Cluster energy prediction based on multiple strategy fusion whale optimization algorithm and light gradient boosting machine
Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stabili...
Saved in:
| Published in: | BMC chemistry Vol. 18; no. 1; pp. 24 - 18 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
30.01.2024
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects: | |
| ISSN: | 2661-801X, 2661-801X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning.
Results
This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster.
Conclusions
The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R
2
values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas.
Graphical Abstract |
|---|---|
| AbstractList | Background
Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning.
Results
This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster.
Conclusions
The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R
2
values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas.
Graphical Abstract Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning. This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster. The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R.sup.2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas. Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning. Results This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster. Conclusions The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R.sup.2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas. Graphical Keywords: Cluster, LightGBM, Energy prediction, Machine Learning Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning. This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster. The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas. Abstract Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning. Results This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster. Conclusions The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas. Graphical Abstract Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning.BACKGROUNDClusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning.This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster.RESULTSThis paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster.The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas.CONCLUSIONSThe experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas. BackgroundClusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning.ResultsThis paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster.ConclusionsThe experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas. |
| ArticleNumber | 24 |
| Audience | Academic |
| Author | Yan, Wu Lixin, Guan Mengshan, Li Wei, Wu |
| Author_xml | – sequence: 1 givenname: Wu surname: Wei fullname: Wei, Wu organization: School of Physics and Electronic Information, Gannan Normal University – sequence: 2 givenname: Li surname: Mengshan fullname: Mengshan, Li email: msli@gnnu.edu.cn organization: School of Physics and Electronic Information, Gannan Normal University – sequence: 3 givenname: Wu surname: Yan fullname: Yan, Wu organization: School of Mathematics and Computer Science, Gannan Normal University – sequence: 4 givenname: Guan surname: Lixin fullname: Lixin, Guan organization: School of Physics and Electronic Information, Gannan Normal University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38291518$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl1rFDEUhgep2Fr7B7yQAW_0YmqS-UjmSsrix0JB8AO8C0nmzGzKTLImGbXij_fsbqu7RUouEk6e901y8j7Ojpx3kGVPKTmnVDSvIi1JUxeEVQWhlPGCPMhOWNPQQhD69WhvfZydxXhFCGG0JrysHmXHpWAtrak4yX4vxjkmCDk4CMN1vg7QWZOsd7lWEbocF9M8JrseIY8pqARI9XPcED9WCqt-nexkf6mtSI2DDzatply5Lh_tsEr5EFRnwaVcex-TdUM-KbOyDp5kD3s1Rji7mU-zL2_ffF68Ly4_vFsuLi4L01QsFa1oq04JTXUjKOhKQFUZqEilKDStENQ0mjWMV8r0vRaqI5wLxYER1NWkL0-z5c638-pKroOdVLiWXlm5LfgwSBWSNSNIJaA0vdZM93VVa6614FxzpijXlEOHXq93XutZT9AZfFdQ44Hp4Y6zKzn475LSsuGClejw4sYh-G8zxCQnGw2Mo3Lg5yhZy0jN8TkNos_voFd-Dg57taHw19t6nxrwO6R1vceDzcZUXuCJtOWCCqTO_0Ph6GCyBsPVW6wfCF4eCJBJ8DMNao5RLj99PGSf7Xflbztug4aA2AEm-BgD9NLYtI0M3sKOkhK5ibXcxVpirOU21pKglN2R3rrfKyp3ooiwGyD869w9qj9q6gqp |
| CitedBy_id | crossref_primary_10_1016_j_net_2025_103562 crossref_primary_10_1177_16878132241282933 |
| Cites_doi | 10.1039/D2CP01407F 10.1371/journal.pone.0261629 10.1016/j.comptc.2021.113569 10.1186/s13065-021-00767-w 10.3390/w15142656 10.1016/j.wneu.2022.04.044 10.1021/acs.jctc.2c01149 10.1021/jp050061p 10.1080/10106049.2021.1920638 10.1186/s12951-022-01575-7 10.1039/D1CP03524J 10.1021/acs.jpca.8b09822 10.1186/s13065-020-00697-z 10.1021/acs.jpcc.6b04584 10.1007/s00366-021-01393-9 10.1109/ACCESS.2022.3204663 10.1109/ACCESS.2021.3092509 10.1039/D2CP05833B 10.1039/D3DD00051F 10.1093/bioinformatics/btaa918 10.1021/jp054295k 10.1039/D1CP04922D 10.1021/acs.jcim.2c01120 10.1186/s13065-023-01037-7 10.1021/jacs.6b06004 10.1021/acs.jpcc.6b06000 10.1039/D2CS00582D 10.1016/j.jallcom.2022.165439 10.1021/acs.jpcb.2c08893 10.1007/s00214-016-1872-2 10.1007/s11227-020-03481-x 10.1002/jcc.26814 10.1007/s00170-022-09669-0 10.1021/jp406665m 10.1186/s13065-021-00737-2 10.1016/j.apsusc.2016.09.129 10.1021/acsomega.2c03885 10.1021/acsaem.2c01909 10.1016/j.mne.2022.100105 10.1021/jacs.1c10778 10.1021/acs.jcim.5b00140 10.1007/s11069-022-05424-6 10.1016/j.conbuildmat.2022.128296 10.1021/acs.jcim.8b00413 10.1016/j.advengsoft.2016.01.008 10.1021/acs.jpca.3c01399 10.1021/acs.jpca.6b02958 10.1088/1402-4896/ac3b31 10.1103/PhysRevLett.108.058301 10.1051/epjap/2022220030 10.1186/s13065-019-0573-z 10.1021/acsnano.1c08485 10.26599/BDMA.2020.9020016 10.1016/j.adhoc.2021.102473 10.1088/2515-7639/ab084b 10.1214/aos/1013203451 10.1021/acs.jctc.2c00751 10.1039/D2TA00198E 10.1021/acs.jcim.1c00097 10.1021/ct400195d 10.1021/jacs.9b04555 10.1021/acs.jctc.1c01298 10.1016/j.compstruct.2022.115184 10.1021/jp412355b |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. Copyright Springer Nature B.V. Dec 2024 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: Copyright Springer Nature B.V. Dec 2024 – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM ISR 3V. 7SR 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID D1I DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ JG9 K9. KB. M0S M2O MBDVC PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1186/s13065-024-01127-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Health & Medical Collection ProQuest research library Research Library (Corporate) Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Engineered Materials Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database ProQuest Research Library ProQuest Central (New) ProQuest Materials Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2661-801X |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_a8e3cfbb2bf545b7bb877b72a17b17ed PMC11367823 A782197818 38291518 10_1186_s13065_024_01127_0 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51663001, 52063002, 42061067 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 51663001, 52063002, 42061067 |
| GroupedDBID | 0R~ 7X7 8AO 8FE 8FG 8FI 8FJ 8G5 AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABJCF ABUWG ACACY ACUHS ACULB ADBBV ADUKV AFGXO AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BFQNJ BGLVJ BMC BPHCQ BVXVI C24 C6C CCPQU D1I DWQXO EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GUQSH HCIFZ HH5 HMCUK HYE IAO IGS IHR ISE ISR ITC KB. M2O ML- M~E OK1 PDBOC PGMZT PIMPY PQQKQ PROAC RBZ RPM RSV SOJ TUS UKHRP AASML AAYXX CITATION NPM 3V. 7SR 7XB 8BQ 8FD 8FK COVID JG9 K9. MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c642t-9894da8b1b681eb48e44ce404a1e69881c6b26274acffb8ad0778a7e2094d50f3 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001151613500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2661-801X |
| IngestDate | Fri Oct 03 12:38:58 EDT 2025 Tue Nov 04 02:05:26 EST 2025 Thu Oct 02 09:08:52 EDT 2025 Sat Nov 29 14:35:16 EST 2025 Mon Nov 24 16:08:24 EST 2025 Sat Nov 29 10:42:46 EST 2025 Wed Nov 26 11:14:57 EST 2025 Mon Jul 21 06:07:21 EDT 2025 Tue Nov 18 21:33:07 EST 2025 Sat Nov 29 03:45:08 EST 2025 Fri Feb 21 02:39:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Energy prediction Cluster Machine Learning LightGBM |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-9894da8b1b681eb48e44ce404a1e69881c6b26274acffb8ad0778a7e2094d50f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/s13065-024-01127-0 |
| PMID | 38291518 |
| PQID | 2921279546 |
| PQPubID | 54776 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a8e3cfbb2bf545b7bb877b72a17b17ed pubmedcentral_primary_oai_pubmedcentral_nih_gov_11367823 proquest_miscellaneous_2920572746 proquest_journals_2921279546 gale_infotracmisc_A782197818 gale_infotracacademiconefile_A782197818 gale_incontextgauss_ISR_A782197818 pubmed_primary_38291518 crossref_citationtrail_10_1186_s13065_024_01127_0 crossref_primary_10_1186_s13065_024_01127_0 springer_journals_10_1186_s13065_024_01127_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-30 |
| PublicationDateYYYYMMDD | 2024-01-30 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Switzerland – name: London |
| PublicationTitle | BMC chemistry |
| PublicationTitleAbbrev | BMC Chemistry |
| PublicationTitleAlternate | BMC Chem |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: Springer International Publishing – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | Xi, Zheng, Gao, Song, Zhang, Dong, Du, Wang (CR7) 2022; 18 Zhao, Li, Gao (CR13) 2022; 915 Nguyen, Izgorodina (CR34) 2022; 43 Friedman (CR64) 2001; 29 Chin, Yang, Hsu, Hsu, Chang, Chen, Chen, Chia, Hung, Su, Chiu, Huang, Liao (CR14) 2022; 20 Schleder, Padilha, Acosta, Costa, Fazzio (CR1) 2019; 2 Batista, Soares, Quiles, Piotrowski, Da Silva (CR5) 2021; 61 Roman, Klokishner (CR4) 2018; 122 Liu, Yan, Ni (CR61) 2022; 121 Fang, Guo, Todorovic, Rinke, Chen (CR6) 2023; 63 Zhang, Li, Yang, Yang, Dong, Lin, Xia, Fan (CR16) 2022; 5 Luo, Li, Dong, Zang (CR3) 2023; 52 Qamar, Mrovec, Lysogorskiy, Bochkarev, Drautz (CR46) 2023; 19 Hou, Zhai, Sun, Zhang, Li (CR41) 2022; 24 Yang, Fan, Shi, Huang, Zheng (CR44) 2017; 392 Yoon, Lee, Yang, Choi, Jung, Park, Park, Kim, Park (CR56) 2023; 13 Alonso, Lopez (CR10) 2022; 24 Mondal, Banerjee, Ghanty (CR24) 2014; 118 Rezaie, Panahi, Bateni, Jun, Neale, Lee (CR58) 2022; 114 Al-Otaibi, Mary, Mary, Thomas (CR21) 2022; 1208 Li, Chen, Zhang, Zeng, Chen, Guan (CR67) 2022; 7 Chen, Luo, Yao (CR9) 2016; 120 Murcia-Galán, Durán, Leal-Pinto, Roa-Cordero, Vargas, Herrera, Muñoz-Castro, MacLeod-Carey, Naranjo, Rodríguez-Kessler, Hurtado (CR32) 2023; 17 Iida, Hiratsuka, Miyahara, Watanabe (CR40) 2023; 127 Gupta, Gupta, Kumar, Sardana (CR49) 2021; 4 Meng, Xu, Zhao (CR52) 2021; 16 Qiu, Zhou, Khandelwal, Yang, Yang, Li (CR66) 2022; 38 Zhang, Liu, Pan, Yin (CR57) 2022; 10 Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (CR63) 2017; 30 Marinescu, Cinteza, Marton, Chifiriuc, Popa, Stanculescu, Zlaru, Stavarache (CR33) 2020; 14 Rupp, Tkatchenko, Müller, Anatole von Lilienfeld (CR62) 2012; 108 Zapata-Torres, Fierro, Barriga-Gonzalez, Salgado, Celis-Barros (CR19) 2015; 55 Mondal, Agrawal, Manna, Banerjee, Ghanty (CR29) 2016; 120 Shaker, Yu, Song, Ahn, Ryu, Oh, Na (CR53) 2021; 37 Patty, Havenridge, Tietje-Mckinney, Siegler, Singh, Hosseini, Ghabin, Aikens, Das (CR27) 2022; 144 Guleria, Verma, Goyal, Sharma, Benslimane, Singh (CR42) 2021; 116 Santana, Silva De (CR12) 2021; 15 Ren, Chen, Li, He (CR26) 2019; 13 Zhokh, Strizhak, Goryuk, Narivskiy (CR45) 2021; 96 Bintrim, Berkelbach, Ye (CR35) 2022; 18 Wang, Wang, Zhang, He, Xu (CR51) 2022; 163 Samantaray, Sahoo (CR59) 2022; 37 Chen, Xiong, Wang, Ma, Jin, Sheng, Pei, Zhu (CR28) 2016; 138 Saikia, Seel, Pandey (CR30) 2016; 120 Hu, Johannesen, Graham, Goodpaster (CR37) 2023; 2 Goncalves, Galvao, Braga (CR38) 2016; 135 Grimsley, Mayhall (CR18) 2022; 18 Merabtine, Djenouri, Zegour (CR2) 2021; 9 Aghajamali, Karton (CR47) 2022; 14 Wang, Zhang, Yin (CR60) 2023; 15 Mirjalili, Lewis (CR65) 2016; 95 Surber, Mabbs, Habteyes, Sanov (CR17) 2005; 109 Alabdullah, Iqbal, Zahid, Khan, Amin, Jalal (CR55) 2022; 345 Jackins, Vimal, Kaliappan, Lee (CR50) 2021; 77 Liu, Liu, Feng (CR54) 2022; 284 Dânoun, Tabit, Laghzizil, Zahouily (CR11) 2021; 15 Greenwell, Rezac, Beran (CR36) 2022; 24 Garip, Gocen (CR43) 2022; 97 Rutledge, Rittle, Williamson, Xu, Gagnon, Tezcan (CR8) 2019; 141 Khatun, Sarkar, Panda, Sherpa, Anoop (CR20) 2023; 25 Tlahuice-Flores, Santiago, Bahena, Vinogradova, Conroy, Ahuja, Bach, Ponce, Wang, Jose-Yacaman, Whetten (CR25) 2013; 117 Karttunen, Rowley, Pakkanen (CR31) 2005; 109 Lu, Tong, Luo, Jiang, Wei, Huang, Jiang, Lu, Ni (CR15) 2022; 10 Cao, Li, Mueller (CR23) 2018; 58 Chen, Gong, Fan, Feng, Han, Xin, Cao, Zhang, Zhang, Lei, Yin (CR22) 2022; 16 John, Swathi (CR39) 2023; 127 Hansen, Montavon, Biegler, Fazli, Rupp, Scheffler, von Lilienfeld, Tkatchenko, Muller (CR48) 2013; 9 XM Luo (1127_CR3) 2023; 52 GM Yang (1127_CR44) 2017; 392 QH Hu (1127_CR37) 2023; 2 X Liu (1127_CR54) 2022; 284 AJ Karttunen (1127_CR31) 2005; 109 K Mondal (1127_CR29) 2016; 120 N Saikia (1127_CR30) 2016; 120 A Zhokh (1127_CR45) 2021; 96 A Aghajamali (1127_CR47) 2022; 14 M Rupp (1127_CR62) 2012; 108 N Merabtine (1127_CR2) 2021; 9 K Mondal (1127_CR24) 2014; 118 K Hansen (1127_CR48) 2013; 9 JS Al-Otaibi (1127_CR21) 2022; 1208 HR Grimsley (1127_CR18) 2022; 18 S Samantaray (1127_CR59) 2022; 37 KEA Batista (1127_CR5) 2021; 61 C Xi (1127_CR7) 2022; 18 Y Iida (1127_CR40) 2023; 127 JA Alonso (1127_CR10) 2022; 24 JX Chen (1127_CR22) 2022; 16 J Zhang (1127_CR16) 2022; 5 S Wang (1127_CR60) 2023; 15 D Hou (1127_CR41) 2022; 24 M Li (1127_CR67) 2022; 7 V Jackins (1127_CR50) 2021; 77 F Rezaie (1127_CR58) 2022; 114 MVS Santana (1127_CR12) 2021; 15 L Cao (1127_CR23) 2018; 58 DL Meng (1127_CR52) 2021; 16 B Shaker (1127_CR53) 2021; 37 RR Wang (1127_CR51) 2022; 163 LC Fang (1127_CR6) 2023; 63 GR Schleder (1127_CR1) 2019; 2 Y Qiu (1127_CR66) 2022; 38 AA Alabdullah (1127_CR55) 2022; 345 G Ke (1127_CR63) 2017; 30 JB Patty (1127_CR27) 2022; 144 CEM Goncalves (1127_CR38) 2016; 135 VK Gupta (1127_CR49) 2021; 4 M Marinescu (1127_CR33) 2020; 14 HI Yoon (1127_CR56) 2023; 13 S Chen (1127_CR28) 2016; 138 R Zhang (1127_CR57) 2022; 10 AK Garip (1127_CR43) 2022; 97 M Roman (1127_CR4) 2018; 122 A Tlahuice-Flores (1127_CR25) 2013; 117 S Mirjalili (1127_CR65) 2016; 95 XY Lu (1127_CR15) 2022; 10 G Zapata-Torres (1127_CR19) 2015; 55 YC Chin (1127_CR14) 2022; 20 M Khatun (1127_CR20) 2023; 25 E Surber (1127_CR17) 2005; 109 RA Murcia-Galán (1127_CR32) 2023; 17 ALP Nguyen (1127_CR34) 2022; 43 SJ Bintrim (1127_CR35) 2022; 18 C John (1127_CR39) 2023; 127 K Dânoun (1127_CR11) 2021; 15 YF Liu (1127_CR61) 2022; 121 J Chen (1127_CR9) 2016; 120 K Guleria (1127_CR42) 2021; 116 HJ Ren (1127_CR26) 2019; 13 M Qamar (1127_CR46) 2023; 19 JH Friedman (1127_CR64) 2001; 29 C Greenwell (1127_CR36) 2022; 24 HL Rutledge (1127_CR8) 2019; 141 J Zhao (1127_CR13) 2022; 915 |
| References_xml | – volume: 24 start-page: 12937 issue: 21 year: 2022 end-page: 12949 ident: CR41 article-title: Vibrationally excited intermolecular potential energy surfaces and the predicted near infrared overtone (v(OH) = 2 <– 0) spectra of a H(2)O-Ne complex publication-title: Phys Chem Chem Phys doi: 10.1039/D2CP01407F – volume: 16 start-page: E0261629 issue: 12 year: 2021 ident: CR52 article-title: Analysis and prediction of hand, foot and mouth disease incidence in China using random forest and XGBoost publication-title: PLoS ONE doi: 10.1371/journal.pone.0261629 – volume: 1208 year: 2022 ident: CR21 article-title: Evidence of cluster formation of pyrrole with mixed silver metal clusters, Agx-My (x = 4,5, y = 2/1 and M = Au/Ni/Cu) using DFT/SERS analysis publication-title: Comput Theor Chem doi: 10.1016/j.comptc.2021.113569 – volume: 15 start-page: 42 issue: 1 year: 2021 ident: CR11 article-title: A novel approach for the synthesis of nanostructured Ag PO from phosphate rock: high catalytic and antibacterial activities publication-title: Bmc Chem doi: 10.1186/s13065-021-00767-w – volume: 15 start-page: 2656 issue: 14 year: 2023 ident: CR60 article-title: Vibration prediction and evaluation system of the pumping station based on ARIMA–ANFIS–WOA hybrid model and D-S evidence theory publication-title: Water doi: 10.3390/w15142656 – volume: 163 start-page: E617 year: 2022 end-page: E622 ident: CR51 article-title: XGBoost machine learning algorism performed better than regression models in predicting mortality of moderate-to-severe traumatic brain injury publication-title: World Neurosur doi: 10.1016/j.wneu.2022.04.044 – volume: 19 start-page: 5151 issue: 15 year: 2023 end-page: 5167 ident: CR46 article-title: Atomic cluster expansion for quantum-accurate large-scale simulations of carbon publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.2c01149 – volume: 109 start-page: 4452 issue: 20 year: 2005 end-page: 4458 ident: CR17 article-title: Photoelectron imaging of hydrated carbon dioxide cluster anions publication-title: J Phys Chem A doi: 10.1021/jp050061p – volume: 37 start-page: 5609 issue: 19 year: 2022 end-page: 5635 ident: CR59 article-title: Prediction of suspended sediment concentration using hybrid SVM-WOA approaches publication-title: Geocarto Int doi: 10.1080/10106049.2021.1920638 – volume: 20 start-page: 373 issue: 1 year: 2022 ident: CR14 article-title: Iron oxide@chlorophyll clustered nanoparticles eliminate bladder cancer by photodynamic immunotherapy-initiated ferroptosis and immunostimulation publication-title: J Nanobiotechnol doi: 10.1186/s12951-022-01575-7 – volume: 24 start-page: 2729 issue: 5 year: 2022 end-page: 2751 ident: CR10 article-title: Palladium clusters, free and supported on surfaces, and their applications in hydrogen storage publication-title: Phys Chem Chem Phys doi: 10.1039/D1CP03524J – volume: 122 start-page: 9093 issue: 46 year: 2018 end-page: 9099 ident: CR4 article-title: Electric field effects on magnetic and polarizability properties of clusters with two-electron transfer publication-title: J Phys Chem A doi: 10.1021/acs.jpca.8b09822 – volume: 14 start-page: 45 issue: 1 year: 2020 ident: CR33 article-title: Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases publication-title: Bmc Chem doi: 10.1186/s13065-020-00697-z – volume: 120 start-page: 18588 issue: 33 year: 2016 end-page: 18594 ident: CR29 article-title: Effect of hydrogen atom doping on the structure and electronic properties of 20-atom gold cluster publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b04584 – volume: 38 start-page: 4145 issue: SUPPL 5 year: 2022 end-page: 4162 ident: CR66 article-title: Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration publication-title: Eng Comput doi: 10.1007/s00366-021-01393-9 – volume: 10 start-page: 96273 year: 2022 end-page: 96283 ident: CR57 article-title: Network security situation assessment based on improved WOA-SVM publication-title: Ieee Access doi: 10.1109/ACCESS.2022.3204663 – volume: 9 start-page: 92688 year: 2021 end-page: 92705 ident: CR2 article-title: Towards energy efficient clustering in wireless sensor networks: a comprehensive review publication-title: Ieee Access doi: 10.1109/ACCESS.2021.3092509 – volume: 25 start-page: 19986 issue: 29 year: 2023 end-page: 20000 ident: CR20 article-title: Nanoclusters and nanoalloys of group 13 elements (B, Al, and Ga): benchmarking of methods and analysis of their structures and energies publication-title: Phys Chem Chem Phys doi: 10.1039/D2CP05833B – volume: 2 start-page: 1058 issue: 4 year: 2023 end-page: 1069 ident: CR37 article-title: Neural network potentials for reactive chemistry: CASPT2 quality potential energy surfaces for bond breaking publication-title: Digital Discov doi: 10.1039/D3DD00051F – volume: 37 start-page: 1135 issue: 8 year: 2021 end-page: 1139 ident: CR53 article-title: LightBBB: computational prediction model of blood-brain-barrier penetration based on LightGBM publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa918 – volume: 109 start-page: 23983 issue: 50 year: 2005 end-page: 23992 ident: CR31 article-title: Ab initio study on adsorption of hydrated Na+ and Cu+ cations on the Cu(111) surface publication-title: J Phys Chem B doi: 10.1021/jp054295k – volume: 24 start-page: 3695 issue: 6 year: 2022 end-page: 3712 ident: CR36 article-title: Spin-component-scaled and dispersion-corrected second-order Moller-Plesset perturbation theory: a path toward chemical accuracy publication-title: Phys Chem Chem Phys doi: 10.1039/D1CP04922D – volume: 63 start-page: 745 issue: 3 year: 2023 end-page: 752 ident: CR6 article-title: Exploring the conformers of an organic molecule on a metal cluster with bayesian optimization publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.2c01120 – volume: 17 start-page: 135 issue: 1 year: 2023 ident: CR32 article-title: Antifungal activity of Co(II) and Cu(II) complexes containing 1,3-bis(benzotriazol-1-yl)-propan-2-ol on the growth and virulence traits of fluconazole-resistant Candida species: synthesis, DFT calculations, and biological activity publication-title: Bmc Chem doi: 10.1186/s13065-023-01037-7 – volume: 138 start-page: 10754 issue: 34 year: 2016 end-page: 10757 ident: CR28 article-title: Total structure determination of Au-21(S-Adm)(15) and geometrical/electronic structure evolution of thiolated gold nanoclusters publication-title: J Am Chem Soc doi: 10.1021/jacs.6b06004 – volume: 120 start-page: 20323 issue: 36 year: 2016 end-page: 20332 ident: CR30 article-title: Stability and electronic properties of 2D nanomaterials conjugated with pyrazinamide chemotherapeutic: a first-principles cluster study publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b06000 – volume: 52 start-page: 383 issue: 1 year: 2023 end-page: 444 ident: CR3 article-title: Platonic and archimedean solids in discrete metal-containing clusters publication-title: Chem Soc Rev doi: 10.1039/D2CS00582D – volume: 13 start-page: 1477 issue: 8 year: 2023 ident: CR56 article-title: Predicting models for plant metabolites based on PLSR, AdaBoost, XGBoost, and LightGBM algorithms using hyperspectral imaging of Brassica juncea publication-title: Agri Basel – volume: 915 year: 2022 ident: CR13 article-title: Construction of SnO2 nanoparticle cluster@PANI core-shell microspheres for efficient X-band electromagnetic wave absorption publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2022.165439 – volume: 127 start-page: 3524 issue: 15 year: 2023 end-page: 3533 ident: CR40 article-title: Mechanism of nucleation pathway selection in binary lennard-jones solution: a combined study of molecular dynamics simulation and free energy analysis publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.2c08893 – volume: 135 start-page: 116 issue: 5 year: 2016 ident: CR38 article-title: Accurate multi-reference study of Si electronic manifold publication-title: Theoret Chem Acc doi: 10.1007/s00214-016-1872-2 – volume: 77 start-page: 5198 issue: 5 year: 2021 end-page: 5219 ident: CR50 article-title: AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes publication-title: J Supercomput doi: 10.1007/s11227-020-03481-x – volume: 43 start-page: 568 issue: 8 year: 2022 end-page: 576 ident: CR34 article-title: Behavior of counterpoise correction in many-body molecular clusters of organic compounds: Hartree-Fock interaction energy perspective publication-title: J Comput Chem doi: 10.1002/jcc.26814 – volume: 18 start-page: 5374 issue: 9 year: 2022 end-page: 5381 ident: CR35 article-title: Integral-direct Hartree-Fock and M{\o}ller-plesset perturbation theory for periodic systems with density fitting: application to the benzene crystal publication-title: Arxiv – volume: 121 start-page: 6073 issue: 9–10 year: 2022 end-page: 6094 ident: CR61 article-title: The approach to multi-objective optimization for process parameters of dry hobbing under carbon quota policy publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-09669-0 – volume: 117 start-page: 10470 issue: 40 year: 2013 end-page: 10476 ident: CR25 article-title: Structure of the thiolated Au cluster publication-title: J Phys Chem A doi: 10.1021/jp406665m – volume: 30 start-page: 3146 year: 2017 end-page: 3154 ident: CR63 article-title: Lightgbm: a highly efficient gradient boosting decision tree publication-title: Adv Neural Informat Process Syst – volume: 15 start-page: 8 issue: 1 year: 2021 ident: CR12 article-title: novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning publication-title: Bmc Chem doi: 10.1186/s13065-021-00737-2 – volume: 392 start-page: 936 year: 2017 end-page: 941 ident: CR44 article-title: Stability of Pt-n cluster on free/defective graphene: a first-principles study publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.09.129 – volume: 7 start-page: 42027 issue: 46 year: 2022 end-page: 42035 ident: CR67 article-title: Prediction of the aqueous solubility of compounds based on light gradient boosting machines with molecular fingerprints and the cuckoo search algorithm publication-title: ACS Omega doi: 10.1021/acsomega.2c03885 – volume: 5 start-page: 13318 issue: 11 year: 2022 end-page: 13326 ident: CR16 article-title: Functionalized rare-earth metal cluster-based materials as additives for enhancing the efficiency of perovskite solar cells publication-title: Acs Appl Ener Mater doi: 10.1021/acsaem.2c01909 – volume: 14 year: 2022 ident: CR47 article-title: Correlation between the energetic and thermal properties of C40 fullerene isomers: an accurate machine-learning force field study publication-title: Micro Nano Eng doi: 10.1016/j.mne.2022.100105 – volume: 144 start-page: 478 issue: 1 year: 2022 end-page: 484 ident: CR27 article-title: Crystal structure and optical properties of a chiral mixed thiolate/stibine-protected Au-18 cluster publication-title: J Am Chem Soc doi: 10.1021/jacs.1c10778 – volume: 55 start-page: 1349 issue: 7 year: 2015 end-page: 1360 ident: CR19 article-title: Revealing monoamine oxidase B catalytic mechanisms by means of the quantum chemical cluster approach publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00140 – volume: 114 start-page: 1247 issue: 2 year: 2022 end-page: 1283 ident: CR58 article-title: Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping publication-title: Nat Hazards doi: 10.1007/s11069-022-05424-6 – volume: 345 year: 2022 ident: CR55 article-title: Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.128296 – volume: 58 start-page: 2401 issue: 12 year: 2018 end-page: 2413 ident: CR23 article-title: The use of cluster expansions to predict the structures and properties of surfaces and nanostructured materials publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00413 – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR65 article-title: The whale optimization algorithm publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 127 start-page: 4632 issue: 21 year: 2023 end-page: 4642 ident: CR39 article-title: Global optimization of dinitrogen clusters bound to monolayer and bilayer graphene: a swarm intelligence approach publication-title: J Phys Chem A doi: 10.1021/acs.jpca.3c01399 – volume: 120 start-page: 3950 issue: 22 year: 2016 end-page: 3957 ident: CR9 article-title: Theoretical study of tetrahydrofuran-stabilized Al superatom cluster publication-title: J Phys Chem A doi: 10.1021/acs.jpca.6b02958 – volume: 96 issue: 12 year: 2021 ident: CR45 article-title: Thermodynamic analysis of Al clusters formation over aluminum melt publication-title: Phys Scr doi: 10.1088/1402-4896/ac3b31 – volume: 108 start-page: 058301 issue: 5 year: 2012 ident: CR62 article-title: Fast and accurate modeling of molecular atomization energies with machine learning publication-title: Phys Revi Lett doi: 10.1103/PhysRevLett.108.058301 – volume: 97 start-page: 30 year: 2022 ident: CR43 article-title: The local atomic pressures in 79 atom Pd-Ag-Pt truncated octahedron structure publication-title: Eur Phys J Appl Phys doi: 10.1051/epjap/2022220030 – volume: 13 start-page: 55 year: 2019 ident: CR26 article-title: A new insight of structures, bonding and electronic properties for 6-mercaptopurine and Ag clusters configurations: a theoretical perspective publication-title: Bmc Chem doi: 10.1186/s13065-019-0573-z – volume: 16 start-page: 910 issue: 1 year: 2022 end-page: 920 ident: CR22 article-title: Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy publication-title: ACS Nano doi: 10.1021/acsnano.1c08485 – volume: 4 start-page: 116 issue: 2 year: 2021 end-page: 123 ident: CR49 article-title: Prediction of COVID-19 confirmed, death, and cured cases in India using random forest model publication-title: Big Data Min Analyt doi: 10.26599/BDMA.2020.9020016 – volume: 116 year: 2021 ident: CR42 article-title: An enhanced energy proficient clustering (EEPC) algorithm for relay selection in heterogeneous WSNs publication-title: Ad Hoc Netw doi: 10.1016/j.adhoc.2021.102473 – volume: 2 issue: 3 year: 2019 ident: CR1 article-title: From DFT to machine learning: recent approaches to materials science-a review publication-title: J Phys Mater doi: 10.1088/2515-7639/ab084b – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: CR64 article-title: Greedy function approximation: a gradient boosting machine publication-title: Annals Stat doi: 10.1214/aos/1013203451 – volume: 18 start-page: 7350 issue: 12 year: 2022 end-page: 7358 ident: CR18 article-title: New local explorations of the unitary coupled cluster energy landscape publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.2c00751 – volume: 10 start-page: 4594 issue: 9 year: 2022 end-page: 4600 ident: CR15 article-title: Confining single Pt atoms from Pt clusters on multi-armed CdS for enhanced photocatalytic hydrogen evolution publication-title: J Mater Chem A doi: 10.1039/D2TA00198E – volume: 61 start-page: 2294 issue: 5 year: 2021 end-page: 2301 ident: CR5 article-title: Energy decomposition to access the stability changes induced by CO adsorption on transition-metal 13-atom clusters publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.1c00097 – volume: 9 start-page: 3404 issue: 8 year: 2013 end-page: 3419 ident: CR48 article-title: Assessment and validation of machine learning methods for predicting molecular atomization energies publication-title: J Chem Theory Comput doi: 10.1021/ct400195d – volume: 141 start-page: 10091 issue: 25 year: 2019 end-page: 10098 ident: CR8 article-title: Redox-dependent metastability of the nitrogenase P-cluster publication-title: J Am Chem Soc doi: 10.1021/jacs.9b04555 – volume: 18 start-page: 6878 issue: 11 year: 2022 end-page: 6891 ident: CR7 article-title: Ion solvation free energy calculation based on Ab initio molecular dynamics using a hybrid solvent model publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.1c01298 – volume: 284 year: 2022 ident: CR54 article-title: Long-term performance prediction framework based on XGBoost decision tree for pultruded FRP composites exposed to water, humidity and alkaline solution publication-title: Compos Struct doi: 10.1016/j.compstruct.2022.115184 – volume: 118 start-page: 11935 issue: 22 year: 2014 end-page: 11945 ident: CR24 article-title: Structural and chemical properties of subnanometer-sized bimetallic Au19Pt cluster publication-title: J Phys Chem C doi: 10.1021/jp412355b – volume: 14 year: 2022 ident: 1127_CR47 publication-title: Micro Nano Eng doi: 10.1016/j.mne.2022.100105 – volume: 109 start-page: 23983 issue: 50 year: 2005 ident: 1127_CR31 publication-title: J Phys Chem B doi: 10.1021/jp054295k – volume: 37 start-page: 1135 issue: 8 year: 2021 ident: 1127_CR53 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa918 – volume: 5 start-page: 13318 issue: 11 year: 2022 ident: 1127_CR16 publication-title: Acs Appl Ener Mater doi: 10.1021/acsaem.2c01909 – volume: 24 start-page: 12937 issue: 21 year: 2022 ident: 1127_CR41 publication-title: Phys Chem Chem Phys doi: 10.1039/D2CP01407F – volume: 135 start-page: 116 issue: 5 year: 2016 ident: 1127_CR38 publication-title: Theoret Chem Acc doi: 10.1007/s00214-016-1872-2 – volume: 30 start-page: 3146 year: 2017 ident: 1127_CR63 publication-title: Adv Neural Informat Process Syst – volume: 144 start-page: 478 issue: 1 year: 2022 ident: 1127_CR27 publication-title: J Am Chem Soc doi: 10.1021/jacs.1c10778 – volume: 52 start-page: 383 issue: 1 year: 2023 ident: 1127_CR3 publication-title: Chem Soc Rev doi: 10.1039/D2CS00582D – volume: 15 start-page: 8 issue: 1 year: 2021 ident: 1127_CR12 publication-title: Bmc Chem doi: 10.1186/s13065-021-00737-2 – volume: 122 start-page: 9093 issue: 46 year: 2018 ident: 1127_CR4 publication-title: J Phys Chem A doi: 10.1021/acs.jpca.8b09822 – volume: 14 start-page: 45 issue: 1 year: 2020 ident: 1127_CR33 publication-title: Bmc Chem doi: 10.1186/s13065-020-00697-z – volume: 392 start-page: 936 year: 2017 ident: 1127_CR44 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.09.129 – volume: 58 start-page: 2401 issue: 12 year: 2018 ident: 1127_CR23 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00413 – volume: 17 start-page: 135 issue: 1 year: 2023 ident: 1127_CR32 publication-title: Bmc Chem doi: 10.1186/s13065-023-01037-7 – volume: 120 start-page: 18588 issue: 33 year: 2016 ident: 1127_CR29 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b04584 – volume: 120 start-page: 20323 issue: 36 year: 2016 ident: 1127_CR30 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b06000 – volume: 108 start-page: 058301 issue: 5 year: 2012 ident: 1127_CR62 publication-title: Phys Revi Lett doi: 10.1103/PhysRevLett.108.058301 – volume: 18 start-page: 6878 issue: 11 year: 2022 ident: 1127_CR7 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.1c01298 – volume: 2 start-page: 1058 issue: 4 year: 2023 ident: 1127_CR37 publication-title: Digital Discov doi: 10.1039/D3DD00051F – volume: 109 start-page: 4452 issue: 20 year: 2005 ident: 1127_CR17 publication-title: J Phys Chem A doi: 10.1021/jp050061p – volume: 37 start-page: 5609 issue: 19 year: 2022 ident: 1127_CR59 publication-title: Geocarto Int doi: 10.1080/10106049.2021.1920638 – volume: 1208 year: 2022 ident: 1127_CR21 publication-title: Comput Theor Chem doi: 10.1016/j.comptc.2021.113569 – volume: 43 start-page: 568 issue: 8 year: 2022 ident: 1127_CR34 publication-title: J Comput Chem doi: 10.1002/jcc.26814 – volume: 10 start-page: 96273 year: 2022 ident: 1127_CR57 publication-title: Ieee Access doi: 10.1109/ACCESS.2022.3204663 – volume: 10 start-page: 4594 issue: 9 year: 2022 ident: 1127_CR15 publication-title: J Mater Chem A doi: 10.1039/D2TA00198E – volume: 127 start-page: 4632 issue: 21 year: 2023 ident: 1127_CR39 publication-title: J Phys Chem A doi: 10.1021/acs.jpca.3c01399 – volume: 13 start-page: 1477 issue: 8 year: 2023 ident: 1127_CR56 publication-title: Agri Basel – volume: 38 start-page: 4145 issue: SUPPL 5 year: 2022 ident: 1127_CR66 publication-title: Eng Comput doi: 10.1007/s00366-021-01393-9 – volume: 18 start-page: 7350 issue: 12 year: 2022 ident: 1127_CR18 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.2c00751 – volume: 16 start-page: E0261629 issue: 12 year: 2021 ident: 1127_CR52 publication-title: PLoS ONE doi: 10.1371/journal.pone.0261629 – volume: 915 year: 2022 ident: 1127_CR13 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2022.165439 – volume: 24 start-page: 2729 issue: 5 year: 2022 ident: 1127_CR10 publication-title: Phys Chem Chem Phys doi: 10.1039/D1CP03524J – volume: 284 year: 2022 ident: 1127_CR54 publication-title: Compos Struct doi: 10.1016/j.compstruct.2022.115184 – volume: 117 start-page: 10470 issue: 40 year: 2013 ident: 1127_CR25 publication-title: J Phys Chem A doi: 10.1021/jp406665m – volume: 15 start-page: 42 issue: 1 year: 2021 ident: 1127_CR11 publication-title: Bmc Chem doi: 10.1186/s13065-021-00767-w – volume: 118 start-page: 11935 issue: 22 year: 2014 ident: 1127_CR24 publication-title: J Phys Chem C doi: 10.1021/jp412355b – volume: 121 start-page: 6073 issue: 9–10 year: 2022 ident: 1127_CR61 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-09669-0 – volume: 4 start-page: 116 issue: 2 year: 2021 ident: 1127_CR49 publication-title: Big Data Min Analyt doi: 10.26599/BDMA.2020.9020016 – volume: 20 start-page: 373 issue: 1 year: 2022 ident: 1127_CR14 publication-title: J Nanobiotechnol doi: 10.1186/s12951-022-01575-7 – volume: 25 start-page: 19986 issue: 29 year: 2023 ident: 1127_CR20 publication-title: Phys Chem Chem Phys doi: 10.1039/D2CP05833B – volume: 63 start-page: 745 issue: 3 year: 2023 ident: 1127_CR6 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.2c01120 – volume: 141 start-page: 10091 issue: 25 year: 2019 ident: 1127_CR8 publication-title: J Am Chem Soc doi: 10.1021/jacs.9b04555 – volume: 120 start-page: 3950 issue: 22 year: 2016 ident: 1127_CR9 publication-title: J Phys Chem A doi: 10.1021/acs.jpca.6b02958 – volume: 18 start-page: 5374 issue: 9 year: 2022 ident: 1127_CR35 publication-title: Arxiv – volume: 29 start-page: 1189 year: 2001 ident: 1127_CR64 publication-title: Annals Stat doi: 10.1214/aos/1013203451 – volume: 114 start-page: 1247 issue: 2 year: 2022 ident: 1127_CR58 publication-title: Nat Hazards doi: 10.1007/s11069-022-05424-6 – volume: 15 start-page: 2656 issue: 14 year: 2023 ident: 1127_CR60 publication-title: Water doi: 10.3390/w15142656 – volume: 116 year: 2021 ident: 1127_CR42 publication-title: Ad Hoc Netw doi: 10.1016/j.adhoc.2021.102473 – volume: 127 start-page: 3524 issue: 15 year: 2023 ident: 1127_CR40 publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.2c08893 – volume: 163 start-page: E617 year: 2022 ident: 1127_CR51 publication-title: World Neurosur doi: 10.1016/j.wneu.2022.04.044 – volume: 138 start-page: 10754 issue: 34 year: 2016 ident: 1127_CR28 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b06004 – volume: 97 start-page: 30 year: 2022 ident: 1127_CR43 publication-title: Eur Phys J Appl Phys doi: 10.1051/epjap/2022220030 – volume: 2 issue: 3 year: 2019 ident: 1127_CR1 publication-title: J Phys Mater doi: 10.1088/2515-7639/ab084b – volume: 345 year: 2022 ident: 1127_CR55 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.128296 – volume: 24 start-page: 3695 issue: 6 year: 2022 ident: 1127_CR36 publication-title: Phys Chem Chem Phys doi: 10.1039/D1CP04922D – volume: 61 start-page: 2294 issue: 5 year: 2021 ident: 1127_CR5 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.1c00097 – volume: 95 start-page: 51 year: 2016 ident: 1127_CR65 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 16 start-page: 910 issue: 1 year: 2022 ident: 1127_CR22 publication-title: ACS Nano doi: 10.1021/acsnano.1c08485 – volume: 7 start-page: 42027 issue: 46 year: 2022 ident: 1127_CR67 publication-title: ACS Omega doi: 10.1021/acsomega.2c03885 – volume: 96 issue: 12 year: 2021 ident: 1127_CR45 publication-title: Phys Scr doi: 10.1088/1402-4896/ac3b31 – volume: 13 start-page: 55 year: 2019 ident: 1127_CR26 publication-title: Bmc Chem doi: 10.1186/s13065-019-0573-z – volume: 19 start-page: 5151 issue: 15 year: 2023 ident: 1127_CR46 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.2c01149 – volume: 9 start-page: 3404 issue: 8 year: 2013 ident: 1127_CR48 publication-title: J Chem Theory Comput doi: 10.1021/ct400195d – volume: 55 start-page: 1349 issue: 7 year: 2015 ident: 1127_CR19 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00140 – volume: 9 start-page: 92688 year: 2021 ident: 1127_CR2 publication-title: Ieee Access doi: 10.1109/ACCESS.2021.3092509 – volume: 77 start-page: 5198 issue: 5 year: 2021 ident: 1127_CR50 publication-title: J Supercomput doi: 10.1007/s11227-020-03481-x |
| SSID | ssj0002150734 |
| Score | 2.2665286 |
| Snippet | Background
Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial... Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in... Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial... BackgroundClusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial... Abstract Background Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties,... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 24 |
| SubjectTerms | Algorithms Catalysis Chemistry Chemistry and Materials Science Chemistry/Food Science Cluster Clusters Eigenvalues Electronic structure Energy Energy prediction Energy storage Feature extraction Force and energy LightGBM Machine Learning Magnetism Marine mammals Mathematical models Mathematical optimization Matrix representation Medical imaging Model accuracy Molecular structure Optimization Optimization algorithms Optoelectronics Parameters Potential energy Prediction models R&D Research & development Tetrahedra |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yCPoiftu7U6IIPmi5Ju0m6eO5eOjLIX7AvYUkTXcXdtuj7XoI_vHOpO26PVFffCvNtCQzk_loJ78h5CU22848di9zhseZEj42XpgY9l0hVGJEJvpmE_L8XF1c5B_3Wn1hTVgPD9wz7sQon7rSWm5LcPZWWquktJIbJi2TvkDrm8h8L5lCG8wxzkmz8ZSMEictwx7pMbgkyJ4Zl3Ey8UQBsP93s7znl67XTF77cRr80dldcmcIJOlpv4B75Iav7pNb87F_2wPyY77eIgoC9eF4H71s8J8MyoGi6yooXIzlhLTtQWq_03KLn8_o1RJmSGuwJ5vhoCY160XdrLrlhpqqoGtM6umiCRVjHYVYvcUCaroJxZn-Ifl69u7L_H089FqIHWQgXYw47IVRllmhmLeZ8lnmPMjRMC9ypZgTlmOfHuPK0ipTJFIqIz2H9LCYJWX6iBxUdeWfEOpkYjMHMgL7lSGcWTlLnfJcWiPLtHARYSPftRuAyLEfxlqHhEQJ3ctKg6x0kJVOIvJ698xlD8PxV-q3KM4dJUJohxugWHpQLP0vxYrIC1QGjSAZFVbhLMy2bfWHz5_0KYRVDMHCVEReDURlDWtwZjjUAJxAXK0J5fGEEpTBTYdHndODFWk1zxF_P59lIiLPd8P4JFbGVb7eBhoIuUEwQPO4V9HdulPFc4jo4OVqorwTxkxHqtUyYIxjqx-YXBqRN6Oe_5rXnzl_-D84f0Ru836fxmlyTA66ZuufkpvuW7dqm2dho_8EJK9X5g priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGFNzRQkEFIHCBqXms7J1RWVHCpEA9pb5btOLuVdpMlyRYh8eOZcZyUFNELtyieRLZnPB7b4-8j5CWSbWcW2cuMSsJMMBsqy1QI465gIlIsYz3ZBD85EYtF_slvuLU-rXLwic5RF7XBPfLDJEcs8nyWsbfb7yGyRuHpqqfQuEquIW022jlf8HGPJcFoJ82GuzKCHbYxMqWHMDHBGhr-F0aT-cjB9v_tnP-YnS5mTl44PnWz0vHt_23PHXLLx6P0qDegu-SKre6RG_OBBu4--TVf7xBMgVp3S5BuGzzaQXVSnAELCg9DViJte6zbn7Tc4S4c_bGCJtIa3NLG3_ekar2EanSrDVVVQde4N0CXjUs86yiE_C3mYdONy_G0D8i34_df5x9CT9kQGljIdCHCuRdK6FgzEVudCZtlxoI5qNiyXIjYMJ0g3Y8yZamFKiLOheI2gVVmMYvK9CHZq-rK7hNqeKQzwzWmO2aIilbOUiNswrXiZVqYgMSD4qTxeOZIq7GWbl0jmOyVLUHZ0ilbRgF5PX6z7dE8LpV-h_YwSiISt3tRN0vpB7ZUwqam1DrRJQSjmmstOFQ6UTHXMbdFQF6gNUnE2qgwmWepdm0rP375LI8gOosRc0wE5JUXKmtog1H-bgT0BMJzTSQPJpJgDGZaPFib9M6oleemFpDnYzF-iQl2la13TgYid1AMyDzqbXxsdyqSHAJD-LmYWP-kY6Yl1enKQZUjYxBULg3Im2GgnNfr3z3_-PJmPCE3k34Ih2l0QPa6ZmefkuvmrDttm2fOB_wG2M5kXg priority: 102 providerName: ProQuest |
| Title | Cluster energy prediction based on multiple strategy fusion whale optimization algorithm and light gradient boosting machine |
| URI | https://link.springer.com/article/10.1186/s13065-024-01127-0 https://www.ncbi.nlm.nih.gov/pubmed/38291518 https://www.proquest.com/docview/2921279546 https://www.proquest.com/docview/2920572746 https://pubmed.ncbi.nlm.nih.gov/PMC11367823 https://doaj.org/article/a8e3cfbb2bf545b7bb877b72a17b17ed |
| Volume | 18 |
| WOSCitedRecordID | wos001151613500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: RBZ dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2661-801X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002150734 issn: 2661-801X databaseCode: C24 dateStart: 20070112 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgQ4IXvj8CozIIiQfISJw0dh_XahMTWqkKSIUXy3actlKbTEkLQuKP585JChkfErxYbX2u7PP5fLbvfkfIM0y2HVvMXmYU82ORWF_ZRPmw7tJEBCqJkzrZBB-PxWw2mDRBYVXr7d4-STpN7Za1SF5VISY592FPgeNvyLgPB_X9figG6Mg3amIcUP8ytHGiuI2Q-W3Tzi7kwPp_Vck_7UkX_SUvPJq6vejkxv-N4ia53tie9KgWllvkks1vk6ujNuXbHfJttNoicAK1LiKQnpf4jINTR3G3Syl8aD0QaVXj2n6l2RZv3OiXBQyMFqCC1k1sJ1WreVEuN4s1VXlKV3gPQOelczLbUDDvK_S5pmvnz2nvkg8nx-9Hr_0mPYNv4NCy8RG6PVVChzoRodWxsHFsLEy9Cm0yECI0iWaY2keZLNNCpQHnQnHL4ESZ9oMsukf28iK3Dwg1PNCx4RpdG2NEQMv6kRGWca14FqXGI2E7XdI02OWYQmMl3RlGJLLmqwS-SsdXGXjkxa7NeY3c8VfqIUrBjhJRt90PRTmXzSKWStjIZFoznYHhqbnWgkOnmQq5DrlNPfIUZUgirkaOjjtzta0qefpuKo_AEgsRX0x45HlDlBUwBqOaOAjgBEJxdSgPOpQgDKZb3YqqbBRPJdkAIfsH_TjxyJNdNbZEZ7rcFltHA1Y6TAzQ3K8lezfuSLABGIHw56Ij8x3GdGvy5cLBkmN2IOhc5JGXrej_6NefOf_w38gfkWusXj1-FByQvU25tY_JFfN5s6zKHrnMZ9yVokf2h8fjybTntEPPXbZA-WZ4COUZewv1k9OzyUf4Nh1--g7RfGKd |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhzReuF8CAwwC8QDREieNnQeERmFata2qYEjjydiO005qk9K0TJP4TfxGzsmlI0PsbQ-8VfVJ5OOcq318PkJeINh2aBG9zCjmhiKyrrKRckHvkkh4KgqjCmyCDwbi6CgerpFfzV0YLKtsbGJpqJPc4B75FouxF3ncDaN3s-8uokbh6WoDoVGJxZ49PYGUrXjb_wDf9yVjOx8Pe7tujSrgGoi1Fy52HE-U0L6OhG91KGwYGgszVr6NYiF8E2mGiDTKpKkWKvE4F4pbBolQ0vXSAN57hayHKOwdsj7sHwy_rnZ1GMZXQdjczhHRVuEjNrsLrhCyduDA9VoesAQK-Nsd_OEPz9dqnjuwLf3gzo3_bQVvkut1xE23KxW5RdZsdpts9BqguzvkZ2-yxHYR1Jb3IOlsjodXKLAUfXxC4UdTd0mLqpvvKU2XuM9IT8awpDQHwzutb7RSNRkB24vxlKosoRPc_aCjeVlat6CQ1BRYaU6nZRWrvUu-XArz90gnyzP7gFDDPR0arrGgM8S-b2k3MMIyrhVPg8Q4xG8ERZq6YzsCh0xkmbmJSFbCJUG4ZClc0nPI69Uzs6pfyYXU71H-VpTYa7z8I5-PZG26pBI2MKnWTKcQbmuuteAwaaZ8rn1uE4c8R-mV2E0kw3KlkVoWhex__iS3If70sauacMirmijNgQej6tsfsBLYgKxFudmiBGEw7eFGumVtbgt5JtoOebYaxiexhDCz-bKkgdwEPgzQ3K90asV3IFgMoS-8XLS0rbUw7ZHseFw2Y0dMJJhc4JA3jWKezevfK__wYjaeko3dw4N9ud8f7D0i11hlPtzA2ySdxXxpH5Or5sfiuJg_qS0QJd8uW2V_A81JwsI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGh4AXvgeBAQaBeGBREyeN3QeERkdFNagqGNJ4MrbjtJPapDQt0yT-Mv467vLRkSH2tgfeqvoS-ZzffdnnO0KeY7Pt0GL3MqOYG4rIuspGygW5iyPhqSiMymYTfDgUh4fd0Qb5Vd-FwbTKWicWijrODO6Rt1kXa5F3O2HUTqq0iNFe_838u4sdpPCktW6nUUJk354cQ_iWvx7swbd-wVj_3UHvvVt1GHAN-N1LF6uPx0poX0fCtzoUNgyNhdkr30ZdIXwTaYbdaZRJEi1U7HEuFLcMgqK44yUBvPcS2QSXPGQtsjkafBx9Xe_wMPS1grC-qSOidu5jn3YXzCJE8MCN6zWsYdE04G_T8IdtPJu3eebwtrCJ_Rv_82reJNcrT5zulqJzi2zY9Da52qsb4N0hP3vTFZaRoLa4H0nnCzzUQiBTtP0xhR91PibNyyq_JzRZ4f4jPZ7A8tIMFPKsuulK1XQMbC8nM6rSmE5xV4SOF0XK3ZJCsJNjBjqdFdmt9i75ciHMb5FWmqX2PqGGezo0XGOiZ4j14JJOYIRlXCueBLFxiF-DRpqqkjs2FJnKIqITkSyBJgFosgCa9Bzyav3MvKxjci71W8TimhJrkBd_ZIuxrFSaVMIGJtGa6QTccM21FhwmzZTPtc9t7JBniGSJVUZSRNhYrfJcDj5_krvgl_pYbU045GVFlGTAg1HVrRBYCSxM1qDcblACGExzuEa6rNRwLk9h7pCn62F8ElMLU5utChqIWeDDAM29Ur7WfAeCdcElhpeLhuQ1FqY5kh5NiiLt2CsJJhc4ZKcW0tN5_XvlH5zPxhNyBeRUfhgM9x-Sa6zUJG7gbZPWcrGyj8hl82N5lC8eV8qIkm8XLbG_ATxwy4I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cluster+energy+prediction+based+on+multiple+strategy+fusion+whale+optimization+algorithm+and+light+gradient+boosting+machine&rft.jtitle=BMC+chemistry&rft.au=Wei%2C+Wu&rft.au=Mengshan%2C+Li&rft.au=Yan%2C+Wu&rft.au=Lixin%2C+Guan&rft.date=2024-01-30&rft.pub=Springer+International+Publishing&rft.eissn=2661-801X&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs13065-024-01127-0&rft.externalDocID=10_1186_s13065_024_01127_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-801X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-801X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-801X&client=summon |