Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales

Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum , with 35; Rotala , with 45; Nesaea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC plant biology Jg. 19; H. 1; S. 281
Hauptverfasser: Gu, Cuihua, Ma, Li, Wu, Zhiqiang, Chen, Kai, Wang, Yixiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 26.06.2019
BioMed Central Ltd
BMC
Schlagworte:
ISSN:1471-2229, 1471-2229
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum , with 35; Rotala , with 45; Nesaea , with 50; Lagerstroemia , with 56; and Cuphea , with 275 species. Results We reported six newly sequenced chloroplast (cp) genomes ( Duabanga grandiflora , Trapa natans , Lythrum salicaria , Lawsonia inermis , Woodfordia fruticosa and Rotala rotundifolia ) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211–332 simple sequence repeats (SSRs) in six categories and 7–27 long repeats in four categories. We selected ten divergent hotspots ( ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR ) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. Conclusions The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study.
AbstractList Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum , with 35; Rotala , with 45; Nesaea , with 50; Lagerstroemia , with 56; and Cuphea , with 275 species. Results We reported six newly sequenced chloroplast (cp) genomes ( Duabanga grandiflora , Trapa natans , Lythrum salicaria , Lawsonia inermis , Woodfordia fruticosa and Rotala rotundifolia ) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211–332 simple sequence repeats (SSRs) in six categories and 7–27 long repeats in four categories. We selected ten divergent hotspots ( ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR ) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. Conclusions The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study.
Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species. We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211-332 simple sequence repeats (SSRs) in six categories and 7-27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study.
BACKGROUND: Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species. RESULTS: We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211–332 simple sequence repeats (SSRs) in six categories and 7–27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. CONCLUSIONS: The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study.
Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species.BACKGROUNDLythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species.We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211-332 simple sequence repeats (SSRs) in six categories and 7-27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales.RESULTSWe reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211-332 simple sequence repeats (SSRs) in six categories and 7-27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales.The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study.CONCLUSIONSThe study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study.
Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species. We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211-332 simple sequence repeats (SSRs) in six categories and 7-27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study.
Abstract Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species. Results We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211–332 simple sequence repeats (SSRs) in six categories and 7–27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. Conclusions The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study.
Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species. Results We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211-332 simple sequence repeats (SSRs) in six categories and 7-27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. Conclusions The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study. Keywords: Lythraceae, Chloroplast genome, Phylogenomic, Myrtales
ArticleNumber 281
Audience Academic
Author Chen, Kai
Gu, Cuihua
Wu, Zhiqiang
Ma, Li
Wang, Yixiang
Author_xml – sequence: 1
  givenname: Cuihua
  surname: Gu
  fullname: Gu, Cuihua
  email: gucuihua@zafu.edu.cn
  organization: School of Landscape and Architecture, Zhejiang A&F University
– sequence: 2
  givenname: Li
  surname: Ma
  fullname: Ma, Li
  organization: School of Landscape and Architecture, Zhejiang A&F University
– sequence: 3
  givenname: Zhiqiang
  surname: Wu
  fullname: Wu, Zhiqiang
  organization: Department of Biology, Colorado State University
– sequence: 4
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  organization: School of Landscape and Architecture, Zhejiang A&F University
– sequence: 5
  givenname: Yixiang
  surname: Wang
  fullname: Wang, Yixiang
  organization: School of Environment and Resources, Zhejiang A&F University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31242865$$D View this record in MEDLINE/PubMed
BookMark eNqNksuO0zAUhiM0iLnAA7BBltjAooPtOI7DAmlUcalUhMRlbTnOcevKiYOdFvoiPC9OU0ZThEbIi1jH3_8f5_i_zM4630GWPSX4mhDBX0VCRYlnmFQzMm7yB9kFYSWZUUqrszv78-wyxg3GpBSsepSd54QyKnhxkf2a-7ZXQQ12B0h1yu0jROQN0mvng--digNaQefbVDbBt4hStNwP66A0KECxB20hvka2MxCg0yPmA-rXe-eTDgarUQCXGvgurm0fU5fm6Ihg5912PEE_7LC2Hfq4D4NyEB9nD41yEZ4cv1fZt3dvv84_zJaf3i_mN8uZ5owOMy4qzXmuNANqCAcsKANhjC4Nb0yNMTNQUqq5LlVT5wWpjCZa1JoRzgpR5lfZYvJtvNrIPthWhb30yspDwYeVVCH9ggNpWFWDKGmlas4wLmtVY8OaqjIFww2I5PVm8uq3dQuNhm4Iyp2Ynp50di1Xfid5URW8Gg1eHA2C_76FOMjWRg3OqQ78Nkqa44IIKor_QCkTeUnZwfX5hK7SYGV6Jp-a6xGXN0WVEkR5mSfq-h9UWg20VqfYGZvqJ4KXJ4LEDPBzWKltjHLx5fMp--zuZG5H8ieGCSAToIOPMYC5RQiWY9TlFHWZoi7HqMvRtPxLo-1wiFm6uXX3KumkjKlLt4IgN34bUvbjPaLfSPIUhg
CitedBy_id crossref_primary_10_3390_f13020280
crossref_primary_10_3389_fgene_2021_602528
crossref_primary_10_1002_ece3_7183
crossref_primary_10_1080_23802359_2020_1735966
crossref_primary_10_3390_agronomy12122972
crossref_primary_10_1186_s12870_021_02985_9
crossref_primary_10_1016_j_indcrop_2023_117570
crossref_primary_10_3389_fpls_2023_1148303
crossref_primary_10_3390_life12010092
crossref_primary_10_1038_s41598_021_88160_4
crossref_primary_10_3846_jeelm_2022_16303
crossref_primary_10_1111_jse_12854
crossref_primary_10_3390_genes13112043
crossref_primary_10_3390_plants8100386
crossref_primary_10_1038_s41598_021_91071_z
crossref_primary_10_1186_s12864_024_09996_4
crossref_primary_10_1186_s12864_022_08755_7
crossref_primary_10_1186_s12864_021_07769_x
crossref_primary_10_3390_ijms232012567
crossref_primary_10_3390_cimb46020106
crossref_primary_10_1038_s41598_022_16290_4
crossref_primary_10_1016_j_gene_2023_147488
crossref_primary_10_1016_j_pld_2020_09_005
crossref_primary_10_3390_plants11243544
crossref_primary_10_3390_f13111942
crossref_primary_10_3390_ijms25010184
crossref_primary_10_1007_s10265_022_01417_5
crossref_primary_10_1186_s12862_022_02010_z
crossref_primary_10_3389_fgene_2020_00729
crossref_primary_10_3389_fpls_2021_691833
crossref_primary_10_3389_fgene_2020_00802
crossref_primary_10_1016_j_pld_2021_05_004
crossref_primary_10_3390_genes13081425
crossref_primary_10_1007_s10722_024_02002_6
crossref_primary_10_3389_fgene_2024_1378403
crossref_primary_10_1080_23802359_2020_1764401
crossref_primary_10_1016_j_hpj_2022_06_005
crossref_primary_10_1186_s12870_022_03608_7
crossref_primary_10_1002_tax_13028
crossref_primary_10_1186_s12870_024_04776_4
crossref_primary_10_1080_23802359_2021_1927873
crossref_primary_10_3390_biology12070936
crossref_primary_10_1186_s12870_025_06350_y
crossref_primary_10_3390_f13040626
crossref_primary_10_1002_ajb2_1699
crossref_primary_10_1186_s12864_022_08868_z
crossref_primary_10_1080_23802359_2021_1976690
crossref_primary_10_1080_23802359_2020_1756958
crossref_primary_10_1080_23802359_2021_1914520
crossref_primary_10_1007_s42535_021_00199_w
crossref_primary_10_3390_plants9020286
crossref_primary_10_1080_23802359_2023_2203783
crossref_primary_10_1186_s12870_021_03315_9
crossref_primary_10_3389_fgene_2022_878182
crossref_primary_10_1186_s12870_024_05665_6
crossref_primary_10_1371_journal_pone_0263310
crossref_primary_10_3390_f12060710
crossref_primary_10_3389_fgene_2021_772415
crossref_primary_10_1080_23802359_2022_2158691
crossref_primary_10_1093_aob_mcad091
crossref_primary_10_1002_fedr_202100052
crossref_primary_10_12677_BR_2022_112026
crossref_primary_10_1016_j_ccmp_2021_100002
crossref_primary_10_1007_s10530_024_03251_3
Cites_doi 10.1111/j.1471-8286.2007.01884.x
10.1007/s12686-016-0677-x
10.1371/journal.pone.0019954
10.1002/j.1537-2197.1996.tb12700.x
10.1093/nar/gkh458
10.7717/peerj.2715
10.1111/tpj.14208
10.1093/dnares/dsr002
10.1038/s41598-017-06210-2
10.1111/j.1095-8339.1993.tb00326.x
10.1371/journal.pone.0057607
10.1371/journal.pone.0080508
10.3389/fpls.2015.00586
10.1002/j.1537-2197.1990.tb13543.x
10.2307/1223300
10.1371/journal.pone.0150752
10.1371/journal.pone.0129930
10.2307/2399158
10.1146/annurev-genet-120215-035349
10.1093/molbev/mst064
10.3390/molecules23040846
10.3390/ijms19041050
10.1093/bioinformatics/btg359
10.1007/s11103-011-9762-4
10.1093/bioinformatics/btm598
10.1186/1471-2164-8-174
10.1007/s00122-006-0226-1
10.1002/j.1537-2197.1987.tb08687.x
10.1093/bioinformatics/btm404
10.1086/674316
10.1007/s00425-017-2781-x
10.1093/nar/29.22.4633
10.2307/2419432
10.1007/BF02869011
10.1371/journal.pone.0192956
10.1016/j.ympev.2008.04.039
10.1111/j.1438-8677.1979.tb00329.x
10.1093/bioinformatics/17.8.754
10.1038/s41598-017-17765-5
10.3390/molecules23020437
10.1007/PL00013926
10.1086/338392
10.1371/journal.pone.0012762
10.1016/j.ympev.2004.12.023
10.1093/bioinformatics/bth352
10.1186/s12870-015-0619-x
10.1371/journal.pone.0001386
10.1093/molbev/mst197
10.1093/bioinformatics/btp187
10.1080/23802359.2018.1547140
10.3390/genes9100503
10.1371/journal.pone.0035071
10.3390/ijms131012608
10.1038/s41598-017-07891-5
10.3389/fpls.2017.01583
10.1186/s12862-015-0405-2
10.3390/ijms19020525
10.2307/1223775
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s12870-019-1870-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
EISSN 1471-2229
EndPage 281
ExternalDocumentID oai_doaj_org_article_f49be8729ab64007bab0f4d99f540de8
PMC6595698
A591282673
31242865
10_1186_s12870_019_1870_3
Genre Journal Article
Comparative Study
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: (No. 31770681, 31370641)
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LY17C160003
– fundername: National Natural Science Foundation of China
  grantid: (No. 31770681, 31370641)
– fundername: ;
  grantid: (No. 31770681, 31370641)
– fundername: ;
  grantid: LY17C160003
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X2
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESTFP
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IGH
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M0K
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c642t-689c663ac4e2f16e0824e8ffc7f6dfb004fe722c6c7adb3519fc1c8bc41645873
IEDL.DBID DOA
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473020900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2229
IngestDate Fri Oct 03 12:42:13 EDT 2025
Tue Nov 04 01:57:35 EST 2025
Fri Sep 05 12:58:17 EDT 2025
Sun Nov 09 14:32:12 EST 2025
Sat Nov 29 13:31:43 EST 2025
Sat Nov 29 10:23:40 EST 2025
Wed Nov 26 10:21:11 EST 2025
Wed Feb 19 02:01:19 EST 2025
Sat Nov 29 05:59:41 EST 2025
Tue Nov 18 22:29:36 EST 2025
Sat Sep 06 07:21:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lythraceae
Myrtales
Phylogenomic
Chloroplast genome
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-689c663ac4e2f16e0824e8ffc7f6dfb004fe722c6c7adb3519fc1c8bc41645873
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://doaj.org/article/f49be8729ab64007bab0f4d99f540de8
PMID 31242865
PQID 2248372498
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_f49be8729ab64007bab0f4d99f540de8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6595698
proquest_miscellaneous_2305182858
proquest_miscellaneous_2248372498
gale_infotracmisc_A591282673
gale_infotracacademiconefile_A591282673
gale_incontextgauss_ISR_A591282673
pubmed_primary_31242865
crossref_primary_10_1186_s12870_019_1870_3
crossref_citationtrail_10_1186_s12870_019_1870_3
springer_journals_10_1186_s12870_019_1870_3
PublicationCentury 2000
PublicationDate 2019-06-26
PublicationDateYYYYMMDD 2019-06-26
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-26
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC plant biology
PublicationTitleAbbrev BMC Plant Biol
PublicationTitleAlternate BMC Plant Biol
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References R Dahlgren (1870_CR1) 1984; 71
C Chen (1870_CR37) 2006; 112
N Scarcelli (1870_CR24) 2011; 6
SA Graham (1870_CR3) 1998; 47
APA Menezes (1870_CR51) 2018; 8
Z Wu (1870_CR54) 2015; 10
GC Conant (1870_CR56) 2008; 24
W Dong (1870_CR43) 2012; 7
J Rozas (1870_CR62) 2003; 19
A Graham (1870_CR14) 1990; 77
CH Gu (1870_CR8) 2017; 9
LA Raubeson (1870_CR36) 2007; 8
X Xia (1870_CR58) 2013; 30
K Tamura (1870_CR61) 2013; 30
E Conti (1870_CR4) 1996; 83
Alejandra B. Méndez-Leyva (1870_CR20) 2019; 4
Y Yang (1870_CR41) 2016; 7
S Kurtz (1870_CR63) 2001; 29
E Conti (1870_CR5) 1997; 22
M Rogalski (1870_CR21) 2015; 6
A Piot (1870_CR49) 2018; 247
J Qian (1870_CR32) 2013; 8
SA Graham (1870_CR12) 2014; 175
YL Huang (1870_CR17) 2002; 163
YP Du (1870_CR42) 2017; 7
MP Simmons (1870_CR67) 2008; 48
L Doorduin (1870_CR38) 2011; 18
BC Faircloth (1870_CR64) 2008; 8
JP Huelsenbeck (1870_CR66) 2001; 17
C Xu (1870_CR11) 2017; 8
LA Cauzsantos (1870_CR57) 2017; 8
A Graham (1870_CR13) 1987; 74
S Asaf (1870_CR19) 2017; 7
M Reginato (1870_CR26) 2016; 4
Y Zhang (1870_CR40) 2016; 7
P Erixon (1870_CR48) 2008; 3
RM Redwan (1870_CR33) 2015; 15
SK Wyman (1870_CR55) 2004; 20
CH Gu (1870_CR9) 2018; 23
T Ren (1870_CR44) 2018; 19
AG Nazareno (1870_CR50) 2015; 10
SH Shi (1870_CR6) 2000; 113
N Tian (1870_CR28) 2018; 13
N Ronsted (1870_CR22) 2005; 35
MA Larkin (1870_CR65) 2007; 23
CH Gu (1870_CR34) 2016; 9
AM Bolger (1870_CR53) 2014; 30
YD Gao (1870_CR25) 2015; 15
J Chen (1870_CR30) 2015; 6
S Wicke (1870_CR45) 2011; 76
W Ying (1870_CR27) 2016; 7
KA Frazer (1870_CR59) 2004; 32
P Librado (1870_CR60) 2009; 25
H Daniell (1870_CR18) 2016; 50
Alissa M. Williams (1870_CR47) 2019; 98
RF Thorne (1870_CR7) 2000; 66
CH Gu (1870_CR31) 2018; 19
H Zhang (1870_CR46) 2013; 8
P Baas (1870_CR15) 1979; 28
J Zhou (1870_CR29) 2018; 23
X Zhang (1870_CR52) 2017; 8
CH Gu (1870_CR10) 2016; 11
SA Graham (1870_CR16) 1993; 42
Nunzio D’Agostino (1870_CR23) 2018; 9
M Yang (1870_CR35) 2010; 5
S He (1870_CR39) 2012; 13
SA Graham (1870_CR2) 1993; 113
References_xml – volume: 8
  start-page: 92
  year: 2008
  ident: 1870_CR64
  publication-title: Mol Ecol Resour
  doi: 10.1111/j.1471-8286.2007.01884.x
– volume: 9
  start-page: 357
  year: 2017
  ident: 1870_CR8
  publication-title: Conserv Genet Resour
  doi: 10.1007/s12686-016-0677-x
– volume: 7
  start-page: 280
  year: 2016
  ident: 1870_CR27
  publication-title: Front Plant Sci
– volume: 6
  start-page: e19954
  year: 2011
  ident: 1870_CR24
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019954
– volume: 30
  start-page: 2114
  year: 2014
  ident: 1870_CR53
  publication-title: Bio-informatics.
– volume: 8
  start-page: 334
  year: 2017
  ident: 1870_CR57
  publication-title: Front Plant Sci
– volume: 83
  start-page: 221
  year: 1996
  ident: 1870_CR4
  publication-title: Am J Bot
  doi: 10.1002/j.1537-2197.1996.tb12700.x
– volume: 32
  start-page: 273
  year: 2004
  ident: 1870_CR59
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh458
– volume: 4
  start-page: e2715
  year: 2016
  ident: 1870_CR26
  publication-title: Peer j
  doi: 10.7717/peerj.2715
– volume: 98
  start-page: 243
  issue: 2
  year: 2019
  ident: 1870_CR47
  publication-title: The Plant Journal
  doi: 10.1111/tpj.14208
– volume: 18
  start-page: 93
  year: 2011
  ident: 1870_CR38
  publication-title: DNA Res
  doi: 10.1093/dnares/dsr002
– volume: 7
  start-page: 5751
  year: 2017
  ident: 1870_CR42
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-06210-2
– volume: 113
  start-page: 1
  year: 1993
  ident: 1870_CR2
  publication-title: Bot J Linn Soc
  doi: 10.1111/j.1095-8339.1993.tb00326.x
– volume: 8
  start-page: e57607
  year: 2013
  ident: 1870_CR32
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057607
– volume: 7
  start-page: 57
  year: 2016
  ident: 1870_CR41
  publication-title: Front Plant Sci
– volume: 8
  start-page: e80508
  year: 2013
  ident: 1870_CR46
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0080508
– volume: 6
  start-page: 586
  year: 2015
  ident: 1870_CR21
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00586
– volume: 77
  start-page: 159
  year: 1990
  ident: 1870_CR14
  publication-title: Am J Bot
  doi: 10.1002/j.1537-2197.1990.tb13543.x
– volume: 42
  start-page: 35
  year: 1993
  ident: 1870_CR16
  publication-title: Taxon.
  doi: 10.2307/1223300
– volume: 11
  start-page: e0150752
  year: 2016
  ident: 1870_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150752
– volume: 10
  start-page: e0129930
  year: 2015
  ident: 1870_CR50
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0129930
– volume: 71
  start-page: 633
  year: 1984
  ident: 1870_CR1
  publication-title: Ann Mo Bot Gard
  doi: 10.2307/2399158
– volume: 50
  start-page: 595
  year: 2016
  ident: 1870_CR18
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-120215-035349
– volume: 30
  start-page: 1720
  year: 2013
  ident: 1870_CR58
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst064
– volume: 23
  start-page: 846
  year: 2018
  ident: 1870_CR9
  publication-title: Molecules.
  doi: 10.3390/molecules23040846
– volume: 19
  start-page: 1050
  year: 2018
  ident: 1870_CR44
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19041050
– volume: 19
  start-page: 2496
  year: 2003
  ident: 1870_CR62
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btg359
– volume: 76
  start-page: 273
  year: 2011
  ident: 1870_CR45
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-011-9762-4
– volume: 24
  start-page: 861
  year: 2008
  ident: 1870_CR56
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btm598
– volume: 8
  start-page: 174
  year: 2007
  ident: 1870_CR36
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-174
– volume: 112
  start-page: 1248
  year: 2006
  ident: 1870_CR37
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0226-1
– volume: 74
  start-page: 829
  year: 1987
  ident: 1870_CR13
  publication-title: Am J Bot
  doi: 10.1002/j.1537-2197.1987.tb08687.x
– volume: 23
  start-page: 2947
  year: 2007
  ident: 1870_CR65
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btm404
– volume: 10
  start-page: 1
  year: 2015
  ident: 1870_CR54
  publication-title: PLoS One
– volume: 9
  start-page: 1
  year: 2016
  ident: 1870_CR34
  publication-title: Conserv Genet Resour
– volume: 175
  start-page: 39
  year: 2014
  ident: 1870_CR12
  publication-title: Int J Plant Sci
  doi: 10.1086/674316
– volume: 7
  start-page: 306
  year: 2016
  ident: 1870_CR40
  publication-title: Front Plant Sci
– volume: 247
  start-page: 255
  year: 2018
  ident: 1870_CR49
  publication-title: Planta.
  doi: 10.1007/s00425-017-2781-x
– volume: 29
  start-page: 4633
  year: 2001
  ident: 1870_CR63
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.22.4633
– volume: 22
  start-page: 629
  year: 1997
  ident: 1870_CR5
  publication-title: Syst Bot
  doi: 10.2307/2419432
– volume: 66
  start-page: 441
  year: 2000
  ident: 1870_CR7
  publication-title: Bot Rev
  doi: 10.1007/BF02869011
– volume: 13
  start-page: e0192956
  year: 2018
  ident: 1870_CR28
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0192956
– volume: 48
  start-page: 745
  year: 2008
  ident: 1870_CR67
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2008.04.039
– volume: 28
  start-page: 117
  year: 1979
  ident: 1870_CR15
  publication-title: Acta Bot Neerl
  doi: 10.1111/j.1438-8677.1979.tb00329.x
– volume: 17
  start-page: 754
  year: 2001
  ident: 1870_CR66
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/17.8.754
– volume: 8
  start-page: 1
  year: 2018
  ident: 1870_CR51
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-17765-5
– volume: 23
  start-page: 437
  year: 2018
  ident: 1870_CR29
  publication-title: Molecules.
  doi: 10.3390/molecules23020437
– volume: 113
  start-page: 253
  year: 2000
  ident: 1870_CR6
  publication-title: J Plant Res
  doi: 10.1007/PL00013926
– volume: 163
  start-page: 215
  year: 2002
  ident: 1870_CR17
  publication-title: Int J Plant Sci
  doi: 10.1086/338392
– volume: 6
  start-page: 447
  year: 2015
  ident: 1870_CR30
  publication-title: Front Plant Sci
– volume: 8
  start-page: 15
  year: 2017
  ident: 1870_CR11
  publication-title: Front Plant Sci
– volume: 5
  start-page: e12762
  year: 2010
  ident: 1870_CR35
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012762
– volume: 35
  start-page: 509
  year: 2005
  ident: 1870_CR22
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2004.12.023
– volume: 20
  start-page: 3252
  year: 2004
  ident: 1870_CR55
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bth352
– volume: 15
  start-page: 294
  year: 2015
  ident: 1870_CR33
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-015-0619-x
– volume: 3
  start-page: e1386
  year: 2008
  ident: 1870_CR48
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001386
– volume: 30
  start-page: 2725
  year: 2013
  ident: 1870_CR61
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst197
– volume: 25
  start-page: 1451
  year: 2009
  ident: 1870_CR60
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp187
– volume: 4
  start-page: 253
  issue: 1
  year: 2019
  ident: 1870_CR20
  publication-title: Mitochondrial DNA Part B
  doi: 10.1080/23802359.2018.1547140
– volume: 9
  start-page: 503
  issue: 10
  year: 2018
  ident: 1870_CR23
  publication-title: Genes
  doi: 10.3390/genes9100503
– volume: 7
  start-page: e35071
  year: 2012
  ident: 1870_CR43
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035071
– volume: 13
  start-page: 12608
  year: 2012
  ident: 1870_CR39
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms131012608
– volume: 7
  start-page: 7556
  year: 2017
  ident: 1870_CR19
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-07891-5
– volume: 8
  start-page: 1583
  year: 2017
  ident: 1870_CR52
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01583
– volume: 15
  start-page: 147
  year: 2015
  ident: 1870_CR25
  publication-title: BMC Evol Biol
  doi: 10.1186/s12862-015-0405-2
– volume: 19
  start-page: 525
  year: 2018
  ident: 1870_CR31
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19020525
– volume: 47
  start-page: 435
  year: 1998
  ident: 1870_CR3
  publication-title: Taxon.
  doi: 10.2307/1223775
SSID ssj0017849
Score 2.495816
Snippet Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs,...
Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and...
Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs,...
BACKGROUND: Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs,...
Abstract Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 281
SubjectTerms Agriculture
Analysis
Bayesian theory
Biomedical and Life Sciences
Chloroplast genome
Chloroplasts
Comparative analysis
Cuphea
DNA
DNA barcoding
Duabanga
Evolution, Molecular
family
Genes
Genetic aspects
Genetic research
Genome, Chloroplast
Genome, Plant
Genomes
Genomics
Genomics and evolution
Geraniales
Lagerstroemia
Lawsonia inermis
Life Sciences
Lythraceae
Lythraceae - genetics
Lythrum salicaria
Melastomataceae
Myrtaceae
Myrtales
Natural history
Onagraceae
Phylogenomic
Phylogeny
Plant Sciences
Research Article
Rotala rotundifolia
Sequence Alignment
species
Trapa natans
Tree Biology
Woodfordia fruticosa
SummonAdditionalLinks – databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdg7AEe-BhfhYEMQkICRSSu4w_etokJJJjQBmhvluPYbSVIqqSd1H-Ev5e71ClkwCR4i-JLXF9857ve3e8IeZYJy0MudZIqbxOepSpRBcNwoZZ5nkvGbeiaTcijI3V6qj_GOu62z3bvQ5Kdpu7EWolXbYYxOXB9dZLhxfgyuQKnncJ-DccnXzahA6m4juHLPz42OIA6nP7ftfEvx9H5VMlz8dLuGDq88V8LuEmuR6uT7q23yS1yyVc75NrepInIG36HbO_XYCeubpPvBz8BwantMEt8S-tA3RR8-3oO5vaCIrTrN7iN1SmUMfp-tZg21nnrKdZugvv9ms76WkIgqxsK3xP0LKhW-A206XPwprN5C7OU8Y3Un0VZoPgP8ayiH1boH_j2Dvl8-ObTwdskdm9IHPg0i0Qo7cCcsY57FjLhwdbgXoXgZBBlQG0RvGTMCSdtWWCfwOAypwoHJiLPlRzfJVtVXfn7hJZp6qSyGsgDD6q0vlC58EpZ7EbO-Iik_Sc1LkKbY4eNr6ZzcZQwa94b4L1B3pvxiLzYPDJf43pcRLyP-2RDiJDc3Y26mZgo4SZwXXgFvootBDabL2yRBl5qHcAoLr0akae4ywyCblSY1TOxy7Y1706OzV6uYUomJMz0PBKFGlbgbCySAD4gTteAcndACVrBDYaf9JvZ4BCm0lW-XrYGbDY1BhnU6gIaOAUyxDYEmntrAdgsfgwWIZYzj4gciMaAO8ORajbtgMsRu1LgvC97ATFRY7Z_Z_6Df6J-SK4ylLBUJEzskq1Fs_SPyLY7W8za5nGnKX4A3nlm3A
  priority: 102
  providerName: Springer Nature
Title Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales
URI https://link.springer.com/article/10.1186/s12870-019-1870-3
https://www.ncbi.nlm.nih.gov/pubmed/31242865
https://www.proquest.com/docview/2248372498
https://www.proquest.com/docview/2305182858
https://pubmed.ncbi.nlm.nih.gov/PMC6595698
https://doaj.org/article/f49be8729ab64007bab0f4d99f540de8
Volume 19
WOSCitedRecordID wos000473020900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: M0K
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdg7IEXxDeFURmEhASKlqSOP3hbp01M0KrqAJUny3FsWgmSqmkn9R_h7-UuH2UZYrzwErXxtW585_Pvat_vCHkVccN8IlQQSmcCFoUykGmM24VKJEkiYmZ8VWxCjMdyNlOTS6W-8ExYTQ9cD9yhZyp1EiCgSTnW8E5NGnqWKeUBa2SuSvMNhWqDqWb_QEimmj3MSPLDMsL9PAibVRDhi0FnFarI-v90yZfWpKvnJa9smlZr0eldcqcBkfSo_vH3yA2X3yf7wwKA3vYB-Xn8m9Gbmop0xJW08NTOITgvloCX1xS5WX_AbUwvoXFMP27X85WxzjiKyZcQP7-jizYZEMSKFQWFgKME3wi90lV7iG6-WJbQS9Z8I3UXjTFT_It3kdPRFgG-Kx-Sz6cnn47fB035hcBCULIOuFQW8IixzMU-4g7AAnPSeys8zzxOd-9EHFtuhclSLPTnbWRlagHjsUSKwSOylxe5e0JoFoZWSKNA3DMvM-NSmXAnpcFy4jHrkbBVh7YNNzmWyPiuqxhFcl1rUIMGNWpQD3rkze4jy5qY4zrhIep4J4ic2tUNsDTdWJr-l6X1yEu0EI2sGTkey_lmNmWpz86n-ihR0GXMBfT0uhHyBTyBNU2WA4wDEm11JA86kjCtbaf5RWuIGpvwLFzuik2pAXTJAUwiJa-RATceITkhyDyujXf38AOAdJiP3COiY9ad0em25It5xTyO5JMc-33bTgDduLzy74P_9H8M_jNyO8bpG_Ig5gdkb73auOdk316sF-WqT26Kmaiusk9uDU_Gk2m_cghwHYUf8Com0DI5G02-wrvp-ZdfLtBnQQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgTAIe-BhfhQEGISGBIpLU8Qdv3cS0iW5C20B7sxzHXitBMiXtpP4j_L3cpU4hAybBWxRf4vriO9_17n5HyKuEG-YzoaJYOhOxJJaRzFMMFyqRZZlImfFtswlxcCBPTtSnUMfddNnuXUiy1dStWEv-rkkwJgeur4oSvBheJdcYHFgImH949GUVOhCSqRC-_ONjvQOoxen_XRv_chxdTJW8EC9tj6Gd2_-1gDvkVrA66Wi5Te6SK67cIDdHp3VA3nAbZH2rAjtxcY983_4JCE5Ni1niGlp5aifg21dnYG7PKEK7foPbWJ1C05SOF7NJbawzjmLtJrjf7-m0qyUEsqqm8D1Bz4Jqhd9A6y4HbzI9a2CWIryRuvMgCxT_IZ6WdH-B_oFr7pPPOx-Ot3ej0L0hsuDTzCIulQVzxljmUp9wB7YGc9J7KzwvPGoL70SaWm6FKXLsE-htYmVuwURkmRTDB2StrEr3iNAijq2QRgG5Z14WxuUy405Kg93IUzYgcfdJtQ3Q5thh46tuXRzJ9ZL3Gnivkfd6OCBvVo-cLXE9LiPewn2yIkRI7vZGVZ_qIOHaM5U7Cb6KyTk2m89NHntWKOXBKC6cHJCXuMs0gm6UmNVzauZNo_eODvUoUzBlygXM9DoQ-QpWYE0okgA-IE5Xj3KzRwlawfaGX3SbWeMQptKVrpo3Gmw2OQQZVPISGjgFEsQ2BJqHSwFYLX4IFiGWMw-I6IlGjzv9kXI6aYHLEbuS47xvOwHRQWM2f2f-43-ifk6u7x7vj_V47-DjE3IjRWmLeZTyTbI2q-fuKVm357NpUz9rtcYPr1VpwA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgTAge-BhfhQEGISGBoiVp4g_eusHExKimDdDeLMex20qQVEk6qf8Ify93qVPIgEmItyi-xPXFd77r3f2OkBcR04lLuQxCYXWQRKEIRBZjuFDyNE15nGjXNpvg47E4PZVHvs9p3WW7dyHJVU0DojQVzc48dysRF2ynjjA-B26wDCK8GF4mV3AezOk7PvmyDiNwkUgfyvzjY73DqMXs_10z_3I0nU-bPBc7bY-k_Zv_vZhb5Ia3RulotX1uk0u22CLXR5PKI3LYLbK5W4L9uLxDvu_9BAqnusUysTUtHTVT8PnLOZjhDUXI129wG6tWaBzTw2UzrbSx2lKs6QS3_A2ddTWGQFZWFL4z6F9QufAbaNXl5k1n8xpmyf0bqT3zMkLxn-NZQT8u0W-w9V3yef_dp733ge_qEBjwdZqACWnAzNEmsbGLmAUbJLHCOcMdyx1qEWd5HBtmuM4z7B_oTGREZsB0TFLBh_fIRlEW9gGheRgaLrQEcpc4kWubiZRZITR2KY-TAQm7z6uMhzzHzhtfVev6CKZWvFfAe4W8V8MBebV-ZL7C-7iIeBf3zJoQobrbG2U1UV7ylUtkZgX4MDpj2IQ-01noklxKB8ZybsWAPMcdpxCMo8Bsn4le1LU6ODlWo1TClDHjMNNLT-RKWIHRvngC-ID4XT3K7R4laAvTG37WbWyFQ5hiV9hyUSuw5cQQZFOKC2jgdIgQ8xBo7q-EYb34IViKWOY8ILwnJj3u9EeK2bQFNEdMS4bzvu6ERXlNWv-d-Q__ifopuXr0dl8dHow_PCLXYhS2kAUx2yYbTbWwj8mmOWtmdfWkVSA_ANeucqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analyses+of+chloroplast+genomes+from+22+Lythraceae+species%3A+inferences+for+phylogenetic+relationships+and+genome+evolution+within+Myrtales&rft.jtitle=BMC+plant+biology&rft.au=Gu%2C+Cuihua&rft.au=Ma%2C+Li&rft.au=Wu%2C+Zhiqiang&rft.au=Chen%2C+Kai&rft.date=2019-06-26&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2229&rft.eissn=1471-2229&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12870-019-1870-3&rft.externalDocID=A591282673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon