Clinically applicable deep learning for diagnosis and referral in retinal disease

The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature medicine Ročník 24; číslo 9; s. 1342 - 1350
Hlavní autori: De Fauw, Jeffrey, Ledsam, Joseph R., Romera-Paredes, Bernardino, Nikolov, Stanislav, Tomasev, Nenad, Blackwell, Sam, Askham, Harry, Glorot, Xavier, O’Donoghue, Brendan, Visentin, Daniel, van den Driessche, George, Lakshminarayanan, Balaji, Meyer, Clemens, Mackinder, Faith, Bouton, Simon, Ayoub, Kareem, Chopra, Reena, King, Dominic, Karthikesalingam, Alan, Hughes, Cían O., Raine, Rosalind, Hughes, Julian, Sim, Dawn A., Egan, Catherine, Tufail, Adnan, Montgomery, Hugh, Hassabis, Demis, Rees, Geraint, Back, Trevor, Khaw, Peng T., Suleyman, Mustafa, Cornebise, Julien, Keane, Pearse A., Ronneberger, Olaf
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Nature Publishing Group US 01.09.2018
Nature Publishing Group
Predmet:
ISSN:1078-8956, 1546-170X, 1546-170X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting. A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.
AbstractList The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting. A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.
The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.
The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.
The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting. A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.
Audience Academic
Author Nikolov, Stanislav
Ayoub, Kareem
Ledsam, Joseph R.
Hughes, Julian
Raine, Rosalind
Tufail, Adnan
Blackwell, Sam
van den Driessche, George
Askham, Harry
Chopra, Reena
Back, Trevor
Lakshminarayanan, Balaji
Suleyman, Mustafa
Hughes, Cían O.
Rees, Geraint
Glorot, Xavier
Visentin, Daniel
Hassabis, Demis
Tomasev, Nenad
Karthikesalingam, Alan
Cornebise, Julien
Ronneberger, Olaf
O’Donoghue, Brendan
Mackinder, Faith
De Fauw, Jeffrey
King, Dominic
Romera-Paredes, Bernardino
Bouton, Simon
Khaw, Peng T.
Sim, Dawn A.
Meyer, Clemens
Keane, Pearse A.
Montgomery, Hugh
Egan, Catherine
Author_xml – sequence: 1
  givenname: Jeffrey
  surname: De Fauw
  fullname: De Fauw, Jeffrey
  organization: DeepMind
– sequence: 2
  givenname: Joseph R.
  surname: Ledsam
  fullname: Ledsam, Joseph R.
  organization: DeepMind
– sequence: 3
  givenname: Bernardino
  surname: Romera-Paredes
  fullname: Romera-Paredes, Bernardino
  organization: DeepMind
– sequence: 4
  givenname: Stanislav
  surname: Nikolov
  fullname: Nikolov, Stanislav
  organization: DeepMind
– sequence: 5
  givenname: Nenad
  surname: Tomasev
  fullname: Tomasev, Nenad
  organization: DeepMind
– sequence: 6
  givenname: Sam
  surname: Blackwell
  fullname: Blackwell, Sam
  organization: DeepMind
– sequence: 7
  givenname: Harry
  surname: Askham
  fullname: Askham, Harry
  organization: DeepMind
– sequence: 8
  givenname: Xavier
  surname: Glorot
  fullname: Glorot, Xavier
  organization: DeepMind
– sequence: 9
  givenname: Brendan
  surname: O’Donoghue
  fullname: O’Donoghue, Brendan
  organization: DeepMind
– sequence: 10
  givenname: Daniel
  surname: Visentin
  fullname: Visentin, Daniel
  organization: DeepMind
– sequence: 11
  givenname: George
  surname: van den Driessche
  fullname: van den Driessche, George
  organization: DeepMind
– sequence: 12
  givenname: Balaji
  surname: Lakshminarayanan
  fullname: Lakshminarayanan, Balaji
  organization: DeepMind
– sequence: 13
  givenname: Clemens
  surname: Meyer
  fullname: Meyer, Clemens
  organization: DeepMind
– sequence: 14
  givenname: Faith
  surname: Mackinder
  fullname: Mackinder, Faith
  organization: DeepMind
– sequence: 15
  givenname: Simon
  surname: Bouton
  fullname: Bouton, Simon
  organization: DeepMind
– sequence: 16
  givenname: Kareem
  surname: Ayoub
  fullname: Ayoub, Kareem
  organization: DeepMind
– sequence: 17
  givenname: Reena
  orcidid: 0000-0002-4264-8329
  surname: Chopra
  fullname: Chopra, Reena
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology
– sequence: 18
  givenname: Dominic
  surname: King
  fullname: King, Dominic
  organization: DeepMind
– sequence: 19
  givenname: Alan
  surname: Karthikesalingam
  fullname: Karthikesalingam, Alan
  organization: DeepMind
– sequence: 20
  givenname: Cían O.
  orcidid: 0000-0001-6901-0985
  surname: Hughes
  fullname: Hughes, Cían O.
  organization: DeepMind, University College London
– sequence: 21
  givenname: Rosalind
  surname: Raine
  fullname: Raine, Rosalind
  organization: University College London
– sequence: 22
  givenname: Julian
  surname: Hughes
  fullname: Hughes, Julian
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology
– sequence: 23
  givenname: Dawn A.
  surname: Sim
  fullname: Sim, Dawn A.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology
– sequence: 24
  givenname: Catherine
  surname: Egan
  fullname: Egan, Catherine
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology
– sequence: 25
  givenname: Adnan
  surname: Tufail
  fullname: Tufail, Adnan
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology
– sequence: 26
  givenname: Hugh
  orcidid: 0000-0001-8797-5019
  surname: Montgomery
  fullname: Montgomery, Hugh
  organization: University College London
– sequence: 27
  givenname: Demis
  surname: Hassabis
  fullname: Hassabis, Demis
  organization: DeepMind
– sequence: 28
  givenname: Geraint
  orcidid: 0000-0002-9623-7007
  surname: Rees
  fullname: Rees, Geraint
  organization: University College London
– sequence: 29
  givenname: Trevor
  surname: Back
  fullname: Back, Trevor
  organization: DeepMind
– sequence: 30
  givenname: Peng T.
  surname: Khaw
  fullname: Khaw, Peng T.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology
– sequence: 31
  givenname: Mustafa
  surname: Suleyman
  fullname: Suleyman, Mustafa
  organization: DeepMind
– sequence: 32
  givenname: Julien
  surname: Cornebise
  fullname: Cornebise, Julien
  organization: DeepMind, University College London
– sequence: 33
  givenname: Pearse A.
  orcidid: 0000-0002-9239-745X
  surname: Keane
  fullname: Keane, Pearse A.
  email: pearse.keane@moorfields.nhs.uk
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology
– sequence: 34
  givenname: Olaf
  orcidid: 0000-0002-4266-1515
  surname: Ronneberger
  fullname: Ronneberger, Olaf
  email: olafr@deepmind.com
  organization: DeepMind
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30104768$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrFTEUhYNU7EV_gC8yIIg-TM1tksxjOXgpFIpaxLeQmdkzTcnJHJMZsP_ePZyWespRJIRswrcW2dnrmBzEMQIhLxk9ZVSY91myqmYlZQY31aV6Qo5YJVXJNP1xgDXVpjR1pQ7Jcc43lFJBq_oZORSIS63MEfmyCj761oVwW7jNJmDZBCg6gE0RwKXo41D0Yyo674Y4Zp8LF7siQQ8puVD4iPXkI5adz-AyPCdPexcyvLg7T8jVxw9Xq8_lxeWn89XZRdkqyaeyNkq6RptemUrXvBNUaKm1VLITLXe9EFIq7ZyBnnFhhKOV4HXTaAV1z5k4IW-3tps0_pwhT3btcwshuAjjnC2nxvBaYJeIvn6E3oxzwicjxSg1FZWifqAGF8D62I9Tcu1ias8qzWsqlaiQKvdQA0TA38Dp9B6vd_jTPTyuDta-3St4tyNAZoJf0-DmnO35t6__z15-32Xf_MFegwvTdR7DPPkx5l3w1d1vzc0aOrtJfu3Srb3PDAJ6C7RpzBmTYFs_ucUHW_PBMmqXdNptOi2m0y7ptMsg2CPlvfm_NHyrycjGAdLD8P4u-g2Ozu9Q
CitedBy_id crossref_primary_10_2196_10010
crossref_primary_10_1186_s12880_021_00551_1
crossref_primary_10_1007_s13167_019_00188_9
crossref_primary_10_1136_bmjinnov_2020_000424
crossref_primary_10_1002_jhm_13371
crossref_primary_10_1111_dme_13856
crossref_primary_10_1016_j_berh_2019_101429
crossref_primary_10_1097_ICU_0000000000000593
crossref_primary_10_1007_s40135_020_00240_2
crossref_primary_10_1088_1361_6560_ab652d
crossref_primary_10_12688_f1000research_52031_1
crossref_primary_10_1016_j_preteyeres_2022_101160
crossref_primary_10_3389_fpubh_2020_00117
crossref_primary_10_1016_j_media_2021_102130
crossref_primary_10_1111_ans_16343
crossref_primary_10_1016_j_ebiom_2020_103121
crossref_primary_10_1016_j_fertnstert_2020_09_156
crossref_primary_10_1681_ASN_2019070664
crossref_primary_10_1038_s41591_020_1037_7
crossref_primary_10_3390_jcm12113746
crossref_primary_10_1109_ACCESS_2023_3289397
crossref_primary_10_1016_j_bone_2020_115561
crossref_primary_10_1109_JBHI_2020_2983126
crossref_primary_10_1038_s41598_023_49563_7
crossref_primary_10_1007_s10728_021_00430_4
crossref_primary_10_1016_j_media_2024_103296
crossref_primary_10_1016_j_media_2025_103596
crossref_primary_10_1038_s41467_021_24464_3
crossref_primary_10_1007_s10162_022_00846_2
crossref_primary_10_3390_biomedicines10030551
crossref_primary_10_1049_sfw2_6006074
crossref_primary_10_3389_fmed_2022_891369
crossref_primary_10_3390_app14125314
crossref_primary_10_1155_2019_1691064
crossref_primary_10_1038_s42256_018_0014_z
crossref_primary_10_3390_jcm10225284
crossref_primary_10_1109_ACCESS_2024_3369913
crossref_primary_10_1109_ACCESS_2020_3017449
crossref_primary_10_1016_j_media_2021_102118
crossref_primary_10_1002_jbio_202000271
crossref_primary_10_1038_s41467_025_60577_9
crossref_primary_10_22608_APO_2018496
crossref_primary_10_1016_j_media_2022_102677
crossref_primary_10_1016_j_media_2023_102953
crossref_primary_10_1038_s41746_021_00544_y
crossref_primary_10_7717_peerj_8052
crossref_primary_10_1038_s41591_018_0316_z
crossref_primary_10_1007_s00530_020_00722_0
crossref_primary_10_1007_s00439_019_01970_5
crossref_primary_10_4239_wjd_v13_i10_822
crossref_primary_10_3389_fmed_2021_654696
crossref_primary_10_3390_diagnostics10060430
crossref_primary_10_3390_biomedicines10061269
crossref_primary_10_3389_fnins_2021_696853
crossref_primary_10_1016_j_cmpb_2025_108705
crossref_primary_10_1038_s41598_021_94093_9
crossref_primary_10_1111_joor_13585
crossref_primary_10_1371_journal_pone_0220063
crossref_primary_10_1186_s12886_020_01783_5
crossref_primary_10_1007_s10278_024_01190_y
crossref_primary_10_1109_JPROC_2019_2943836
crossref_primary_10_1016_j_xops_2024_100662
crossref_primary_10_1136_bjophthalmol_2020_316882
crossref_primary_10_3748_wjg_v27_i26_4088
crossref_primary_10_1016_j_media_2025_103575
crossref_primary_10_1016_j_modpat_2023_100381
crossref_primary_10_1109_TMI_2021_3140140
crossref_primary_10_3389_fphar_2020_01319
crossref_primary_10_1016_j_xops_2025_100710
crossref_primary_10_1038_s41598_020_76513_4
crossref_primary_10_1016_j_foodcont_2024_110947
crossref_primary_10_1186_s40001_025_02680_7
crossref_primary_10_1016_j_media_2019_101570
crossref_primary_10_1080_19932820_2022_2034334
crossref_primary_10_1136_bmjqs_2018_008370
crossref_primary_10_1111_aos_14895
crossref_primary_10_3389_fped_2022_809523
crossref_primary_10_1109_JBHI_2021_3135838
crossref_primary_10_1038_s41467_019_08718_9
crossref_primary_10_1590_1983_803420243739es
crossref_primary_10_1002_aisy_202200184
crossref_primary_10_1016_j_cmpb_2021_105969
crossref_primary_10_2196_37532
crossref_primary_10_3389_fmed_2024_1489139
crossref_primary_10_1038_s41377_019_0203_5
crossref_primary_10_1007_s00261_019_02306_7
crossref_primary_10_32604_cmc_2021_012955
crossref_primary_10_1016_j_cosrev_2023_100568
crossref_primary_10_1136_bjophthalmol_2019_315025
crossref_primary_10_1136_bjophthalmol_2021_319365
crossref_primary_10_1002_cjoc_202100591
crossref_primary_10_1016_j_knosys_2025_113333
crossref_primary_10_1016_j_resuscitation_2021_02_041
crossref_primary_10_1109_ACCESS_2019_2929365
crossref_primary_10_1016_j_eururo_2020_04_023
crossref_primary_10_1109_ACCESS_2024_3363165
crossref_primary_10_1136_bjophthalmol_2021_319129
crossref_primary_10_1136_annrheumdis_2019_216636
crossref_primary_10_1038_s41746_025_01726_8
crossref_primary_10_1186_s40537_024_00989_4
crossref_primary_10_1126_science_aba9647
crossref_primary_10_1016_j_isci_2024_110579
crossref_primary_10_1016_j_tips_2019_05_005
crossref_primary_10_1038_s41598_024_68489_2
crossref_primary_10_1109_LSP_2019_2917779
crossref_primary_10_1136_bjophthalmol_2019_315016
crossref_primary_10_1109_JSEN_2020_2985131
crossref_primary_10_3390_jcm9082537
crossref_primary_10_1016_j_mpdhp_2020_08_004
crossref_primary_10_1080_00051144_2021_1973298
crossref_primary_10_1136_bjophthalmol_2019_314161
crossref_primary_10_1016_j_jdiacomp_2022_108392
crossref_primary_10_1016_j_ajo_2020_01_032
crossref_primary_10_1109_RBME_2024_3496744
crossref_primary_10_1016_j_ogla_2020_04_008
crossref_primary_10_1111_all_15667
crossref_primary_10_1136_bjo_2023_324488
crossref_primary_10_7759_cureus_16392
crossref_primary_10_1016_j_media_2024_103098
crossref_primary_10_1109_JBHI_2023_3277789
crossref_primary_10_1016_S2213_2600_20_30003_5
crossref_primary_10_1038_s41467_021_25858_z
crossref_primary_10_1016_j_ejps_2020_105489
crossref_primary_10_1590_1983_803420243739en
crossref_primary_10_1080_08820538_2021_1901123
crossref_primary_10_1016_j_artmed_2023_102570
crossref_primary_10_1016_j_neunet_2020_05_005
crossref_primary_10_1136_bmj_m3164
crossref_primary_10_3390_diagnostics14010105
crossref_primary_10_1007_s11082_023_05038_7
crossref_primary_10_1109_ACCESS_2024_3354826
crossref_primary_10_1016_j_immuni_2025_04_013
crossref_primary_10_1016_j_compmedimag_2024_102452
crossref_primary_10_1038_s41598_024_72481_1
crossref_primary_10_1097_APO_0000000000000619
crossref_primary_10_1136_bjophthalmol_2021_319587
crossref_primary_10_3390_jcm12020400
crossref_primary_10_1002_acn3_51320
crossref_primary_10_1038_d41586_019_01112_x
crossref_primary_10_1038_s41598_024_75898_w
crossref_primary_10_1109_JIOT_2022_3232793
crossref_primary_10_1002_spe_3408
crossref_primary_10_1016_j_ophtha_2020_09_025
crossref_primary_10_1016_j_xcrm_2024_101876
crossref_primary_10_1097_WCO_0000000000000645
crossref_primary_10_1016_j_jvs_2019_12_027
crossref_primary_10_1038_s41598_024_78515_y
crossref_primary_10_1016_j_xops_2025_100907
crossref_primary_10_1109_TSMC_2021_3096974
crossref_primary_10_1155_2022_1614838
crossref_primary_10_1016_j_compbiomed_2019_103327
crossref_primary_10_3390_ph18030284
crossref_primary_10_1016_j_compmedimag_2022_102086
crossref_primary_10_1051_itmconf_20224403007
crossref_primary_10_3389_fmed_2022_853261
crossref_primary_10_1109_TBME_2018_2887208
crossref_primary_10_1097_ICU_0000000000001035
crossref_primary_10_1109_TBME_2023_3290541
crossref_primary_10_2196_48892
crossref_primary_10_1088_1361_6560_ab6f99
crossref_primary_10_1109_TASE_2020_2981637
crossref_primary_10_3389_fneur_2020_00450
crossref_primary_10_1007_s11517_022_02627_8
crossref_primary_10_1038_s41433_019_0510_3
crossref_primary_10_1007_s00146_020_01008_9
crossref_primary_10_3389_fradi_2025_1608052
crossref_primary_10_1002_cam4_4441
crossref_primary_10_1111_aos_15133
crossref_primary_10_1001_jamaophthalmol_2024_1165
crossref_primary_10_1038_s41746_021_00431_6
crossref_primary_10_1038_s41551_023_01049_7
crossref_primary_10_3390_smartcities5020036
crossref_primary_10_1109_TMI_2019_2919951
crossref_primary_10_1016_j_jacr_2019_01_026
crossref_primary_10_1080_01691864_2019_1689168
crossref_primary_10_1186_s13244_020_00929_9
crossref_primary_10_1080_08164622_2022_2081068
crossref_primary_10_1186_s12890_023_02537_x
crossref_primary_10_1016_j_retram_2020_01_002
crossref_primary_10_1109_ACCESS_2020_3044646
crossref_primary_10_34248_bsengineering_858918
crossref_primary_10_3390_biomedicines10051082
crossref_primary_10_1109_TSC_2023_3332744
crossref_primary_10_1002_ima_22808
crossref_primary_10_1038_s41598_021_01227_0
crossref_primary_10_1111_aos_15126
crossref_primary_10_1002_INMD_20240063
crossref_primary_10_1007_s11517_025_03286_1
crossref_primary_10_1016_j_compbiomed_2024_109256
crossref_primary_10_1080_0142159X_2019_1595557
crossref_primary_10_1002_lsm_23093
crossref_primary_10_1109_RBME_2021_3131358
crossref_primary_10_1515_mopp_2020_0046
crossref_primary_10_1016_j_mri_2019_07_004
crossref_primary_10_1111_resp_70056
crossref_primary_10_1038_s41746_024_01037_4
crossref_primary_10_1109_TMI_2023_3331301
crossref_primary_10_1186_s13054_018_2301_9
crossref_primary_10_1007_s00417_020_04869_4
crossref_primary_10_7759_cureus_70056
crossref_primary_10_3390_ijms241210327
crossref_primary_10_1183_13993003_01809_2020
crossref_primary_10_1136_bmjopen_2022_069181
crossref_primary_10_1038_s41598_025_14944_7
crossref_primary_10_1038_s41598_022_27211_w
crossref_primary_10_1016_j_knosys_2023_110520
crossref_primary_10_1371_journal_pdig_0000016
crossref_primary_10_1371_journal_pone_0280316
crossref_primary_10_3389_fimmu_2021_630022
crossref_primary_10_1117_1_JMI_9_6_064001
crossref_primary_10_1097_SAP_0000000000004128
crossref_primary_10_1016_j_survophthal_2019_02_003
crossref_primary_10_1007_s00129_020_04563_w
crossref_primary_10_1093_tse_tdac073
crossref_primary_10_3390_biomedicines9070720
crossref_primary_10_1016_j_bspc_2024_106283
crossref_primary_10_1016_j_est_2024_114928
crossref_primary_10_1016_j_ajo_2020_01_016
crossref_primary_10_1038_s41746_019_0122_0
crossref_primary_10_1016_j_jbo_2024_100626
crossref_primary_10_1109_JBHI_2022_3147512
crossref_primary_10_1136_bmjresp_2023_002226
crossref_primary_10_1016_j_techfore_2020_120323
crossref_primary_10_1002_smll_202405301
crossref_primary_10_1016_j_compbiomed_2022_105319
crossref_primary_10_1186_s12992_025_01128_1
crossref_primary_10_1148_radiol_233197
crossref_primary_10_47164_ijngc_v12i5_454
crossref_primary_10_1038_s41467_020_18147_8
crossref_primary_10_3389_fnins_2022_801769
crossref_primary_10_1186_s12916_019_1426_2
crossref_primary_10_1038_s41433_021_01795_5
crossref_primary_10_1016_j_ijhcs_2019_06_007
crossref_primary_10_1167_iovs_65_1_41
crossref_primary_10_3390_jcm11030614
crossref_primary_10_1002_cam4_3796
crossref_primary_10_1002_mp_15541
crossref_primary_10_1136_thoraxjnl_2020_214556
crossref_primary_10_1097_ICU_0000000000001088
crossref_primary_10_1016_j_ndteint_2022_102703
crossref_primary_10_1038_s41433_018_0324_8
crossref_primary_10_1038_s41591_021_01384_9
crossref_primary_10_1016_j_bspc_2023_104625
crossref_primary_10_1038_s41746_021_00411_w
crossref_primary_10_1016_j_canlet_2020_03_032
crossref_primary_10_5662_wjm_v15_i4_107166
crossref_primary_10_1007_s00417_025_06790_0
crossref_primary_10_1007_s11892_019_1189_3
crossref_primary_10_1007_s12553_020_00468_9
crossref_primary_10_1109_JBHI_2020_3012134
crossref_primary_10_1166_jmihi_2021_3309
crossref_primary_10_1016_j_yebeh_2025_110470
crossref_primary_10_1109_JBHI_2020_2982914
crossref_primary_10_1097_ICU_0000000000001091
crossref_primary_10_1002_cnm_3303
crossref_primary_10_1364_AO_455626
crossref_primary_10_1136_bjo_2023_324647
crossref_primary_10_3928_23258160_20220817_01
crossref_primary_10_1038_s42256_024_00883_x
crossref_primary_10_1371_journal_pone_0235765
crossref_primary_10_3390_jpm11111161
crossref_primary_10_1136_bjophthalmol_2019_315651
crossref_primary_10_1111_ijn_12725
crossref_primary_10_1016_j_compmedimag_2021_101997
crossref_primary_10_1038_s41433_024_03460_z
crossref_primary_10_2196_43386
crossref_primary_10_2478_ausi_2020_0007
crossref_primary_10_1136_bmj_m363
crossref_primary_10_1016_j_cmpb_2019_06_016
crossref_primary_10_2196_14808
crossref_primary_10_1016_j_media_2024_103259
crossref_primary_10_1016_j_preteyeres_2025_101358
crossref_primary_10_1038_s41598_022_12497_7
crossref_primary_10_1186_s12880_021_00703_3
crossref_primary_10_1038_s41587_022_01226_0
crossref_primary_10_1093_brain_awaa361
crossref_primary_10_1111_risa_13850
crossref_primary_10_3390_diagnostics12123167
crossref_primary_10_1136_bjo_2023_323308
crossref_primary_10_1016_j_optlastec_2020_106861
crossref_primary_10_1063_5_0177640
crossref_primary_10_1109_TMI_2020_2973595
crossref_primary_10_1097_IAE_0000000000002992
crossref_primary_10_1016_j_oret_2022_05_020
crossref_primary_10_1167_iovs_63_2_27
crossref_primary_10_1093_brain_awz235
crossref_primary_10_1038_s41746_025_01959_7
crossref_primary_10_1016_j_cmpb_2020_105855
crossref_primary_10_1007_s11192_021_03936_9
crossref_primary_10_1186_s12938_022_01025_3
crossref_primary_10_3389_fpubh_2022_1019168
crossref_primary_10_1016_j_jbi_2024_104766
crossref_primary_10_4018_JGIM_371436
crossref_primary_10_3390_diagnostics13020326
crossref_primary_10_1007_s40070_020_00116_7
crossref_primary_10_1080_09273948_2022_2032197
crossref_primary_10_1002_smtd_202300285
crossref_primary_10_1038_s41467_020_15432_4
crossref_primary_10_1186_s12880_021_00660_x
crossref_primary_10_1371_journal_pmed_1002709
crossref_primary_10_1053_j_ajkd_2019_05_020
crossref_primary_10_3390_diagnostics15101221
crossref_primary_10_1038_s41598_022_26170_6
crossref_primary_10_1186_s12859_020_3503_0
crossref_primary_10_3390_app12073341
crossref_primary_10_62517_jmhs_202505107
crossref_primary_10_4103_JOCO_JOCO_123_20
crossref_primary_10_1007_s00347_020_01063_z
crossref_primary_10_12968_opti_2020_11_232126
crossref_primary_10_1016_j_semcancer_2023_06_003
crossref_primary_10_3390_jcm14176307
crossref_primary_10_1016_j_compbiomed_2025_110236
crossref_primary_10_3389_fgene_2022_1045450
crossref_primary_10_1109_JIOT_2020_2991456
crossref_primary_10_1109_TRPMS_2024_3474708
crossref_primary_10_3233_JAD_210714
crossref_primary_10_3917_rpre_223_0091
crossref_primary_10_1038_s41598_023_33021_5
crossref_primary_10_3390_app12146872
crossref_primary_10_1016_j_identj_2022_03_001
crossref_primary_10_1038_s41598_019_54961_x
crossref_primary_10_3390_technologies12120235
crossref_primary_10_1177_25158414221083363
crossref_primary_10_1016_j_knosys_2023_111107
crossref_primary_10_1016_j_preteyeres_2019_07_003
crossref_primary_10_1016_j_ophtha_2024_06_006
crossref_primary_10_1017_jfm_2021_812
crossref_primary_10_1038_s41598_020_72359_y
crossref_primary_10_1016_j_ndteint_2025_103392
crossref_primary_10_1186_s12886_022_02299_w
crossref_primary_10_1136_bmj_l886
crossref_primary_10_1007_s00146_024_01893_4
crossref_primary_10_1016_j_optom_2022_06_006
crossref_primary_10_3389_fonc_2022_813806
crossref_primary_10_1016_j_optom_2022_06_005
crossref_primary_10_1109_ACCESS_2024_3451304
crossref_primary_10_1007_s11517_021_02364_4
crossref_primary_10_1016_j_cmpb_2020_105919
crossref_primary_10_1016_j_media_2020_101798
crossref_primary_10_1136_emermed_2020_210776
crossref_primary_10_1145_3448108
crossref_primary_10_1093_jamia_ocaa341
crossref_primary_10_3928_23258160_20230303_01
crossref_primary_10_1136_bjophthalmol_2018_313290
crossref_primary_10_2196_26151
crossref_primary_10_4103_hjo_HJO_5_23
crossref_primary_10_1109_TMI_2023_3260990
crossref_primary_10_1155_2022_5054932
crossref_primary_10_1155_2020_8858344
crossref_primary_10_1038_s41598_022_17615_z
crossref_primary_10_3390_app14156638
crossref_primary_10_1001_jamaophthalmol_2018_6156
crossref_primary_10_1038_s41598_024_78917_y
crossref_primary_10_1016_j_radonc_2024_110332
crossref_primary_10_1016_j_preteyeres_2024_101291
crossref_primary_10_1007_s00417_021_05427_2
crossref_primary_10_3390_cancers13153891
crossref_primary_10_3390_electronics12030750
crossref_primary_10_1155_2022_9152605
crossref_primary_10_1371_journal_pmed_1002721
crossref_primary_10_1002_alz_13390
crossref_primary_10_1097_APO_0000000000000583
crossref_primary_10_1038_s41598_025_96988_3
crossref_primary_10_1016_j_jtcvs_2019_03_111
crossref_primary_10_1007_s00417_021_05503_7
crossref_primary_10_1038_s41433_022_02154_8
crossref_primary_10_1038_s41598_019_42042_y
crossref_primary_10_1038_s41563_019_0345_0
crossref_primary_10_1038_s41433_023_02765_9
crossref_primary_10_1117_1_NPh_6_4_041110
crossref_primary_10_3389_fcell_2025_1665173
crossref_primary_10_1007_s10586_025_05281_5
crossref_primary_10_1155_2021_8876957
crossref_primary_10_2196_28114
crossref_primary_10_1159_000527345
crossref_primary_10_26599_BDMA_2024_9020067
crossref_primary_10_1016_j_media_2020_101773
crossref_primary_10_1016_j_ajoms_2022_02_004
crossref_primary_10_1097_ACM_0000000000003733
crossref_primary_10_1136_bmjopen_2022_069443
crossref_primary_10_1016_j_tbench_2025_100215
crossref_primary_10_1002_mp_14415
crossref_primary_10_1017_S0033291720000835
crossref_primary_10_1371_journal_pone_0227240
crossref_primary_10_1038_s41746_025_01893_8
crossref_primary_10_1111_anae_15212
crossref_primary_10_1097_DCR_0000000000002570
crossref_primary_10_1016_j_compbiomed_2023_107873
crossref_primary_10_1016_j_rare_2024_100057
crossref_primary_10_1097_APO_0000000000000363
crossref_primary_10_1177_25158414251340569
crossref_primary_10_3390_diagnostics12061493
crossref_primary_10_3390_medicina61030433
crossref_primary_10_1055_s_0040_1719037
crossref_primary_10_1038_s41551_020_00626_4
crossref_primary_10_3390_jcm12093049
crossref_primary_10_1177_1062860619878515
crossref_primary_10_1002_mp_13764
crossref_primary_10_1016_j_engappai_2024_109439
crossref_primary_10_3389_frai_2023_1226990
crossref_primary_10_1002_dad2_70087
crossref_primary_10_1016_j_ecoinf_2020_101110
crossref_primary_10_3390_diagnostics12030742
crossref_primary_10_1016_j_nicl_2023_103320
crossref_primary_10_1016_j_yapd_2019_04_005
crossref_primary_10_1634_theoncologist_2019_0267
crossref_primary_10_3390_cancers13102382
crossref_primary_10_3390_s21196661
crossref_primary_10_1097_APO_0000000000000394
crossref_primary_10_1097_APO_0000000000000399
crossref_primary_10_1007_s00417_025_06828_3
crossref_primary_10_1016_j_bspc_2025_107971
crossref_primary_10_1016_j_survophthal_2024_03_008
crossref_primary_10_1038_s41467_019_14108_y
crossref_primary_10_1016_j_compbiomed_2021_104822
crossref_primary_10_1038_s41598_020_66196_2
crossref_primary_10_2196_19416
crossref_primary_10_1016_j_ajo_2021_12_020
crossref_primary_10_1007_s00125_022_05727_0
crossref_primary_10_1038_s41598_020_80312_2
crossref_primary_10_1109_TIP_2022_3228163
crossref_primary_10_1038_s43856_025_00749_2
crossref_primary_10_1109_JIOT_2024_3463185
crossref_primary_10_3390_jimaging7060092
crossref_primary_10_1016_j_matpr_2021_07_269
crossref_primary_10_1371_journal_pone_0296229
crossref_primary_10_1038_s41746_020_0254_2
crossref_primary_10_1108_RPJ_08_2019_0213
crossref_primary_10_2147_OPTH_S261629
crossref_primary_10_1038_s41598_023_43018_9
crossref_primary_10_1016_j_eswa_2024_124888
crossref_primary_10_1016_j_ress_2025_111311
crossref_primary_10_1136_medethics_2019_105586
crossref_primary_10_1136_bmjophth_2020_000671
crossref_primary_10_1186_s12911_023_02103_9
crossref_primary_10_1002_jmri_28427
crossref_primary_10_1155_2020_8889023
crossref_primary_10_3390_math12193003
crossref_primary_10_3390_jcm12010152
crossref_primary_10_1055_s_0041_1742180
crossref_primary_10_1371_journal_pcbi_1006269
crossref_primary_10_1016_j_bspc_2025_107519
crossref_primary_10_1016_j_displa_2025_103204
crossref_primary_10_1177_0840470419859017
crossref_primary_10_1016_j_media_2024_103404
crossref_primary_10_1038_s41598_024_60682_7
crossref_primary_10_1097_ICU_0000000000000979
crossref_primary_10_1186_s13195_022_00983_z
crossref_primary_10_1007_s40123_019_00207_y
crossref_primary_10_1007_s42452_025_06565_6
crossref_primary_10_3390_medsci11010020
crossref_primary_10_3389_fnagi_2020_603790
crossref_primary_10_3390_vision6020021
crossref_primary_10_1145_3580804
crossref_primary_10_1038_s41598_019_49740_7
crossref_primary_10_1097_ICU_0000000000000986
crossref_primary_10_1097_ICU_0000000000000980
crossref_primary_10_1186_s40662_025_00451_3
crossref_primary_10_1038_s41598_019_56420_z
crossref_primary_10_1111_aos_14055
crossref_primary_10_1111_aos_15141
crossref_primary_10_1007_s13347_020_00435_2
crossref_primary_10_1016_j_ebiom_2023_104541
crossref_primary_10_3389_fnagi_2025_1586282
crossref_primary_10_3390_cancers14112590
crossref_primary_10_1016_j_inffus_2024_102631
crossref_primary_10_1016_j_media_2020_101724
crossref_primary_10_1108_JIC_12_2023_0286
crossref_primary_10_1016_j_survophthal_2024_06_006
crossref_primary_10_1109_JMMCT_2023_3260900
crossref_primary_10_18502_jovr_v18i1_12730
crossref_primary_10_1109_TMI_2022_3202183
crossref_primary_10_7326_ANNALS_24_03283
crossref_primary_10_1109_ACCESS_2020_3004766
crossref_primary_10_1002_jor_24849
crossref_primary_10_1002_14651858_CD016114
crossref_primary_10_1038_s41598_024_55410_0
crossref_primary_10_1148_ryai_2019180091
crossref_primary_10_1136_bmj_l6927
crossref_primary_10_1371_journal_pone_0225015
crossref_primary_10_1016_j_media_2020_101714
crossref_primary_10_1007_s42452_020_2560_3
crossref_primary_10_1016_j_neucom_2020_06_122
crossref_primary_10_1109_ACCESS_2019_2944692
crossref_primary_10_32604_cmc_2022_023919
crossref_primary_10_1016_j_compmedimag_2022_102068
crossref_primary_10_1016_j_cmpb_2024_108253
crossref_primary_10_1007_s12553_023_00763_1
crossref_primary_10_1016_j_newideapsych_2024_101074
crossref_primary_10_3389_fnins_2019_01128
crossref_primary_10_1007_s11042_022_13617_1
crossref_primary_10_1097_j_jcrs_0000000000001538
crossref_primary_10_1038_s41467_021_20966_2
crossref_primary_10_1136_bmjopen_2022_060810
crossref_primary_10_1038_s41467_019_13647_8
crossref_primary_10_1038_s41598_020_69814_1
crossref_primary_10_1016_j_inffus_2024_102877
crossref_primary_10_1016_j_gie_2021_08_022
crossref_primary_10_1038_s41591_019_0508_1
crossref_primary_10_3390_s22218454
crossref_primary_10_1001_jamaophthalmol_2019_4782
crossref_primary_10_1016_j_media_2022_102364
crossref_primary_10_1007_s11633_022_1382_8
crossref_primary_10_1148_ryai_2021210031
crossref_primary_10_1038_s41433_021_01503_3
crossref_primary_10_1109_JBHI_2023_3312154
crossref_primary_10_1016_j_media_2020_101942
crossref_primary_10_3389_fonc_2021_788740
crossref_primary_10_1002_eng2_12864
crossref_primary_10_1016_j_canlet_2025_217438
crossref_primary_10_1371_journal_pone_0251553
crossref_primary_10_1080_03080188_2020_1840223
crossref_primary_10_1136_bmjopen_2024_084574
crossref_primary_10_1016_S1470_2045_19_30739_9
crossref_primary_10_1136_bjophthalmol_2020_316594
crossref_primary_10_1016_j_media_2022_102391
crossref_primary_10_1080_02713683_2022_2124275
crossref_primary_10_1016_j_jor_2022_05_013
crossref_primary_10_1007_s12647_023_00633_1
crossref_primary_10_1038_s41598_020_73831_5
crossref_primary_10_1016_j_ophtha_2022_01_002
crossref_primary_10_1145_3551635
crossref_primary_10_1155_2021_5549779
crossref_primary_10_3390_cancers15030843
crossref_primary_10_1080_0142159X_2019_1679361
crossref_primary_10_1136_bmjinnov_2020_000494
crossref_primary_10_7326_M19_2548
crossref_primary_10_3390_ph17111440
crossref_primary_10_1016_j_acra_2019_10_001
crossref_primary_10_1038_s41467_024_53387_y
crossref_primary_10_1148_ryai_2020190217
crossref_primary_10_1186_s12859_019_2952_9
crossref_primary_10_1371_journal_pone_0271156
crossref_primary_10_3389_fmed_2024_1481088
crossref_primary_10_1002_jmri_28456
crossref_primary_10_1016_j_apjo_2024_100096
crossref_primary_10_1097_ICU_0000000000000780
crossref_primary_10_1007_s12559_024_10297_x
crossref_primary_10_1007_s00417_020_05010_1
crossref_primary_10_1038_s41598_025_98518_7
crossref_primary_10_3233_JIFS_190861
crossref_primary_10_1136_bjophthalmol_2020_318544
crossref_primary_10_1097_ICU_0000000000000782
crossref_primary_10_1080_14737175_2021_1982697
crossref_primary_10_1007_s00347_024_02146_x
crossref_primary_10_1016_j_talanta_2024_126441
crossref_primary_10_1159_000531823
crossref_primary_10_3390_app10186428
crossref_primary_10_1109_JTEHM_2023_3294904
crossref_primary_10_1155_2022_6361098
crossref_primary_10_1001_jamadermatol_2019_3807
crossref_primary_10_1007_s00347_021_01385_6
crossref_primary_10_1109_ACCESS_2025_3583647
crossref_primary_10_1007_s00371_023_03189_y
crossref_primary_10_1007_s10278_025_01513_7
crossref_primary_10_1016_j_smrv_2021_101512
crossref_primary_10_1016_j_ejrad_2019_108649
crossref_primary_10_1016_j_pdpdt_2022_103107
crossref_primary_10_1016_j_media_2021_102054
crossref_primary_10_1038_s41524_019_0262_4
crossref_primary_10_1016_j_ophtha_2019_12_015
crossref_primary_10_1109_JBHI_2025_3556717
crossref_primary_10_3389_fneur_2021_584270
crossref_primary_10_1097_APO_0000000000000313
crossref_primary_10_1007_s11673_023_10320_0
crossref_primary_10_1093_jmp_jhac034
crossref_primary_10_1097_APO_0000000000000304
crossref_primary_10_1038_s41591_018_0307_0
crossref_primary_10_1001_jamanetworkopen_2020_5842
crossref_primary_10_1038_s41433_022_02376_w
crossref_primary_10_1016_j_clinph_2022_07_003
crossref_primary_10_1097_coa_0000000000000069
crossref_primary_10_1111_ceo_13435
crossref_primary_10_1287_mnsc_2023_01845
crossref_primary_10_1016_j_jtcvs_2021_02_010
crossref_primary_10_1016_j_neucom_2021_08_051
crossref_primary_10_1016_j_fsidi_2022_301403
crossref_primary_10_1136_bmjopen_2020_037269
crossref_primary_10_1016_j_ijrobp_2024_11_064
crossref_primary_10_1167_iovs_18_25325
crossref_primary_10_1016_j_jds_2023_10_025
crossref_primary_10_1097_APO_0000000000000301
crossref_primary_10_3390_diagnostics13050975
crossref_primary_10_1097_SAP_0000000000002434
crossref_primary_10_1016_j_media_2021_102038
crossref_primary_10_1109_JAS_2023_123123
crossref_primary_10_1016_j_media_2022_102359
crossref_primary_10_1177_2515841419827172
crossref_primary_10_1007_s00417_022_05653_2
crossref_primary_10_1371_journal_pone_0260471
crossref_primary_10_1097_ICO_0000000000003626
crossref_primary_10_1016_j_media_2020_101905
crossref_primary_10_1016_j_cmpb_2025_108586
crossref_primary_10_3389_fmed_2025_1617537
crossref_primary_10_1007_s00347_020_01111_8
crossref_primary_10_1016_j_bbe_2022_05_005
crossref_primary_10_1109_TMI_2022_3142048
crossref_primary_10_1016_j_media_2021_102270
crossref_primary_10_3917_jibes_342_0111
crossref_primary_10_1016_j_compbiomed_2023_107027
crossref_primary_10_1080_08164622_2021_2022961
crossref_primary_10_1038_s41586_019_1799_6
crossref_primary_10_1109_TBME_2022_3188173
crossref_primary_10_1590_1983_803420243739pt
crossref_primary_10_1016_j_engappai_2025_112066
crossref_primary_10_1109_TMI_2019_2898414
crossref_primary_10_1167_iovs_66_1_7
crossref_primary_10_1007_s10506_020_09260_6
crossref_primary_10_1016_j_hpb_2024_12_016
crossref_primary_10_1007_s00371_024_03391_6
crossref_primary_10_1016_j_oret_2020_12_013
crossref_primary_10_1038_s41586_019_1390_1
crossref_primary_10_1007_s13755_020_00125_5
crossref_primary_10_1016_j_jhsa_2025_04_015
crossref_primary_10_1016_j_neucom_2025_130635
crossref_primary_10_1016_j_impact_2021_100296
crossref_primary_10_1097_APO_0000000000000576
crossref_primary_10_3389_fendo_2024_1385836
crossref_primary_10_1016_j_jvsvi_2025_100289
crossref_primary_10_1136_bmj_m3210
crossref_primary_10_1016_j_nicl_2019_102003
crossref_primary_10_1007_s12553_023_00806_7
crossref_primary_10_1002_ima_22662
crossref_primary_10_3390_bioengineering9080366
crossref_primary_10_7759_cureus_44658
crossref_primary_10_1016_j_compbiomed_2024_108659
crossref_primary_10_1097_IJG_0000000000002194
crossref_primary_10_1001_jamaophthalmol_2023_6454
crossref_primary_10_1038_s41598_023_46626_7
crossref_primary_10_5498_wjp_v15_i9_108359
crossref_primary_10_3390_jpm14070690
crossref_primary_10_1016_j_clon_2021_11_008
crossref_primary_10_1016_j_ajodo_2021_03_017
crossref_primary_10_1038_s41433_023_02680_z
crossref_primary_10_1038_s41598_020_80001_0
crossref_primary_10_1111_bph_15633
crossref_primary_10_1007_s00103_025_04093_7
crossref_primary_10_1016_j_arr_2020_101094
crossref_primary_10_3390_s21124149
crossref_primary_10_1038_s41433_018_0251_8
crossref_primary_10_1109_LSENS_2019_2963712
crossref_primary_10_1007_s00330_025_11709_8
crossref_primary_10_1016_j_media_2019_05_002
crossref_primary_10_1088_1361_6560_acf2e2
crossref_primary_10_1039_c8pp00471d
crossref_primary_10_2337_dc20_3064
crossref_primary_10_1109_ACCESS_2023_3347498
crossref_primary_10_1038_s41598_022_05006_3
crossref_primary_10_1016_j_cels_2020_04_003
crossref_primary_10_1007_s00330_023_09478_3
crossref_primary_10_1038_s41598_019_51363_x
crossref_primary_10_1038_s41467_024_50911_y
crossref_primary_10_1038_s41746_020_00350_y
crossref_primary_10_1016_j_ejrad_2024_111356
crossref_primary_10_1038_s41746_025_01593_3
crossref_primary_10_1038_s42256_022_00559_4
crossref_primary_10_1016_j_urology_2021_09_027
crossref_primary_10_1145_3648005
crossref_primary_10_1371_journal_pdig_0000193
crossref_primary_10_4103_ijo_IJO_1569_22
crossref_primary_10_1136_bjophthalmol_2020_317825
crossref_primary_10_1016_j_ijmedinf_2020_104363
crossref_primary_10_1016_j_media_2021_102010
crossref_primary_10_1016_j_socscimed_2020_113172
crossref_primary_10_1038_s41433_023_02560_6
crossref_primary_10_1038_s41746_022_00716_4
crossref_primary_10_1016_j_artmed_2022_102344
crossref_primary_10_1039_D4TB02876G
crossref_primary_10_1038_s41598_024_54482_2
crossref_primary_10_1172_JCI174951
crossref_primary_10_1073_pnas_1919012117
crossref_primary_10_3389_fonc_2022_854927
crossref_primary_10_1016_j_jns_2022_120454
crossref_primary_10_1080_01431161_2025_2528256
crossref_primary_10_1117_1_JEI_31_4_043016
crossref_primary_10_1145_3470979
crossref_primary_10_7717_peerj_18850
crossref_primary_10_1038_s41598_025_06462_3
crossref_primary_10_1136_bjophthalmol_2020_315890
crossref_primary_10_1136_bjophthalmol_2020_316984
crossref_primary_10_1080_10255842_2020_1742709
crossref_primary_10_1088_2631_8695_adbc48
crossref_primary_10_1080_17469899_2023_2175672
crossref_primary_10_1111_cyt_12835
crossref_primary_10_1016_j_oret_2018_12_008
crossref_primary_10_1088_2057_1976_ac154f
crossref_primary_10_1186_s40942_023_00502_8
crossref_primary_10_1109_TIP_2022_3148814
crossref_primary_10_1364_AO_409414
crossref_primary_10_1016_j_ophtha_2019_06_005
crossref_primary_10_1016_j_semcancer_2019_05_007
crossref_primary_10_1080_09273948_2022_2054433
crossref_primary_10_1016_j_ophtha_2020_02_009
crossref_primary_10_1097_CM9_0000000000001816
crossref_primary_10_1016_j_ccr_2021_214111
crossref_primary_10_3390_life12020279
crossref_primary_10_1016_j_jds_2024_08_020
crossref_primary_10_1002_advs_202002021
crossref_primary_10_1016_j_ophtha_2020_03_010
crossref_primary_10_1016_j_renene_2024_120935
crossref_primary_10_1016_j_preteyeres_2019_04_003
crossref_primary_10_1016_j_procs_2023_03_139
crossref_primary_10_1136_bmjopen_2022_065537
crossref_primary_10_1016_j_inffus_2021_01_008
crossref_primary_10_1038_s41551_020_0578_x
crossref_primary_10_5694_mja2_50932
crossref_primary_10_2196_24799
crossref_primary_10_1007_s10278_024_01212_9
crossref_primary_10_1016_j_survophthal_2021_03_003
crossref_primary_10_1038_s41591_025_03953_8
crossref_primary_10_1038_s41573_020_00117_w
crossref_primary_10_1016_j_cie_2023_109337
crossref_primary_10_1038_s41598_023_28347_z
crossref_primary_10_1109_TMI_2022_3204551
crossref_primary_10_1038_s41467_023_41215_8
crossref_primary_10_1007_s11655_022_3541_8
crossref_primary_10_1016_j_exer_2022_109092
crossref_primary_10_1159_000501887
crossref_primary_10_3348_kjr_2022_1032
crossref_primary_10_1038_s41598_022_05903_7
crossref_primary_10_1016_j_media_2024_103395
crossref_primary_10_1038_s41598_021_81554_4
crossref_primary_10_1109_ACCESS_2021_3108395
crossref_primary_10_1007_s42044_025_00290_4
crossref_primary_10_1055_s_0042_1758687
crossref_primary_10_1038_s41746_025_01749_1
crossref_primary_10_4103_ijo_IJO_143_22
crossref_primary_10_1007_s11432_019_2708_1
crossref_primary_10_1016_j_cmpb_2020_105566
crossref_primary_10_57125_FEM_2025_09_30_01
crossref_primary_10_1038_s41598_023_35491_z
crossref_primary_10_1016_j_eswa_2020_113562
crossref_primary_10_1038_s41746_021_00438_z
crossref_primary_10_1097_IAE_0000000000003535
crossref_primary_10_3389_fmed_2025_1530361
crossref_primary_10_1093_bib_bbaa237
crossref_primary_10_1007_s00535_024_02102_1
crossref_primary_10_1186_s12913_023_10098_2
crossref_primary_10_1161_STROKEAHA_123_044026
crossref_primary_10_1016_j_survophthal_2025_09_014
crossref_primary_10_1080_14737159_2023_2208751
crossref_primary_10_3390_s19081866
crossref_primary_10_1038_s41572_021_00265_2
crossref_primary_10_1089_pop_2019_0132
crossref_primary_10_1371_journal_pone_0290278
crossref_primary_10_1016_j_compbiomed_2025_111060
crossref_primary_10_1109_ACCESS_2023_3337658
crossref_primary_10_3389_fmed_2022_958469
crossref_primary_10_1109_LSP_2020_3000933
crossref_primary_10_1136_bjo_2024_326603
crossref_primary_10_1038_s41598_021_88543_7
crossref_primary_10_1007_s11548_020_02286_w
crossref_primary_10_1371_journal_pone_0253091
crossref_primary_10_1016_j_rec_2020_06_036
crossref_primary_10_1038_s41591_022_02134_1
crossref_primary_10_12688_f1000research_26997_1
crossref_primary_10_12688_f1000research_26997_2
crossref_primary_10_1155_2021_5592472
crossref_primary_10_1007_s00417_023_06052_x
crossref_primary_10_1007_s40593_019_00188_w
crossref_primary_10_3390_diagnostics12071714
crossref_primary_10_3390_biomedicines11102633
crossref_primary_10_1016_j_oret_2024_01_013
crossref_primary_10_1016_j_oret_2021_12_021
crossref_primary_10_1063_5_0172226
crossref_primary_10_1007_s11831_023_09927_8
crossref_primary_10_1038_s41598_023_35414_y
crossref_primary_10_1038_s41467_025_62123_z
crossref_primary_10_1097_IAE_0000000000003557
crossref_primary_10_1016_j_zemedi_2018_11_002
crossref_primary_10_1002_lsm_23578
crossref_primary_10_1111_bjd_19553
crossref_primary_10_1001_jamanetworkopen_2020_0206
crossref_primary_10_1287_isre_2021_1002
crossref_primary_10_1007_s11042_024_18701_2
crossref_primary_10_1109_JBHI_2022_3171523
crossref_primary_10_1371_journal_pone_0260622
crossref_primary_10_1016_j_preteyeres_2021_100972
crossref_primary_10_1016_j_scriptamat_2020_10_026
crossref_primary_10_1007_s10676_022_09658_7
crossref_primary_10_1016_j_compbiomed_2024_108013
crossref_primary_10_1093_bmb_ldaa012
crossref_primary_10_3348_jksr_2020_0150
crossref_primary_10_1073_pnas_1908021116
crossref_primary_10_4103_tjo_tjo_8_22
crossref_primary_10_1186_s12880_024_01470_7
crossref_primary_10_3389_fonc_2021_785788
crossref_primary_10_1109_ACCESS_2025_3596786
crossref_primary_10_4103_sjopt_sjopt_219_21
crossref_primary_10_1016_j_heliyon_2024_e25655
crossref_primary_10_1073_pnas_2020620118
crossref_primary_10_1109_TNSRE_2022_3190467
crossref_primary_10_1111_tbj_13804
crossref_primary_10_1038_s41433_023_02705_7
crossref_primary_10_1097_IAE_0000000000003325
crossref_primary_10_1136_bmjophth_2019_000347
crossref_primary_10_1136_medethics_2020_107166
crossref_primary_10_1007_s40120_019_00153_8
crossref_primary_10_1212_WNL_0000000000201350
crossref_primary_10_1109_ACCESS_2019_2929258
crossref_primary_10_1007_s12561_024_09434_9
crossref_primary_10_1038_s41746_019_0189_7
crossref_primary_10_26633_RPSP_2024_12
crossref_primary_10_26633_RPSP_2024_13
crossref_primary_10_1038_s42256_020_00247_1
crossref_primary_10_1038_s41598_023_27418_5
crossref_primary_10_1038_s41746_019_0112_2
crossref_primary_10_1109_JSEN_2020_3014254
crossref_primary_10_1038_s41433_023_02805_4
crossref_primary_10_1038_s41598_020_80308_y
crossref_primary_10_12968_opti_2020_5_8273
crossref_primary_10_1007_s40123_018_0153_7
crossref_primary_10_1016_j_bspc_2025_107544
crossref_primary_10_1016_j_compbiomed_2022_106512
crossref_primary_10_1016_j_neucom_2019_08_079
crossref_primary_10_1136_bmjophth_2024_002037
crossref_primary_10_1016_j_ijmedinf_2022_104762
crossref_primary_10_3389_fnins_2021_818604
crossref_primary_10_1038_s41467_020_19527_w
crossref_primary_10_1109_ACCESS_2020_3019332
crossref_primary_10_1016_j_media_2024_103104
crossref_primary_10_1109_ACCESS_2020_3034731
crossref_primary_10_1007_s10815_020_01950_z
crossref_primary_10_1038_s41591_020_1034_x
crossref_primary_10_1007_s00417_019_04338_7
crossref_primary_10_1016_j_preteyeres_2021_100976
crossref_primary_10_1007_s11220_020_00299_y
crossref_primary_10_1007_s11831_025_10347_z
crossref_primary_10_54097_ydgagy87
crossref_primary_10_1097_IAE_0000000000003990
crossref_primary_10_1038_s41596_021_00513_5
crossref_primary_10_1038_s41569_019_0205_2
crossref_primary_10_1097_ICU_0000000000001172
crossref_primary_10_1016_j_biopsycho_2021_108117
crossref_primary_10_1038_s41591_024_02838_6
crossref_primary_10_1371_journal_pdig_0000106
crossref_primary_10_1038_s41592_020_01008_z
crossref_primary_10_1007_s00330_020_07062_7
crossref_primary_10_1007_s00500_020_05424_3
crossref_primary_10_1038_s41746_025_01849_y
crossref_primary_10_1109_TMI_2021_3079709
crossref_primary_10_1161_CIRCRESAHA_121_318106
crossref_primary_10_1007_s13246_020_00925_9
crossref_primary_10_1136_bmjopen_2021_055845
crossref_primary_10_1186_s40662_022_00277_3
crossref_primary_10_3390_wevj14120341
crossref_primary_10_1007_s10462_024_11067_9
crossref_primary_10_3390_ijms21134802
crossref_primary_10_1007_s00347_020_01209_z
crossref_primary_10_7861_clinmed_2020_0834
crossref_primary_10_1038_s41746_020_00317_z
crossref_primary_10_1111_jep_13510
crossref_primary_10_1016_j_ejim_2023_07_012
crossref_primary_10_1007_s13167_022_00301_5
crossref_primary_10_18359_rcin_4242
crossref_primary_10_3390_diagnostics12102314
crossref_primary_10_1038_s41433_019_0566_0
crossref_primary_10_1093_clinchem_hvac027
crossref_primary_10_3389_fmed_2022_794045
crossref_primary_10_1007_s00261_019_02028_w
crossref_primary_10_1016_j_media_2024_103319
crossref_primary_10_1148_radiol_230806
crossref_primary_10_1186_s13054_023_04320_0
crossref_primary_10_1007_s41939_024_00612_2
crossref_primary_10_1155_2019_6319581
crossref_primary_10_1016_j_ophtha_2019_09_036
crossref_primary_10_1016_j_ultrasmedbio_2019_10_003
crossref_primary_10_1007_s10489_022_04118_7
crossref_primary_10_1093_jamiaopen_ooae035
crossref_primary_10_3390_diagnostics12102549
crossref_primary_10_3390_jcm13010197
crossref_primary_10_1038_s41433_023_02609_6
crossref_primary_10_1007_s11684_021_0828_7
crossref_primary_10_12688_f1000research_36775_1
crossref_primary_10_1016_j_compbiomed_2020_103721
crossref_primary_10_1016_j_oret_2019_01_011
crossref_primary_10_1038_s41433_025_04025_4
crossref_primary_10_1038_s41598_024_72375_2
crossref_primary_10_1109_ACCESS_2020_2971281
crossref_primary_10_1016_j_artmed_2025_103096
crossref_primary_10_1007_s10462_025_11153_6
crossref_primary_10_1109_TPAMI_2024_3435571
crossref_primary_10_1155_2020_7493419
crossref_primary_10_1038_s41598_021_89743_x
crossref_primary_10_1186_s40942_024_00549_1
crossref_primary_10_1016_j_neuroscience_2021_11_017
crossref_primary_10_1063_5_0058346
crossref_primary_10_1016_j_pdpdt_2025_104788
crossref_primary_10_1111_medu_13958
crossref_primary_10_1177_15209156251369886
crossref_primary_10_1016_j_ijheatfluidflow_2021_108816
crossref_primary_10_1016_j_phrs_2020_104986
crossref_primary_10_1093_qjmed_hcz106
crossref_primary_10_1177_24741264241247602
crossref_primary_10_1016_j_spinee_2023_05_009
crossref_primary_10_7717_peerj_cs_715
crossref_primary_10_1016_j_ophtha_2019_09_014
crossref_primary_10_1089_omi_2019_0038
crossref_primary_10_3390_bioengineering12050441
crossref_primary_10_1038_s41551_021_00711_2
crossref_primary_10_1111_aos_14353
crossref_primary_10_3390_biom9110673
crossref_primary_10_1038_s41467_022_33407_5
crossref_primary_10_1088_2057_1976_ad5db2
crossref_primary_10_1007_s13347_019_00345_y
crossref_primary_10_1038_s41598_020_78696_2
crossref_primary_10_3389_frai_2020_550890
crossref_primary_10_1177_00220345241226871
crossref_primary_10_1002_ima_70035
crossref_primary_10_1038_s41598_020_80766_4
crossref_primary_10_1016_j_engappai_2025_111891
crossref_primary_10_3390_diagnostics15111365
crossref_primary_10_1097_MAO_0000000000003210
crossref_primary_10_3390_healthcare11020212
crossref_primary_10_3389_fdgth_2020_569178
crossref_primary_10_1097_IAE_0000000000002640
crossref_primary_10_1097_JCMA_0000000000000374
crossref_primary_10_1016_j_jtos_2021_11_004
crossref_primary_10_1038_s41746_025_01607_0
crossref_primary_10_1145_3571815
crossref_primary_10_1016_j_media_2024_103357
crossref_primary_10_1186_s40942_024_00580_2
crossref_primary_10_1038_s41598_025_85777_7
crossref_primary_10_26599_TST_2022_9010012
crossref_primary_10_1136_bjophthalmol_2020_317817
crossref_primary_10_1007_s13347_022_00505_7
crossref_primary_10_4103_IJO_IJO_1456_23
crossref_primary_10_1016_j_media_2020_101695
crossref_primary_10_62762_TIS_2024_100001
crossref_primary_10_1016_j_ajo_2021_04_021
crossref_primary_10_18502_jovr_v19i3_15893
crossref_primary_10_1016_j_joco_2019_05_001
crossref_primary_10_1038_s41591_023_02640_w
crossref_primary_10_1016_j_ijrobp_2022_06_083
crossref_primary_10_1080_08164622_2021_2008791
crossref_primary_10_1007_s10796_021_10142_8
crossref_primary_10_1056_NEJMra1814259
crossref_primary_10_1097_WNO_0000000000001682
crossref_primary_10_1109_TNNLS_2020_3004893
crossref_primary_10_1097_APO_0000000000000468
crossref_primary_10_1136_bjophthalmol_2018_313173
crossref_primary_10_1136_bmjhci_2024_101236
crossref_primary_10_2196_19739
crossref_primary_10_1016_j_ctro_2021_03_006
crossref_primary_10_1016_j_asoc_2020_106328
crossref_primary_10_1016_j_ejso_2025_110188
crossref_primary_10_1136_bmjopen_2019_033139
crossref_primary_10_1016_j_cmpb_2019_105101
crossref_primary_10_1038_s41467_022_31514_x
crossref_primary_10_1213_ANE_0000000000007140
crossref_primary_10_1002_ima_70160
crossref_primary_10_1038_s41598_023_29293_6
crossref_primary_10_1109_JBHI_2020_2976150
crossref_primary_10_1038_s41379_020_0540_1
crossref_primary_10_1371_journal_pdig_0000864
crossref_primary_10_1007_s00542_020_04782_0
crossref_primary_10_1016_j_jcjo_2023_10_017
crossref_primary_10_1007_s13347_019_00391_6
crossref_primary_10_3389_fmed_2025_1567159
crossref_primary_10_1038_s41598_023_33046_w
crossref_primary_10_1038_s42003_021_01697_y
crossref_primary_10_1016_j_spinee_2021_03_028
crossref_primary_10_1007_s41649_025_00357_1
crossref_primary_10_1007_s10354_024_01069_1
crossref_primary_10_1016_j_cose_2023_103369
crossref_primary_10_2471_BLT_19_237487
crossref_primary_10_3390_bioengineering12080879
crossref_primary_10_1016_j_bspc_2024_106673
crossref_primary_10_1038_s41598_020_64126_w
crossref_primary_10_1038_s41598_022_15424_y
crossref_primary_10_1016_j_ajo_2020_12_034
crossref_primary_10_1007_s10586_025_05229_9
crossref_primary_10_1109_ACCESS_2023_3317011
crossref_primary_10_1007_s00464_020_08168_1
crossref_primary_10_1038_s41598_021_95545_y
crossref_primary_10_1016_j_media_2020_101660
crossref_primary_10_1080_08820538_2021_1889617
crossref_primary_10_1002_jmri_28739
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_1136_bmjopen_2019_036423
crossref_primary_10_1016_S1474_4422_19_30397_7
crossref_primary_10_7861_fhj_10_3_s110
crossref_primary_10_3348_kjr_2023_0393
crossref_primary_10_1111_opo_13219
crossref_primary_10_1038_s41746_020_00323_1
crossref_primary_10_1136_bjophthalmol_2018_313156
crossref_primary_10_1038_s41598_021_92805_9
crossref_primary_10_1038_s41598_025_99278_0
crossref_primary_10_1016_j_msard_2023_104846
crossref_primary_10_31435_ijitss_3_47__2025_3533
crossref_primary_10_1016_j_heliyon_2024_e29775
crossref_primary_10_1080_21680566_2022_2064361
crossref_primary_10_3389_fonc_2020_00053
crossref_primary_10_1007_s00417_022_05565_1
crossref_primary_10_1016_j_neunet_2024_106409
crossref_primary_10_1002_int_22777
crossref_primary_10_1049_ipr2_12511
crossref_primary_10_1097_IIO_0000000000000519
crossref_primary_10_1038_s41551_021_00753_6
crossref_primary_10_1016_j_ajo_2024_02_012
crossref_primary_10_1038_s41467_024_44824_z
crossref_primary_10_1109_JBHI_2020_2983730
crossref_primary_10_1038_s41746_019_0097_x
crossref_primary_10_1111_joim_13030
crossref_primary_10_1186_s13244_025_01922_w
crossref_primary_10_1109_ACCESS_2024_3360691
crossref_primary_10_1007_s10462_024_10736_z
crossref_primary_10_1038_s42256_021_00305_2
crossref_primary_10_1001_jamaophthalmol_2021_2273
crossref_primary_10_1007_s11282_023_00715_5
crossref_primary_10_1186_s12871_022_01937_6
crossref_primary_10_1016_j_kint_2020_01_039
crossref_primary_10_1016_j_yexcr_2022_113278
crossref_primary_10_1038_s43856_022_00146_z
crossref_primary_10_1016_j_bspc_2024_106263
crossref_primary_10_1007_s00371_024_03383_6
crossref_primary_10_1016_j_isprsjprs_2019_12_014
crossref_primary_10_1177_11206721221096294
crossref_primary_10_1038_s43856_022_00220_6
crossref_primary_10_1155_2019_4061313
crossref_primary_10_1038_s41598_021_92829_1
crossref_primary_10_1038_s41746_020_0288_5
crossref_primary_10_3390_diagnostics13020189
crossref_primary_10_1038_s41433_024_03264_1
crossref_primary_10_1371_journal_pgen_1009497
crossref_primary_10_3390_bioengineering10121394
crossref_primary_10_2147_JMDH_S485724
crossref_primary_10_1016_j_jcmg_2019_06_009
crossref_primary_10_1136_bjophthalmol_2019_314729
crossref_primary_10_1007_s42979_022_01024_0
crossref_primary_10_1167_iovs_66_6_55
crossref_primary_10_1007_s12539_025_00763_x
crossref_primary_10_1016_j_media_2020_101871
crossref_primary_10_1097_ICU_0000000000000846
crossref_primary_10_1016_j_knosys_2021_106771
crossref_primary_10_1016_j_aopr_2025_07_004
crossref_primary_10_1111_epi_16333
crossref_primary_10_1093_cid_ciy969
crossref_primary_10_1038_s41433_022_02077_4
crossref_primary_10_1038_s41746_021_00507_3
crossref_primary_10_1155_2022_6952999
crossref_primary_10_1002_ase_2266
crossref_primary_10_1038_s41433_019_0577_x
crossref_primary_10_1111_ceo_14258
crossref_primary_10_1038_s41591_018_0178_4
crossref_primary_10_1109_JTEHM_2021_3050925
crossref_primary_10_1007_s00417_021_05078_3
crossref_primary_10_1007_s11517_021_02321_1
crossref_primary_10_1016_j_heliyon_2023_e19229
crossref_primary_10_1002_mds_28775
crossref_primary_10_1007_s10278_022_00666_z
crossref_primary_10_1016_j_oret_2021_01_009
crossref_primary_10_1016_j_survophthal_2022_08_005
crossref_primary_10_1038_s41467_023_38104_5
crossref_primary_10_1007_s00417_020_05035_6
crossref_primary_10_1186_s12245_025_00870_y
crossref_primary_10_1038_s41467_022_34245_1
crossref_primary_10_1002_mp_13891
crossref_primary_10_1136_bmj_m428
crossref_primary_10_1016_j_cmpb_2022_107312
crossref_primary_10_1109_TNNLS_2021_3105384
crossref_primary_10_1016_j_ejrad_2020_109410
crossref_primary_10_1007_s10439_025_03813_z
crossref_primary_10_3390_jpm14101062
crossref_primary_10_1038_s41433_021_01653_4
crossref_primary_10_1155_2023_8629849
crossref_primary_10_1177_2474126420914168
crossref_primary_10_1016_j_ccell_2023_06_008
crossref_primary_10_1038_s41591_020_0867_7
crossref_primary_10_3928_23258160_20220215_02
crossref_primary_10_1001_jamaophthalmol_2020_2769
crossref_primary_10_1002_mds_27671
crossref_primary_10_1038_s41746_019_0105_1
crossref_primary_10_1038_s41433_022_02360_4
crossref_primary_10_32604_cmc_2021_012874
crossref_primary_10_1007_s00347_020_01210_6
crossref_primary_10_1016_j_preteyeres_2020_100900
crossref_primary_10_1093_rheumatology_kez068
crossref_primary_10_1186_s40662_024_00405_1
crossref_primary_10_1097_IIO_0000000000000334
crossref_primary_10_1038_s41598_023_27479_6
crossref_primary_10_1016_j_ophtha_2018_11_015
crossref_primary_10_22608_APO_2018438
crossref_primary_10_1016_j_jid_2020_01_019
crossref_primary_10_7759_s44389_025_03919_4
crossref_primary_10_1038_d41586_019_01111_y
crossref_primary_10_1038_s41746_020_00376_2
crossref_primary_10_1371_journal_pone_0227791
crossref_primary_10_3389_frai_2025_1522730
crossref_primary_10_1002_adfm_202002791
crossref_primary_10_1016_j_compbiomed_2023_107569
crossref_primary_10_1097_IIO_0000000000000569
crossref_primary_10_1109_TBME_2019_2943062
crossref_primary_10_1051_fopen_2019024
crossref_primary_10_1631_jzus_B2000343
crossref_primary_10_3389_fsurg_2024_1424716
crossref_primary_10_1016_j_compbiomed_2019_103346
crossref_primary_10_1080_08820538_2020_1748203
crossref_primary_10_2174_012212697X315512240821045542
crossref_primary_10_1080_20565623_2025_2540742
crossref_primary_10_1186_s40537_021_00444_8
crossref_primary_10_1038_s41598_022_22392_w
crossref_primary_10_3389_fmed_2022_932498
crossref_primary_10_1038_s41598_023_27980_y
crossref_primary_10_1097_ICU_0000000000000885
crossref_primary_10_1007_s00500_023_08212_x
crossref_primary_10_1097_ICU_0000000000000887
crossref_primary_10_1007_s12553_019_00375_8
crossref_primary_10_3389_fphar_2020_572372
crossref_primary_10_1016_j_ebiom_2025_105773
crossref_primary_10_1016_j_preteyeres_2021_101034
crossref_primary_10_1016_j_zemedi_2018_12_003
crossref_primary_10_3389_fimmu_2022_862702
crossref_primary_10_1038_s41598_025_89961_7
crossref_primary_10_1016_j_cogsys_2020_11_002
crossref_primary_10_1259_bjr_20220878
crossref_primary_10_1016_j_cct_2021_106364
crossref_primary_10_1038_s41591_025_03968_1
crossref_primary_10_1038_s41598_023_46747_z
crossref_primary_10_1177_1120672120975331
crossref_primary_10_1007_s11768_023_00151_0
crossref_primary_10_1080_02713683_2023_2212878
crossref_primary_10_1016_j_preteyeres_2019_100797
crossref_primary_10_1186_s40662_020_00183_6
crossref_primary_10_1007_s40123_023_00842_6
crossref_primary_10_1097_ICU_0000000000000656
crossref_primary_10_3390_electronics11193229
crossref_primary_10_1016_j_cbpa_2019_10_003
crossref_primary_10_1002_lsm_23414
crossref_primary_10_1111_ceo_14607
crossref_primary_10_3389_fgene_2021_607471
crossref_primary_10_1016_j_compeleceng_2021_107036
crossref_primary_10_1016_j_ophtha_2020_08_031
crossref_primary_10_1111_risa_14273
crossref_primary_10_1016_j_preteyeres_2024_101305
crossref_primary_10_1136_bmjinnov_2019_000359
crossref_primary_10_7861_clinmed_2020_0030
crossref_primary_10_1109_ACCESS_2019_2919390
crossref_primary_10_1097_AUD_0000000000000794
crossref_primary_10_1016_j_diabet_2018_08_012
crossref_primary_10_3389_fped_2019_00043
crossref_primary_10_1146_annurev_biodatasci_102423_113220
crossref_primary_10_1097_APO_0000000000000403
crossref_primary_10_1016_j_bspc_2024_105990
crossref_primary_10_1097_APO_0000000000000405
crossref_primary_10_1038_s41598_021_91634_0
crossref_primary_10_1109_JBHI_2020_2983549
crossref_primary_10_1097_APO_0000000000000406
crossref_primary_10_1038_s43856_024_00518_7
crossref_primary_10_1016_j_pop_2025_07_005
crossref_primary_10_1016_S2213_2600_18_30286_8
crossref_primary_10_3390_jcm14155266
crossref_primary_10_1038_s41597_024_04259_z
crossref_primary_10_1007_s10606_025_09514_4
crossref_primary_10_1016_j_compbiomed_2021_104726
crossref_primary_10_3390_cancers14164025
crossref_primary_10_1007_s00417_024_06625_4
crossref_primary_10_2196_28868
crossref_primary_10_3389_fendo_2022_1077669
crossref_primary_10_3390_diagnostics12030613
crossref_primary_10_3390_ai6020038
crossref_primary_10_1136_practneurol_2020_002688
crossref_primary_10_1109_ACCESS_2025_3583555
crossref_primary_10_3390_s20195611
crossref_primary_10_1093_nutrit_nuac033
crossref_primary_10_1016_j_eswa_2024_123496
crossref_primary_10_1016_j_irbm_2022_04_004
crossref_primary_10_3389_fonc_2022_821594
crossref_primary_10_1259_bjr_20220215
crossref_primary_10_3390_app10207292
crossref_primary_10_1002_jbio_202300274
crossref_primary_10_1007_s10815_021_02159_4
crossref_primary_10_1007_s40123_021_00430_6
crossref_primary_10_1287_moor_2021_0082
crossref_primary_10_3390_sym13010102
crossref_primary_10_1097_ICU_0000000000000677
crossref_primary_10_3390_rs13091789
crossref_primary_10_3389_fmed_2025_1580583
crossref_primary_10_1097_ICU_0000000000000679
crossref_primary_10_1038_s41698_021_00195_y
crossref_primary_10_1016_j_ajo_2020_12_012
crossref_primary_10_3390_jpm14050501
crossref_primary_10_1016_j_imu_2024_101587
crossref_primary_10_1016_j_compbiomed_2025_110944
crossref_primary_10_1007_s10489_022_04012_2
crossref_primary_10_1097_WNO_0000000000001800
crossref_primary_10_1080_17434440_2020_1816167
crossref_primary_10_1038_s41598_021_97341_0
crossref_primary_10_3390_app11010371
crossref_primary_10_1097_ICU_0000000000000680
crossref_primary_10_1146_annurev_anchem_091520_091450
crossref_primary_10_3389_fonc_2021_631813
crossref_primary_10_1016_j_ophtha_2020_06_038
crossref_primary_10_1111_opo_13034
crossref_primary_10_1016_j_engappai_2023_106180
crossref_primary_10_3389_fpubh_2022_1025271
crossref_primary_10_3390_diagnostics11081399
crossref_primary_10_3389_fmed_2021_740987
crossref_primary_10_3389_fpubh_2023_1239231
crossref_primary_10_1016_j_acra_2019_06_018
crossref_primary_10_1109_LSP_2019_2949388
crossref_primary_10_1186_s12916_021_01940_7
crossref_primary_10_1016_j_media_2022_102684
crossref_primary_10_1136_bjo_2023_324091
crossref_primary_10_1371_journal_pone_0256087
crossref_primary_10_1038_s41467_020_17419_7
crossref_primary_10_1109_TETCI_2024_3444694
crossref_primary_10_1155_2020_6153657
crossref_primary_10_3390_jpm12050742
crossref_primary_10_1016_j_bbe_2022_12_005
crossref_primary_10_1016_j_preteyeres_2023_101219
crossref_primary_10_1038_s41746_021_00503_7
crossref_primary_10_1136_archdischild_2020_321023
crossref_primary_10_1016_j_acra_2023_03_036
crossref_primary_10_1097_ICU_0000000000000693
crossref_primary_10_4103_IJO_IJO_399_23
crossref_primary_10_1093_jamia_ocaf070
crossref_primary_10_1080_14737175_2019_1559051
crossref_primary_10_1097_ICU_0000000000000695
crossref_primary_10_1093_bib_bbad249
crossref_primary_10_1136_bmjopen_2021_055082
crossref_primary_10_1016_j_media_2021_102156
crossref_primary_10_1016_j_preteyeres_2023_101227
crossref_primary_10_1148_ryai_2021200183
crossref_primary_10_1186_s40942_024_00554_4
crossref_primary_10_1161_CIRCULATIONAHA_118_038451
crossref_primary_10_1167_iovs_65_2_2
crossref_primary_10_2147_MDER_S262590
crossref_primary_10_1016_j_accpm_2019_05_003
crossref_primary_10_1016_j_ejmp_2019_12_008
crossref_primary_10_3390_info10090266
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_1136_bjo_2024_325459
crossref_primary_10_1136_bjophthalmol_2020_317131
crossref_primary_10_1055_a_2543_4330
crossref_primary_10_1038_s41572_025_00646_x
crossref_primary_10_1038_s42256_023_00617_5
crossref_primary_10_2217_fca_2020_0014
crossref_primary_10_1186_s40942_025_00695_0
crossref_primary_10_3389_fmed_2023_1259017
crossref_primary_10_1038_s41586_023_06555_x
crossref_primary_10_2196_52506
crossref_primary_10_3389_fsurg_2022_862322
crossref_primary_10_3389_fonc_2024_1440626
crossref_primary_10_1371_journal_pone_0283214
crossref_primary_10_2215_CJN_09990819
crossref_primary_10_5114_pjr_2022_119808
crossref_primary_10_1001_jamaophthalmol_2019_3512
crossref_primary_10_1007_s13139_023_00821_6
Cites_doi 10.1364/BOE.8.000579
10.1126/science.1957169
10.1038/sj.eye.6703053
10.1016/j.ophtha.2017.10.031
10.1136/bjophthalmol-2011-301109
10.1364/BOE.8.003627
10.1016/j.ophtha.2014.04.020
10.1001/jama.2016.17216
10.1109/CVPR.2016.308
10.1364/BOE.8.002732
10.1016/j.oret.2016.12.009
10.1787/3c994537-en
10.1016/j.ophtha.2016.01.034
10.1007/s00417-010-1520-9
10.1167/iovs.17-21790
10.1007/978-3-319-24574-4_28
10.1016/j.sjopt.2011.01.003
10.1007/978-3-319-46723-8_49
10.1364/BOE.5.003568
10.1167/tvst.6.4.16
10.1038/eye.2017.1
10.1016/S2214-109X(17)30293-0
10.1038/eye.2016.227
10.1038/nmeth.2019
10.1089/tmj.2005.11.641
10.1016/j.ajo.2015.04.003
10.1787/1d89353f-en
10.1016/j.survophthal.2012.01.006
10.1038/538020a
10.1109/CVPR.2017.243
10.1016/j.preteyeres.2015.07.007
10.1038/nature21056
10.1038/eye.2017.114
10.1016/j.oret.2017.03.015
10.1364/BOE.8.003440
10.12688/f1000research.8996.1
10.1016/j.ophtha.2013.07.013
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Sep 2018
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Sep 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/s41591-018-0107-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Research Library Prep

MEDLINE - Academic


MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Architecture
EISSN 1546-170X
EndPage 1350
ExternalDocumentID A572904635
30104768
10_1038_s41591_018_0107_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Department of Health
  grantid: CS-2014-14-023
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
AFANA
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
XRW
ABFSG
ACSTC
AETEA
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
ACMFV
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c642t-9864ab78f685792d3037477464d3c2af334467aa8ef12383a05329bb76e9f213
IEDL.DBID M7P
ISICitedReferencesCount 1635
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444174100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1078-8956
1546-170X
IngestDate Thu Oct 02 04:04:47 EDT 2025
Fri Oct 03 09:42:00 EDT 2025
Sat Nov 29 13:23:00 EST 2025
Sat Nov 29 11:43:50 EST 2025
Sat Nov 29 10:16:17 EST 2025
Wed Nov 26 10:40:16 EST 2025
Wed Nov 26 09:35:56 EST 2025
Thu May 22 21:22:12 EDT 2025
Mon Jul 21 06:08:02 EDT 2025
Sat Nov 29 06:02:25 EST 2025
Tue Nov 18 22:10:18 EST 2025
Fri Feb 21 02:37:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-9864ab78f685792d3037477464d3c2af334467aa8ef12383a05329bb76e9f213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4264-8329
0000-0002-9623-7007
0000-0001-6901-0985
0000-0001-8797-5019
0000-0002-4266-1515
0000-0002-9239-745X
PMID 30104768
PQID 2100850439
PQPubID 33975
PageCount 9
ParticipantIDs proquest_miscellaneous_2088293476
proquest_journals_2100850439
gale_infotracmisc_A572904635
gale_infotracgeneralonefile_A572904635
gale_infotracacademiconefile_A572904635
gale_incontextgauss_ISR_A572904635
gale_incontextgauss_IOV_A572904635
gale_healthsolutions_A572904635
pubmed_primary_30104768
crossref_citationtrail_10_1038_s41591_018_0107_6
crossref_primary_10_1038_s41591_018_0107_6
springer_journals_10_1038_s41591_018_0107_6
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2018
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References BourneRRAMagnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysisLancet Glob. Health20175e888e89710.1016/S2214-109X(17)30293-0
EstevaADermatologist-level classification of skin cancer with deep neural networksNature2017542115–11810.1038/nature21056
OECD. Computed tomography (CT) exams (indicator). (2017); https://doi.org/10.1787/3c994537-en
Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. in Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol. 9901 (Springer, Cham, Switzerland; 2016).
SrinivasanPPFully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography imagesBiomed. Opt. Express201453568357710.1364/BOE.5.003568
Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous systems. Preprint at https://arxiv.org/abs/1603.04467 (2016).
CastelvecchiDCan we open the black box of AI?Nature201653820231:CAS:528:DC%2BC28Xhs1ehsr7F10.1038/538020a
Schmidt-ErfurthUKlimschaSWaldsteinSMBogunovićHA view of the current and future role of optical coherence tomography in the management of age-related macular degenerationEye20173126441:STN:280:DC%2BC2sjgtlWnuw%3D%3D10.1038/eye.2016.227
LeeCSBaughmanDMLeeAYDeep learning is effective for classifying normal versus age-related macular degeneration OCT imagesOphthalmol. Retin.2017132232710.1016/j.oret.2016.12.009
KeanePAEvaluation of age-related macular degeneration with optical coherence tomographySurv. Ophthalmol.20125738941410.1016/j.survophthal.2012.01.006
ChopraRMulhollandPJDubisAMAndersonRSKeanePAHuman factor and usability testing of a binocular optical coherence tomography systemTransl. Vis. Sci. Technol.201761610.1167/tvst.6.4.16
KarriSPKChakrabortyDChatterjeeJTransfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degenerationBiomed. Opt. Express201785795921:STN:280:DC%2BC1czjvFGhtw%3D%3D10.1364/BOE.8.000579
Apostolopoulos, S., Ciller, C., De Zanet, S. I., Wolf, S. & Sznitman, R. RetiNet: automatic AMD identification in OCT volumetric data. Preprint at http://arxiv.org/abs/1610.03628v1 (2016).
SchleglTFully automated detection and quantification of macular fluid in OCT using deep learningOphthalmology201812554955810.1016/j.ophtha.2017.10.031
AriasLDelay in treating age-related macular degeneration in Spain is associated with progressive vision lossEye2009233263331:STN:280:DC%2BD1M7js1Ojsw%3D%3D10.1038/sj.eye.6703053
KeanePASaddaSRPredicting visual outcomes for macular disease using optical coherence tomographySaudi J. Ophthalmol.20112514515810.1016/j.sjopt.2011.01.003
GulshanVDevelopment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsJ. Am. Med. Assoc.20163162402241010.1001/jama.2016.17216
RoyAGReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networkBiomed. Opt. Express201783627364210.1364/BOE.8.003627
Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. Adv. Neural Inf. Process. Syst. 6405–6416 (2017).
Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. in Navab N., Hornegger J., Wells W., Frangi A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol. 9351 (Springer, Cham, Switzerland, 2015).
Lu, D. et al. Retinal fluid segmentation and detection in optical coherence tomography images using fully convolutional neural network. Preprint at http://arxiv.org/abs/1710.04778v1 (2017).
SchindelinJFiji: an open-source platform for biological-image analysisNat. Methods201296766821:CAS:528:DC%2BC38XhtVKnurbJ10.1038/nmeth.2019
VillaniEDecade-long profile of imaging biomarker use in ophthalmic clinical trialsInvest. Ophthalmol. Vis. Sci.201758BIO76BIO8110.1167/iovs.17-21790
SchaalKBRosenfeldPJGregoriGYehoshuaZFeuerWJAnatomic clinical trial endpoints for nonexudative age-related macular degenerationOphthalmology20161231060107910.1016/j.ophtha.2016.01.034
FangLAutomatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph searchBiomed. Opt. Express201782732274410.1364/BOE.8.002732
BuchanJCHow to defuse a demographic time bomb: the way forward?Eye201731151915221:STN:280:DC%2BC1cnptVClug%3D%3D10.1038/eye.2017.114
MuetherPSHermannMMKochKFauserSDelay between medical indication to anti-VEGF treatment in age-related macular degeneration can result in a loss of visual acuityGraefes Arch. Clin. Exp. Ophthalmol.20112496336371:CAS:528:DC%2BC3MXltlKjsbk%3D10.1007/s00417-010-1520-9
Schmidt-ErfurthUWaldsteinSMA paradigm shift in imaging biomarkers in neovascular age-related macular degenerationProg. Retin. Eye Res.2016501241:CAS:528:DC%2BC2MXhsV2mu7nF10.1016/j.preteyeres.2015.07.007
LeeCSDeep-learning based, automated segmentation of macular edema in optical coherence tomographyBiomed. Opt. Express201783440344810.1364/BOE.8.003440
De FauwJAutomated analysis of retinal imaging using machine learning techniques for computer visionF1000Res20165157310.12688/f1000research.8996.1
Huang, G., Liu, Z., Weinberger, K. Q. & van der Maaten, L. Densely connected convolutional networks. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2261–2269 (2017).
OwenCGThe estimated prevalence and incidence of late stage age related macular degeneration in the UKBr. J. Ophthalmol.20129675275610.1136/bjophthalmol-2011-301109
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. in Proceedings of the 3rd International Conference on Learning Representations (ICLR). Preprint at http://arxiv.org/abs/1412.6980 (2015).
FarsiuSQuantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomographyOphthalmology201412116217210.1016/j.ophtha.2013.07.013
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2818–2826 (2016).
FootBMacEwenCSurveillance of sight loss due to delay in ophthalmic treatment or review: frequency, cause and outcomeEye2017317717751:STN:280:DC%2BC1c7pvVOitw%3D%3D10.1038/eye.2017.1
RudnickaARIncidence of late-stage age-related macular degeneration in American whites: systematic review and meta-analysisAm. J. Ophthalmol.2015160859310.1016/j.ajo.2015.04.003
FolgarFAComparison of optical coherence tomography assessments in the comparison of age-related macular degeneration treatments trialsOphthalmology20141211956196510.1016/j.ophtha.2014.04.020
Duker, J. S., Waheed, N. K. & Goldman, D. Handbook of Retinal OCT: Optical Coherence Tomography E-Book (Elsevier Health Sciences, Oxford, UK; 2013).
Schmidt-ErfurthUMachine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degenerationOphthalmol. Retin.20182243010.1016/j.oret.2017.03.015
HuangDOptical coherence tomographyScience1991254117811811:STN:280:DyaK38%2Fms12lsA%3D%3D10.1126/science.1957169
WhitedJDA modeled economic analysis of a digital teleophthalmology system as used by three federal healthcare agencies for detecting proliferative diabetic retinopathyTelemed. J. E Health20051164165110.1089/tmj.2005.11.641
OECD. Magnetic resonance imaging (MRI) exams (indicator). (2017). https://doi.org/10.1787/1d89353f-en
107_CR14
107_CR13
KB Schaal (107_CR30) 2016; 123
PS Muether (107_CR15) 2011; 249
107_CR38
107_CR37
107_CR18
D Castelvecchi (107_CR26) 2016; 538
107_CR39
PA Keane (107_CR29) 2011; 25
PA Keane (107_CR35) 2012; 57
L Fang (107_CR22) 2017; 8
T Schlegl (107_CR28) 2018; 125
JD Whited (107_CR12) 2005; 11
A Esteva (107_CR9) 2017; 542
L Arias (107_CR16) 2009; 23
U Schmidt-Erfurth (107_CR7) 2017; 31
PP Srinivasan (107_CR20) 2014; 5
E Villani (107_CR32) 2017; 58
CS Lee (107_CR23) 2017; 8
R Chopra (107_CR33) 2017; 6
107_CR24
D Huang (107_CR10) 1991; 254
V Gulshan (107_CR8) 2016; 316
S Farsiu (107_CR19) 2014; 121
107_CR41
U Schmidt-Erfurth (107_CR27) 2018; 2
107_CR40
107_CR42
CG Owen (107_CR4) 2012; 96
CS Lee (107_CR21) 2017; 1
B Foot (107_CR3) 2017; 31
J Schindelin (107_CR34) 2012; 9
107_CR2
FA Folgar (107_CR36) 2014; 121
U Schmidt-Erfurth (107_CR31) 2016; 50
107_CR1
RRA Bourne (107_CR6) 2017; 5
JC Buchan (107_CR11) 2017; 31
SPK Karri (107_CR17) 2017; 8
AR Rudnicka (107_CR5) 2015; 160
AG Roy (107_CR25) 2017; 8
J Fauw De (107_CR43) 2016; 5
37596401 - Eye (Lond). 2024 Feb;38(2):380-385. doi: 10.1038/s41433-023-02705-7.
30177823 - Nat Med. 2018 Sep;24(9):1304-1305. doi: 10.1038/s41591-018-0178-4.
References_xml – reference: Duker, J. S., Waheed, N. K. & Goldman, D. Handbook of Retinal OCT: Optical Coherence Tomography E-Book (Elsevier Health Sciences, Oxford, UK; 2013).
– reference: FarsiuSQuantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomographyOphthalmology201412116217210.1016/j.ophtha.2013.07.013
– reference: Lu, D. et al. Retinal fluid segmentation and detection in optical coherence tomography images using fully convolutional neural network. Preprint at http://arxiv.org/abs/1710.04778v1 (2017).
– reference: Schmidt-ErfurthUMachine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degenerationOphthalmol. Retin.20182243010.1016/j.oret.2017.03.015
– reference: KeanePASaddaSRPredicting visual outcomes for macular disease using optical coherence tomographySaudi J. Ophthalmol.20112514515810.1016/j.sjopt.2011.01.003
– reference: VillaniEDecade-long profile of imaging biomarker use in ophthalmic clinical trialsInvest. Ophthalmol. Vis. Sci.201758BIO76BIO8110.1167/iovs.17-21790
– reference: OECD. Magnetic resonance imaging (MRI) exams (indicator). (2017). https://doi.org/10.1787/1d89353f-en
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2818–2826 (2016).
– reference: AriasLDelay in treating age-related macular degeneration in Spain is associated with progressive vision lossEye2009233263331:STN:280:DC%2BD1M7js1Ojsw%3D%3D10.1038/sj.eye.6703053
– reference: Apostolopoulos, S., Ciller, C., De Zanet, S. I., Wolf, S. & Sznitman, R. RetiNet: automatic AMD identification in OCT volumetric data. Preprint at http://arxiv.org/abs/1610.03628v1 (2016).
– reference: Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous systems. Preprint at https://arxiv.org/abs/1603.04467 (2016).
– reference: BuchanJCHow to defuse a demographic time bomb: the way forward?Eye201731151915221:STN:280:DC%2BC1cnptVClug%3D%3D10.1038/eye.2017.114
– reference: Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. Adv. Neural Inf. Process. Syst. 6405–6416 (2017).
– reference: Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. in Navab N., Hornegger J., Wells W., Frangi A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol. 9351 (Springer, Cham, Switzerland, 2015).
– reference: RudnickaARIncidence of late-stage age-related macular degeneration in American whites: systematic review and meta-analysisAm. J. Ophthalmol.2015160859310.1016/j.ajo.2015.04.003
– reference: CastelvecchiDCan we open the black box of AI?Nature201653820231:CAS:528:DC%2BC28Xhs1ehsr7F10.1038/538020a
– reference: EstevaADermatologist-level classification of skin cancer with deep neural networksNature2017542115–11810.1038/nature21056
– reference: KarriSPKChakrabortyDChatterjeeJTransfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degenerationBiomed. Opt. Express201785795921:STN:280:DC%2BC1czjvFGhtw%3D%3D10.1364/BOE.8.000579
– reference: ChopraRMulhollandPJDubisAMAndersonRSKeanePAHuman factor and usability testing of a binocular optical coherence tomography systemTransl. Vis. Sci. Technol.201761610.1167/tvst.6.4.16
– reference: KeanePAEvaluation of age-related macular degeneration with optical coherence tomographySurv. Ophthalmol.20125738941410.1016/j.survophthal.2012.01.006
– reference: BourneRRAMagnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysisLancet Glob. Health20175e888e89710.1016/S2214-109X(17)30293-0
– reference: MuetherPSHermannMMKochKFauserSDelay between medical indication to anti-VEGF treatment in age-related macular degeneration can result in a loss of visual acuityGraefes Arch. Clin. Exp. Ophthalmol.20112496336371:CAS:528:DC%2BC3MXltlKjsbk%3D10.1007/s00417-010-1520-9
– reference: Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. in Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol. 9901 (Springer, Cham, Switzerland; 2016).
– reference: SchleglTFully automated detection and quantification of macular fluid in OCT using deep learningOphthalmology201812554955810.1016/j.ophtha.2017.10.031
– reference: HuangDOptical coherence tomographyScience1991254117811811:STN:280:DyaK38%2Fms12lsA%3D%3D10.1126/science.1957169
– reference: SchindelinJFiji: an open-source platform for biological-image analysisNat. Methods201296766821:CAS:528:DC%2BC38XhtVKnurbJ10.1038/nmeth.2019
– reference: LeeCSDeep-learning based, automated segmentation of macular edema in optical coherence tomographyBiomed. Opt. Express201783440344810.1364/BOE.8.003440
– reference: RoyAGReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networkBiomed. Opt. Express201783627364210.1364/BOE.8.003627
– reference: SchaalKBRosenfeldPJGregoriGYehoshuaZFeuerWJAnatomic clinical trial endpoints for nonexudative age-related macular degenerationOphthalmology20161231060107910.1016/j.ophtha.2016.01.034
– reference: Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. in Proceedings of the 3rd International Conference on Learning Representations (ICLR). Preprint at http://arxiv.org/abs/1412.6980 (2015).
– reference: Schmidt-ErfurthUKlimschaSWaldsteinSMBogunovićHA view of the current and future role of optical coherence tomography in the management of age-related macular degenerationEye20173126441:STN:280:DC%2BC2sjgtlWnuw%3D%3D10.1038/eye.2016.227
– reference: LeeCSBaughmanDMLeeAYDeep learning is effective for classifying normal versus age-related macular degeneration OCT imagesOphthalmol. Retin.2017132232710.1016/j.oret.2016.12.009
– reference: FolgarFAComparison of optical coherence tomography assessments in the comparison of age-related macular degeneration treatments trialsOphthalmology20141211956196510.1016/j.ophtha.2014.04.020
– reference: OECD. Computed tomography (CT) exams (indicator). (2017); https://doi.org/10.1787/3c994537-en
– reference: FootBMacEwenCSurveillance of sight loss due to delay in ophthalmic treatment or review: frequency, cause and outcomeEye2017317717751:STN:280:DC%2BC1c7pvVOitw%3D%3D10.1038/eye.2017.1
– reference: GulshanVDevelopment and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographsJ. Am. Med. Assoc.20163162402241010.1001/jama.2016.17216
– reference: SrinivasanPPFully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography imagesBiomed. Opt. Express201453568357710.1364/BOE.5.003568
– reference: Huang, G., Liu, Z., Weinberger, K. Q. & van der Maaten, L. Densely connected convolutional networks. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2261–2269 (2017).
– reference: OwenCGThe estimated prevalence and incidence of late stage age related macular degeneration in the UKBr. J. Ophthalmol.20129675275610.1136/bjophthalmol-2011-301109
– reference: WhitedJDA modeled economic analysis of a digital teleophthalmology system as used by three federal healthcare agencies for detecting proliferative diabetic retinopathyTelemed. J. E Health20051164165110.1089/tmj.2005.11.641
– reference: Schmidt-ErfurthUWaldsteinSMA paradigm shift in imaging biomarkers in neovascular age-related macular degenerationProg. Retin. Eye Res.2016501241:CAS:528:DC%2BC2MXhsV2mu7nF10.1016/j.preteyeres.2015.07.007
– reference: FangLAutomatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph searchBiomed. Opt. Express201782732274410.1364/BOE.8.002732
– reference: De FauwJAutomated analysis of retinal imaging using machine learning techniques for computer visionF1000Res20165157310.12688/f1000research.8996.1
– volume: 8
  start-page: 579
  year: 2017
  ident: 107_CR17
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.000579
– ident: 107_CR39
– volume: 254
  start-page: 1178
  year: 1991
  ident: 107_CR10
  publication-title: Science
  doi: 10.1126/science.1957169
– volume: 23
  start-page: 326
  year: 2009
  ident: 107_CR16
  publication-title: Eye
  doi: 10.1038/sj.eye.6703053
– ident: 107_CR37
– ident: 107_CR18
– volume: 125
  start-page: 549
  year: 2018
  ident: 107_CR28
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.10.031
– volume: 96
  start-page: 752
  year: 2012
  ident: 107_CR4
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2011-301109
– volume: 8
  start-page: 3627
  year: 2017
  ident: 107_CR25
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.003627
– volume: 121
  start-page: 1956
  year: 2014
  ident: 107_CR36
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.04.020
– volume: 316
  start-page: 2402
  year: 2016
  ident: 107_CR8
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2016.17216
– ident: 107_CR38
  doi: 10.1109/CVPR.2016.308
– volume: 8
  start-page: 2732
  year: 2017
  ident: 107_CR22
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.002732
– volume: 1
  start-page: 322
  year: 2017
  ident: 107_CR21
  publication-title: Ophthalmol. Retin.
  doi: 10.1016/j.oret.2016.12.009
– ident: 107_CR1
  doi: 10.1787/3c994537-en
– volume: 123
  start-page: 1060
  year: 2016
  ident: 107_CR30
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.01.034
– volume: 249
  start-page: 633
  year: 2011
  ident: 107_CR15
  publication-title: Graefes Arch. Clin. Exp. Ophthalmol.
  doi: 10.1007/s00417-010-1520-9
– volume: 58
  start-page: BIO76
  year: 2017
  ident: 107_CR32
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.17-21790
– ident: 107_CR13
  doi: 10.1007/978-3-319-24574-4_28
– volume: 25
  start-page: 145
  year: 2011
  ident: 107_CR29
  publication-title: Saudi J. Ophthalmol.
  doi: 10.1016/j.sjopt.2011.01.003
– ident: 107_CR14
  doi: 10.1007/978-3-319-46723-8_49
– volume: 5
  start-page: 3568
  year: 2014
  ident: 107_CR20
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.5.003568
– volume: 6
  start-page: 16
  year: 2017
  ident: 107_CR33
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.6.4.16
– volume: 31
  start-page: 771
  year: 2017
  ident: 107_CR3
  publication-title: Eye
  doi: 10.1038/eye.2017.1
– volume: 5
  start-page: e888
  year: 2017
  ident: 107_CR6
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(17)30293-0
– volume: 31
  start-page: 26
  year: 2017
  ident: 107_CR7
  publication-title: Eye
  doi: 10.1038/eye.2016.227
– volume: 9
  start-page: 676
  year: 2012
  ident: 107_CR34
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– ident: 107_CR40
– volume: 11
  start-page: 641
  year: 2005
  ident: 107_CR12
  publication-title: Telemed. J. E Health
  doi: 10.1089/tmj.2005.11.641
– volume: 160
  start-page: 85
  year: 2015
  ident: 107_CR5
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2015.04.003
– ident: 107_CR42
– ident: 107_CR2
  doi: 10.1787/1d89353f-en
– volume: 57
  start-page: 389
  year: 2012
  ident: 107_CR35
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2012.01.006
– volume: 538
  start-page: 20
  year: 2016
  ident: 107_CR26
  publication-title: Nature
  doi: 10.1038/538020a
– ident: 107_CR41
  doi: 10.1109/CVPR.2017.243
– ident: 107_CR24
– volume: 50
  start-page: 1
  year: 2016
  ident: 107_CR31
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2015.07.007
– volume: 542
  start-page: 115–
  year: 2017
  ident: 107_CR9
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 31
  start-page: 1519
  year: 2017
  ident: 107_CR11
  publication-title: Eye
  doi: 10.1038/eye.2017.114
– volume: 2
  start-page: 24
  year: 2018
  ident: 107_CR27
  publication-title: Ophthalmol. Retin.
  doi: 10.1016/j.oret.2017.03.015
– volume: 8
  start-page: 3440
  year: 2017
  ident: 107_CR23
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.003440
– volume: 5
  start-page: 1573
  year: 2016
  ident: 107_CR43
  publication-title: F1000Res
  doi: 10.12688/f1000research.8996.1
– volume: 121
  start-page: 162
  year: 2014
  ident: 107_CR19
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.07.013
– reference: 30177823 - Nat Med. 2018 Sep;24(9):1304-1305. doi: 10.1038/s41591-018-0178-4.
– reference: 37596401 - Eye (Lond). 2024 Feb;38(2):380-385. doi: 10.1038/s41433-023-02705-7.
SSID ssj0003059
Score 2.7236776
Snippet The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1342
SubjectTerms 631/114/1305
692/1807/1482
692/700/139
692/700/1421/2025
Aged
Analysis
Architecture
Artificial intelligence
Biomedical and Life Sciences
Biomedicine
Cancer Research
Clinical Decision-Making
Deep Learning
Diagnostic imaging
Diagnostic systems
Female
Humans
Infectious Diseases
Information storage and retrieval
Machine learning
Male
Medical imaging equipment
Metabolic Diseases
Middle Aged
Molecular Medicine
Neurosciences
Optical Coherence Tomography
Referral and Consultation
Retina
Retina - diagnostic imaging
Retina - pathology
Retinal diseases
Retinal Diseases - diagnosis
Retinal Diseases - diagnostic imaging
Tomography
Tomography, Optical Coherence
Training
Title Clinically applicable deep learning for diagnosis and referral in retinal disease
URI https://link.springer.com/article/10.1038/s41591-018-0107-6
https://www.ncbi.nlm.nih.gov/pubmed/30104768
https://www.proquest.com/docview/2100850439
https://www.proquest.com/docview/2088293476
Volume 24
WOSCitedRecordID wos000444174100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M7P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: 7X7
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: BENPR
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M2O
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M2P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDRBC4qMMKIwSEAKJKVoTJ7HzhAraBA_rypimvllOnFSVqrQ0LdL-e-5sN1smmJB4iZTk8nWfdu78O4B3HMOCUJH2uYhTHzUk9kXQz_1c5RFjkcawbptN8OFQjMfpyP1wq11Z5cYnGket5zn9Iz8IA4OuhvHz0-KnT12jKLvqWmhswQ6hJDBTujdqPDHqcmprDoUvcCKwyWoycVBj4KKan4BKufrcT1px6bp3vhKeruVLTRg6evi_H_AIHrgBqDewGvMYbhVVB-4PruQTOnDHdqi86MDdY5d7fwLfHYTobHbhubR3Nis8XRQLz_WemHg4BPa0rd6b1p6qtGf6mCzxidPKoxWT9HCXFdqFs6PDsy9ffdeQwc9xmrLyCcpdZVyUiYh5GmpG4DU4fkwizfJQlShc9LtKiaLEgCiYorYTaZbxpEjLMGBPYbuaV8Vz8JSKuEbm40FK_WZC96NAxyJQccZZorrQ30hD5g6snHpmzKRJmjMhrQAl3kOSAGXShY_NJQuL1HET8WsSsbSLTRsrl4MYJxsEohZ34a2hIIyMiopwJmpd1_Lbyfk_EP04bRF9cETlHL8BrcAufEBOEPZWi_J9i3Jikcf_RLjXIkSXkLdPb1RQOpdUy0v968Kb5jRdSWV2VTFfIw1NuFIWcWTQM6vxDS-ZQXJKRBf2NyZwefO_MvrFza_yEu6FxgapaG8PtlfLdfEKbue_VtN62YMtPuZmK3qw8_lwODrFvePwxGxHPWPtvwHY802W
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VcgqJI1yGQhcErQSyGnt9rB8QioCqUdtQIEJ9W629dhQpckKcgPKj-I_MeG23rqDipQ-8xuO1PTvHbubbbwBehpgWhPK0HQo_stFCfFs43cROVOJx7mlM66bZRDgYiOPj6GgNftVnYQhWWcfEMlDraUL_ke-4Tsmuhvnz3ey7TV2jqLpat9AwZrGfrn7ilq142_-A8_vKdXc_Dt_v2VVXATvBtfbCJj5yFYciC4QfRq7mxMCCi6DA0zxxVYZviMFDKZFmGNUFV9Q7IYrjMEijzHU4DnsJLuMqwhUlUvCoCfzoOpGBOApb4L6jLqJysVNgniSIkUPIsW5oB600eDYZnMqGZ8qzZdbbvf2f6esO3KqW16xn_OEurKV5B272TlVLOnDV9N9cdeDaYYUsuAefK4LUyWTFqqJ-PEmZTtMZqzprjBgu8Jk22MRxwVSuWdmlZY5PHOeMzoPSw6ua130YXsSHPoD1fJqnj4Ap5YUa5xp_pMJ2LHTXc7QvHOXHIQ-UBd168mVSUbFTR5CJLCEBXEhjLxLHkGQvMrDgdXPLzPCQnCe8SRYlzVHaJobJno9bKaKI8y14UUoQA0hOEKORWhaF7H_69g9CX7-0hLYroWyK34A-bo51oCaIWawludWSHBle9T8JbrQEMeAl7cu1xcsq4BbyxNwteN5cpjsJRJin0yXK0HYy4l6ICnpoHKzRJS95qgJhwZva404G_6uiH5__KptwfW94eCAP-oP9J3DDLd2f4IkbsL6YL9OncCX5sRgX82dlIGEgL9gRfwNDXqCn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAhVC4hFegUIN4iGBrMRe27s-IBRRIqJCCFCh3lZrrx1FipwQJ6D8NP4dM951WldQcemBqz1e2-N57Hq-_QbgKce0IFSgXS7C2EULCV3hdVM3VWnAWKAxrZtmE3w4FEdH8WgLftV7YQhWWcfEKlDrWUr_yDu-V7GrYf7s5BYWMdrvv5l_d6mDFFVa63YaxkQOsvVPXL6Vrwf7-K2f-X7_3eHb967tMOCmOO9eusRNrhIu8kiEPPY1IzYWnBBFgWapr3J8WgwkSoksxwgvmKI-CnGS8CiLc99jOOwFuMiJs7xCDY42SQDdKDZwR-EKXIPUBVUmOiXmTIIbeYQi63I3aqTE04nhRGY8VaqtMmD_-n-suxtwzU67nZ7xk5uwlRUtuNo7UUVpwWXTl3Pdgp2PFnFwCz5b4tTpdO3YYn8yzRydZXPHdtwYOzjxd7TBLE5KRxXaqbq3LPCOk8KhfaJ0c1sLuw2H5_Gid2C7mBXZPXCUCrjG744HqeCdCN0NPB0KT4UJZ5FqQ7c2BJlainbqFDKVFVSACWlsR-IYkmxHRm14ublkbvhJzhLeI-uSZovtJrbJXohLLKKOC9vwpJIgZpCC7GSsVmUpB5--_YPQ1y8NoRdWKJ_hO6Dvm-0eqAliHGtIPm9Ijg3f-p8EdxuCGAjT5una-qUNxKU8Nv02PN6cpisJXFhksxXK0DIzZgFHBd01zrbRJav4qyLRhle19x0P_ldF3z_7UfZgB_1PfhgMDx7AFb-KBIRa3IXt5WKVPYRL6Y_lpFw8qmKKA_Kc_fA3fTapZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically+applicable+deep+learning+for+diagnosis+and+referral+in+retinal+disease&rft.jtitle=Nature+medicine&rft.au=De+Fauw%2C+Jeffrey&rft.au=Blackwell%2C+Sam&rft.au=Ledsam%2C+Joseph+R&rft.au=Askham%2C+Harry&rft.date=2018-09-01&rft.pub=Nature+Publishing+Group&rft.issn=1078-8956&rft.volume=24&rft.issue=9&rft.spage=1342&rft_id=info:doi/10.1038%2Fs41591-018-0107-6&rft.externalDBID=n%2Fa&rft.externalDocID=A572904635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon