 2018
  ident: 1127_CR4
  publication-title: J Phys Chem A
  doi: 10.1021/acs.jpca.8b09822
– volume: 14
  start-page: 45
  issue: 1
  year: 2020
  ident: 1127_CR33
  publication-title: Bmc Chem
  doi: 10.1186/s13065-020-00697-z
– volume: 392
  start-page: 936
  year: 2017
  ident: 1127_CR44
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.09.129
– volume: 58
  start-page: 2401
  issue: 12
  year: 2018
  ident: 1127_CR23
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00413
– volume: 17
  start-page: 135
  issue: 1
  year: 2023
  ident: 1127_CR32
  publication-title: Bmc Chem
  doi: 10.1186/s13065-023-01037-7
– volume: 120
  start-page: 18588
  issue: 33
  year: 2016
  ident: 1127_CR29
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b04584
– volume: 120
  start-page: 20323
  issue: 36
  year: 2016
  ident: 1127_CR30
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b06000
– volume: 108
  start-page: 058301
  issue: 5
  year: 2012
  ident: 1127_CR62
  publication-title: Phys Revi Lett
  doi: 10.1103/PhysRevLett.108.058301
– volume: 18
  start-page: 6878
  issue: 11
  year: 2022
  ident: 1127_CR7
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.1c01298
– volume: 2
  start-page: 1058
  issue: 4
  year: 2023
  ident: 1127_CR37
  publication-title: Digital Discov
  doi: 10.1039/D3DD00051F
– volume: 109
  start-page: 4452
  issue: 20
  year: 2005
  ident: 1127_CR17
  publication-title: J Phys Chem A
  doi: 10.1021/jp050061p
– volume: 37
  start-page: 5609
  issue: 19
  year: 2022
  ident: 1127_CR59
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2021.1920638
– volume: 1208
  year: 2022
  ident: 1127_CR21
  publication-title: Comput Theor Chem
  doi: 10.1016/j.comptc.2021.113569
– volume: 43
  start-page: 568
  issue: 8
  year: 2022
  ident: 1127_CR34
  publication-title: J Comput Chem
  doi: 10.1002/jcc.26814
– volume: 10
  start-page: 96273
  year: 2022
  ident: 1127_CR57
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2022.3204663
– volume: 10
  start-page: 4594
  issue: 9
  year: 2022
  ident: 1127_CR15
  publication-title: J Mater Chem A
  doi: 10.1039/D2TA00198E
– volume: 127
  start-page: 4632
  issue: 21
  year: 2023
  ident: 1127_CR39
  publication-title: J Phys Chem A
  doi: 10.1021/acs.jpca.3c01399
– volume: 13
  start-page: 1477
  issue: 8
  year: 2023
  ident: 1127_CR56
  publication-title: Agri Basel
– volume: 38
  start-page: 4145
  issue: SUPPL 5
  year: 2022
  ident: 1127_CR66
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01393-9
– volume: 18
  start-page: 7350
  issue: 12
  year: 2022
  ident: 1127_CR18
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.2c00751
– volume: 16
  start-page: E0261629
  issue: 12
  year: 2021
  ident: 1127_CR52
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0261629
– volume: 915
  year: 2022
  ident: 1127_CR13
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2022.165439
– volume: 24
  start-page: 2729
  issue: 5
  year: 2022
  ident: 1127_CR10
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D1CP03524J
– volume: 284
  year: 2022
  ident: 1127_CR54
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2022.115184
– volume: 117
  start-page: 10470
  issue: 40
  year: 2013
  ident: 1127_CR25
  publication-title: J Phys Chem A
  doi: 10.1021/jp406665m
– volume: 15
  start-page: 42
  issue: 1
  year: 2021
  ident: 1127_CR11
  publication-title: Bmc Chem
  doi: 10.1186/s13065-021-00767-w
– volume: 118
  start-page: 11935
  issue: 22
  year: 2014
  ident: 1127_CR24
  publication-title: J Phys Chem C
  doi: 10.1021/jp412355b
– volume: 121
  start-page: 6073
  issue: 9–10
  year: 2022
  ident: 1127_CR61
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-022-09669-0
– volume: 4
  start-page: 116
  issue: 2
  year: 2021
  ident: 1127_CR49
  publication-title: Big Data Min Analyt
  doi: 10.26599/BDMA.2020.9020016
– volume: 20
  start-page: 373
  issue: 1
  year: 2022
  ident: 1127_CR14
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-022-01575-7
– volume: 25
  start-page: 19986
  issue: 29
  year: 2023
  ident: 1127_CR20
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D2CP05833B
– volume: 63
  start-page: 745
  issue: 3
  year: 2023
  ident: 1127_CR6
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.2c01120
– volume: 141
  start-page: 10091
  issue: 25
  year: 2019
  ident: 1127_CR8
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b04555
– volume: 120
  start-page: 3950
  issue: 22
  year: 2016
  ident: 1127_CR9
  publication-title: J Phys Chem A
  doi: 10.1021/acs.jpca.6b02958
– volume: 18
  start-page: 5374
  issue: 9
  year: 2022
  ident: 1127_CR35
  publication-title: Arxiv
– volume: 29
  start-page: 1189
  year: 2001
  ident: 1127_CR64
  publication-title: Annals Stat
  doi: 10.1214/aos/1013203451
– volume: 114
  start-page: 1247
  issue: 2
  year: 2022
  ident: 1127_CR58
  publication-title: Nat Hazards
  doi: 10.1007/s11069-022-05424-6
– volume: 15
  start-page: 2656
  issue: 14
  year: 2023
  ident: 1127_CR60
  publication-title: Water
  doi: 10.3390/w15142656
– volume: 116
  year: 2021
  ident: 1127_CR42
  publication-title: Ad Hoc Netw
  doi: 10.1016/j.adhoc.2021.102473
– volume: 127
  start-page: 3524
  issue: 15
  year: 2023
  ident: 1127_CR40
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.2c08893
– volume: 163
  start-page: E617
  year: 2022
  ident: 1127_CR51
  publication-title: World Neurosur
  doi: 10.1016/j.wneu.2022.04.044
– volume: 138
  start-page: 10754
  issue: 34
  year: 2016
  ident: 1127_CR28
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b06004
– volume: 97
  start-page: 30
  year: 2022
  ident: 1127_CR43
  publication-title: Eur Phys J Appl Phys
  doi: 10.1051/epjap/2022220030
– volume: 2
  issue: 3
  year: 2019
  ident: 1127_CR1
  publication-title: J Phys Mater
  doi: 10.1088/2515-7639/ab084b
– volume: 345
  year: 2022
  ident: 1127_CR55
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.128296
– volume: 24
  start-page: 3695
  issue: 6
  year: 2022
  ident: 1127_CR36
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D1CP04922D
– volume: 61
  start-page: 2294
  issue: 5
  year: 2021
  ident: 1127_CR5
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.1c00097
– volume: 95
  start-page: 51
  year: 2016
  ident: 1127_CR65
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 16
  start-page: 910
  issue: 1
  year: 2022
  ident: 1127_CR22
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c08485
– volume: 7
  start-page: 42027
  issue: 46
  year: 2022
  ident: 1127_CR67
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c03885
– volume: 96
  issue: 12
  year: 2021
  ident: 1127_CR45
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ac3b31
– volume: 13
  start-page: 55
  year: 2019
  ident: 1127_CR26
  publication-title: Bmc Chem
  doi: 10.1186/s13065-019-0573-z
– volume: 19
  start-page: 5151
  issue: 15
  year: 2023
  ident: 1127_CR46
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.2c01149
– volume: 9
  start-page: 3404
  issue: 8
  year: 2013
  ident: 1127_CR48
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct400195d
– volume: 55
  start-page: 1349
  issue: 7
  year: 2015
  ident: 1127_CR19
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00140
– volume: 9
  start-page: 92688
  year: 2021
  ident: 1127_CR2
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2021.3092509
– volume: 77
  start-page: 5198
  issue: 5
  year: 2021
  ident: 1127_CR50
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03481-x
SSID ssj0002150734
Score 2.2665286
Snippet Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial...
Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in...
Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial...
BackgroundClusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial...
Abstract Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24
SubjectTerms Algorithms
Catalysis
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Cluster
Clusters
Eigenvalues
Electronic structure
Energy
Energy prediction
Energy storage
Feature extraction
Force and energy
LightGBM
Machine Learning
Magnetism
Marine mammals
Mathematical models
Mathematical optimization
Matrix representation
Medical imaging
Model accuracy
Molecular structure
Optimization
Optimization algorithms
Optoelectronics
Parameters
Potential energy
Prediction models
R&D
Research & development
Tetrahedra
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yCPoiftu7U6IIPmi5Ju0m6eO5eOjLIX7AvYUkTXcXdtuj7XoI_vHOpO26PVFffCvNtCQzk_loJ78h5CU22848di9zhseZEj42XpgY9l0hVGJEJvpmE_L8XF1c5B_3Wn1hTVgPD9wz7sQon7rSWm5LcPZWWquktJIbJi2TvkDrm8h8L5lCG8wxzkmz8ZSMEictwx7pMbgkyJ4Zl3Ey8UQBsP93s7znl67XTF77cRr80dldcmcIJOlpv4B75Iav7pNb87F_2wPyY77eIgoC9eF4H71s8J8MyoGi6yooXIzlhLTtQWq_03KLn8_o1RJmSGuwJ5vhoCY160XdrLrlhpqqoGtM6umiCRVjHYVYvcUCaroJxZn-Ifl69u7L_H089FqIHWQgXYw47IVRllmhmLeZ8lnmPMjRMC9ypZgTlmOfHuPK0ipTJFIqIz2H9LCYJWX6iBxUdeWfEOpkYjMHMgL7lSGcWTlLnfJcWiPLtHARYSPftRuAyLEfxlqHhEQJ3ctKg6x0kJVOIvJ698xlD8PxV-q3KM4dJUJohxugWHpQLP0vxYrIC1QGjSAZFVbhLMy2bfWHz5_0KYRVDMHCVEReDURlDWtwZjjUAJxAXK0J5fGEEpTBTYdHndODFWk1zxF_P59lIiLPd8P4JFbGVb7eBhoIuUEwQPO4V9HdulPFc4jo4OVqorwTxkxHqtUyYIxjqx-YXBqRN6Oe_5rXnzl_-D84f0Ru836fxmlyTA66ZuufkpvuW7dqm2dho_8EJK9X5g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGFNzRQkEFIHCBqXms7J1RWVHCpEA9pb5btOLuVdpMlyRYh8eOZcZyUFNELtyieRLZnPB7b4-8j5CWSbWcW2cuMSsJMMBsqy1QI465gIlIsYz3ZBD85EYtF_slvuLU-rXLwic5RF7XBPfLDJEcs8nyWsbfb7yGyRuHpqqfQuEquIW022jlf8HGPJcFoJ82GuzKCHbYxMqWHMDHBGhr-F0aT-cjB9v_tnP-YnS5mTl44PnWz0vHt_23PHXLLx6P0qDegu-SKre6RG_OBBu4--TVf7xBMgVp3S5BuGzzaQXVSnAELCg9DViJte6zbn7Tc4S4c_bGCJtIa3NLG3_ekar2EanSrDVVVQde4N0CXjUs86yiE_C3mYdONy_G0D8i34_df5x9CT9kQGljIdCHCuRdK6FgzEVudCZtlxoI5qNiyXIjYMJ0g3Y8yZamFKiLOheI2gVVmMYvK9CHZq-rK7hNqeKQzwzWmO2aIilbOUiNswrXiZVqYgMSD4qTxeOZIq7GWbl0jmOyVLUHZ0ilbRgF5PX6z7dE8LpV-h_YwSiISt3tRN0vpB7ZUwqam1DrRJQSjmmstOFQ6UTHXMbdFQF6gNUnE2qgwmWepdm0rP375LI8gOosRc0wE5JUXKmtog1H-bgT0BMJzTSQPJpJgDGZaPFib9M6oleemFpDnYzF-iQl2la13TgYid1AMyDzqbXxsdyqSHAJD-LmYWP-kY6Yl1enKQZUjYxBULg3Im2GgnNfr3z3_-PJmPCE3k34Ih2l0QPa6ZmefkuvmrDttm2fOB_wG2M5kXg
  priority: 102
  providerName: ProQuest
Title Cluster energy prediction based on multiple strategy fusion whale optimization algorithm and light gradient boosting machine
URI https://link.springer.com/article/10.1186/s13065-024-01127-0
https://www.ncbi.nlm.nih.gov/pubmed/38291518
https://www.proquest.com/docview/2921279546
https://www.proquest.com/docview/2920572746
https://pubmed.ncbi.nlm.nih.gov/PMC11367823
https://doaj.org/article/a8e3cfbb2bf545b7bb877b72a17b17ed
Volume 18
WOSCitedRecordID wos001151613500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 2661-801X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002150734
  issn: 2661-801X
  databaseCode: RBZ
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2661-801X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002150734
  issn: 2661-801X
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2661-801X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002150734
  issn: 2661-801X
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2661-801X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002150734
  issn: 2661-801X
  databaseCode: C24
  dateStart: 20070112
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgQ4IXvj8CozIIiQfISJw0dh_XahMTWqkKSIUXy3actlKbTEkLQuKP585JChkfErxYbX2u7PP5fLbvfkfIM0y2HVvMXmYU82ORWF_ZRPmw7tJEBCqJkzrZBB-PxWw2mDRBYVXr7d4-STpN7Za1SF5VISY592FPgeNvyLgPB_X9figG6Mg3amIcUP8ytHGiuI2Q-W3Tzi7kwPp_Vck_7UkX_SUvPJq6vejkxv-N4ia53tie9KgWllvkks1vk6ujNuXbHfJttNoicAK1LiKQnpf4jINTR3G3Syl8aD0QaVXj2n6l2RZv3OiXBQyMFqCC1k1sJ1WreVEuN4s1VXlKV3gPQOelczLbUDDvK_S5pmvnz2nvkg8nx-9Hr_0mPYNv4NCy8RG6PVVChzoRodWxsHFsLEy9Cm0yECI0iWaY2keZLNNCpQHnQnHL4ESZ9oMsukf28iK3Dwg1PNCx4RpdG2NEQMv6kRGWca14FqXGI2E7XdI02OWYQmMl3RlGJLLmqwS-SsdXGXjkxa7NeY3c8VfqIUrBjhJRt90PRTmXzSKWStjIZFoznYHhqbnWgkOnmQq5DrlNPfIUZUgirkaOjjtzta0qefpuKo_AEgsRX0x45HlDlBUwBqOaOAjgBEJxdSgPOpQgDKZb3YqqbBRPJdkAIfsH_TjxyJNdNbZEZ7rcFltHA1Y6TAzQ3K8lezfuSLABGIHw56Ij8x3GdGvy5cLBkmN2IOhc5JGXrej_6NefOf_w38gfkWusXj1-FByQvU25tY_JFfN5s6zKHrnMZ9yVokf2h8fjybTntEPPXbZA-WZ4COUZewv1k9OzyUf4Nh1--g7RfGKd
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhzReuF8CAwwC8QDREieNnQeERmFata2qYEjjydiO005qk9K0TJP4TfxGzsmlI0PsbQ-8VfVJ5OOcq318PkJeINh2aBG9zCjmhiKyrrKRckHvkkh4KgqjCmyCDwbi6CgerpFfzV0YLKtsbGJpqJPc4B75FouxF3ncDaN3s-8uokbh6WoDoVGJxZ49PYGUrXjb_wDf9yVjOx8Pe7tujSrgGoi1Fy52HE-U0L6OhG91KGwYGgszVr6NYiF8E2mGiDTKpKkWKvE4F4pbBolQ0vXSAN57hayHKOwdsj7sHwy_rnZ1GMZXQdjczhHRVuEjNrsLrhCyduDA9VoesAQK-Nsd_OEPz9dqnjuwLf3gzo3_bQVvkut1xE23KxW5RdZsdpts9BqguzvkZ2-yxHYR1Jb3IOlsjodXKLAUfXxC4UdTd0mLqpvvKU2XuM9IT8awpDQHwzutb7RSNRkB24vxlKosoRPc_aCjeVlat6CQ1BRYaU6nZRWrvUu-XArz90gnyzP7gFDDPR0arrGgM8S-b2k3MMIyrhVPg8Q4xG8ERZq6YzsCh0xkmbmJSFbCJUG4ZClc0nPI69Uzs6pfyYXU71H-VpTYa7z8I5-PZG26pBI2MKnWTKcQbmuuteAwaaZ8rn1uE4c8R-mV2E0kw3KlkVoWhex__iS3If70sauacMirmijNgQej6tsfsBLYgKxFudmiBGEw7eFGumVtbgt5JtoOebYaxiexhDCz-bKkgdwEPgzQ3K90asV3IFgMoS-8XLS0rbUw7ZHseFw2Y0dMJJhc4JA3jWKezevfK__wYjaeko3dw4N9ud8f7D0i11hlPtzA2ySdxXxpH5Or5sfiuJg_qS0QJd8uW2V_A81JwsI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGh4AXvgeBAQaBeGBREyeN3QeERkdFNagqGNJ4MrbjtJPapDQt0yT-Mv467vLRkSH2tgfeqvoS-ZzffdnnO0KeY7Pt0GL3MqOYG4rIuspGygW5iyPhqSiMymYTfDgUh4fd0Qb5Vd-FwbTKWicWijrODO6Rt1kXa5F3O2HUTqq0iNFe_838u4sdpPCktW6nUUJk354cQ_iWvx7swbd-wVj_3UHvvVt1GHAN-N1LF6uPx0poX0fCtzoUNgyNhdkr30ZdIXwTaYbdaZRJEi1U7HEuFLcMgqK44yUBvPcS2QSXPGQtsjkafBx9Xe_wMPS1grC-qSOidu5jn3YXzCJE8MCN6zWsYdE04G_T8IdtPJu3eebwtrCJ_Rv_82reJNcrT5zulqJzi2zY9Da52qsb4N0hP3vTFZaRoLa4H0nnCzzUQiBTtP0xhR91PibNyyq_JzRZ4f4jPZ7A8tIMFPKsuulK1XQMbC8nM6rSmE5xV4SOF0XK3ZJCsJNjBjqdFdmt9i75ciHMb5FWmqX2PqGGezo0XGOiZ4j14JJOYIRlXCueBLFxiF-DRpqqkjs2FJnKIqITkSyBJgFosgCa9Bzyav3MvKxjci71W8TimhJrkBd_ZIuxrFSaVMIGJtGa6QTccM21FhwmzZTPtc9t7JBniGSJVUZSRNhYrfJcDj5_krvgl_pYbU045GVFlGTAg1HVrRBYCSxM1qDcblACGExzuEa6rNRwLk9h7pCn62F8ElMLU5utChqIWeDDAM29Ur7WfAeCdcElhpeLhuQ1FqY5kh5NiiLt2CsJJhc4ZKcW0tN5_XvlH5zPxhNyBeRUfhgM9x-Sa6zUJG7gbZPWcrGyj8hl82N5lC8eV8qIkm8XLbG_ATxwy4I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cluster+energy+prediction+based+on+multiple+strategy+fusion+whale+optimization+algorithm+and+light+gradient+boosting+machine&rft.jtitle=BMC+chemistry&rft.au=Wei%2C+Wu&rft.au=Mengshan%2C+Li&rft.au=Yan%2C+Wu&rft.au=Lixin%2C+Guan&rft.date=2024-01-30&rft.pub=Springer+International+Publishing&rft.eissn=2661-801X&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs13065-024-01127-0&rft.externalDocID=10_1186_s13065_024_01127_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-801X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-801X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-801X&client=summon