Detection and location of EEG events using deep learning visual inspection

The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject’s health state in relation to sleep, neurological disorders, memory functions, a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PloS one Ročník 19; číslo 12; s. e0312763
Hlavný autor: Fraiwan, Mohammad Amin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 23.12.2024
Public Library of Science (PLoS)
Predmet:
ISSN:1932-6203, 1932-6203
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject’s health state in relation to sleep, neurological disorders, memory functions, and more. In this regard, sleep spindles and K-complexes are two major waveform patterns of interest to specialists, who visually inspect the recordings to identify these events. The literature typically follows a traditional approach that examines the time-varying signal to identify features representing the events of interest. Even though most of these methods target individual event types, their reported performance results leave significant room for improvement. The research presented here adopts a novel approach to visually inspect the waveform, similar to how specialists work, to develop a single model that can detect and determine the location of both sleep spindles and K-complexes. The model then produces bounding boxes that accurately delineate the location of these events within the image. Several object detection algorithms (i.e., Faster R-CNN, YOLOv4, and YOLOX) and multiple backbone CNN architectures were evaluated under a wide range of conditions, revealing their true representative performance. The results show exceptional precision (>95% mAP@50) in detecting sleep spindles and K-complexes, albeit with less consistency across backbones and thresholds for the latter.
AbstractList The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject’s health state in relation to sleep, neurological disorders, memory functions, and more. In this regard, sleep spindles and K-complexes are two major waveform patterns of interest to specialists, who visually inspect the recordings to identify these events. The literature typically follows a traditional approach that examines the time-varying signal to identify features representing the events of interest. Even though most of these methods target individual event types, their reported performance results leave significant room for improvement. The research presented here adopts a novel approach to visually inspect the waveform, similar to how specialists work, to develop a single model that can detect and determine the location of both sleep spindles and K-complexes. The model then produces bounding boxes that accurately delineate the location of these events within the image. Several object detection algorithms (i.e., Faster R-CNN, YOLOv4, and YOLOX) and multiple backbone CNN architectures were evaluated under a wide range of conditions, revealing their true representative performance. The results show exceptional precision (>95% mAP@50) in detecting sleep spindles and K-complexes, albeit with less consistency across backbones and thresholds for the latter.
The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject's health state in relation to sleep, neurological disorders, memory functions, and more. In this regard, sleep spindles and K-complexes are two major waveform patterns of interest to specialists, who visually inspect the recordings to identify these events. The literature typically follows a traditional approach that examines the time-varying signal to identify features representing the events of interest. Even though most of these methods target individual event types, their reported performance results leave significant room for improvement. The research presented here adopts a novel approach to visually inspect the waveform, similar to how specialists work, to develop a single model that can detect and determine the location of both sleep spindles and K-complexes. The model then produces bounding boxes that accurately delineate the location of these events within the image. Several object detection algorithms (i.e., Faster R-CNN, YOLOv4, and YOLOX) and multiple backbone CNN architectures were evaluated under a wide range of conditions, revealing their true representative performance. The results show exceptional precision (>95% mAP@50) in detecting sleep spindles and K-complexes, albeit with less consistency across backbones and thresholds for the latter.The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject's health state in relation to sleep, neurological disorders, memory functions, and more. In this regard, sleep spindles and K-complexes are two major waveform patterns of interest to specialists, who visually inspect the recordings to identify these events. The literature typically follows a traditional approach that examines the time-varying signal to identify features representing the events of interest. Even though most of these methods target individual event types, their reported performance results leave significant room for improvement. The research presented here adopts a novel approach to visually inspect the waveform, similar to how specialists work, to develop a single model that can detect and determine the location of both sleep spindles and K-complexes. The model then produces bounding boxes that accurately delineate the location of these events within the image. Several object detection algorithms (i.e., Faster R-CNN, YOLOv4, and YOLOX) and multiple backbone CNN architectures were evaluated under a wide range of conditions, revealing their true representative performance. The results show exceptional precision (>95% mAP@50) in detecting sleep spindles and K-complexes, albeit with less consistency across backbones and thresholds for the latter.
Audience Academic
Author Fraiwan, Mohammad Amin
AuthorAffiliation Department of Computer Engineering, Jordan University of Science and Technology, Irbid, Jordan
Bayer Crop Science United States: Bayer CropScience LP, UNITED STATES OF AMERICA
AuthorAffiliation_xml – name: Department of Computer Engineering, Jordan University of Science and Technology, Irbid, Jordan
– name: Bayer Crop Science United States: Bayer CropScience LP, UNITED STATES OF AMERICA
Author_xml – sequence: 1
  givenname: Mohammad Amin
  orcidid: 0000-0001-6352-5275
  surname: Fraiwan
  fullname: Fraiwan, Mohammad Amin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39715265$$D View this record in MEDLINE/PubMed
BookMark eNqNk11v0zAUhiM0xD7gHyCIhITgosVfcZwrNI0yiiZN4uvWcuyT1pNrd3FSwb_HWbOpQbtAvrB9_Pg99qtzTrMjHzxk2UuM5piW-MNN6Fuv3HybwnNEMSk5fZKd4IqSGSeIHh2sj7PTGG8QKqjg_Fl2TKsSF4QXJ9nXT9CB7mzwufImd0Gru01o8sXiMocd-C7mfbR-lRuAbe5AtX7Y7Wzslcutj9u9wPPsaaNchBfjfJb9_Lz4cfFldnV9ubw4v5ppzkg3KxUSquaCYFrXrKmNQaICyqGqRIVEQ3iDGlw3JgUJQ4pUpoZCM1VxDNowepa93utuXYhytCFKipkoK0JwkYjlnjBB3chtazeq_SODsvIuENqVVG1ntQPJa2ZEylYWhLG0rMvkjMGs0FRgxWjS-jhm6-sNGJ38aJWbiE5PvF3LVdhJjDnniFVJ4d2o0IbbHmInNzZqcE55CP3-4YKKshwe_uYf9PHvjdRKpR9Y34SUWA-i8jzZiqo0cKLmj1BpGNhYnYqmsSk-ufB-ciExHfzuVqqPUS6_f_t_9vrXlH17wK5BuW4dg-uHmolT8NWh1Q8e31drAtge0G2IsYXmAcFIDk1xb5ccmkKOTUH_Akd__E0
Cites_doi 10.1016/j.neuroscience.2019.10.034
10.1109/SIU.2017.7960311
10.1016/j.jevs.2020.102973
10.1007/s12652-019-01312-3
10.1145/3065386
10.1109/CVPR.2016.90
10.3389/fninf.2019.00045
10.1016/j.cmpb.2005.02.006
10.3390/s21217230
10.1016/j.jneumeth.2019.03.017
10.4236/jbise.2017.105B002
10.17485/ijst/2016/v9i25/96628
10.1038/nrn2762
10.1016/j.jneumeth.2018.08.014
10.1111/jsr.12169
10.1109/ICBME.2014.7043905
10.1016/S0893-6080(98)00116-6
10.1109/CVPR.2015.7298594
10.1186/s40535-016-0027-9
10.3390/bioengineering10080901
10.1016/j.compbiomed.2022.106096
10.1016/j.jneumeth.2017.06.004
10.3389/fnhum.2015.00414
10.1109/CVPR.2016.308
10.1016/S0378-4371(03)00473-4
10.1016/j.neures.2021.03.012
ContentType Journal Article
Copyright Copyright: © 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Mohammad Amin Fraiwan 2024 Mohammad Amin Fraiwan
2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Mohammad Amin Fraiwan 2024 Mohammad Amin Fraiwan
– notice: 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0312763
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database





MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Detection and location of EEG events using deep learning visual inspection
EISSN 1932-6203
ExternalDocumentID 3148792215
oai_doaj_org_article_6b4d81bf752444d8b7715d145c381a43
PMC11666049
A821090901
39715265
10_1371_journal_pone_0312763
Genre Journal Article
GeographicLocations Jordan
GeographicLocations_xml – name: Jordan
GrantInformation_xml – fundername: ;
  grantid: 20220222
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c642t-7a08ab68213bb4fbdd089e36e998908f26f0f1bfd9e3240a29dbe5c4a961ecd43
IEDL.DBID FPL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001400361000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:41 EDT 2025
Tue Oct 14 19:04:26 EDT 2025
Tue Nov 04 02:03:41 EST 2025
Mon Sep 08 12:47:13 EDT 2025
Tue Oct 07 07:39:06 EDT 2025
Sat Nov 29 13:49:23 EST 2025
Sat Nov 29 10:34:16 EST 2025
Wed Nov 26 10:45:28 EST 2025
Wed Nov 26 10:45:12 EST 2025
Thu May 22 21:23:22 EDT 2025
Wed Feb 19 01:59:10 EST 2025
Sat Nov 29 03:55:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Copyright: © 2024 Mohammad Amin Fraiwan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-7a08ab68213bb4fbdd089e36e998908f26f0f1bfd9e3240a29dbe5c4a961ecd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-6352-5275
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0312763
PMID 39715265
PQID 3148792215
PQPubID 1436336
PageCount e0312763
ParticipantIDs plos_journals_3148792215
doaj_primary_oai_doaj_org_article_6b4d81bf752444d8b7715d145c381a43
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11666049
proquest_miscellaneous_3148838775
proquest_journals_3148792215
gale_infotracmisc_A821090901
gale_infotracacademiconefile_A821090901
gale_incontextgauss_ISR_A821090901
gale_incontextgauss_IOV_A821090901
gale_healthsolutions_A821090901
pubmed_primary_39715265
crossref_primary_10_1371_journal_pone_0312763
PublicationCentury 2000
PublicationDate 2024-12-23
PublicationDateYYYYMMDD 2024-12-23
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References L Wei (pone.0312763.ref035) 2022; 150
C Dumitrescu (pone.0312763.ref014) 2021; 21
pone.0312763.ref023
pone.0312763.ref002
pone.0312763.ref024
Z Dai (pone.0312763.ref021) 2023; 45
S Chambon (pone.0312763.ref020) 2019; 321
pone.0312763.ref029
A Krizhevsky (pone.0312763.ref026) 2017; 60
pone.0312763.ref027
pone.0312763.ref028
S Diekelmann (pone.0312763.ref003) 2010; 11
T Lajnef (pone.0312763.ref016) 2015; 9
J Li (pone.0312763.ref009) 2017; 10
W Al-Salman (pone.0312763.ref010) 2021; 172
T Lajnef (pone.0312763.ref015) 2016
NI Tapia-Rivas (pone.0312763.ref019) 2024; 14
N Qian (pone.0312763.ref034) 1999; 12
pone.0312763.ref013
EM Ventouras (pone.0312763.ref007) 2005; 78
pone.0312763.ref032
pone.0312763.ref033
pone.0312763.ref030
pone.0312763.ref031
A Parekh (pone.0312763.ref001) 2017; 288
X Zhuang (pone.0312763.ref006) 2016; 3
M Alafeef (pone.0312763.ref017) 2019; 11
X Xing (pone.0312763.ref022) 2023; 10
MA Fraiwan (pone.0312763.ref018) 2020; 90
SV Schönwald (pone.0312763.ref004) 2003; 327
W Al-Salman (pone.0312763.ref011) 2019; 13
K Lacourse (pone.0312763.ref005) 2019; 316
C Yücelbas (pone.0312763.ref008) 2016; 9
C O’Reilly (pone.0312763.ref025) 2014; 23
W AL-Salman (pone.0312763.ref012) 2019; 422
References_xml – volume: 422
  start-page: 119
  year: 2019
  ident: pone.0312763.ref012
  article-title: K-complexes Detection in EEG Signals using Fractal and Frequency Features Coupled with an Ensemble Classification Model
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2019.10.034
– ident: pone.0312763.ref002
  doi: 10.1109/SIU.2017.7960311
– volume: 90
  start-page: 102973
  year: 2020
  ident: pone.0312763.ref018
  article-title: Using Artificial Intelligence to Predict Survivability Likelihood and Need for Surgery in Horses Presented With Acute Abdomen (Colic)
  publication-title: Journal of Equine Veterinary Science
  doi: 10.1016/j.jevs.2020.102973
– ident: pone.0312763.ref024
– ident: pone.0312763.ref032
– volume: 11
  start-page: 2557
  issue: 6
  year: 2019
  ident: pone.0312763.ref017
  article-title: Shannon entropy and fuzzy C-means weighting for AI-based diagnosis of vertebral column diseases
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-019-01312-3
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: pone.0312763.ref026
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
– ident: pone.0312763.ref027
  doi: 10.1109/CVPR.2016.90
– volume: 13
  year: 2019
  ident: pone.0312763.ref011
  article-title: Detection of EEG K-Complexes Using Fractal Dimension of Time Frequency Images Technique Coupled With Undirected Graph Features
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2019.00045
– volume: 78
  start-page: 191
  issue: 3
  year: 2005
  ident: pone.0312763.ref007
  article-title: Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: A feasibility study
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2005.02.006
– volume: 21
  start-page: 7230
  issue: 21
  year: 2021
  ident: pone.0312763.ref014
  article-title: Automatic Detection of K-Complexes Using the Cohen Class Recursiveness and Reallocation Method and Deep Neural Networks with EEG Signals
  publication-title: Sensors
  doi: 10.3390/s21217230
– volume: 45
  start-page: 12772
  issue: 11
  year: 2023
  ident: pone.0312763.ref021
  article-title: Unsupervised Pre-Training for Detection Transformers
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 321
  start-page: 64
  year: 2019
  ident: pone.0312763.ref020
  article-title: DOSED: A deep learning approach to detect multiple sleep micro-events in EEG signal
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2019.03.017
– volume: 10
  start-page: 10
  issue: 05
  year: 2017
  ident: pone.0312763.ref009
  article-title: Automatic Sleep Spindle Detection with EEG Based on Complex Demodulation Method and Decision Tree Model
  publication-title: Journal of Biomedical Science and Engineering
  doi: 10.4236/jbise.2017.105B002
– volume: 9
  issue: 25
  year: 2016
  ident: pone.0312763.ref008
  article-title: Detection of Sleep Spindles in Sleep EEG by using the PSD Methods
  publication-title: Indian Journal of Science and Technology
  doi: 10.17485/ijst/2016/v9i25/96628
– volume: 11
  start-page: 114
  issue: 2
  year: 2010
  ident: pone.0312763.ref003
  article-title: The memory function of sleep
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2762
– volume: 316
  start-page: 3
  year: 2019
  ident: pone.0312763.ref005
  article-title: A sleep spindle detection algorithm that emulates human expert spindle scoring
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2018.08.014
– volume: 23
  start-page: 628
  issue: 6
  year: 2014
  ident: pone.0312763.ref025
  article-title: Montreal Archive of Sleep Studies: an open‐access resource for instrument benchmarking and exploratory research
  publication-title: Journal of Sleep Research
  doi: 10.1111/jsr.12169
– ident: pone.0312763.ref013
  doi: 10.1109/ICBME.2014.7043905
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  ident: pone.0312763.ref034
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(98)00116-6
– ident: pone.0312763.ref023
– ident: pone.0312763.ref030
  doi: 10.1109/CVPR.2015.7298594
– volume: 3
  issue: 1
  year: 2016
  ident: pone.0312763.ref006
  article-title: Enhanced automatic sleep spindle detection: a sliding window-based wavelet analysis and comparison using a proposal assessment method
  publication-title: Applied Informatics
  doi: 10.1186/s40535-016-0027-9
– volume: 10
  start-page: 901
  issue: 8
  year: 2023
  ident: pone.0312763.ref022
  article-title: Self-Supervised Learning Application on COVID-19 Chest X-ray Image Classification Using Masked AutoEncoder
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10080901
– volume: 150
  start-page: 106096
  year: 2022
  ident: pone.0312763.ref035
  article-title: Deep-spindle: An automated sleep spindle detection system for analysis of infant sleep spindles
  publication-title: Comp bio med
  doi: 10.1016/j.compbiomed.2022.106096
– volume: 288
  start-page: 1
  year: 2017
  ident: pone.0312763.ref001
  article-title: Multichannel sleep spindle detection using sparse low-rank optimization
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2017.06.004
– volume: 14
  issue: 1
  year: 2024
  ident: pone.0312763.ref019
  article-title: A robust deep learning detector for sleep spindles and K-complexes: towards population norms
  publication-title: Scientific Reports
– year: 2016
  ident: pone.0312763.ref015
  article-title: Meet Spinky: An Open-Source Spindle and K-Complex Detection Toolbox Validated on the Open-Access Montreal Archive of Sleep Studies (MASS)
  publication-title: Frontiers in Neuroinformatics
– ident: pone.0312763.ref033
– volume: 9
  year: 2015
  ident: pone.0312763.ref016
  article-title: Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2015.00414
– ident: pone.0312763.ref029
  doi: 10.1109/CVPR.2016.308
– ident: pone.0312763.ref031
– volume: 327
  start-page: 180
  issue: 1–2
  year: 2003
  ident: pone.0312763.ref004
  article-title: Characteristics of human EEG sleep spindles assessed by Gabor transform
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/S0378-4371(03)00473-4
– volume: 172
  start-page: 26
  year: 2021
  ident: pone.0312763.ref010
  article-title: Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier
  publication-title: Neuroscience Research
  doi: 10.1016/j.neures.2021.03.012
– ident: pone.0312763.ref028
SSID ssj0053866
Score 2.4674342
Snippet The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0312763
SubjectTerms Accuracy
Activity patterns
Algorithms
Artificial neural networks
Biology and Life Sciences
Brain - physiology
Classification
Computer and Information Sciences
Datasets
Deep Learning
EEG
Electroencephalography
Electroencephalography - methods
Engineering and Technology
Evaluation
Fourier transforms
Health aspects
Humans
Inspection
Machine learning
Medicine and Health Sciences
Neural networks
Neurological diseases
Object recognition
Performance evaluation
Physical Sciences
Research and Analysis Methods
Sensors
Signal processing
Signal Processing, Computer-Assisted
Sleep
Sleep - physiology
Sleep Stages - physiology
Visual discrimination learning
Waveforms
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQxYELYpfHBnbBICTgkN04Dzs-LtDlcVgQL-3NsmO7VEJOtWn39zN-NGrQSnBAvbTxNG2-mcnMKONvEHpuIIXmqu7yklgOBQrhuWJS55AqmKrSlKlOh2ET7Py8vbjgn3dGffmesEgPHIE7oarWkFpZ1kAggreKMdJoUjcdxBpZB55PyHq2xVS8B4MXU5o2ylWMnCS9HK96Z47BjMtA-7kTiAJf_3hXnq1-9cN1KeefnZM7oejsDrqdckh8Gv_7Hrph3D7aS1464JeJSvrVXfTxrVmHXiuHpdPYB67wobd4Pn-HA3vTgH3v-wJrY1Y4DZFY4KvlsIHfWLq4FbN399D3s_m3N-_zND0h76CmWOdMFq1UtC1JpVRtldZFy01FDRRYvGhtSW1hAVgNByGsy5JrZZqulpwS0-m6uo9mDvA6QLhgktvWmEJbWddMKQt-rxlVhBWyoTpD-RZKsYokGSI8KWNQXERMhIdeJOgz9NrjPcp6iutwABQvkuLF3xSfoSdeWyLuFx0dVZzCFRccXiRDz4KEp7lwvo9mITfDID58-vEPQl-_TIReJCHbg947mfYuwDV5-qyJ5OFEEpy1mywfeNvaojKICspRxktIvOCbW3u7fvnpuOxP6nvjnOk3UaatWsZA5kE0zxFZyDaJH4CQoXZiuBPopytu-TOwjBP_QBnqx4f_Q1mP0K0SskHfB1RWh2i2vtyYI3Szu1ovh8vHwXd_A7dHR10
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLag8MALMC5bYYBBSMBDtjhO7PgJDei4PIyJm_YW-VoqTUnWtPv9HDtOWdCEkFBf2vg0rc_N34mPz0HouQUILVSuk4w4AQEKEYni0iQAFSylhnGlTWg2wY-OypMTcRwfuHUxrXLwicFRm0b7Z-T7FHA7FxmsUK_bs8R3jfK7q7GFxlV0zVdJoCF173jwxGDLjMXjcpST_Sidvbap7R4ocxaKf15YjkLV_o1vnrSnTXcZ8Pwzf_LCgnR463-nchvdjFAUH_S6s4Wu2PoO2orG3uGXsSL1q7vo0zu7CilbNZa1wX79Cx8ah2ez9zgUgeqwT6GfY2Nti2Mvijk-X3Rr-I1F3Z_obOp76Pvh7NvbD0lswpBoCE1WCZdpKRUrM0KVyp0yJi2FpcxCnCbS0mXMpY4oZ-AioAOZCaNsoXMpGLHa5PQ-mtTA8B2EUy6FK61NjZN5zpVy4D4MZ4rwVBbMTFEyyKJq-1obVdhw4xCj9DypvOyqKLspeuMFtqH1lbLDhWY5r6LhVUzlBqC54wUAGXirOCeFIXmhAavIHG7yxIu76o-dbuy9OoAZpwJeZIqeBQpfLaP26Thzue666uPnH_9A9PXLiOhFJHINKI6W8QgEzMlX4RpR7o4oweb1aHjHK-fAla76rVLwzUHpLh9-uhn2N_UpdrVt1j1NSUvOgWa71-8NZwG0Et9HYYrKkeaPWD8eqRc_Q7Fy4velIQx98Pf_9RDdyAAu-kShjO6iyWq5to_QdX2-WnTLx8GsfwHxb1Z-
  priority: 102
  providerName: ProQuest
Title Detection and location of EEG events using deep learning visual inspection
URI https://www.ncbi.nlm.nih.gov/pubmed/39715265
https://www.proquest.com/docview/3148792215
https://www.proquest.com/docview/3148838775
https://pubmed.ncbi.nlm.nih.gov/PMC11666049
https://doaj.org/article/6b4d81bf752444d8b7715d145c381a43
http://dx.doi.org/10.1371/journal.pone.0312763
Volume 19
WOSCitedRecordID wos001400361000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYxwMvg_G1wigGIQEPKXE-bOdxHS2MsRJ1bCq8RHZsd5VQUi3t_n7OTlrItEmgSqcmPifx5c7-XXw-I_RGA4ROZJR7ATEJOCgk8SQTygOooMNQUSZz5TabYOMxn06T9I-jeG0GP2TkQyPT_qIsdB9UMACL2ELbQUipDeEapV_XPS_YLqXN8rjbaraGH5elf9MXdxa_yuomoHk9XvKvAWh0_38f_QHaaaAmPqh1Yxfd0cVDtNsYc4XfNRmn3z9CXz7qpQvJKrAoFLbjmzsoDR4OP2GX5KnCNkR-hpXWC9zsNTHDV_NqBfeYF_WKzbJ4jM5Gw--Hn71mkwUvB9dj6THhcyEpD0goZWSkUj5PdEg1-GGJz01AjW-INApOwugvgkRJHeeRSCjRuYrCJ6hTQPv2EPaZSAzX2ldGRBGT0kD3oBiVhPkipqqLvLXss0WdSyNzE2oMfJBaJpkVVdaIqosG9gVteG0mbHcCZJw1hpVRGSmA3obFAFTgr2SMxIpEcQ5YRERwkZf29Wb1stKNPWcH0GI_gR_poteOw2bDKGy4zUysqio7-nb-D0ynkxbT24bJlKAouWiWOECbbJatFud-ixNsOm8V71llXEulykLwWlkSAD6DmmsFvbn41abYXtSG0BW6XNU8POSMAc_TWp83kgVQSuw-CV3EW5reEn27pJhfuGTkxM47g5v57PZHfo7uBQAFbRBQEO6jzvJypV-gu_nVcl5d9tAWm5xbOmWOcqD8kPTQ9mA4Tic995Wk5wwd6PGgD_TEP7aUpY6eAk3jn1AjPTpJf_wGn_tRWQ
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQWIvwPjYCoMZBAIessVJGscPCA3WsbJR0BjT3owd26USSkrTDvFP8TdydpyyoAnxsgfUlza-OrVz97u7-j4QeqzBhGYyyYOIGAYOCmGBpEIFYCroOFYplblyzSbocJidnLAPS-hnkwtjwyobTHRArcrc_ke-FYPdTlkEGurl5Ftgu0bZ09WmhUbNFvv6x3dw2aoXgx14vk-iaLd_9Hov8F0Fghxs7VlARZgJmWYRiaVMjFQqzJiOUw2OBwszE6UmNEQaBRdB3YmIKal7eSJYSnSukhjmvYQuA44TG0JGD48b5AfsSFOfnhdTsuW5YXNSFnoThCdyxUbPqD_XJWChCzqTr2V1nqH7Z7zmGQW4e_1_27ob6Jo3tfF2LRsraEkXN9GKB7MKP_MVt5_fQm939MyFpBVYFApb_e4-lAb3-2-wK3JVYZsiMMJK6wn2vTZG-HRczeEe46LOWC2L2-jThazpDuoU8IDXEA6pYCbTOlRGJAmV0gA8KppKQkPRS1UXBc2z55O6lgh3B4oUfLB6T7jlFe55pYteWQZZ0NpK4O5COR1xDyw8lYkC18PQHhhq8FZSSnqKJL0cbDGRwCQblr14nVa7wDO-DSsOGbxIFz1yFLYaSGHDjUZiXlV88P74H4g-HraInnoiUwKj5sKneMCabJWxFuV6ixIwLW8Nr1lhaHal4r9ZGL7ZMPn5ww8Xw3ZSG0JY6HJe02RxRinQrNbytNhZMMqJ7RPRRVlL0lpb3x4pxl9cMXZiz93Bzb7799-1ga7uHb074AeD4f49tByBaWyDoqJ4HXVm07m-j67kp7NxNX3gIAWjzxctiL8A9Mi1Cg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGQYgXYNxWGMwgEPCQNc7NyQNCY22hDJWJm_Zm7NgulVBSmnaIv8av49hxwoImxMseUF_a-NSpne_c6nNB6KECEzoTUe4FRGfgoJDME5RLD0wFFYYyoSKXttkEnU7To6PscAP9bHJhTFhlIxOtoJZlbv4jH4Rgt9MsAA010C4s4nA4fr745pkOUuaktWmnUUPkQP34Du5b9WwyhGf9KAjGow_7rzzXYcDLwe5eeZT7KRdJGpBQiEgLKf00U2GiwAnJ_FQHifY1EVrCRVB9PMikUHEe8SwhKpdRCPOeQ-dpCCg2Wer7bXgJyJEkcal6ISUDh4zdRVmoXWCkwBYePaEKbceAVi_0Fl_L6jSj98_YzRPKcHzlf97Gq-iyM8HxXs0zm2hDFdfQphNyFX7iKnE_vY5eD9XKhqoVmBcSG71vP5Qaj0YvsS1-VWGTOjDDUqkFdj04Zvh4Xq3hHvOizmQtixvo45ms6SbqFfCwtxD2Kc90qpQvNY8iKoQGsSlpIgj1eZzIPvIaHLBFXWOE2YNGCr5ZvSfM4IY53PTRCwOWltZUCLcXyuWMOYHDEhFJcEk0jcGAg7eCUhJLEsU52Gg8gkl2DNRYnW7byjm2Byv2M3iRPnpgKUyVkMIAZcbXVcUmbz_9A9H7dx2ix45IlwDanLvUD1iTqT7WodzuUIKsyzvDW4Yxml2p2G84wzcbwJ8-fL8dNpOa0MJCleuaJg1TSoHmVs1b7c6CsU5M_4g-Sjtc19n67kgx_2KLtBNzHg_u9-2__64ddBH4j72ZTA_uoEsBWMwmVioIt1FvtVyru-hCfryaV8t7Vrpg9Pms-fAX4xu9ZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+location+of+EEG+events+using+deep+learning+visual+inspection&rft.jtitle=PloS+one&rft.au=Mohammad+Amin+Fraiwan&rft.date=2024-12-23&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pone.0312763&rft.externalDocID=3148792215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon