Estimating False Discovery Proportion Under Arbitrary Covariance Dependence

Multiple hypothesis testing is a fundamental problem in high-dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any single-nucleotide polymorphisms (SNPs) are associated with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Statistical Association Ročník 107; číslo 499; s. 1019 - 1035
Hlavní autoři: Fan, Jianqing, Han, Xu, Gu, Weijie
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Taylor & Francis Group 01.09.2012
Témata:
ISSN:1537-274X, 0162-1459, 1537-274X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multiple hypothesis testing is a fundamental problem in high-dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any single-nucleotide polymorphisms (SNPs) are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In this article, we propose a novel method—based on principal factor approximation—that successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large-scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling false discovery rate and FDP. Our estimate of realized FDP compares favorably with Efron's approach, as demonstrated in the simulated examples. Our approach is further illustrated by some real data applications. We also propose a dependence-adjusted procedure that is more powerful than the fixed-threshold procedure. Supplementary material for this article is available online.
AbstractList Multiple hypothesis testing is a fundamental problem in high dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any SNPs are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In the current paper, we propose a novel method based on principal factor approximation, which successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling FDR and FDP. Our estimate of realized FDP compares favorably with Efron (2007)'s approach, as demonstrated in the simulated examples. Our approach is further illustrated by some real data applications. We also propose a dependence-adjusted procedure, which is more powerful than the fixed threshold procedure.
Multiple hypothesis testing is a fundamental problem in high-dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any single-nucleotide polymorphisms (SNPs) are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In this article, we propose a novel method—based on principal factor approximation—that successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large-scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling false discovery rate and FDP. Our estimate of realized FDP compares favorably with Efron's approach, as demonstrated in the simulated examples. Our approach is further illustrated by some real data applications. We also propose a dependence-adjusted procedure that is more powerful than the fixed-threshold procedure. Supplementary material for this article is available online.
Multiple hypothesis testing is a fundamental problem in high dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any SNPs are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In the current paper, we propose a novel method based on principal factor approximation, which successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling FDR and FDP. Our estimate of realized FDP compares favorably with Efron (2007)'s approach, as demonstrated in the simulated examples. Our approach is further illustrated by some real data applications. We also propose a dependence-adjusted procedure, which is more powerful than the fixed threshold procedure.Multiple hypothesis testing is a fundamental problem in high dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any SNPs are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In the current paper, we propose a novel method based on principal factor approximation, which successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling FDR and FDP. Our estimate of realized FDP compares favorably with Efron (2007)'s approach, as demonstrated in the simulated examples. Our approach is further illustrated by some real data applications. We also propose a dependence-adjusted procedure, which is more powerful than the fixed threshold procedure.
Author Fan, Jianqing
Gu, Weijie
Han, Xu
Author_xml – sequence: 1
  fullname: Fan, Jianqing
– sequence: 2
  fullname: Han, Xu
– sequence: 3
  fullname: Gu, Weijie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24729644$$D View this record in MEDLINE/PubMed
BookMark eNqNUklvEzEUtlArusA_YJljLwnexvZwoKpCF0QlkCASN8uZsYOriR1sJyj_vm80bSlcii-2_C1-730-QnshBovQK4KnBCv8DhNBCa-bKcWETiXFXKpn6JDUTE6o5D_2Hp0P0FHONxiWVOo5OqBc0kZwfog-n-fiV6b4sKwuTJ9t9dHnNm5t2lVfU1zHVHwM1Tx0NlVnaeFLMgDN4tYkb0ILfLu2gMLxBdp3g8XLu_0YzS_Ov8-uJtdfLj_Nzq4nreC0TISjncRdJyQljWBEdM5ax5x0ddO2TOCaKMHglnKmXI1dLTu24AvGjbW0w-wYfRh915vFynatDVBUr9cJGkk7HY3XfyPB_9TLuNWsUUxJCgYndwYp_trYXPQKmrZ9b4KNm6yJokJgrCj7DypmBDesGVzfPC7roZ77YQOBj4Q2xZyTdQ8UgvWQqb7PVA-Z6jFTkL3_R9b6YoZYoDnfPyV-PYpvconpT02Mw7_AAvDTEffBxbQyv2PqO13Mro_JJQjYZ82eeOHt6OBM1GaZQDD_BgQYIFY1pw27BXEWzLk
CitedBy_id crossref_primary_10_1007_s11425_016_9186_x
crossref_primary_10_1016_j_jeconom_2017_08_009
crossref_primary_10_1111_biom_12665
crossref_primary_10_1002_sim_9147
crossref_primary_10_1016_j_jneumeth_2015_02_010
crossref_primary_10_1021_acs_jproteome_6b00144
crossref_primary_10_1002_hbm_23007
crossref_primary_10_1214_17_AOS1606
crossref_primary_10_1016_j_jspi_2015_04_004
crossref_primary_10_1080_01621459_2018_1546589
crossref_primary_10_1111_rssb_12204
crossref_primary_10_1002_sta4_607
crossref_primary_10_1007_s12561_016_9160_1
crossref_primary_10_1360_SCM_2022_0066
crossref_primary_10_1177_1176935117690778
crossref_primary_10_1080_07350015_2022_2044337
crossref_primary_10_1093_jrsssc_qlad024
crossref_primary_10_1080_07350015_2020_1831516
crossref_primary_10_1080_01621459_2017_1301258
crossref_primary_10_1080_01621459_2017_1407774
crossref_primary_10_1137_19M1290000
crossref_primary_10_1214_15_AOS1364
crossref_primary_10_1287_ijoc_2023_0282
crossref_primary_10_1214_14_AOS1222
crossref_primary_10_1080_01621459_2021_2011735
crossref_primary_10_1186_1471_2164_16_3
crossref_primary_10_1111_sjos_12127
crossref_primary_10_1080_01621459_2023_2283938
crossref_primary_10_1080_01621459_2024_2359739
crossref_primary_10_1016_j_addr_2013_04_008
crossref_primary_10_1002_wics_1260
crossref_primary_10_1016_j_csda_2019_06_007
crossref_primary_10_1111_biom_13222
crossref_primary_10_1214_20_STS785
crossref_primary_10_1080_10618600_2020_1713798
crossref_primary_10_1080_00031305_2024_2329681
crossref_primary_10_1214_19_AOS1863
crossref_primary_10_1080_01621459_2018_1527700
crossref_primary_10_1080_01621459_2014_990973
crossref_primary_10_1080_01621459_2019_1654878
crossref_primary_10_1214_21_BA1261
crossref_primary_10_1002_bimj_202100328
crossref_primary_10_1146_annurev_financial_091420_011735
crossref_primary_10_1371_journal_pone_0176124
crossref_primary_10_1093_biostatistics_kxt012
crossref_primary_10_1016_j_jmva_2023_105224
crossref_primary_10_1080_07350015_2018_1482758
crossref_primary_10_1109_ACCESS_2019_2932622
crossref_primary_10_1007_s11009_019_09763_z
crossref_primary_10_1080_01621459_2021_1923510
crossref_primary_10_1016_j_csda_2023_107705
crossref_primary_10_1093_rfs_hhaa111
crossref_primary_10_1016_j_jspi_2015_06_003
crossref_primary_10_1186_s12859_024_05678_w
crossref_primary_10_1109_TIT_2025_3529457
crossref_primary_10_1016_j_jeconom_2016_05_016
crossref_primary_10_1093_nsr_nwt032
crossref_primary_10_1016_j_spl_2019_108693
crossref_primary_10_1080_07350015_2023_2174549
crossref_primary_10_1214_16_AOS1459
crossref_primary_10_1016_j_jmva_2015_10_013
crossref_primary_10_1080_01621459_2020_1775613
crossref_primary_10_1007_s40304_020_00233_4
crossref_primary_10_1016_j_spl_2021_109275
crossref_primary_10_1080_03610926_2017_1300279
crossref_primary_10_1080_01621459_2020_1844720
crossref_primary_10_1214_15_AOS1397
crossref_primary_10_1214_19_AOS1847
crossref_primary_10_1214_21_AOS2137
crossref_primary_10_1093_biomet_asab066
crossref_primary_10_1080_01621459_2025_2520459
crossref_primary_10_1007_s42952_025_00317_3
crossref_primary_10_1007_s00362_014_0650_2
crossref_primary_10_1214_14_AOS1302
crossref_primary_10_1016_j_spl_2020_108911
crossref_primary_10_1080_01621459_2016_1240082
crossref_primary_10_1080_07350015_2017_1294078
crossref_primary_10_1371_journal_pgen_1010597
crossref_primary_10_1214_21_AOS2141
crossref_primary_10_1007_s00362_024_01613_6
crossref_primary_10_1016_j_jeconom_2018_03_001
crossref_primary_10_1214_20_AOS1956
crossref_primary_10_1093_biomtc_ujae015
crossref_primary_10_1111_rssb_12016
crossref_primary_10_1016_j_jmva_2018_12_006
crossref_primary_10_1088_1742_6596_1601_5_052032
crossref_primary_10_1093_nar_gku864
crossref_primary_10_1146_annurev_economics_063016_104355
crossref_primary_10_1080_01621459_2018_1448826
crossref_primary_10_1371_journal_pone_0284284
crossref_primary_10_1080_01621459_2021_1945459
crossref_primary_10_1214_15_AOS1416
crossref_primary_10_1080_01621459_2014_958156
crossref_primary_10_1126_science_1251122
crossref_primary_10_1214_16_AOS1511
crossref_primary_10_1002_sim_9761
crossref_primary_10_1111_jofi_13036
crossref_primary_10_1016_j_jmva_2016_05_011
crossref_primary_10_1214_15_AOS1375
crossref_primary_10_1080_01621459_2018_1554485
crossref_primary_10_1093_jamia_ocy121
crossref_primary_10_1007_s10463_020_00770_3
crossref_primary_10_1016_j_jmva_2016_02_004
crossref_primary_10_1007_s40484_013_0023_1
crossref_primary_10_1016_j_jmva_2021_104934
crossref_primary_10_1080_01621459_2018_1518236
crossref_primary_10_1080_01621459_2020_1799811
crossref_primary_10_1214_16_AOS1487
crossref_primary_10_1093_genetics_iyaf060
crossref_primary_10_1016_j_csda_2020_107004
crossref_primary_10_1007_s11424_024_3484_6
crossref_primary_10_1371_journal_pcbi_1004993
crossref_primary_10_1007_s11424_023_1143_y
Cites_doi 10.1214/009053607000000046
10.1214/009053604000000283
10.1111/j.1467-9868.2005.00509.x
10.1214/10-AOS798
10.1111/j.1467-9469.2006.00530.x
10.1007/978-1-4615-7821-5_13
10.1111/j.1467-9868.2010.00764.x
10.1214/009053606000000425
10.1111/1467-9868.00346
10.1214/aos/1176346793
10.1198/016214501753382273
10.1198/016214506000001211
10.1198/jasa.2009.tm08332
10.1093/hmg/ddi404
10.1111/j.1467-9868.2004.00439.x
10.1111/j.1467-9868.2008.00694.x
10.1016/j.spl.2010.09.025
10.1198/jasa.2010.tm09129
10.1307/mmj/1029003816
10.1073/pnas.0808709105
10.1214/10-AOS847
10.1111/j.2517-6161.1995.tb02031.x
10.1111/j.1467-9868.2011.01005.x
10.1214/aos/1015362192
10.1214/07-AOS557
10.1111/j.1540-6261.2009.01527.x
10.1214/aos/1013699998
10.1111/j.1467-9469.2005.00488.x
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
2012 American Statistical Association
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: 2012 American Statistical Association
DBID FBQ
AAYXX
CITATION
NPM
7S9
L.6
7X8
5PM
DOI 10.1080/01621459.2012.720478
DatabaseName AGRIS
CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList PubMed



AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1035
ExternalDocumentID PMC3983872
24729644
10_1080_01621459_2012_720478
23427406
720478
US201600085429
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM100474
– fundername: NIGMS NIH HHS
  grantid: R01 GM072611
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
07G
0BK
0R~
1OL
29L
2AX
30N
3R3
3V.
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AAAVI
AAAVZ
AABCJ
AAENE
AAFWJ
AAIKQ
AAJMT
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABJVF
ABLIJ
ABLJU
ABPEM
ABPFR
ABPPZ
ABQHQ
ABRLO
ABTAI
ABUWG
ABXUL
ABXYU
ABYAD
ABYWD
ACAGQ
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADODI
ADULT
AEGYZ
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUMN
AEUPB
AEYOC
AFFNX
AFKRA
AFOLD
AFSUE
AFVYC
AFWLO
AFXHP
AFXKK
AGCQS
AGDLA
AGLEN
AGMYJ
AGROQ
AHDLD
AHMOU
AI.
AIHXQ
AIJEM
AIRXU
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMATQ
AMXXU
AQRUH
AQUVI
AVBZW
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BPLKW
BVXVI
C06
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWIFK
DWQXO
E.L
EBS
ECEWR
EFSUC
EJD
E~A
E~B
F20
F5P
FBQ
FEDTE
FJW
FRNLG
FUNRP
FVMVE
FVPDL
FYUFA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IVXBP
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
K9-
KQ8
KYCEM
L6V
LJTGL
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
N95
NA5
NHB
NUSFT
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PQBIZ
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TAQ
TEJ
TFL
TFMCV
TFT
TFW
TN5
TOXWX
TTHFI
U5U
UB9
UKHRP
UPT
UQL
UT5
UU3
V1K
VH1
VOH
WH7
WHG
WZA
XFK
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
ZUP
ZXP
~S~
AAGDL
AAHBH
AAHIA
AAWIL
ABAWQ
ABPAQ
ABPQH
ABUFD
ABXSQ
ACHJO
ADMHG
AFRVT
AGLNM
AHDZW
AIHAF
AIYEW
ALRMG
AQTUD
AWYRJ
H13
IPSME
TASJS
TBQAZ
TDBHL
TUROJ
ADYSH
ALIPV
AMPGV
AAYXX
ACGEE
ACTCW
ADXHL
AFFHD
AFQQW
AMEWO
AMVHM
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQBZA
PQGLB
NPM
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c642t-6f2d70dd672196316dfeef3f7f59cc360518636df2438f50f57d3b4b34aee2d03
IEDL.DBID TFW
ISICitedReferencesCount 152
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309793400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1537-274X
0162-1459
IngestDate Tue Nov 04 01:58:19 EST 2025
Thu Oct 02 10:30:23 EDT 2025
Fri Oct 03 00:10:22 EDT 2025
Mon Jul 21 06:05:46 EDT 2025
Sat Nov 29 03:56:38 EST 2025
Tue Nov 18 22:21:16 EST 2025
Thu May 29 08:44:01 EDT 2025
Mon Oct 20 23:40:38 EDT 2025
Wed Dec 27 19:09:11 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 499
Keywords arbitrary dependence structure
Multiple hypothesis testing
false discovery rate
genome-wide association studies
high dimensional inference
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-6f2d70dd672196316dfeef3f7f59cc360518636df2438f50f57d3b4b34aee2d03
Notes http://dx.doi.org/10.1080/01621459.2012.720478
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3983872
PMID 24729644
PQID 1803109392
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_1826600823
pubmed_primary_24729644
crossref_citationtrail_10_1080_01621459_2012_720478
jstor_primary_23427406
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3983872
proquest_miscellaneous_1803109392
informaworld_taylorfrancis_310_1080_01621459_2012_720478
fao_agris_US201600085429
crossref_primary_10_1080_01621459_2012_720478
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2012
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References CIT0010
CIT0012
CIT0011
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
Benjamini Y. (CIT0002) 1995; 57
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0015
  doi: 10.1214/009053607000000046
– ident: CIT0017
  doi: 10.1214/009053604000000283
– ident: CIT0021
  doi: 10.1111/j.1467-9868.2005.00509.x
– ident: CIT0012
  doi: 10.1214/10-AOS798
– ident: CIT0013
  doi: 10.1111/j.1467-9469.2006.00530.x
– ident: CIT0022
  doi: 10.1007/978-1-4615-7821-5_13
– ident: CIT0004
  doi: 10.1111/j.1467-9868.2010.00764.x
– ident: CIT0014
  doi: 10.1214/009053606000000425
– ident: CIT0026
  doi: 10.1111/1467-9868.00346
– ident: CIT0023
  doi: 10.1214/aos/1176346793
– ident: CIT0011
  doi: 10.1198/016214501753382273
– ident: CIT0008
  doi: 10.1198/016214506000001211
– ident: CIT0016
  doi: 10.1198/jasa.2009.tm08332
– ident: CIT0007
  doi: 10.1093/hmg/ddi404
– ident: CIT0027
  doi: 10.1111/j.1467-9868.2004.00439.x
– ident: CIT0028
  doi: 10.1111/j.1467-9868.2008.00694.x
– ident: CIT0006
  doi: 10.1016/j.spl.2010.09.025
– ident: CIT0009
  doi: 10.1198/jasa.2010.tm09129
– ident: CIT0019
  doi: 10.1307/mmj/1029003816
– ident: CIT0018
  doi: 10.1073/pnas.0808709105
– ident: CIT0024
  doi: 10.1214/10-AOS847
– volume: 57
  start-page: 289
  year: 1995
  ident: CIT0002
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: CIT0010
  doi: 10.1111/j.1467-9868.2011.01005.x
– ident: CIT0025
  doi: 10.1214/aos/1015362192
– ident: CIT0005
  doi: 10.1214/07-AOS557
– ident: CIT0001
  doi: 10.1111/j.1540-6261.2009.01527.x
– ident: CIT0003
  doi: 10.1214/aos/1013699998
– ident: CIT0020
  doi: 10.1111/j.1467-9469.2005.00488.x
SSID ssj0000788
Score 2.48924
Snippet Multiple hypothesis testing is a fundamental problem in high-dimensional inference, with wide applications in many scientific fields. In genome-wide...
Multiple hypothesis testing is a fundamental problem in high dimensional inference, with wide applications in many scientific fields. In genome-wide...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1019
SubjectTerms Applied statistics
Arbitrary dependence structure
Correlations
Covariance
Covariance matrices
Estimate reliability
Estimation methods
Estimators
False discovery rate
Genome-wide association studies
genome-wide association study
High-dimensional inference
Multiple hypothesis testing
Null hypothesis
Random variables
single nucleotide polymorphism
Statistical variance
Theory and Methods
Title Estimating False Discovery Proportion Under Arbitrary Covariance Dependence
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2012.720478
https://www.jstor.org/stable/23427406
https://www.ncbi.nlm.nih.gov/pubmed/24729644
https://www.proquest.com/docview/1803109392
https://www.proquest.com/docview/1826600823
https://pubmed.ncbi.nlm.nih.gov/PMC3983872
Volume 107
WOSCitedRecordID wos000309793400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 1537-274X
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8B4oGXMbYxsg0UpL16S-wkdh4noJo0CSEBWt8sxx-s0pSitiDx3-_OSUqLNiZtb_mwndp3tn9X3_0O4GOpmpD73DPeuMCKImTM8MyzsjKlEYUJKjcx2YQ8P1fjcX2xEsVPbpVkQ4eOKCKu1TS5TTMfPOI-I0ohfm0KM8n5J8qyIinaF4E9-fRdjb4_LsUyJp6kCoxqDLFzf2hkbW_aDGb6hL908Fn8HRp96lS5skuNdv-_fy_hRY9Q0y-dSu3Bhm9fwQ6B0o7T-TV8O8MLQrrtTTpC9fXp6WRuyRf0Ib2grAszknYaUyphO80khvanJ9N7NMxJy9LTPvWu9W_genR2dfKV9UkZmEVTZcGqwJ3MnKvQdMTJm1cueB9EkKGsrRVoHeWqEviUF0KFMguldKIpGpS799xlYh-22mnrDyAlKr46E9Y6ybGLWe2tcNIZV9vSIMxIQAzi0LZnLKfEGT91PhCb9iOlaaR0N1IJsGWt246x4y_lD1DS2tzgoqqvLzlR7hEQxY06AbUqfr2If6KELuOJFs-3uh9VZfkTuCi4RPSUwPGgOxpnMh3PmNZP7-Y6V5GmFQHrc2UQUMXT0QTedvr2-IVC0hl6kYBc08RlAWISX3_TTn5ERnFRK6Ekf_fv_X0PO3TXed99gK3F7M4fwra9R92cHcGmHKujODd_AT7aMWU
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5iA4m9cB8L1yDxakjsJHYe0bZqaKOaRCf2Zjm-bJVQitpuEv-ec5ykWycYEuKtamy39jm2vxMffx_A-1I1Ife5Z7xxgRVFyJjhmWdlZUojChNUbqLYhByP1elpfdxnEy76tEqKoUNHFBHXaprc9DJ6SIn7iDCFCLbpnknOP5DMilQbcJfE6Sj-moy-XS3GMkpPUg1GVYbbc39oZW132ghmdoPBdMha_B0evZlWeW2fGj38Dz18BA96kJp-6rzqMdzx7RPYIlza0To_hcN9_EBgtz1LR-jBPt2bLiylg_5Mj0l4YU4GT6OqErbTTOPt_nR3domxOTlauter71r_DE5G-5PdA9brMjCL0cqSVYE7mTlXYfSI8zevXPA-iCBDWVsrMEDKVSXwW14IFcoslNKJpmjQ9N5zl4lt2Gxnrd-BlNj46kxY6yTHLma1t8JJZ1xtS4NIIwEx2EPbnrSctDO-63zgNu1HStNI6W6kEmCrWj860o6_lN9BU2tzhuuqPvnKiXWPsCju1Qmo6_bXy_geJXSiJ1rc3up29JXVX-Ci4BIBVALvBufROJnphMa0fnax0LmKTK2IWW8rg5gqHpAm8LxzuKtfKCQdoxcJyDVXXBUgMvH1J-30PJKKi1oJJfmLf-_vW7h_MPlypI8-jw9fwhY96ZLxXsHmcn7hX8M9e4l-On8Tp-gvOCU0oA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iG0J7YeMyFq5B4jWQ2EnsPKJ1EWioqsQm9mY5vmyVUDp13ST-Pec4SddObEjwVjW2G_sc29-pj78P4EMhG5-5zCWssT7Jc58mmqUuKUpdaJ5rLzMdxCbEeCxPT6vJyi1-SqukGNp3RBFhrabJfWH9kBH3CVEK8WvTNZOMfSSVFSE3YAuRc0F-fVz_uFmLRVCepBoJVRkuz93RytrmtOH17BaB6ZC0-Cc4ejurcmWbqnf-v4O78LiHqPHnzqeewAPXPoVtQqUdqfMzODrEDwR127O4Rv918Wh6aSgZ9Fc8IdmFOZk7DppK2E4zDXf744PZNUbm5GbxqNfeNe45nNSHxwdfkl6VITEYqyyS0jMrUmtLjB1x9mal9c557oUvKmM4hkeZLDl-y3IufZH6Qlje5A0a3jlmU74Hm-2sdfsQExdflXJjrGDYxbRyhlthta1MoRFnRMAHcyjTU5aTcsZPlQ3Mpv1IKRop1Y1UBMmy1kVH2fGX8vtoaaXPcFVVJ98Zce4REsWdOgK5an61CP-i-E7yRPH7W90LrrJ8BcZzJhA-RfB-8B2FU5nOZ3TrZleXKpOBpxUR631lEFGF49EIXnT-dvMLuaBD9DwCseaJywJEJb7-pJ2eB0pxXkkuBXv57_19B48mo1p9-zo-egXb9KDLxHsNm4v5lXsDD801uun8bZigvwFjWDNS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+False+Discovery+Proportion+Under+Arbitrary+Covariance+Dependence&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Fan%2C+Jianqing&rft.au=Han%2C+Xu&rft.au=Gu%2C+Weijie&rft.date=2012-09-01&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=107&rft.issue=499&rft.spage=1019&rft.epage=1035&rft_id=info:doi/10.1080%2F01621459.2012.720478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2012_720478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon