Estimating False Discovery Proportion Under Arbitrary Covariance Dependence
Multiple hypothesis testing is a fundamental problem in high-dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any single-nucleotide polymorphisms (SNPs) are associated with...
Uloženo v:
| Vydáno v: | Journal of the American Statistical Association Ročník 107; číslo 499; s. 1019 - 1035 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Taylor & Francis Group
01.09.2012
|
| Témata: | |
| ISSN: | 1537-274X, 0162-1459, 1537-274X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Multiple hypothesis testing is a fundamental problem in high-dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any single-nucleotide polymorphisms (SNPs) are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In this article, we propose a novel method—based on principal factor approximation—that successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large-scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling false discovery rate and FDP. Our estimate of realized FDP compares favorably with Efron's approach, as demonstrated in the simulated examples. Our approach is further illustrated by some real data applications. We also propose a dependence-adjusted procedure that is more powerful than the fixed-threshold procedure. Supplementary material for this article is available online. |
|---|---|
| AbstractList | Multiple hypothesis testing is a fundamental problem in high dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any SNPs are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In the current paper, we propose a novel method based on principal factor approximation, which successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling FDR and FDP. Our estimate of realized FDP compares favorably with Efron (2007)'s approach, as demonstrated in the simulated examples. Our approach is further illustrated by some real data applications. We also propose a dependence-adjusted procedure, which is more powerful than the fixed threshold procedure. Multiple hypothesis testing is a fundamental problem in high-dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any single-nucleotide polymorphisms (SNPs) are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In this article, we propose a novel method—based on principal factor approximation—that successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large-scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling false discovery rate and FDP. Our estimate of realized FDP compares favorably with Efron's approach, as demonstrated in the simulated examples. Our approach is further illustrated by some real data applications. We also propose a dependence-adjusted procedure that is more powerful than the fixed-threshold procedure. Supplementary material for this article is available online. Multiple hypothesis testing is a fundamental problem in high dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any SNPs are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In the current paper, we propose a novel method based on principal factor approximation, which successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling FDR and FDP. Our estimate of realized FDP compares favorably with Efron (2007)'s approach, as demonstrated in the simulated examples. Our approach is further illustrated by some real data applications. We also propose a dependence-adjusted procedure, which is more powerful than the fixed threshold procedure.Multiple hypothesis testing is a fundamental problem in high dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any SNPs are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In the current paper, we propose a novel method based on principal factor approximation, which successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling FDR and FDP. Our estimate of realized FDP compares favorably with Efron (2007)'s approach, as demonstrated in the simulated examples. Our approach is further illustrated by some real data applications. We also propose a dependence-adjusted procedure, which is more powerful than the fixed threshold procedure. |
| Author | Fan, Jianqing Gu, Weijie Han, Xu |
| Author_xml | – sequence: 1 fullname: Fan, Jianqing – sequence: 2 fullname: Han, Xu – sequence: 3 fullname: Gu, Weijie |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24729644$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUklvEzEUtlArusA_YJljLwnexvZwoKpCF0QlkCASN8uZsYOriR1sJyj_vm80bSlcii-2_C1-730-QnshBovQK4KnBCv8DhNBCa-bKcWETiXFXKpn6JDUTE6o5D_2Hp0P0FHONxiWVOo5OqBc0kZwfog-n-fiV6b4sKwuTJ9t9dHnNm5t2lVfU1zHVHwM1Tx0NlVnaeFLMgDN4tYkb0ILfLu2gMLxBdp3g8XLu_0YzS_Ov8-uJtdfLj_Nzq4nreC0TISjncRdJyQljWBEdM5ax5x0ddO2TOCaKMHglnKmXI1dLTu24AvGjbW0w-wYfRh915vFynatDVBUr9cJGkk7HY3XfyPB_9TLuNWsUUxJCgYndwYp_trYXPQKmrZ9b4KNm6yJokJgrCj7DypmBDesGVzfPC7roZ77YQOBj4Q2xZyTdQ8UgvWQqb7PVA-Z6jFTkL3_R9b6YoZYoDnfPyV-PYpvconpT02Mw7_AAvDTEffBxbQyv2PqO13Mro_JJQjYZ82eeOHt6OBM1GaZQDD_BgQYIFY1pw27BXEWzLk |
| CitedBy_id | crossref_primary_10_1007_s11425_016_9186_x crossref_primary_10_1016_j_jeconom_2017_08_009 crossref_primary_10_1111_biom_12665 crossref_primary_10_1002_sim_9147 crossref_primary_10_1016_j_jneumeth_2015_02_010 crossref_primary_10_1021_acs_jproteome_6b00144 crossref_primary_10_1002_hbm_23007 crossref_primary_10_1214_17_AOS1606 crossref_primary_10_1016_j_jspi_2015_04_004 crossref_primary_10_1080_01621459_2018_1546589 crossref_primary_10_1111_rssb_12204 crossref_primary_10_1002_sta4_607 crossref_primary_10_1007_s12561_016_9160_1 crossref_primary_10_1360_SCM_2022_0066 crossref_primary_10_1177_1176935117690778 crossref_primary_10_1080_07350015_2022_2044337 crossref_primary_10_1093_jrsssc_qlad024 crossref_primary_10_1080_07350015_2020_1831516 crossref_primary_10_1080_01621459_2017_1301258 crossref_primary_10_1080_01621459_2017_1407774 crossref_primary_10_1137_19M1290000 crossref_primary_10_1214_15_AOS1364 crossref_primary_10_1287_ijoc_2023_0282 crossref_primary_10_1214_14_AOS1222 crossref_primary_10_1080_01621459_2021_2011735 crossref_primary_10_1186_1471_2164_16_3 crossref_primary_10_1111_sjos_12127 crossref_primary_10_1080_01621459_2023_2283938 crossref_primary_10_1080_01621459_2024_2359739 crossref_primary_10_1016_j_addr_2013_04_008 crossref_primary_10_1002_wics_1260 crossref_primary_10_1016_j_csda_2019_06_007 crossref_primary_10_1111_biom_13222 crossref_primary_10_1214_20_STS785 crossref_primary_10_1080_10618600_2020_1713798 crossref_primary_10_1080_00031305_2024_2329681 crossref_primary_10_1214_19_AOS1863 crossref_primary_10_1080_01621459_2018_1527700 crossref_primary_10_1080_01621459_2014_990973 crossref_primary_10_1080_01621459_2019_1654878 crossref_primary_10_1214_21_BA1261 crossref_primary_10_1002_bimj_202100328 crossref_primary_10_1146_annurev_financial_091420_011735 crossref_primary_10_1371_journal_pone_0176124 crossref_primary_10_1093_biostatistics_kxt012 crossref_primary_10_1016_j_jmva_2023_105224 crossref_primary_10_1080_07350015_2018_1482758 crossref_primary_10_1109_ACCESS_2019_2932622 crossref_primary_10_1007_s11009_019_09763_z crossref_primary_10_1080_01621459_2021_1923510 crossref_primary_10_1016_j_csda_2023_107705 crossref_primary_10_1093_rfs_hhaa111 crossref_primary_10_1016_j_jspi_2015_06_003 crossref_primary_10_1186_s12859_024_05678_w crossref_primary_10_1109_TIT_2025_3529457 crossref_primary_10_1016_j_jeconom_2016_05_016 crossref_primary_10_1093_nsr_nwt032 crossref_primary_10_1016_j_spl_2019_108693 crossref_primary_10_1080_07350015_2023_2174549 crossref_primary_10_1214_16_AOS1459 crossref_primary_10_1016_j_jmva_2015_10_013 crossref_primary_10_1080_01621459_2020_1775613 crossref_primary_10_1007_s40304_020_00233_4 crossref_primary_10_1016_j_spl_2021_109275 crossref_primary_10_1080_03610926_2017_1300279 crossref_primary_10_1080_01621459_2020_1844720 crossref_primary_10_1214_15_AOS1397 crossref_primary_10_1214_19_AOS1847 crossref_primary_10_1214_21_AOS2137 crossref_primary_10_1093_biomet_asab066 crossref_primary_10_1080_01621459_2025_2520459 crossref_primary_10_1007_s42952_025_00317_3 crossref_primary_10_1007_s00362_014_0650_2 crossref_primary_10_1214_14_AOS1302 crossref_primary_10_1016_j_spl_2020_108911 crossref_primary_10_1080_01621459_2016_1240082 crossref_primary_10_1080_07350015_2017_1294078 crossref_primary_10_1371_journal_pgen_1010597 crossref_primary_10_1214_21_AOS2141 crossref_primary_10_1007_s00362_024_01613_6 crossref_primary_10_1016_j_jeconom_2018_03_001 crossref_primary_10_1214_20_AOS1956 crossref_primary_10_1093_biomtc_ujae015 crossref_primary_10_1111_rssb_12016 crossref_primary_10_1016_j_jmva_2018_12_006 crossref_primary_10_1088_1742_6596_1601_5_052032 crossref_primary_10_1093_nar_gku864 crossref_primary_10_1146_annurev_economics_063016_104355 crossref_primary_10_1080_01621459_2018_1448826 crossref_primary_10_1371_journal_pone_0284284 crossref_primary_10_1080_01621459_2021_1945459 crossref_primary_10_1214_15_AOS1416 crossref_primary_10_1080_01621459_2014_958156 crossref_primary_10_1126_science_1251122 crossref_primary_10_1214_16_AOS1511 crossref_primary_10_1002_sim_9761 crossref_primary_10_1111_jofi_13036 crossref_primary_10_1016_j_jmva_2016_05_011 crossref_primary_10_1214_15_AOS1375 crossref_primary_10_1080_01621459_2018_1554485 crossref_primary_10_1093_jamia_ocy121 crossref_primary_10_1007_s10463_020_00770_3 crossref_primary_10_1016_j_jmva_2016_02_004 crossref_primary_10_1007_s40484_013_0023_1 crossref_primary_10_1016_j_jmva_2021_104934 crossref_primary_10_1080_01621459_2018_1518236 crossref_primary_10_1080_01621459_2020_1799811 crossref_primary_10_1214_16_AOS1487 crossref_primary_10_1093_genetics_iyaf060 crossref_primary_10_1016_j_csda_2020_107004 crossref_primary_10_1007_s11424_024_3484_6 crossref_primary_10_1371_journal_pcbi_1004993 crossref_primary_10_1007_s11424_023_1143_y |
| Cites_doi | 10.1214/009053607000000046 10.1214/009053604000000283 10.1111/j.1467-9868.2005.00509.x 10.1214/10-AOS798 10.1111/j.1467-9469.2006.00530.x 10.1007/978-1-4615-7821-5_13 10.1111/j.1467-9868.2010.00764.x 10.1214/009053606000000425 10.1111/1467-9868.00346 10.1214/aos/1176346793 10.1198/016214501753382273 10.1198/016214506000001211 10.1198/jasa.2009.tm08332 10.1093/hmg/ddi404 10.1111/j.1467-9868.2004.00439.x 10.1111/j.1467-9868.2008.00694.x 10.1016/j.spl.2010.09.025 10.1198/jasa.2010.tm09129 10.1307/mmj/1029003816 10.1073/pnas.0808709105 10.1214/10-AOS847 10.1111/j.2517-6161.1995.tb02031.x 10.1111/j.1467-9868.2011.01005.x 10.1214/aos/1015362192 10.1214/07-AOS557 10.1111/j.1540-6261.2009.01527.x 10.1214/aos/1013699998 10.1111/j.1467-9469.2005.00488.x |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2012 2012 American Statistical Association |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: 2012 American Statistical Association |
| DBID | FBQ AAYXX CITATION NPM 7S9 L.6 7X8 5PM |
| DOI | 10.1080/01621459.2012.720478 |
| DatabaseName | AGRIS CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 1035 |
| ExternalDocumentID | PMC3983872 24729644 10_1080_01621459_2012_720478 23427406 720478 US201600085429 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM100474 – fundername: NIGMS NIH HHS grantid: R01 GM072611 |
| GroupedDBID | -DZ -~X .-4 ..I .7F .GJ .QJ 07G 0BK 0R~ 1OL 29L 2AX 30N 3R3 3V. 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AAAVI AAAVZ AABCJ AAENE AAFWJ AAIKQ AAJMT AAKBW AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEFU ABEHJ ABFAN ABFIM ABJCF ABJNI ABJVF ABLIJ ABLJU ABPEM ABPFR ABPPZ ABQHQ ABRLO ABTAI ABUWG ABXUL ABXYU ABYAD ABYWD ACAGQ ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADBBV ADCVX ADGTB ADLSF ADODI ADULT AEGYZ AEISY AELPN AENEX AEOZL AEPSL AEUMN AEUPB AEYOC AFFNX AFKRA AFOLD AFSUE AFVYC AFWLO AFXHP AFXKK AGCQS AGDLA AGLEN AGMYJ AGROQ AHDLD AHMOU AI. AIHXQ AIJEM AIRXU AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMATQ AMXXU AQRUH AQUVI AVBZW AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BPLKW BVXVI C06 CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWIFK DWQXO E.L EBS ECEWR EFSUC EJD E~A E~B F20 F5P FBQ FEDTE FJW FRNLG FUNRP FVMVE FVPDL FYUFA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IVXBP J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ K9- KQ8 KYCEM L6V LJTGL LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 N95 NA5 NHB NUSFT NY~ O9- OFU OK1 P-O P2P PADUT PQBIZ PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TAQ TEJ TFL TFMCV TFT TFW TN5 TOXWX TTHFI U5U UB9 UKHRP UPT UQL UT5 UU3 V1K VH1 VOH WH7 WHG WZA XFK YQT YXB YYM YYP ZCG ZGI ZGOLN ZUP ZXP ~S~ AAGDL AAHBH AAHIA AAWIL ABAWQ ABPAQ ABPQH ABUFD ABXSQ ACHJO ADMHG AFRVT AGLNM AHDZW AIHAF AIYEW ALRMG AQTUD AWYRJ H13 IPSME TASJS TBQAZ TDBHL TUROJ ADYSH ALIPV AMPGV AAYXX ACGEE ACTCW ADXHL AFFHD AFQQW AMEWO AMVHM CITATION PHGZM PHGZT PJZUB PPXIY PQBZA PQGLB NPM 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c642t-6f2d70dd672196316dfeef3f7f59cc360518636df2438f50f57d3b4b34aee2d03 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 152 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309793400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1537-274X 0162-1459 |
| IngestDate | Tue Nov 04 01:58:19 EST 2025 Thu Oct 02 10:30:23 EDT 2025 Fri Oct 03 00:10:22 EDT 2025 Mon Jul 21 06:05:46 EDT 2025 Sat Nov 29 03:56:38 EST 2025 Tue Nov 18 22:21:16 EST 2025 Thu May 29 08:44:01 EDT 2025 Mon Oct 20 23:40:38 EDT 2025 Wed Dec 27 19:09:11 EST 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 499 |
| Keywords | arbitrary dependence structure Multiple hypothesis testing false discovery rate genome-wide association studies high dimensional inference |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-6f2d70dd672196316dfeef3f7f59cc360518636df2438f50f57d3b4b34aee2d03 |
| Notes | http://dx.doi.org/10.1080/01621459.2012.720478 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3983872 |
| PMID | 24729644 |
| PQID | 1803109392 |
| PQPubID | 24069 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_1826600823 pubmed_primary_24729644 crossref_citationtrail_10_1080_01621459_2012_720478 jstor_primary_23427406 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3983872 proquest_miscellaneous_1803109392 informaworld_taylorfrancis_310_1080_01621459_2012_720478 fao_agris_US201600085429 crossref_primary_10_1080_01621459_2012_720478 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-09-01 |
| PublicationDateYYYYMMDD | 2012-09-01 |
| PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationTitleAlternate | J Am Stat Assoc |
| PublicationYear | 2012 |
| Publisher | Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis Group |
| References | CIT0010 CIT0012 CIT0011 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 Benjamini Y. (CIT0002) 1995; 57 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0015 doi: 10.1214/009053607000000046 – ident: CIT0017 doi: 10.1214/009053604000000283 – ident: CIT0021 doi: 10.1111/j.1467-9868.2005.00509.x – ident: CIT0012 doi: 10.1214/10-AOS798 – ident: CIT0013 doi: 10.1111/j.1467-9469.2006.00530.x – ident: CIT0022 doi: 10.1007/978-1-4615-7821-5_13 – ident: CIT0004 doi: 10.1111/j.1467-9868.2010.00764.x – ident: CIT0014 doi: 10.1214/009053606000000425 – ident: CIT0026 doi: 10.1111/1467-9868.00346 – ident: CIT0023 doi: 10.1214/aos/1176346793 – ident: CIT0011 doi: 10.1198/016214501753382273 – ident: CIT0008 doi: 10.1198/016214506000001211 – ident: CIT0016 doi: 10.1198/jasa.2009.tm08332 – ident: CIT0007 doi: 10.1093/hmg/ddi404 – ident: CIT0027 doi: 10.1111/j.1467-9868.2004.00439.x – ident: CIT0028 doi: 10.1111/j.1467-9868.2008.00694.x – ident: CIT0006 doi: 10.1016/j.spl.2010.09.025 – ident: CIT0009 doi: 10.1198/jasa.2010.tm09129 – ident: CIT0019 doi: 10.1307/mmj/1029003816 – ident: CIT0018 doi: 10.1073/pnas.0808709105 – ident: CIT0024 doi: 10.1214/10-AOS847 – volume: 57 start-page: 289 year: 1995 ident: CIT0002 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: CIT0010 doi: 10.1111/j.1467-9868.2011.01005.x – ident: CIT0025 doi: 10.1214/aos/1015362192 – ident: CIT0005 doi: 10.1214/07-AOS557 – ident: CIT0001 doi: 10.1111/j.1540-6261.2009.01527.x – ident: CIT0003 doi: 10.1214/aos/1013699998 – ident: CIT0020 doi: 10.1111/j.1467-9469.2005.00488.x |
| SSID | ssj0000788 |
| Score | 2.48924 |
| Snippet | Multiple hypothesis testing is a fundamental problem in high-dimensional inference, with wide applications in many scientific fields. In genome-wide... Multiple hypothesis testing is a fundamental problem in high dimensional inference, with wide applications in many scientific fields. In genome-wide... |
| SourceID | pubmedcentral proquest pubmed crossref jstor informaworld fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1019 |
| SubjectTerms | Applied statistics Arbitrary dependence structure Correlations Covariance Covariance matrices Estimate reliability Estimation methods Estimators False discovery rate Genome-wide association studies genome-wide association study High-dimensional inference Multiple hypothesis testing Null hypothesis Random variables single nucleotide polymorphism Statistical variance Theory and Methods |
| Title | Estimating False Discovery Proportion Under Arbitrary Covariance Dependence |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2012.720478 https://www.jstor.org/stable/23427406 https://www.ncbi.nlm.nih.gov/pubmed/24729644 https://www.proquest.com/docview/1803109392 https://www.proquest.com/docview/1826600823 https://pubmed.ncbi.nlm.nih.gov/PMC3983872 |
| Volume | 107 |
| WOSCitedRecordID | wos000309793400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 1537-274X databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8B4oGXMbYxsg0UpL16S-wkdh4noJo0CSEBWt8sxx-s0pSitiDx3-_OSUqLNiZtb_mwndp3tn9X3_0O4GOpmpD73DPeuMCKImTM8MyzsjKlEYUJKjcx2YQ8P1fjcX2xEsVPbpVkQ4eOKCKu1TS5TTMfPOI-I0ohfm0KM8n5J8qyIinaF4E9-fRdjb4_LsUyJp6kCoxqDLFzf2hkbW_aDGb6hL908Fn8HRp96lS5skuNdv-_fy_hRY9Q0y-dSu3Bhm9fwQ6B0o7T-TV8O8MLQrrtTTpC9fXp6WRuyRf0Ib2grAszknYaUyphO80khvanJ9N7NMxJy9LTPvWu9W_genR2dfKV9UkZmEVTZcGqwJ3MnKvQdMTJm1cueB9EkKGsrRVoHeWqEviUF0KFMguldKIpGpS799xlYh-22mnrDyAlKr46E9Y6ybGLWe2tcNIZV9vSIMxIQAzi0LZnLKfEGT91PhCb9iOlaaR0N1IJsGWt246x4y_lD1DS2tzgoqqvLzlR7hEQxY06AbUqfr2If6KELuOJFs-3uh9VZfkTuCi4RPSUwPGgOxpnMh3PmNZP7-Y6V5GmFQHrc2UQUMXT0QTedvr2-IVC0hl6kYBc08RlAWISX3_TTn5ERnFRK6Ekf_fv_X0PO3TXed99gK3F7M4fwra9R92cHcGmHKujODd_AT7aMWU |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5iA4m9cB8L1yDxakjsJHYe0bZqaKOaRCf2Zjm-bJVQitpuEv-ec5ykWycYEuKtamy39jm2vxMffx_A-1I1Ife5Z7xxgRVFyJjhmWdlZUojChNUbqLYhByP1elpfdxnEy76tEqKoUNHFBHXaprc9DJ6SIn7iDCFCLbpnknOP5DMilQbcJfE6Sj-moy-XS3GMkpPUg1GVYbbc39oZW132ghmdoPBdMha_B0evZlWeW2fGj38Dz18BA96kJp-6rzqMdzx7RPYIlza0To_hcN9_EBgtz1LR-jBPt2bLiylg_5Mj0l4YU4GT6OqErbTTOPt_nR3domxOTlauter71r_DE5G-5PdA9brMjCL0cqSVYE7mTlXYfSI8zevXPA-iCBDWVsrMEDKVSXwW14IFcoslNKJpmjQ9N5zl4lt2Gxnrd-BlNj46kxY6yTHLma1t8JJZ1xtS4NIIwEx2EPbnrSctDO-63zgNu1HStNI6W6kEmCrWj860o6_lN9BU2tzhuuqPvnKiXWPsCju1Qmo6_bXy_geJXSiJ1rc3up29JXVX-Ci4BIBVALvBufROJnphMa0fnax0LmKTK2IWW8rg5gqHpAm8LxzuKtfKCQdoxcJyDVXXBUgMvH1J-30PJKKi1oJJfmLf-_vW7h_MPlypI8-jw9fwhY96ZLxXsHmcn7hX8M9e4l-On8Tp-gvOCU0oA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iG0J7YeMyFq5B4jWQ2EnsPKJ1EWioqsQm9mY5vmyVUDp13ST-Pec4SddObEjwVjW2G_sc29-pj78P4EMhG5-5zCWssT7Jc58mmqUuKUpdaJ5rLzMdxCbEeCxPT6vJyi1-SqukGNp3RBFhrabJfWH9kBH3CVEK8WvTNZOMfSSVFSE3YAuRc0F-fVz_uFmLRVCepBoJVRkuz93RytrmtOH17BaB6ZC0-Cc4ejurcmWbqnf-v4O78LiHqPHnzqeewAPXPoVtQqUdqfMzODrEDwR127O4Rv918Wh6aSgZ9Fc8IdmFOZk7DppK2E4zDXf744PZNUbm5GbxqNfeNe45nNSHxwdfkl6VITEYqyyS0jMrUmtLjB1x9mal9c557oUvKmM4hkeZLDl-y3IufZH6Qlje5A0a3jlmU74Hm-2sdfsQExdflXJjrGDYxbRyhlthta1MoRFnRMAHcyjTU5aTcsZPlQ3Mpv1IKRop1Y1UBMmy1kVH2fGX8vtoaaXPcFVVJ98Zce4REsWdOgK5an61CP-i-E7yRPH7W90LrrJ8BcZzJhA-RfB-8B2FU5nOZ3TrZleXKpOBpxUR631lEFGF49EIXnT-dvMLuaBD9DwCseaJywJEJb7-pJ2eB0pxXkkuBXv57_19B48mo1p9-zo-egXb9KDLxHsNm4v5lXsDD801uun8bZigvwFjWDNS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+False+Discovery+Proportion+Under+Arbitrary+Covariance+Dependence&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Fan%2C+Jianqing&rft.au=Han%2C+Xu&rft.au=Gu%2C+Weijie&rft.date=2012-09-01&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=107&rft.issue=499&rft.spage=1019&rft.epage=1035&rft_id=info:doi/10.1080%2F01621459.2012.720478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2012_720478 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon |