Detection and location of EEG events using deep learning visual inspection
The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject’s health state in relation to sleep, neurological disorders, memory functions, a...
Uložené v:
| Vydané v: | PloS one Ročník 19; číslo 12; s. e0312763 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Public Library of Science
23.12.2024
Public Library of Science (PLoS) |
| Predmet: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject’s health state in relation to sleep, neurological disorders, memory functions, and more. In this regard, sleep spindles and K-complexes are two major waveform patterns of interest to specialists, who visually inspect the recordings to identify these events. The literature typically follows a traditional approach that examines the time-varying signal to identify features representing the events of interest. Even though most of these methods target individual event types, their reported performance results leave significant room for improvement. The research presented here adopts a novel approach to visually inspect the waveform, similar to how specialists work, to develop a single model that can detect and determine the location of both sleep spindles and K-complexes. The model then produces bounding boxes that accurately delineate the location of these events within the image. Several object detection algorithms (i.e., Faster R-CNN, YOLOv4, and YOLOX) and multiple backbone CNN architectures were evaluated under a wide range of conditions, revealing their true representative performance. The results show exceptional precision (>95% mAP@50) in detecting sleep spindles and K-complexes, albeit with less consistency across backbones and thresholds for the latter. |
|---|---|
| AbstractList | The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject’s health state in relation to sleep, neurological disorders, memory functions, and more. In this regard, sleep spindles and K-complexes are two major waveform patterns of interest to specialists, who visually inspect the recordings to identify these events. The literature typically follows a traditional approach that examines the time-varying signal to identify features representing the events of interest. Even though most of these methods target individual event types, their reported performance results leave significant room for improvement. The research presented here adopts a novel approach to visually inspect the waveform, similar to how specialists work, to develop a single model that can detect and determine the location of both sleep spindles and K-complexes. The model then produces bounding boxes that accurately delineate the location of these events within the image. Several object detection algorithms (i.e., Faster R-CNN, YOLOv4, and YOLOX) and multiple backbone CNN architectures were evaluated under a wide range of conditions, revealing their true representative performance. The results show exceptional precision (>95% mAP@50) in detecting sleep spindles and K-complexes, albeit with less consistency across backbones and thresholds for the latter. The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject's health state in relation to sleep, neurological disorders, memory functions, and more. In this regard, sleep spindles and K-complexes are two major waveform patterns of interest to specialists, who visually inspect the recordings to identify these events. The literature typically follows a traditional approach that examines the time-varying signal to identify features representing the events of interest. Even though most of these methods target individual event types, their reported performance results leave significant room for improvement. The research presented here adopts a novel approach to visually inspect the waveform, similar to how specialists work, to develop a single model that can detect and determine the location of both sleep spindles and K-complexes. The model then produces bounding boxes that accurately delineate the location of these events within the image. Several object detection algorithms (i.e., Faster R-CNN, YOLOv4, and YOLOX) and multiple backbone CNN architectures were evaluated under a wide range of conditions, revealing their true representative performance. The results show exceptional precision (>95% mAP@50) in detecting sleep spindles and K-complexes, albeit with less consistency across backbones and thresholds for the latter.The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject's health state in relation to sleep, neurological disorders, memory functions, and more. In this regard, sleep spindles and K-complexes are two major waveform patterns of interest to specialists, who visually inspect the recordings to identify these events. The literature typically follows a traditional approach that examines the time-varying signal to identify features representing the events of interest. Even though most of these methods target individual event types, their reported performance results leave significant room for improvement. The research presented here adopts a novel approach to visually inspect the waveform, similar to how specialists work, to develop a single model that can detect and determine the location of both sleep spindles and K-complexes. The model then produces bounding boxes that accurately delineate the location of these events within the image. Several object detection algorithms (i.e., Faster R-CNN, YOLOv4, and YOLOX) and multiple backbone CNN architectures were evaluated under a wide range of conditions, revealing their true representative performance. The results show exceptional precision (>95% mAP@50) in detecting sleep spindles and K-complexes, albeit with less consistency across backbones and thresholds for the latter. |
| Audience | Academic |
| Author | Fraiwan, Mohammad Amin |
| AuthorAffiliation | Department of Computer Engineering, Jordan University of Science and Technology, Irbid, Jordan Bayer Crop Science United States: Bayer CropScience LP, UNITED STATES OF AMERICA |
| AuthorAffiliation_xml | – name: Department of Computer Engineering, Jordan University of Science and Technology, Irbid, Jordan – name: Bayer Crop Science United States: Bayer CropScience LP, UNITED STATES OF AMERICA |
| Author_xml | – sequence: 1 givenname: Mohammad Amin orcidid: 0000-0001-6352-5275 surname: Fraiwan fullname: Fraiwan, Mohammad Amin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39715265$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk11v0zAUhiM0xD7gHyCIhITgosVfcZwrNI0yiiZN4uvWcuyT1pNrd3FSwb_HWbOpQbtAvrB9_Pg99qtzTrMjHzxk2UuM5piW-MNN6Fuv3HybwnNEMSk5fZKd4IqSGSeIHh2sj7PTGG8QKqjg_Fl2TKsSF4QXJ9nXT9CB7mzwufImd0Gru01o8sXiMocd-C7mfbR-lRuAbe5AtX7Y7Wzslcutj9u9wPPsaaNchBfjfJb9_Lz4cfFldnV9ubw4v5ppzkg3KxUSquaCYFrXrKmNQaICyqGqRIVEQ3iDGlw3JgUJQ4pUpoZCM1VxDNowepa93utuXYhytCFKipkoK0JwkYjlnjBB3chtazeq_SODsvIuENqVVG1ntQPJa2ZEylYWhLG0rMvkjMGs0FRgxWjS-jhm6-sNGJ38aJWbiE5PvF3LVdhJjDnniFVJ4d2o0IbbHmInNzZqcE55CP3-4YKKshwe_uYf9PHvjdRKpR9Y34SUWA-i8jzZiqo0cKLmj1BpGNhYnYqmsSk-ufB-ciExHfzuVqqPUS6_f_t_9vrXlH17wK5BuW4dg-uHmolT8NWh1Q8e31drAtge0G2IsYXmAcFIDk1xb5ccmkKOTUH_Akd__E0 |
| Cites_doi | 10.1016/j.neuroscience.2019.10.034 10.1109/SIU.2017.7960311 10.1016/j.jevs.2020.102973 10.1007/s12652-019-01312-3 10.1145/3065386 10.1109/CVPR.2016.90 10.3389/fninf.2019.00045 10.1016/j.cmpb.2005.02.006 10.3390/s21217230 10.1016/j.jneumeth.2019.03.017 10.4236/jbise.2017.105B002 10.17485/ijst/2016/v9i25/96628 10.1038/nrn2762 10.1016/j.jneumeth.2018.08.014 10.1111/jsr.12169 10.1109/ICBME.2014.7043905 10.1016/S0893-6080(98)00116-6 10.1109/CVPR.2015.7298594 10.1186/s40535-016-0027-9 10.3390/bioengineering10080901 10.1016/j.compbiomed.2022.106096 10.1016/j.jneumeth.2017.06.004 10.3389/fnhum.2015.00414 10.1109/CVPR.2016.308 10.1016/S0378-4371(03)00473-4 10.1016/j.neures.2021.03.012 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Mohammad Amin Fraiwan 2024 Mohammad Amin Fraiwan 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Mohammad Amin Fraiwan 2024 Mohammad Amin Fraiwan – notice: 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0312763 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Detection and location of EEG events using deep learning visual inspection |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3148792215 oai_doaj_org_article_6b4d81bf752444d8b7715d145c381a43 PMC11666049 A821090901 39715265 10_1371_journal_pone_0312763 |
| Genre | Journal Article |
| GeographicLocations | Jordan |
| GeographicLocations_xml | – name: Jordan |
| GrantInformation_xml | – fundername: ; grantid: 20220222 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c642t-7a08ab68213bb4fbdd089e36e998908f26f0f1bfd9e3240a29dbe5c4a961ecd43 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001400361000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:19:41 EDT 2025 Tue Oct 14 19:04:26 EDT 2025 Tue Nov 04 02:03:41 EST 2025 Mon Sep 08 12:47:13 EDT 2025 Tue Oct 07 07:39:06 EDT 2025 Sat Nov 29 13:49:23 EST 2025 Sat Nov 29 10:34:16 EST 2025 Wed Nov 26 10:45:28 EST 2025 Wed Nov 26 10:45:12 EST 2025 Thu May 22 21:23:22 EDT 2025 Wed Feb 19 01:59:10 EST 2025 Sat Nov 29 03:55:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Copyright: © 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-7a08ab68213bb4fbdd089e36e998908f26f0f1bfd9e3240a29dbe5c4a961ecd43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0001-6352-5275 |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pone.0312763 |
| PMID | 39715265 |
| PQID | 3148792215 |
| PQPubID | 1436336 |
| PageCount | e0312763 |
| ParticipantIDs | plos_journals_3148792215 doaj_primary_oai_doaj_org_article_6b4d81bf752444d8b7715d145c381a43 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11666049 proquest_miscellaneous_3148838775 proquest_journals_3148792215 gale_infotracmisc_A821090901 gale_infotracacademiconefile_A821090901 gale_incontextgauss_ISR_A821090901 gale_incontextgauss_IOV_A821090901 gale_healthsolutions_A821090901 pubmed_primary_39715265 crossref_primary_10_1371_journal_pone_0312763 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-23 |
| PublicationDateYYYYMMDD | 2024-12-23 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2024 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | L Wei (pone.0312763.ref035) 2022; 150 C Dumitrescu (pone.0312763.ref014) 2021; 21 pone.0312763.ref023 pone.0312763.ref002 pone.0312763.ref024 Z Dai (pone.0312763.ref021) 2023; 45 S Chambon (pone.0312763.ref020) 2019; 321 pone.0312763.ref029 A Krizhevsky (pone.0312763.ref026) 2017; 60 pone.0312763.ref027 pone.0312763.ref028 S Diekelmann (pone.0312763.ref003) 2010; 11 T Lajnef (pone.0312763.ref016) 2015; 9 J Li (pone.0312763.ref009) 2017; 10 W Al-Salman (pone.0312763.ref010) 2021; 172 T Lajnef (pone.0312763.ref015) 2016 NI Tapia-Rivas (pone.0312763.ref019) 2024; 14 N Qian (pone.0312763.ref034) 1999; 12 pone.0312763.ref013 EM Ventouras (pone.0312763.ref007) 2005; 78 pone.0312763.ref032 pone.0312763.ref033 pone.0312763.ref030 pone.0312763.ref031 A Parekh (pone.0312763.ref001) 2017; 288 X Zhuang (pone.0312763.ref006) 2016; 3 M Alafeef (pone.0312763.ref017) 2019; 11 X Xing (pone.0312763.ref022) 2023; 10 MA Fraiwan (pone.0312763.ref018) 2020; 90 SV Schönwald (pone.0312763.ref004) 2003; 327 W Al-Salman (pone.0312763.ref011) 2019; 13 K Lacourse (pone.0312763.ref005) 2019; 316 C Yücelbas (pone.0312763.ref008) 2016; 9 C O’Reilly (pone.0312763.ref025) 2014; 23 W AL-Salman (pone.0312763.ref012) 2019; 422 |
| References_xml | – volume: 422 start-page: 119 year: 2019 ident: pone.0312763.ref012 article-title: K-complexes Detection in EEG Signals using Fractal and Frequency Features Coupled with an Ensemble Classification Model publication-title: Neuroscience doi: 10.1016/j.neuroscience.2019.10.034 – ident: pone.0312763.ref002 doi: 10.1109/SIU.2017.7960311 – volume: 90 start-page: 102973 year: 2020 ident: pone.0312763.ref018 article-title: Using Artificial Intelligence to Predict Survivability Likelihood and Need for Surgery in Horses Presented With Acute Abdomen (Colic) publication-title: Journal of Equine Veterinary Science doi: 10.1016/j.jevs.2020.102973 – ident: pone.0312763.ref024 – ident: pone.0312763.ref032 – volume: 11 start-page: 2557 issue: 6 year: 2019 ident: pone.0312763.ref017 article-title: Shannon entropy and fuzzy C-means weighting for AI-based diagnosis of vertebral column diseases publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-019-01312-3 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: pone.0312763.ref026 article-title: ImageNet classification with deep convolutional neural networks publication-title: Communications of the ACM doi: 10.1145/3065386 – ident: pone.0312763.ref027 doi: 10.1109/CVPR.2016.90 – volume: 13 year: 2019 ident: pone.0312763.ref011 article-title: Detection of EEG K-Complexes Using Fractal Dimension of Time Frequency Images Technique Coupled With Undirected Graph Features publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2019.00045 – volume: 78 start-page: 191 issue: 3 year: 2005 ident: pone.0312763.ref007 article-title: Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: A feasibility study publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2005.02.006 – volume: 21 start-page: 7230 issue: 21 year: 2021 ident: pone.0312763.ref014 article-title: Automatic Detection of K-Complexes Using the Cohen Class Recursiveness and Reallocation Method and Deep Neural Networks with EEG Signals publication-title: Sensors doi: 10.3390/s21217230 – volume: 45 start-page: 12772 issue: 11 year: 2023 ident: pone.0312763.ref021 article-title: Unsupervised Pre-Training for Detection Transformers publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 321 start-page: 64 year: 2019 ident: pone.0312763.ref020 article-title: DOSED: A deep learning approach to detect multiple sleep micro-events in EEG signal publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2019.03.017 – volume: 10 start-page: 10 issue: 05 year: 2017 ident: pone.0312763.ref009 article-title: Automatic Sleep Spindle Detection with EEG Based on Complex Demodulation Method and Decision Tree Model publication-title: Journal of Biomedical Science and Engineering doi: 10.4236/jbise.2017.105B002 – volume: 9 issue: 25 year: 2016 ident: pone.0312763.ref008 article-title: Detection of Sleep Spindles in Sleep EEG by using the PSD Methods publication-title: Indian Journal of Science and Technology doi: 10.17485/ijst/2016/v9i25/96628 – volume: 11 start-page: 114 issue: 2 year: 2010 ident: pone.0312763.ref003 article-title: The memory function of sleep publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2762 – volume: 316 start-page: 3 year: 2019 ident: pone.0312763.ref005 article-title: A sleep spindle detection algorithm that emulates human expert spindle scoring publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2018.08.014 – volume: 23 start-page: 628 issue: 6 year: 2014 ident: pone.0312763.ref025 article-title: Montreal Archive of Sleep Studies: an open‐access resource for instrument benchmarking and exploratory research publication-title: Journal of Sleep Research doi: 10.1111/jsr.12169 – ident: pone.0312763.ref013 doi: 10.1109/ICBME.2014.7043905 – volume: 12 start-page: 145 issue: 1 year: 1999 ident: pone.0312763.ref034 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Networks doi: 10.1016/S0893-6080(98)00116-6 – ident: pone.0312763.ref023 – ident: pone.0312763.ref030 doi: 10.1109/CVPR.2015.7298594 – volume: 3 issue: 1 year: 2016 ident: pone.0312763.ref006 article-title: Enhanced automatic sleep spindle detection: a sliding window-based wavelet analysis and comparison using a proposal assessment method publication-title: Applied Informatics doi: 10.1186/s40535-016-0027-9 – volume: 10 start-page: 901 issue: 8 year: 2023 ident: pone.0312763.ref022 article-title: Self-Supervised Learning Application on COVID-19 Chest X-ray Image Classification Using Masked AutoEncoder publication-title: Bioengineering doi: 10.3390/bioengineering10080901 – volume: 150 start-page: 106096 year: 2022 ident: pone.0312763.ref035 article-title: Deep-spindle: An automated sleep spindle detection system for analysis of infant sleep spindles publication-title: Comp bio med doi: 10.1016/j.compbiomed.2022.106096 – volume: 288 start-page: 1 year: 2017 ident: pone.0312763.ref001 article-title: Multichannel sleep spindle detection using sparse low-rank optimization publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2017.06.004 – volume: 14 issue: 1 year: 2024 ident: pone.0312763.ref019 article-title: A robust deep learning detector for sleep spindles and K-complexes: towards population norms publication-title: Scientific Reports – year: 2016 ident: pone.0312763.ref015 article-title: Meet Spinky: An Open-Source Spindle and K-Complex Detection Toolbox Validated on the Open-Access Montreal Archive of Sleep Studies (MASS) publication-title: Frontiers in Neuroinformatics – ident: pone.0312763.ref033 – volume: 9 year: 2015 ident: pone.0312763.ref016 article-title: Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2015.00414 – ident: pone.0312763.ref029 doi: 10.1109/CVPR.2016.308 – ident: pone.0312763.ref031 – volume: 327 start-page: 180 issue: 1–2 year: 2003 ident: pone.0312763.ref004 article-title: Characteristics of human EEG sleep spindles assessed by Gabor transform publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/S0378-4371(03)00473-4 – volume: 172 start-page: 26 year: 2021 ident: pone.0312763.ref010 article-title: Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier publication-title: Neuroscience Research doi: 10.1016/j.neures.2021.03.012 – ident: pone.0312763.ref028 |
| SSID | ssj0053866 |
| Score | 2.4674342 |
| Snippet | The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0312763 |
| SubjectTerms | Accuracy Activity patterns Algorithms Artificial neural networks Biology and Life Sciences Brain - physiology Classification Computer and Information Sciences Datasets Deep Learning EEG Electroencephalography Electroencephalography - methods Engineering and Technology Evaluation Fourier transforms Health aspects Humans Inspection Machine learning Medicine and Health Sciences Neural networks Neurological diseases Object recognition Performance evaluation Physical Sciences Research and Analysis Methods Sensors Signal processing Signal Processing, Computer-Assisted Sleep Sleep - physiology Sleep Stages - physiology Visual discrimination learning Waveforms Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQxYELYpfHBnbBICTgkN04Dzs-LtDlcVgQL-3NsmO7VEJOtWn39zN-NGrQSnBAvbTxNG2-mcnMKONvEHpuIIXmqu7yklgOBQrhuWJS55AqmKrSlKlOh2ET7Py8vbjgn3dGffmesEgPHIE7oarWkFpZ1kAggreKMdJoUjcdxBpZB55PyHq2xVS8B4MXU5o2ylWMnCS9HK96Z47BjMtA-7kTiAJf_3hXnq1-9cN1KeefnZM7oejsDrqdckh8Gv_7Hrph3D7aS1464JeJSvrVXfTxrVmHXiuHpdPYB67wobd4Pn-HA3vTgH3v-wJrY1Y4DZFY4KvlsIHfWLq4FbN399D3s_m3N-_zND0h76CmWOdMFq1UtC1JpVRtldZFy01FDRRYvGhtSW1hAVgNByGsy5JrZZqulpwS0-m6uo9mDvA6QLhgktvWmEJbWddMKQt-rxlVhBWyoTpD-RZKsYokGSI8KWNQXERMhIdeJOgz9NrjPcp6iutwABQvkuLF3xSfoSdeWyLuFx0dVZzCFRccXiRDz4KEp7lwvo9mITfDID58-vEPQl-_TIReJCHbg947mfYuwDV5-qyJ5OFEEpy1mywfeNvaojKICspRxktIvOCbW3u7fvnpuOxP6nvjnOk3UaatWsZA5kE0zxFZyDaJH4CQoXZiuBPopytu-TOwjBP_QBnqx4f_Q1mP0K0SskHfB1RWh2i2vtyYI3Szu1ovh8vHwXd_A7dHR10 priority: 102 providerName: Directory of Open Access Journals – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLag8MALMC5bYYBBSMBDtjhO7PgJDei4PIyJm_YW-VoqTUnWtPv9HDtOWdCEkFBf2vg0rc_N34mPz0HouQUILVSuk4w4AQEKEYni0iQAFSylhnGlTWg2wY-OypMTcRwfuHUxrXLwicFRm0b7Z-T7FHA7FxmsUK_bs8R3jfK7q7GFxlV0zVdJoCF173jwxGDLjMXjcpST_Sidvbap7R4ocxaKf15YjkLV_o1vnrSnTXcZ8Pwzf_LCgnR463-nchvdjFAUH_S6s4Wu2PoO2orG3uGXsSL1q7vo0zu7CilbNZa1wX79Cx8ah2ez9zgUgeqwT6GfY2Nti2Mvijk-X3Rr-I1F3Z_obOp76Pvh7NvbD0lswpBoCE1WCZdpKRUrM0KVyp0yJi2FpcxCnCbS0mXMpY4oZ-AioAOZCaNsoXMpGLHa5PQ-mtTA8B2EUy6FK61NjZN5zpVy4D4MZ4rwVBbMTFEyyKJq-1obVdhw4xCj9DypvOyqKLspeuMFtqH1lbLDhWY5r6LhVUzlBqC54wUAGXirOCeFIXmhAavIHG7yxIu76o-dbuy9OoAZpwJeZIqeBQpfLaP26Thzue666uPnH_9A9PXLiOhFJHINKI6W8QgEzMlX4RpR7o4oweb1aHjHK-fAla76rVLwzUHpLh9-uhn2N_UpdrVt1j1NSUvOgWa71-8NZwG0Et9HYYrKkeaPWD8eqRc_Q7Fy4velIQx98Pf_9RDdyAAu-kShjO6iyWq5to_QdX2-WnTLx8GsfwHxb1Z- priority: 102 providerName: ProQuest |
| Title | Detection and location of EEG events using deep learning visual inspection |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39715265 https://www.proquest.com/docview/3148792215 https://www.proquest.com/docview/3148838775 https://pubmed.ncbi.nlm.nih.gov/PMC11666049 https://doaj.org/article/6b4d81bf752444d8b7715d145c381a43 http://dx.doi.org/10.1371/journal.pone.0312763 |
| Volume | 19 |
| WOSCitedRecordID | wos001400361000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYxwMvg_G1wigGIQEPKXE-bOdxHS2MsRJ1bCq8RHZsd5VQUi3t_n7OTlrItEmgSqcmPifx5c7-XXw-I_RGA4ROZJR7ATEJOCgk8SQTygOooMNQUSZz5TabYOMxn06T9I-jeG0GP2TkQyPT_qIsdB9UMACL2ELbQUipDeEapV_XPS_YLqXN8rjbaraGH5elf9MXdxa_yuomoHk9XvKvAWh0_38f_QHaaaAmPqh1Yxfd0cVDtNsYc4XfNRmn3z9CXz7qpQvJKrAoFLbjmzsoDR4OP2GX5KnCNkR-hpXWC9zsNTHDV_NqBfeYF_WKzbJ4jM5Gw--Hn71mkwUvB9dj6THhcyEpD0goZWSkUj5PdEg1-GGJz01AjW-INApOwugvgkRJHeeRSCjRuYrCJ6hTQPv2EPaZSAzX2ldGRBGT0kD3oBiVhPkipqqLvLXss0WdSyNzE2oMfJBaJpkVVdaIqosG9gVteG0mbHcCZJw1hpVRGSmA3obFAFTgr2SMxIpEcQ5YRERwkZf29Wb1stKNPWcH0GI_gR_poteOw2bDKGy4zUysqio7-nb-D0ynkxbT24bJlKAouWiWOECbbJatFud-ixNsOm8V71llXEulykLwWlkSAD6DmmsFvbn41abYXtSG0BW6XNU8POSMAc_TWp83kgVQSuw-CV3EW5reEn27pJhfuGTkxM47g5v57PZHfo7uBQAFbRBQEO6jzvJypV-gu_nVcl5d9tAWm5xbOmWOcqD8kPTQ9mA4Tic995Wk5wwd6PGgD_TEP7aUpY6eAk3jn1AjPTpJf_wGn_tRWQ |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQWIvwPjYCoMZBAIessVJGscPCA3WsbJR0BjT3owd26USSkrTDvFP8TdydpyyoAnxsgfUlza-OrVz97u7-j4QeqzBhGYyyYOIGAYOCmGBpEIFYCroOFYplblyzSbocJidnLAPS-hnkwtjwyobTHRArcrc_ke-FYPdTlkEGurl5Ftgu0bZ09WmhUbNFvv6x3dw2aoXgx14vk-iaLd_9Hov8F0Fghxs7VlARZgJmWYRiaVMjFQqzJiOUw2OBwszE6UmNEQaBRdB3YmIKal7eSJYSnSukhjmvYQuA44TG0JGD48b5AfsSFOfnhdTsuW5YXNSFnoThCdyxUbPqD_XJWChCzqTr2V1nqH7Z7zmGQW4e_1_27ob6Jo3tfF2LRsraEkXN9GKB7MKP_MVt5_fQm939MyFpBVYFApb_e4-lAb3-2-wK3JVYZsiMMJK6wn2vTZG-HRczeEe46LOWC2L2-jThazpDuoU8IDXEA6pYCbTOlRGJAmV0gA8KppKQkPRS1UXBc2z55O6lgh3B4oUfLB6T7jlFe55pYteWQZZ0NpK4O5COR1xDyw8lYkC18PQHhhq8FZSSnqKJL0cbDGRwCQblr14nVa7wDO-DSsOGbxIFz1yFLYaSGHDjUZiXlV88P74H4g-HraInnoiUwKj5sKneMCabJWxFuV6ixIwLW8Nr1lhaHal4r9ZGL7ZMPn5ww8Xw3ZSG0JY6HJe02RxRinQrNbytNhZMMqJ7RPRRVlL0lpb3x4pxl9cMXZiz93Bzb7799-1ga7uHb074AeD4f49tByBaWyDoqJ4HXVm07m-j67kp7NxNX3gIAWjzxctiL8A9Mi1Cg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGQYgXYNxWGMwgEPCQNc7NyQNCY22hDJWJm_Zm7NgulVBSmnaIv8av49hxwoImxMseUF_a-NSpne_c6nNB6KECEzoTUe4FRGfgoJDME5RLD0wFFYYyoSKXttkEnU7To6PscAP9bHJhTFhlIxOtoJZlbv4jH4Rgt9MsAA010C4s4nA4fr745pkOUuaktWmnUUPkQP34Du5b9WwyhGf9KAjGow_7rzzXYcDLwe5eeZT7KRdJGpBQiEgLKf00U2GiwAnJ_FQHifY1EVrCRVB9PMikUHEe8SwhKpdRCPOeQ-dpCCg2Wer7bXgJyJEkcal6ISUDh4zdRVmoXWCkwBYePaEKbceAVi_0Fl_L6jSj98_YzRPKcHzlf97Gq-iyM8HxXs0zm2hDFdfQphNyFX7iKnE_vY5eD9XKhqoVmBcSG71vP5Qaj0YvsS1-VWGTOjDDUqkFdj04Zvh4Xq3hHvOizmQtixvo45ms6SbqFfCwtxD2Kc90qpQvNY8iKoQGsSlpIgj1eZzIPvIaHLBFXWOE2YNGCr5ZvSfM4IY53PTRCwOWltZUCLcXyuWMOYHDEhFJcEk0jcGAg7eCUhJLEsU52Gg8gkl2DNRYnW7byjm2Byv2M3iRPnpgKUyVkMIAZcbXVcUmbz_9A9H7dx2ix45IlwDanLvUD1iTqT7WodzuUIKsyzvDW4Yxml2p2G84wzcbwJ8-fL8dNpOa0MJCleuaJg1TSoHmVs1b7c6CsU5M_4g-Sjtc19n67kgx_2KLtBNzHg_u9-2__64ddBH4j72ZTA_uoEsBWMwmVioIt1FvtVyru-hCfryaV8t7Vrpg9Pms-fAX4xu9ZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+location+of+EEG+events+using+deep+learning+visual+inspection&rft.jtitle=PloS+one&rft.au=Mohammad+Amin+Fraiwan&rft.date=2024-12-23&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pone.0312763&rft.externalDocID=3148792215 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |