Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales
Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum , with 35; Rotala , with 45; Nesaea...
Gespeichert in:
| Veröffentlicht in: | BMC plant biology Jg. 19; H. 1; S. 281 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
26.06.2019
BioMed Central Ltd BMC |
| Schlagworte: | |
| ISSN: | 1471-2229, 1471-2229 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Background
Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are
Lythrum
, with 35;
Rotala
, with 45;
Nesaea
, with 50;
Lagerstroemia
, with 56; and
Cuphea
, with 275 species.
Results
We reported six newly sequenced chloroplast (cp) genomes (
Duabanga grandiflora
,
Trapa natans
,
Lythrum salicaria
,
Lawsonia inermis
,
Woodfordia fruticosa
and
Rotala rotundifolia
) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211–332 simple sequence repeats (SSRs) in six categories and 7–27 long repeats in four categories. We selected ten divergent hotspots (
ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA
and
trnG-trnR
) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales.
Conclusions
The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study. |
|---|---|
| AbstractList | Background
Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are
Lythrum
, with 35;
Rotala
, with 45;
Nesaea
, with 50;
Lagerstroemia
, with 56; and
Cuphea
, with 275 species.
Results
We reported six newly sequenced chloroplast (cp) genomes (
Duabanga grandiflora
,
Trapa natans
,
Lythrum salicaria
,
Lawsonia inermis
,
Woodfordia fruticosa
and
Rotala rotundifolia
) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211–332 simple sequence repeats (SSRs) in six categories and 7–27 long repeats in four categories. We selected ten divergent hotspots (
ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA
and
trnG-trnR
) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales.
Conclusions
The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study. Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species. We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211-332 simple sequence repeats (SSRs) in six categories and 7-27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study. BACKGROUND: Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species. RESULTS: We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211–332 simple sequence repeats (SSRs) in six categories and 7–27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. CONCLUSIONS: The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study. Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species.BACKGROUNDLythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species.We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211-332 simple sequence repeats (SSRs) in six categories and 7-27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales.RESULTSWe reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211-332 simple sequence repeats (SSRs) in six categories and 7-27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales.The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study.CONCLUSIONSThe study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study. Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species. We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211-332 simple sequence repeats (SSRs) in six categories and 7-27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study. Abstract Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species. Results We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211–332 simple sequence repeats (SSRs) in six categories and 7–27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. Conclusions The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study. Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and trees. Of these 31 genera, five large genera each possess 35 or more species. They are Lythrum, with 35; Rotala, with 45; Nesaea, with 50; Lagerstroemia, with 56; and Cuphea, with 275 species. Results We reported six newly sequenced chloroplast (cp) genomes (Duabanga grandiflora, Trapa natans, Lythrum salicaria, Lawsonia inermis, Woodfordia fruticosa and Rotala rotundifolia) and compared them with 16 other cp genomes of Lythraceae species. The cp genomes of the 22 Lythraceae species ranged in length from 152,049 bp to 160,769 bp. In each Lythraceae species, the cp genome contained 112 genes consisting of 78 protein coding genes, four ribosomal RNAs and 30 transfer RNAs. Furthermore, we detected 211-332 simple sequence repeats (SSRs) in six categories and 7-27 long repeats in four categories. We selected ten divergent hotspots (ndhF, matK, ycf1, rpl22, rpl32, trnK-rps16, trnR-atpA, rpl32-trnL, trnH-psbA and trnG-trnR) among the 22 Lythraceae species to be potential molecular markers. We constructed phylogenetic trees from 42 Myrtales plants with 8 Geraniales plants as out groups. The relationships among the Myrtales species were effectively distinguished by maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) trees constructed using 66 protein coding genes. Generally, the 22 Lythraceae species gathered into one clade, which was resolved as sister to the three Onagraceae species. Compared with Melastomataceae and Myrtaceae, Lythraceae and Onagraceae differentiated later within Myrtales. Conclusions The study provided ten potential molecular markers as candidate DNA barcodes and contributed cp genome resources within Myrtales for further study. Keywords: Lythraceae, Chloroplast genome, Phylogenomic, Myrtales |
| ArticleNumber | 281 |
| Audience | Academic |
| Author | Chen, Kai Gu, Cuihua Wu, Zhiqiang Ma, Li Wang, Yixiang |
| Author_xml | – sequence: 1 givenname: Cuihua surname: Gu fullname: Gu, Cuihua email: gucuihua@zafu.edu.cn organization: School of Landscape and Architecture, Zhejiang A&F University – sequence: 2 givenname: Li surname: Ma fullname: Ma, Li organization: School of Landscape and Architecture, Zhejiang A&F University – sequence: 3 givenname: Zhiqiang surname: Wu fullname: Wu, Zhiqiang organization: Department of Biology, Colorado State University – sequence: 4 givenname: Kai surname: Chen fullname: Chen, Kai organization: School of Landscape and Architecture, Zhejiang A&F University – sequence: 5 givenname: Yixiang surname: Wang fullname: Wang, Yixiang organization: School of Environment and Resources, Zhejiang A&F University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31242865$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNksuO0zAUhiM0iLnAA7BBltjAooPtOI7DAmlUcalUhMRlbTnOcevKiYOdFvoiPC9OU0ZThEbIi1jH3_8f5_i_zM4630GWPSX4mhDBX0VCRYlnmFQzMm7yB9kFYSWZUUqrszv78-wyxg3GpBSsepSd54QyKnhxkf2a-7ZXQQ12B0h1yu0jROQN0mvng--digNaQefbVDbBt4hStNwP66A0KECxB20hvka2MxCg0yPmA-rXe-eTDgarUQCXGvgurm0fU5fm6Ihg5912PEE_7LC2Hfq4D4NyEB9nD41yEZ4cv1fZt3dvv84_zJaf3i_mN8uZ5owOMy4qzXmuNANqCAcsKANhjC4Nb0yNMTNQUqq5LlVT5wWpjCZa1JoRzgpR5lfZYvJtvNrIPthWhb30yspDwYeVVCH9ggNpWFWDKGmlas4wLmtVY8OaqjIFww2I5PVm8uq3dQuNhm4Iyp2Ynp50di1Xfid5URW8Gg1eHA2C_76FOMjWRg3OqQ78Nkqa44IIKor_QCkTeUnZwfX5hK7SYGV6Jp-a6xGXN0WVEkR5mSfq-h9UWg20VqfYGZvqJ4KXJ4LEDPBzWKltjHLx5fMp--zuZG5H8ieGCSAToIOPMYC5RQiWY9TlFHWZoi7HqMvRtPxLo-1wiFm6uXX3KumkjKlLt4IgN34bUvbjPaLfSPIUhg |
| CitedBy_id | crossref_primary_10_3390_f13020280 crossref_primary_10_3389_fgene_2021_602528 crossref_primary_10_1002_ece3_7183 crossref_primary_10_1080_23802359_2020_1735966 crossref_primary_10_3390_agronomy12122972 crossref_primary_10_1186_s12870_021_02985_9 crossref_primary_10_1016_j_indcrop_2023_117570 crossref_primary_10_3389_fpls_2023_1148303 crossref_primary_10_3390_life12010092 crossref_primary_10_1038_s41598_021_88160_4 crossref_primary_10_3846_jeelm_2022_16303 crossref_primary_10_1111_jse_12854 crossref_primary_10_3390_genes13112043 crossref_primary_10_3390_plants8100386 crossref_primary_10_1038_s41598_021_91071_z crossref_primary_10_1186_s12864_024_09996_4 crossref_primary_10_1186_s12864_022_08755_7 crossref_primary_10_1186_s12864_021_07769_x crossref_primary_10_3390_ijms232012567 crossref_primary_10_3390_cimb46020106 crossref_primary_10_1038_s41598_022_16290_4 crossref_primary_10_1016_j_gene_2023_147488 crossref_primary_10_1016_j_pld_2020_09_005 crossref_primary_10_3390_plants11243544 crossref_primary_10_3390_f13111942 crossref_primary_10_3390_ijms25010184 crossref_primary_10_1007_s10265_022_01417_5 crossref_primary_10_1186_s12862_022_02010_z crossref_primary_10_3389_fgene_2020_00729 crossref_primary_10_3389_fpls_2021_691833 crossref_primary_10_3389_fgene_2020_00802 crossref_primary_10_1016_j_pld_2021_05_004 crossref_primary_10_3390_genes13081425 crossref_primary_10_1007_s10722_024_02002_6 crossref_primary_10_3389_fgene_2024_1378403 crossref_primary_10_1080_23802359_2020_1764401 crossref_primary_10_1016_j_hpj_2022_06_005 crossref_primary_10_1186_s12870_022_03608_7 crossref_primary_10_1002_tax_13028 crossref_primary_10_1186_s12870_024_04776_4 crossref_primary_10_1080_23802359_2021_1927873 crossref_primary_10_3390_biology12070936 crossref_primary_10_1186_s12870_025_06350_y crossref_primary_10_3390_f13040626 crossref_primary_10_1002_ajb2_1699 crossref_primary_10_1186_s12864_022_08868_z crossref_primary_10_1080_23802359_2021_1976690 crossref_primary_10_1080_23802359_2020_1756958 crossref_primary_10_1080_23802359_2021_1914520 crossref_primary_10_1007_s42535_021_00199_w crossref_primary_10_3390_plants9020286 crossref_primary_10_1080_23802359_2023_2203783 crossref_primary_10_1186_s12870_021_03315_9 crossref_primary_10_3389_fgene_2022_878182 crossref_primary_10_1186_s12870_024_05665_6 crossref_primary_10_1371_journal_pone_0263310 crossref_primary_10_3390_f12060710 crossref_primary_10_3389_fgene_2021_772415 crossref_primary_10_1080_23802359_2022_2158691 crossref_primary_10_1093_aob_mcad091 crossref_primary_10_1002_fedr_202100052 crossref_primary_10_12677_BR_2022_112026 crossref_primary_10_1016_j_ccmp_2021_100002 crossref_primary_10_1007_s10530_024_03251_3 |
| Cites_doi | 10.1111/j.1471-8286.2007.01884.x 10.1007/s12686-016-0677-x 10.1371/journal.pone.0019954 10.1002/j.1537-2197.1996.tb12700.x 10.1093/nar/gkh458 10.7717/peerj.2715 10.1111/tpj.14208 10.1093/dnares/dsr002 10.1038/s41598-017-06210-2 10.1111/j.1095-8339.1993.tb00326.x 10.1371/journal.pone.0057607 10.1371/journal.pone.0080508 10.3389/fpls.2015.00586 10.1002/j.1537-2197.1990.tb13543.x 10.2307/1223300 10.1371/journal.pone.0150752 10.1371/journal.pone.0129930 10.2307/2399158 10.1146/annurev-genet-120215-035349 10.1093/molbev/mst064 10.3390/molecules23040846 10.3390/ijms19041050 10.1093/bioinformatics/btg359 10.1007/s11103-011-9762-4 10.1093/bioinformatics/btm598 10.1186/1471-2164-8-174 10.1007/s00122-006-0226-1 10.1002/j.1537-2197.1987.tb08687.x 10.1093/bioinformatics/btm404 10.1086/674316 10.1007/s00425-017-2781-x 10.1093/nar/29.22.4633 10.2307/2419432 10.1007/BF02869011 10.1371/journal.pone.0192956 10.1016/j.ympev.2008.04.039 10.1111/j.1438-8677.1979.tb00329.x 10.1093/bioinformatics/17.8.754 10.1038/s41598-017-17765-5 10.3390/molecules23020437 10.1007/PL00013926 10.1086/338392 10.1371/journal.pone.0012762 10.1016/j.ympev.2004.12.023 10.1093/bioinformatics/bth352 10.1186/s12870-015-0619-x 10.1371/journal.pone.0001386 10.1093/molbev/mst197 10.1093/bioinformatics/btp187 10.1080/23802359.2018.1547140 10.3390/genes9100503 10.1371/journal.pone.0035071 10.3390/ijms131012608 10.1038/s41598-017-07891-5 10.3389/fpls.2017.01583 10.1186/s12862-015-0405-2 10.3390/ijms19020525 10.2307/1223775 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2019 COPYRIGHT 2019 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s). 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1186/s12870-019-1870-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Botany |
| EISSN | 1471-2229 |
| EndPage | 281 |
| ExternalDocumentID | oai_doaj_org_article_f49be8729ab64007bab0f4d99f540de8 PMC6595698 A591282673 31242865 10_1186_s12870_019_1870_3 |
| Genre | Journal Article Comparative Study |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: (No. 31770681, 31370641) funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LY17C160003 – fundername: National Natural Science Foundation of China grantid: (No. 31770681, 31370641) – fundername: ; grantid: (No. 31770681, 31370641) – fundername: ; grantid: LY17C160003 |
| GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5GY 5VS 6J9 7X2 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS APEBS ATCPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESTFP ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IGH IGS IHR INH INR ISR ITC KQ8 LK8 M0K M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP WOQ WOW XSB AAYXX AFFHD CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c642t-689c663ac4e2f16e0824e8ffc7f6dfb004fe722c6c7adb3519fc1c8bc41645873 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473020900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2229 |
| IngestDate | Fri Oct 03 12:42:13 EDT 2025 Tue Nov 04 01:57:35 EST 2025 Fri Sep 05 12:58:17 EDT 2025 Sun Nov 09 14:32:12 EST 2025 Sat Nov 29 13:31:43 EST 2025 Sat Nov 29 10:23:40 EST 2025 Wed Nov 26 10:21:11 EST 2025 Wed Feb 19 02:01:19 EST 2025 Sat Nov 29 05:59:41 EST 2025 Tue Nov 18 22:29:36 EST 2025 Sat Sep 06 07:21:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Lythraceae Myrtales Phylogenomic Chloroplast genome |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-689c663ac4e2f16e0824e8ffc7f6dfb004fe722c6c7adb3519fc1c8bc41645873 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://doaj.org/article/f49be8729ab64007bab0f4d99f540de8 |
| PMID | 31242865 |
| PQID | 2248372498 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f49be8729ab64007bab0f4d99f540de8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6595698 proquest_miscellaneous_2305182858 proquest_miscellaneous_2248372498 gale_infotracmisc_A591282673 gale_infotracacademiconefile_A591282673 gale_incontextgauss_ISR_A591282673 pubmed_primary_31242865 crossref_primary_10_1186_s12870_019_1870_3 crossref_citationtrail_10_1186_s12870_019_1870_3 springer_journals_10_1186_s12870_019_1870_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-26 |
| PublicationDateYYYYMMDD | 2019-06-26 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-26 day: 26 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC plant biology |
| PublicationTitleAbbrev | BMC Plant Biol |
| PublicationTitleAlternate | BMC Plant Biol |
| PublicationYear | 2019 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | R Dahlgren (1870_CR1) 1984; 71 C Chen (1870_CR37) 2006; 112 N Scarcelli (1870_CR24) 2011; 6 SA Graham (1870_CR3) 1998; 47 APA Menezes (1870_CR51) 2018; 8 Z Wu (1870_CR54) 2015; 10 GC Conant (1870_CR56) 2008; 24 W Dong (1870_CR43) 2012; 7 J Rozas (1870_CR62) 2003; 19 A Graham (1870_CR14) 1990; 77 CH Gu (1870_CR8) 2017; 9 LA Raubeson (1870_CR36) 2007; 8 X Xia (1870_CR58) 2013; 30 K Tamura (1870_CR61) 2013; 30 E Conti (1870_CR4) 1996; 83 Alejandra B. Méndez-Leyva (1870_CR20) 2019; 4 Y Yang (1870_CR41) 2016; 7 S Kurtz (1870_CR63) 2001; 29 E Conti (1870_CR5) 1997; 22 M Rogalski (1870_CR21) 2015; 6 A Piot (1870_CR49) 2018; 247 J Qian (1870_CR32) 2013; 8 SA Graham (1870_CR12) 2014; 175 YL Huang (1870_CR17) 2002; 163 YP Du (1870_CR42) 2017; 7 MP Simmons (1870_CR67) 2008; 48 L Doorduin (1870_CR38) 2011; 18 BC Faircloth (1870_CR64) 2008; 8 JP Huelsenbeck (1870_CR66) 2001; 17 C Xu (1870_CR11) 2017; 8 LA Cauzsantos (1870_CR57) 2017; 8 A Graham (1870_CR13) 1987; 74 S Asaf (1870_CR19) 2017; 7 M Reginato (1870_CR26) 2016; 4 Y Zhang (1870_CR40) 2016; 7 P Erixon (1870_CR48) 2008; 3 RM Redwan (1870_CR33) 2015; 15 SK Wyman (1870_CR55) 2004; 20 CH Gu (1870_CR9) 2018; 23 T Ren (1870_CR44) 2018; 19 AG Nazareno (1870_CR50) 2015; 10 SH Shi (1870_CR6) 2000; 113 N Tian (1870_CR28) 2018; 13 N Ronsted (1870_CR22) 2005; 35 MA Larkin (1870_CR65) 2007; 23 CH Gu (1870_CR34) 2016; 9 AM Bolger (1870_CR53) 2014; 30 YD Gao (1870_CR25) 2015; 15 J Chen (1870_CR30) 2015; 6 S Wicke (1870_CR45) 2011; 76 W Ying (1870_CR27) 2016; 7 KA Frazer (1870_CR59) 2004; 32 P Librado (1870_CR60) 2009; 25 H Daniell (1870_CR18) 2016; 50 Alissa M. Williams (1870_CR47) 2019; 98 RF Thorne (1870_CR7) 2000; 66 CH Gu (1870_CR31) 2018; 19 H Zhang (1870_CR46) 2013; 8 P Baas (1870_CR15) 1979; 28 J Zhou (1870_CR29) 2018; 23 X Zhang (1870_CR52) 2017; 8 CH Gu (1870_CR10) 2016; 11 SA Graham (1870_CR16) 1993; 42 Nunzio D’Agostino (1870_CR23) 2018; 9 M Yang (1870_CR35) 2010; 5 S He (1870_CR39) 2012; 13 SA Graham (1870_CR2) 1993; 113 |
| References_xml | – volume: 8 start-page: 92 year: 2008 ident: 1870_CR64 publication-title: Mol Ecol Resour doi: 10.1111/j.1471-8286.2007.01884.x – volume: 9 start-page: 357 year: 2017 ident: 1870_CR8 publication-title: Conserv Genet Resour doi: 10.1007/s12686-016-0677-x – volume: 7 start-page: 280 year: 2016 ident: 1870_CR27 publication-title: Front Plant Sci – volume: 6 start-page: e19954 year: 2011 ident: 1870_CR24 publication-title: PLoS One doi: 10.1371/journal.pone.0019954 – volume: 30 start-page: 2114 year: 2014 ident: 1870_CR53 publication-title: Bio-informatics. – volume: 8 start-page: 334 year: 2017 ident: 1870_CR57 publication-title: Front Plant Sci – volume: 83 start-page: 221 year: 1996 ident: 1870_CR4 publication-title: Am J Bot doi: 10.1002/j.1537-2197.1996.tb12700.x – volume: 32 start-page: 273 year: 2004 ident: 1870_CR59 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh458 – volume: 4 start-page: e2715 year: 2016 ident: 1870_CR26 publication-title: Peer j doi: 10.7717/peerj.2715 – volume: 98 start-page: 243 issue: 2 year: 2019 ident: 1870_CR47 publication-title: The Plant Journal doi: 10.1111/tpj.14208 – volume: 18 start-page: 93 year: 2011 ident: 1870_CR38 publication-title: DNA Res doi: 10.1093/dnares/dsr002 – volume: 7 start-page: 5751 year: 2017 ident: 1870_CR42 publication-title: Sci Rep doi: 10.1038/s41598-017-06210-2 – volume: 113 start-page: 1 year: 1993 ident: 1870_CR2 publication-title: Bot J Linn Soc doi: 10.1111/j.1095-8339.1993.tb00326.x – volume: 8 start-page: e57607 year: 2013 ident: 1870_CR32 publication-title: PLoS One doi: 10.1371/journal.pone.0057607 – volume: 7 start-page: 57 year: 2016 ident: 1870_CR41 publication-title: Front Plant Sci – volume: 8 start-page: e80508 year: 2013 ident: 1870_CR46 publication-title: PLoS One doi: 10.1371/journal.pone.0080508 – volume: 6 start-page: 586 year: 2015 ident: 1870_CR21 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00586 – volume: 77 start-page: 159 year: 1990 ident: 1870_CR14 publication-title: Am J Bot doi: 10.1002/j.1537-2197.1990.tb13543.x – volume: 42 start-page: 35 year: 1993 ident: 1870_CR16 publication-title: Taxon. doi: 10.2307/1223300 – volume: 11 start-page: e0150752 year: 2016 ident: 1870_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0150752 – volume: 10 start-page: e0129930 year: 2015 ident: 1870_CR50 publication-title: PLoS One doi: 10.1371/journal.pone.0129930 – volume: 71 start-page: 633 year: 1984 ident: 1870_CR1 publication-title: Ann Mo Bot Gard doi: 10.2307/2399158 – volume: 50 start-page: 595 year: 2016 ident: 1870_CR18 publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-120215-035349 – volume: 30 start-page: 1720 year: 2013 ident: 1870_CR58 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst064 – volume: 23 start-page: 846 year: 2018 ident: 1870_CR9 publication-title: Molecules. doi: 10.3390/molecules23040846 – volume: 19 start-page: 1050 year: 2018 ident: 1870_CR44 publication-title: Int J Mol Sci doi: 10.3390/ijms19041050 – volume: 19 start-page: 2496 year: 2003 ident: 1870_CR62 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btg359 – volume: 76 start-page: 273 year: 2011 ident: 1870_CR45 publication-title: Plant Mol Biol doi: 10.1007/s11103-011-9762-4 – volume: 24 start-page: 861 year: 2008 ident: 1870_CR56 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btm598 – volume: 8 start-page: 174 year: 2007 ident: 1870_CR36 publication-title: BMC Genomics doi: 10.1186/1471-2164-8-174 – volume: 112 start-page: 1248 year: 2006 ident: 1870_CR37 publication-title: Theor Appl Genet doi: 10.1007/s00122-006-0226-1 – volume: 74 start-page: 829 year: 1987 ident: 1870_CR13 publication-title: Am J Bot doi: 10.1002/j.1537-2197.1987.tb08687.x – volume: 23 start-page: 2947 year: 2007 ident: 1870_CR65 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btm404 – volume: 10 start-page: 1 year: 2015 ident: 1870_CR54 publication-title: PLoS One – volume: 9 start-page: 1 year: 2016 ident: 1870_CR34 publication-title: Conserv Genet Resour – volume: 175 start-page: 39 year: 2014 ident: 1870_CR12 publication-title: Int J Plant Sci doi: 10.1086/674316 – volume: 7 start-page: 306 year: 2016 ident: 1870_CR40 publication-title: Front Plant Sci – volume: 247 start-page: 255 year: 2018 ident: 1870_CR49 publication-title: Planta. doi: 10.1007/s00425-017-2781-x – volume: 29 start-page: 4633 year: 2001 ident: 1870_CR63 publication-title: Nucleic Acids Res doi: 10.1093/nar/29.22.4633 – volume: 22 start-page: 629 year: 1997 ident: 1870_CR5 publication-title: Syst Bot doi: 10.2307/2419432 – volume: 66 start-page: 441 year: 2000 ident: 1870_CR7 publication-title: Bot Rev doi: 10.1007/BF02869011 – volume: 13 start-page: e0192956 year: 2018 ident: 1870_CR28 publication-title: PLoS One doi: 10.1371/journal.pone.0192956 – volume: 48 start-page: 745 year: 2008 ident: 1870_CR67 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2008.04.039 – volume: 28 start-page: 117 year: 1979 ident: 1870_CR15 publication-title: Acta Bot Neerl doi: 10.1111/j.1438-8677.1979.tb00329.x – volume: 17 start-page: 754 year: 2001 ident: 1870_CR66 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/17.8.754 – volume: 8 start-page: 1 year: 2018 ident: 1870_CR51 publication-title: Sci Rep doi: 10.1038/s41598-017-17765-5 – volume: 23 start-page: 437 year: 2018 ident: 1870_CR29 publication-title: Molecules. doi: 10.3390/molecules23020437 – volume: 113 start-page: 253 year: 2000 ident: 1870_CR6 publication-title: J Plant Res doi: 10.1007/PL00013926 – volume: 163 start-page: 215 year: 2002 ident: 1870_CR17 publication-title: Int J Plant Sci doi: 10.1086/338392 – volume: 6 start-page: 447 year: 2015 ident: 1870_CR30 publication-title: Front Plant Sci – volume: 8 start-page: 15 year: 2017 ident: 1870_CR11 publication-title: Front Plant Sci – volume: 5 start-page: e12762 year: 2010 ident: 1870_CR35 publication-title: PLoS One doi: 10.1371/journal.pone.0012762 – volume: 35 start-page: 509 year: 2005 ident: 1870_CR22 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2004.12.023 – volume: 20 start-page: 3252 year: 2004 ident: 1870_CR55 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bth352 – volume: 15 start-page: 294 year: 2015 ident: 1870_CR33 publication-title: BMC Plant Biol doi: 10.1186/s12870-015-0619-x – volume: 3 start-page: e1386 year: 2008 ident: 1870_CR48 publication-title: PLoS One doi: 10.1371/journal.pone.0001386 – volume: 30 start-page: 2725 year: 2013 ident: 1870_CR61 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst197 – volume: 25 start-page: 1451 year: 2009 ident: 1870_CR60 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp187 – volume: 4 start-page: 253 issue: 1 year: 2019 ident: 1870_CR20 publication-title: Mitochondrial DNA Part B doi: 10.1080/23802359.2018.1547140 – volume: 9 start-page: 503 issue: 10 year: 2018 ident: 1870_CR23 publication-title: Genes doi: 10.3390/genes9100503 – volume: 7 start-page: e35071 year: 2012 ident: 1870_CR43 publication-title: PLoS One doi: 10.1371/journal.pone.0035071 – volume: 13 start-page: 12608 year: 2012 ident: 1870_CR39 publication-title: Int J Mol Sci doi: 10.3390/ijms131012608 – volume: 7 start-page: 7556 year: 2017 ident: 1870_CR19 publication-title: Sci Rep doi: 10.1038/s41598-017-07891-5 – volume: 8 start-page: 1583 year: 2017 ident: 1870_CR52 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01583 – volume: 15 start-page: 147 year: 2015 ident: 1870_CR25 publication-title: BMC Evol Biol doi: 10.1186/s12862-015-0405-2 – volume: 19 start-page: 525 year: 2018 ident: 1870_CR31 publication-title: Int J Mol Sci doi: 10.3390/ijms19020525 – volume: 47 start-page: 435 year: 1998 ident: 1870_CR3 publication-title: Taxon. doi: 10.2307/1223775 |
| SSID | ssj0017849 |
| Score | 2.495816 |
| Snippet | Background
Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs,... Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs, shrubs and... Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs,... BACKGROUND: Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species of herbs,... Abstract Background Lythraceae belongs to the order Myrtales, which is part of Archichlamydeae. The family has 31 genera containing approximately 620 species... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 281 |
| SubjectTerms | Agriculture Analysis Bayesian theory Biomedical and Life Sciences Chloroplast genome Chloroplasts Comparative analysis Cuphea DNA DNA barcoding Duabanga Evolution, Molecular family Genes Genetic aspects Genetic research Genome, Chloroplast Genome, Plant Genomes Genomics Genomics and evolution Geraniales Lagerstroemia Lawsonia inermis Life Sciences Lythraceae Lythraceae - genetics Lythrum salicaria Melastomataceae Myrtaceae Myrtales Natural history Onagraceae Phylogenomic Phylogeny Plant Sciences Research Article Rotala rotundifolia Sequence Alignment species Trapa natans Tree Biology Woodfordia fruticosa |
| SummonAdditionalLinks | – databaseName: Springer Nature - Connect here FIRST to enable access dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdg7AEe-BhfhYEMQkICRSSu4w_etokJJJjQBmhvluPYbSVIqqSd1H-Ev5e71ClkwCR4i-JLXF9857ve3e8IeZYJy0MudZIqbxOepSpRBcNwoZZ5nkvGbeiaTcijI3V6qj_GOu62z3bvQ5Kdpu7EWolXbYYxOXB9dZLhxfgyuQKnncJ-DccnXzahA6m4juHLPz42OIA6nP7ftfEvx9H5VMlz8dLuGDq88V8LuEmuR6uT7q23yS1yyVc75NrepInIG36HbO_XYCeubpPvBz8BwantMEt8S-tA3RR8-3oO5vaCIrTrN7iN1SmUMfp-tZg21nnrKdZugvv9ms76WkIgqxsK3xP0LKhW-A206XPwprN5C7OU8Y3Un0VZoPgP8ayiH1boH_j2Dvl8-ObTwdskdm9IHPg0i0Qo7cCcsY57FjLhwdbgXoXgZBBlQG0RvGTMCSdtWWCfwOAypwoHJiLPlRzfJVtVXfn7hJZp6qSyGsgDD6q0vlC58EpZ7EbO-Iik_Sc1LkKbY4eNr6ZzcZQwa94b4L1B3pvxiLzYPDJf43pcRLyP-2RDiJDc3Y26mZgo4SZwXXgFvootBDabL2yRBl5qHcAoLr0akae4ywyCblSY1TOxy7Y1706OzV6uYUomJMz0PBKFGlbgbCySAD4gTteAcndACVrBDYaf9JvZ4BCm0lW-XrYGbDY1BhnU6gIaOAUyxDYEmntrAdgsfgwWIZYzj4gciMaAO8ORajbtgMsRu1LgvC97ATFRY7Z_Z_6Df6J-SK4ylLBUJEzskq1Fs_SPyLY7W8za5nGnKX4A3nlm3A priority: 102 providerName: Springer Nature |
| Title | Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales |
| URI | https://link.springer.com/article/10.1186/s12870-019-1870-3 https://www.ncbi.nlm.nih.gov/pubmed/31242865 https://www.proquest.com/docview/2248372498 https://www.proquest.com/docview/2305182858 https://pubmed.ncbi.nlm.nih.gov/PMC6595698 https://doaj.org/article/f49be8729ab64007bab0f4d99f540de8 |
| Volume | 19 |
| WOSCitedRecordID | wos000473020900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017849 issn: 1471-2229 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017849 issn: 1471-2229 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017849 issn: 1471-2229 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1471-2229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017849 issn: 1471-2229 databaseCode: M0K dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017849 issn: 1471-2229 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017849 issn: 1471-2229 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017849 issn: 1471-2229 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017849 issn: 1471-2229 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017849 issn: 1471-2229 databaseCode: RSV dateStart: 20011201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdg7IEXxDeFURmEhASKlqSOP3hbp01M0KrqAJUny3FsWgmSqmkn9R_h7-UuH2UZYrzwErXxtW585_Pvat_vCHkVccN8IlQQSmcCFoUykGmM24VKJEkiYmZ8VWxCjMdyNlOTS6W-8ExYTQ9cD9yhZyp1EiCgSTnW8E5NGnqWKeUBa2SuSvMNhWqDqWb_QEimmj3MSPLDMsL9PAibVRDhi0FnFarI-v90yZfWpKvnJa9smlZr0eldcqcBkfSo_vH3yA2X3yf7wwKA3vYB-Xn8m9Gbmop0xJW08NTOITgvloCX1xS5WX_AbUwvoXFMP27X85WxzjiKyZcQP7-jizYZEMSKFQWFgKME3wi90lV7iG6-WJbQS9Z8I3UXjTFT_It3kdPRFgG-Kx-Sz6cnn47fB035hcBCULIOuFQW8IixzMU-4g7AAnPSeys8zzxOd-9EHFtuhclSLPTnbWRlagHjsUSKwSOylxe5e0JoFoZWSKNA3DMvM-NSmXAnpcFy4jHrkbBVh7YNNzmWyPiuqxhFcl1rUIMGNWpQD3rkze4jy5qY4zrhIep4J4ic2tUNsDTdWJr-l6X1yEu0EI2sGTkey_lmNmWpz86n-ihR0GXMBfT0uhHyBTyBNU2WA4wDEm11JA86kjCtbaf5RWuIGpvwLFzuik2pAXTJAUwiJa-RATceITkhyDyujXf38AOAdJiP3COiY9ad0em25It5xTyO5JMc-33bTgDduLzy74P_9H8M_jNyO8bpG_Ig5gdkb73auOdk316sF-WqT26Kmaiusk9uDU_Gk2m_cghwHYUf8Com0DI5G02-wrvp-ZdfLtBnQQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgTAIe-BhfhQEGISGBIpLU8Qdv3cS0iW5C20B7sxzHXitBMiXtpP4j_L3cpU4hAybBWxRf4vriO9_17n5HyKuEG-YzoaJYOhOxJJaRzFMMFyqRZZlImfFtswlxcCBPTtSnUMfddNnuXUiy1dStWEv-rkkwJgeur4oSvBheJdcYHFgImH949GUVOhCSqRC-_ONjvQOoxen_XRv_chxdTJW8EC9tj6Gd2_-1gDvkVrA66Wi5Te6SK67cIDdHp3VA3nAbZH2rAjtxcY983_4JCE5Ni1niGlp5aifg21dnYG7PKEK7foPbWJ1C05SOF7NJbawzjmLtJrjf7-m0qyUEsqqm8D1Bz4Jqhd9A6y4HbzI9a2CWIryRuvMgCxT_IZ6WdH-B_oFr7pPPOx-Ot3ej0L0hsuDTzCIulQVzxljmUp9wB7YGc9J7KzwvPGoL70SaWm6FKXLsE-htYmVuwURkmRTDB2StrEr3iNAijq2QRgG5Z14WxuUy405Kg93IUzYgcfdJtQ3Q5thh46tuXRzJ9ZL3Gnivkfd6OCBvVo-cLXE9LiPewn2yIkRI7vZGVZ_qIOHaM5U7Cb6KyTk2m89NHntWKOXBKC6cHJCXuMs0gm6UmNVzauZNo_eODvUoUzBlygXM9DoQ-QpWYE0okgA-IE5Xj3KzRwlawfaGX3SbWeMQptKVrpo3Gmw2OQQZVPISGjgFEsQ2BJqHSwFYLX4IFiGWMw-I6IlGjzv9kXI6aYHLEbuS47xvOwHRQWM2f2f-43-ifk6u7x7vj_V47-DjE3IjRWmLeZTyTbI2q-fuKVm357NpUz9rtcYPr1VpwA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgTAge-BhfhQEGISGBoiVp4g_eusHExKimDdDeLMex20qQVEk6qf8Ify93qVPIgEmItyi-xPXFd77r3f2OkBcR04lLuQxCYXWQRKEIRBZjuFDyNE15nGjXNpvg47E4PZVHvs9p3WW7dyHJVU0DojQVzc48dysRF2ynjjA-B26wDCK8GF4mV3AezOk7PvmyDiNwkUgfyvzjY73DqMXs_10z_3I0nU-bPBc7bY-k_Zv_vZhb5Ia3RulotX1uk0u22CLXR5PKI3LYLbK5W4L9uLxDvu_9BAqnusUysTUtHTVT8PnLOZjhDUXI129wG6tWaBzTw2UzrbSx2lKs6QS3_A2ddTWGQFZWFL4z6F9QufAbaNXl5k1n8xpmyf0bqT3zMkLxn-NZQT8u0W-w9V3yef_dp733ge_qEBjwdZqACWnAzNEmsbGLmAUbJLHCOcMdyx1qEWd5HBtmuM4z7B_oTGREZsB0TFLBh_fIRlEW9gGheRgaLrQEcpc4kWubiZRZITR2KY-TAQm7z6uMhzzHzhtfVev6CKZWvFfAe4W8V8MBebV-ZL7C-7iIeBf3zJoQobrbG2U1UV7ylUtkZgX4MDpj2IQ-01noklxKB8ZybsWAPMcdpxCMo8Bsn4le1LU6ODlWo1TClDHjMNNLT-RKWIHRvngC-ID4XT3K7R4laAvTG37WbWyFQ5hiV9hyUSuw5cQQZFOKC2jgdIgQ8xBo7q-EYb34IViKWOY8ILwnJj3u9EeK2bQFNEdMS4bzvu6ERXlNWv-d-Q__ifopuXr0dl8dHow_PCLXYhS2kAUx2yYbTbWwj8mmOWtmdfWkVSA_ANeucqQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analyses+of+chloroplast+genomes+from+22+Lythraceae+species%3A+inferences+for+phylogenetic+relationships+and+genome+evolution+within+Myrtales&rft.jtitle=BMC+plant+biology&rft.au=Gu%2C+Cuihua&rft.au=Ma%2C+Li&rft.au=Wu%2C+Zhiqiang&rft.au=Chen%2C+Kai&rft.date=2019-06-26&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2229&rft.eissn=1471-2229&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12870-019-1870-3&rft.externalDocID=A591282673 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon |