fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations

Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample t...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Vol. 223; p. 117328
Main Authors: Vu, Hanh, Kim, Hyun-Chul, Jung, Minyoung, Lee, Jong-Hwan
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.12.2020
Elsevier Limited
Elsevier
Subjects:
ISSN:1053-8119, 1095-9572, 1095-9572
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample to provide a feature map for the subsequent layers. In our study, we hypothesized that a 3D-CNN model with down-sampling operations such as pooling and/or stride would have the ability to extract robust feature maps from the shifted and scaled neuronal activations in a single functional MRI (fMRI) volume for the classification of task information associated with that volume. Thus, the 3D-CNN model would be able to ameliorate the potential misalignment of neuronal activations and over-/under-activation in local brain regions caused by imperfections in spatial alignment algorithms, confounded by variability in blood-oxygenation-level-dependent (BOLD) responses across sessions and/or subjects. To this end, the fMRI volumes acquired from four sensorimotor tasks (left-hand clenching, right-hand clenching, auditory attention, and visual stimulation) were used as input for our 3D-CNN model to classify task information using a single fMRI volume. The classification performance of the 3D-CNN was systematically evaluated using fMRI volumes obtained from various minimal preprocessing scenarios applied to raw fMRI volumes that excluded spatial normalization to a template and those obtained from full preprocessing that included spatial normalization. Alternative classifier models such as the 1D fully connected DNN (1D-fcDNN) and support vector machine (SVM) were also used for comparison. The classification performance was also assessed for several k-fold cross-validation (CV) schemes, including leave-one-subject-out CV (LOOCV). Overall, the classification results of the 3D-CNN model were superior to that of the 1D-fcDNN and SVM models. When using the fully-processed fMRI volumes with LOOCV, the mean error rates (± the standard error of the mean) for the 3D-CNN, 1D-fcDNN, and SVM models were 2.1% (± 0.9), 3.1% (± 1.2), and 4.1% (± 1.5), respectively (p = 0.041 from a one-way ANOVA). The error rates for 3-fold CV were higher (2.4% ± 1.0, 4.2% ± 1.3, and 10.1% ± 2.0; p < 0.0003 from a one-way ANOVA). The mean error rates also increased considerably using the raw fMRI 3D volume data without preprocessing (26.2% for the 3D-CNN, 75.0% for the 1D-fcDNN, and 75.0% for the SVM). Furthermore, the ability of the pre-trained 3D-CNN model to handle shifted and scaled neuronal activations was demonstrated in an online scenario for five-class classification (i.e., four sensorimotor tasks and the resting state) using the real-time fMRI of three participants. The resulting classification accuracy was 78.5% (± 1.4), 26.7% (± 5.9), and 21.5% (± 3.1) for the 3D-CNN, 1D-fcDNN, and SVM models, respectively. The superior performance of the 3D-CNN compared to the 1D-fcDNN was verified by analyzing the resulting feature maps and convolution filters that handled the shifted and scaled neuronal activations and by utilizing an independent public dataset from the Human Connectome Project.
AbstractList Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample to provide a feature map for the subsequent layers. In our study, we hypothesized that a 3D-CNN model with down-sampling operations such as pooling and/or stride would have the ability to extract robust feature maps from the shifted and scaled neuronal activations in a single functional MRI (fMRI) volume for the classification of task information associated with that volume. Thus, the 3D-CNN model would be able to ameliorate the potential misalignment of neuronal activations and over-/under-activation in local brain regions caused by imperfections in spatial alignment algorithms, confounded by variability in blood-oxygenation-level-dependent (BOLD) responses across sessions and/or subjects. To this end, the fMRI volumes acquired from four sensorimotor tasks (left-hand clenching, right-hand clenching, auditory attention, and visual stimulation) were used as input for our 3D-CNN model to classify task information using a single fMRI volume. The classification performance of the 3D-CNN was systematically evaluated using fMRI volumes obtained from various minimal preprocessing scenarios applied to raw fMRI volumes that excluded spatial normalization to a template and those obtained from full preprocessing that included spatial normalization. Alternative classifier models such as the 1D fully connected DNN (1D-fcDNN) and support vector machine (SVM) were also used for comparison. The classification performance was also assessed for several k-fold cross-validation (CV) schemes, including leave-one-subject-out CV (LOOCV). Overall, the classification results of the 3D-CNN model were superior to that of the 1D-fcDNN and SVM models. When using the fully-processed fMRI volumes with LOOCV, the mean error rates (± the standard error of the mean) for the 3D-CNN, 1D-fcDNN, and SVM models were 2.1% (± 0.9), 3.1% (± 1.2), and 4.1% (± 1.5), respectively (p = 0.041 from a one-way ANOVA). The error rates for 3-fold CV were higher (2.4% ± 1.0, 4.2% ± 1.3, and 10.1% ± 2.0; p < 0.0003 from a one-way ANOVA). The mean error rates also increased considerably using the raw fMRI 3D volume data without preprocessing (26.2% for the 3D-CNN, 75.0% for the 1D-fcDNN, and 75.0% for the SVM). Furthermore, the ability of the pre-trained 3D-CNN model to handle shifted and scaled neuronal activations was demonstrated in an online scenario for five-class classification (i.e., four sensorimotor tasks and the resting state) using the real-time fMRI of three participants. The resulting classification accuracy was 78.5% (± 1.4), 26.7% (± 5.9), and 21.5% (± 3.1) for the 3D-CNN, 1D-fcDNN, and SVM models, respectively. The superior performance of the 3D-CNN compared to the 1D-fcDNN was verified by analyzing the resulting feature maps and convolution filters that handled the shifted and scaled neuronal activations and by utilizing an independent public dataset from the Human Connectome Project.Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample to provide a feature map for the subsequent layers. In our study, we hypothesized that a 3D-CNN model with down-sampling operations such as pooling and/or stride would have the ability to extract robust feature maps from the shifted and scaled neuronal activations in a single functional MRI (fMRI) volume for the classification of task information associated with that volume. Thus, the 3D-CNN model would be able to ameliorate the potential misalignment of neuronal activations and over-/under-activation in local brain regions caused by imperfections in spatial alignment algorithms, confounded by variability in blood-oxygenation-level-dependent (BOLD) responses across sessions and/or subjects. To this end, the fMRI volumes acquired from four sensorimotor tasks (left-hand clenching, right-hand clenching, auditory attention, and visual stimulation) were used as input for our 3D-CNN model to classify task information using a single fMRI volume. The classification performance of the 3D-CNN was systematically evaluated using fMRI volumes obtained from various minimal preprocessing scenarios applied to raw fMRI volumes that excluded spatial normalization to a template and those obtained from full preprocessing that included spatial normalization. Alternative classifier models such as the 1D fully connected DNN (1D-fcDNN) and support vector machine (SVM) were also used for comparison. The classification performance was also assessed for several k-fold cross-validation (CV) schemes, including leave-one-subject-out CV (LOOCV). Overall, the classification results of the 3D-CNN model were superior to that of the 1D-fcDNN and SVM models. When using the fully-processed fMRI volumes with LOOCV, the mean error rates (± the standard error of the mean) for the 3D-CNN, 1D-fcDNN, and SVM models were 2.1% (± 0.9), 3.1% (± 1.2), and 4.1% (± 1.5), respectively (p = 0.041 from a one-way ANOVA). The error rates for 3-fold CV were higher (2.4% ± 1.0, 4.2% ± 1.3, and 10.1% ± 2.0; p < 0.0003 from a one-way ANOVA). The mean error rates also increased considerably using the raw fMRI 3D volume data without preprocessing (26.2% for the 3D-CNN, 75.0% for the 1D-fcDNN, and 75.0% for the SVM). Furthermore, the ability of the pre-trained 3D-CNN model to handle shifted and scaled neuronal activations was demonstrated in an online scenario for five-class classification (i.e., four sensorimotor tasks and the resting state) using the real-time fMRI of three participants. The resulting classification accuracy was 78.5% (± 1.4), 26.7% (± 5.9), and 21.5% (± 3.1) for the 3D-CNN, 1D-fcDNN, and SVM models, respectively. The superior performance of the 3D-CNN compared to the 1D-fcDNN was verified by analyzing the resulting feature maps and convolution filters that handled the shifted and scaled neuronal activations and by utilizing an independent public dataset from the Human Connectome Project.
Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample to provide a feature map for the subsequent layers. In our study, we hypothesized that a 3D-CNN model with down-sampling operations such as pooling and/or stride would have the ability to extract robust feature maps from the shifted and scaled neuronal activations in a single functional MRI (fMRI) volume for the classification of task information associated with that volume. Thus, the 3D-CNN model would be able to ameliorate the potential misalignment of neuronal activations and over-/under-activation in local brain regions caused by imperfections in spatial alignment algorithms, confounded by variability in blood-oxygenation-level-dependent (BOLD) responses across sessions and/or subjects. To this end, the fMRI volumes acquired from four sensorimotor tasks (left-hand clenching, right-hand clenching, auditory attention, and visual stimulation) were used as input for our 3D-CNN model to classify task information using a single fMRI volume. The classification performance of the 3D-CNN was systematically evaluated using fMRI volumes obtained from various minimal preprocessing scenarios applied to raw fMRI volumes that excluded spatial normalization to a template and those obtained from full preprocessing that included spatial normalization. Alternative classifier models such as the 1D fully connected DNN (1D-fcDNN) and support vector machine (SVM) were also used for comparison. The classification performance was also assessed for several k-fold cross-validation (CV) schemes, including leave-one-subject-out CV (LOOCV). Overall, the classification results of the 3D-CNN model were superior to that of the 1D-fcDNN and SVM models. When using the fully-processed fMRI volumes with LOOCV, the mean error rates (± the standard error of the mean) for the 3D-CNN, 1D-fcDNN, and SVM models were 2.1% (± 0.9), 3.1% (± 1.2), and 4.1% (± 1.5), respectively (p = 0.041 from a one-way ANOVA). The error rates for 3-fold CV were higher (2.4% ± 1.0, 4.2% ± 1.3, and 10.1% ± 2.0; p < 0.0003 from a one-way ANOVA). The mean error rates also increased considerably using the raw fMRI 3D volume data without preprocessing (26.2% for the 3D-CNN, 75.0% for the 1D-fcDNN, and 75.0% for the SVM). Furthermore, the ability of the pre-trained 3D-CNN model to handle shifted and scaled neuronal activations was demonstrated in an online scenario for five-class classification (i.e., four sensorimotor tasks and the resting state) using the real-time fMRI of three participants. The resulting classification accuracy was 78.5% (± 1.4), 26.7% (± 5.9), and 21.5% (± 3.1) for the 3D-CNN, 1D-fcDNN, and SVM models, respectively. The superior performance of the 3D-CNN compared to the 1D-fcDNN was verified by analyzing the resulting feature maps and convolution filters that handled the shifted and scaled neuronal activations and by utilizing an independent public dataset from the Human Connectome Project.
Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample to provide a feature map for the subsequent layers. In our study, we hypothesized that a 3D-CNN model with down-sampling operations such as pooling and/or stride would have the ability to extract robust feature maps from the shifted and scaled neuronal activations in a single functional MRI (fMRI) volume for the classification of task information associated with that volume. Thus, the 3D-CNN model would be able to ameliorate the potential misalignment of neuronal activations and over-/under-activation in local brain regions caused by imperfections in spatial alignment algorithms, confounded by variability in blood-oxygenation-level-dependent (BOLD) responses across sessions and/or subjects. To this end, the fMRI volumes acquired from four sensorimotor tasks (left-hand clenching, right-hand clenching, auditory attention, and visual stimulation) were used as input for our 3D-CNN model to classify task information using a single fMRI volume. The classification performance of the 3D-CNN was systematically evaluated using fMRI volumes obtained from various minimal preprocessing scenarios applied to raw fMRI volumes that excluded spatial normalization to a template and those obtained from full preprocessing that included spatial normalization. Alternative classifier models such as the 1D fully connected DNN (1D-fcDNN) and support vector machine (SVM) were also used for comparison. The classification performance was also assessed for several k-fold cross-validation (CV) schemes, including leave-one-subject-out CV (LOOCV). Overall, the classification results of the 3D-CNN model were superior to that of the 1D-fcDNN and SVM models. When using the fully-processed fMRI volumes with LOOCV, the mean error rates (± the standard error of the mean) for the 3D-CNN, 1D-fcDNN, and SVM models were 2.1% (± 0.9), 3.1% (± 1.2), and 4.1% (± 1.5), respectively (p = 0.041 from a one-way ANOVA). The error rates for 3-fold CV were higher (2.4% ± 1.0, 4.2% ± 1.3, and 10.1% ± 2.0; p < 0.0003 from a one-way ANOVA). The mean error rates also increased considerably using the raw fMRI 3D volume data without preprocessing (26.2% for the 3D-CNN, 75.0% for the 1D-fcDNN, and 75.0% for the SVM). Furthermore, the ability of the pre-trained 3D-CNN model to handle shifted and scaled neuronal activations was demonstrated in an online scenario for five-class classification (i.e., four sensorimotor tasks and the resting state) using the real-time fMRI of three participants. The resulting classification accuracy was 78.5% (± 1.4), 26.7% (± 5.9), and 21.5% (± 3.1) for the 3D-CNN, 1D-fcDNN, and SVM models, respectively. The superior performance of the 3D-CNN compared to the 1D-fcDNN was verified by analyzing the resulting feature maps and convolution filters that handled the shifted and scaled neuronal activations and by utilizing an independent public dataset from the Human Connectome Project.
ArticleNumber 117328
Author Kim, Hyun-Chul
Jung, Minyoung
Vu, Hanh
Lee, Jong-Hwan
Author_xml – sequence: 1
  givenname: Hanh
  surname: Vu
  fullname: Vu, Hanh
– sequence: 2
  givenname: Hyun-Chul
  surname: Kim
  fullname: Kim, Hyun-Chul
– sequence: 3
  givenname: Minyoung
  surname: Jung
  fullname: Jung, Minyoung
– sequence: 4
  givenname: Jong-Hwan
  orcidid: 0000-0002-8902-6009
  surname: Lee
  fullname: Lee, Jong-Hwan
  email: jonghwan_lee@korea.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32896633$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhi1URNvAX0CWuHDZ4K_dxBcELV-RipAQnC2vdxycOutie4P67_HuliLllJOt0TOPrZn3Ep31oQeEMCVLSmjzZrfsYYjB7fUWloywUqYrztZP0AUlsq5kvWJn473m1ZpSeY4uU9oRQiQV62fovKCyaTi_QNl-_b7Bh-CHPWDjdUrOOqOzCz0ekuu3WGP-AZvQj8xY1h6Pj09H_hPiLY6hHVLGOeD0y9kMHdZ9h5PRvlynj45N2mR3mMTpOXpqtU_w4uFcoJ-fPv64_lLdfPu8uX5_U5lG0FwB4cSKpjOdbGvZrmoA0taaEmI6XRDZ8q6WvKZADUjGrGCaCEtqzSRZ8ZYv0Gb2dkHv1F0s84r3KminpkKIW6VjdsaDonxFWSNIw0gr1la2TBhDpSaStLYTtrhez667GH4PkLLau2TAe91DGJJiQhSWMEoL-uoI3YUhlhmMVM0LxctiFujlAzW0e-gev_dvNwVYz4CJIaUI9hGhRI0xUDv1PwZqjIGaY1Ba3x61Gpen2eeonT9FcDULoKzn4CCqZBz0BjoXweQyP3eK5N2RxHjXl3T5W7g_TfEXUdLq2w
CitedBy_id crossref_primary_10_1016_j_neuroimage_2023_120164
crossref_primary_10_1109_JBHI_2024_3426930
crossref_primary_10_1109_TMI_2024_3507008
crossref_primary_10_1007_s44163_025_00377_8
crossref_primary_10_1007_s13369_023_07786_w
crossref_primary_10_1097_WNR_0000000000001653
crossref_primary_10_1016_j_ijsolstr_2023_112545
crossref_primary_10_1002_mp_17833
crossref_primary_10_1016_j_jpsychires_2022_12_037
crossref_primary_10_1523_JNEUROSCI_0670_24_2024
crossref_primary_10_1177_15500594221122699
crossref_primary_10_3389_fnins_2025_1606801
crossref_primary_10_1155_2021_6633755
crossref_primary_10_1093_gigascience_giad029
crossref_primary_10_1002_hbm_25627
crossref_primary_10_1002_hbm_25813
Cites_doi 10.1016/j.neuroimage.2010.08.007
10.1016/j.media.2009.01.001
10.1016/j.neuroimage.2013.03.033
10.1126/science.aad8127
10.1097/WCO.0000000000000340
10.1016/j.media.2017.08.005
10.1016/j.tics.2010.04.004
10.1016/j.neuroimage.2013.05.081
10.1073/pnas.1602413113
10.1162/jocn_a_00802
10.1016/j.neuroimage.2010.06.052
10.1093/cercor/bhr099
10.1016/j.neuroimage.2016.10.038
10.1177/1073858413494269
10.1093/scan/nsm006
10.1371/journal.pone.0017191
10.1371/journal.pcbi.1003915
10.1016/j.neuroimage.2016.09.046
10.1073/pnas.1403112111
10.1016/j.neuroimage.2019.116059
10.1371/journal.pcbi.0040027
10.1038/nrn.2016.164
10.1089/brain.2015.0348
10.1002/mrm.1910340409
10.1002/hbm.21333
10.1006/nimg.2001.0978
10.3389/fnins.2014.00229
10.1016/j.neuron.2011.09.006
10.2217/iim.10.35
10.1162/089976698300017197
10.1016/j.biopsycho.2013.04.010
10.1093/scan/nsx123
10.1016/j.neuroimage.2011.10.035
10.1146/annurev-bioeng-071516-044442
10.1016/j.neuroimage.2013.05.033
10.1016/j.neuroimage.2016.04.003
10.1006/nimg.1998.0369
10.3389/fnins.2018.00064
10.1016/j.neuroimage.2013.04.127
10.1523/JNEUROSCI.3489-08.2009
10.1016/j.neuroimage.2019.03.066
10.1109/TMI.2017.2715285
10.1109/TBME.2004.827063
10.1016/j.neuroimage.2013.05.041
10.1111/j.1467-9868.2005.00503.x
10.1016/j.neuroimage.2012.02.018
10.1038/nature18933
10.1038/nature14539
10.3389/fninf.2018.00023
10.1016/j.tics.2013.10.001
10.1016/j.neuroimage.2017.05.004
10.1016/j.nicl.2014.07.002
10.1016/j.neuroimage.2003.11.029
10.1016/j.neuroimage.2017.07.059
10.1109/5.726791
10.1016/j.neuroimage.2011.10.009
10.1523/JNEUROSCI.5023-14.2015
10.1073/pnas.0604187103
10.1016/j.neuroimage.2016.01.024
10.1002/hbm.23737
10.1016/j.neuroimage.2017.02.035
10.1371/journal.pone.0157443
10.1109/TBME.2017.2715281
10.1016/j.neulet.2008.11.024
10.1016/j.tics.2016.03.011
10.1038/nature21369
10.1152/jn.00338.2011
10.1097/YCO.0000000000000087
10.1016/j.mri.2007.08.006
10.1007/s00429-015-1018-7
10.1097/01.wnr.0000133296.39160.fe
10.1016/j.neuroimage.2018.10.054
10.1016/j.neuroimage.2014.06.077
10.1093/cercor/bhu239
10.1007/BF02295996
10.1016/j.neuroimage.2017.12.071
10.1093/cercor/bhr002
10.1016/j.neuroimage.2015.05.018
10.1016/j.media.2018.04.002
10.1016/j.neuron.2018.03.044
10.1016/j.neures.2012.01.002
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Inc.
Copyright Elsevier Limited Dec 2020
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Dec 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2020.117328
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest One Psychology
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_13712640620b48f9b24cc19a090bfd4f
32896633
10_1016_j_neuroimage_2020_117328
S1053811920308144
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
9DU
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c641t-e030f46dcd9b59b75ee0b5a100cdac649b3d59351e1ce922f42a04f05a29073b3
IEDL.DBID M7P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582799600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Fri Oct 03 12:35:55 EDT 2025
Sun Sep 28 12:16:27 EDT 2025
Tue Oct 07 07:00:36 EDT 2025
Thu Apr 03 06:59:51 EDT 2025
Sat Nov 29 06:55:52 EST 2025
Tue Nov 18 22:35:03 EST 2025
Fri Feb 23 02:46:25 EST 2024
Tue Oct 14 19:39:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Human Connectome Project
Real-time fMRI
Deep neural networks
Classification
Machine learning
Sensorimotor tasks
Functional MRI
Convolutional neural networks
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-e030f46dcd9b59b75ee0b5a100cdac649b3d59351e1ce922f42a04f05a29073b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8902-6009
OpenAccessLink https://doaj.org/article/13712640620b48f9b24cc19a090bfd4f
PMID 32896633
PQID 2453900305
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_13712640620b48f9b24cc19a090bfd4f
proquest_miscellaneous_2440900211
proquest_journals_2453900305
pubmed_primary_32896633
crossref_primary_10_1016_j_neuroimage_2020_117328
crossref_citationtrail_10_1016_j_neuroimage_2020_117328
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117328
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_117328
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Zanto, Gazzaley (bib0108) 2013; 17
Zhou, Khosla, Lapedriza, Oliva, Torralba (bib0113) 2016
Weiskopf, Mathiak, Bock, Scharnowski, Veit, Grodd, Goebel, Birbaumer (bib0102) 2004; 51
Manly (bib0057) 2018
Ramasangu, Sinha (bib0071) 2014
Dohmatob, Varoquaux, Thirion (bib0014) 2018; 12
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib0094) 2013; 80
Sharif Razavian, Azizpour, Sullivan, Carlsson (bib0075) 2014
Tavor, Jones, Mars, Smith, Behrens, Jbabdi (bib0090) 2016; 352
Bressler, Menon (bib0006) 2010; 14
Mikl, Mareček, Hluštík, Pavlicová, Drastich, Chlebus, Brázdil, Krupa (bib0061) 2008; 26
Cole, Poudel, Tsagkrasoulis, Caan, Steves, Spector, Montana (bib0010) 2017; 163
Handwerker, Ollinger, D'Esposito (bib0025) 2004; 21
Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bib0078) 2012; 22
Kim, Bandettini, Lee (bib0038) 2019; 186
Gordon, Laumann, Adeyemo, Huckins, Kelley, Petersen (bib0023) 2014; 26
Stoeckel, Garrison, Ghosh, Wighton, Hanlon, Gilman, Greer, Turk-Browne, deBettencourt, Scheinost (bib0087) 2014; 5
Pinto, Cox, DiCarlo (bib0065) 2008; 4
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss (bib0095) 2012; 62
.
Hazlett, Gu, Munsell, Kim, Styner, Wolff, Elison, Swanson, Zhu, Botteron, Collins, Constantino, Dager, Estes, Evans, Fonov, Gerig, Kostopoulos, McKinstry, Pandey, Paterson, Pruett, Schultz, Shaw, Zwaigenbaum, Piven (bib0026) 2017; 542
Steimke, Nomi, Calhoun, Stelzel, Paschke, Gaschler, Goschke, Walter, Uddin (bib0086) 2017; 12
LaConte (bib0045) 2011; 56
Ruiz, Buyukturkoglu, Rana, Birbaumer, Sitaram (bib0073) 2014; 95
Schroff, Kalenichenko, Philbin (bib0074) 2015
Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt (bib0003) 2013; 80
Sitaram, Lee, Ruiz, Rana, Veit, Birbaumer (bib0081) 2011; 56
Huang, Hu, Zhao, Makkie, Dong, Zhao, Guo, Liu (bib0028) 2018; 37
Güçlü, van Gerven (bib0024) 2015; 35
Raschka, S., 2018. Model evaluation, model selection, and algorithm selection in machine learning. arXiv preprint arXiv
Khaligh-Razavi, Kriegeskorte (bib0036) 2014; 10
Pu, Gan, Henao, Yuan, Li, Stevens, Carin (bib0069) 2016
Wang, X., Liang, X., Zhou, Y., Wang, Y., Cui, J., Wang, H., Li, Y., Nguchu, B.A., Qiu, B., 2018. Task state decoding and mapping of individual four-dimensional fMRI time series using deep neural network. arXiv preprint arXiv
Craddock, James, Holtzheimer, Hu, Mayberg (bib0011) 2012; 33
Calhoun, Wager, Krishnan, Rosch, Seymour, Nebel, Mostofsky, Nyalakanai, Kiehl (bib0008) 2017; 38
Shen, Wu, Suk (bib0076) 2017; 19
Zhao, Dong, Chen, Iraji, Li, Makkie, Kou, Liu (bib0110) 2017; 42
Song, Zhan, Long, Zhang, Yao (bib0083) 2011; 6
Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson (bib0018) 2016; 536
Kim, Birbaumer (bib0041) 2014; 27
Jain, Huth (bib0030) 2018
Lee, Ryu, Jolesz, Cho, Yoo (bib0050) 2009; 450
Aguirre, Zarahn, D'esposito (bib0002) 1998; 8
Buckner (bib0007) 2012; 62
Golik, Doetsch, Ney (bib0021) 2013
Goebel, Zilverstand, Sorger (bib0020) 2010; 2
Dietterich (bib0013) 1998; 10
Zhang, Yao, Song, Wen, Zhao, Long (bib0109) 2018; 65
Yuan, Di, Taylor, Gohel, Tsai, Biswal (bib0107) 2016; 221
Shen, Tokoglu, Papademetris, Constable (bib0077) 2013; 82
Suk, Lee, Shen, Initiative (bib0088) 2014; 101
LeCun, Bottou, Bengio, Haffner (bib0047) 1998; 86
Eklund, Nichols, Knutsson (bib0016) 2016
Horikawa, Kamitani (bib0027) 2017; 11
Wachinger, Reuter, Klein (bib0098) 2018; 170
Li, Satterthwaite, Fan (bib0054) 2017; 156
Weiskopf (bib0101) 2012; 62
Levi, Hassner (bib0051) 2015
Thomas Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni (bib0092) 2011; 106
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0093) 2002; 15
Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: visualizing image classification models and saliency maps. arXiv preprint arXiv
Biswal, Zerrin Yetkin, Haughton, Hyde (bib0005) 1995; 34
Zou, Hastie (bib0114) 2005; 67
Lee, Marzelli, Jolesz, Yoo (bib0049) 2009; 13
Krizhevsky, Sutskever, Hinton (bib0044) 2012
Lee, Kim, Yoo (bib0048) 2012; 72
Goodfellow, Bengio, Courville (bib0022) 2016
Wen, Wei, Zhou, Li, Zhang, Han (bib0103) 2018; 12
Sulzer, Haller, Scharnowski, Weiskopf, Birbaumer, Blefari, Bruehl, Cohen, DeCharms, Gassert (bib0089) 2013; 76
McNemar (bib0059) 1947; 12
Karpathy, Toderici, Shetty, Leung, Sukthankar, Fei-Fei (bib0033) 2014
Zhao, Dong, Zhang, Zhang, Chen, Jiang, Guo, Hu, Han, Liu (bib0111) 2017; 65
Parkhi, Vedaldi, Zisserman (bib0064) 2015
Menon (bib0060) 2015
Warrier, Wong, Penhune, Zatorre, Parrish, Abrams, Kraus (bib0100) 2009; 29
Simonyan, Zisserman (bib0080) 2014
Sitaram, Ros, Stoeckel, Haller, Scharnowski, Lewis-Peacock, Weiskopf, Blefari, Rana, Oblak (bib0082) 2017; 18
Kim, Calhoun, Shim, Lee (bib0040) 2016; 124
Nie, Zhang, Adeli, Liu, Shen (bib0062) 2016
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib0019) 2013; 80
Kanazawa, A., Sharma, A., Jacobs, D., 2014. Locally scale-invariant convolutional neural networks. arXiv preprint arXiv
Yousry, Fesl, Buttner, Noachtar, Schmid (bib0106) 1997; 3
Plis, Hjelm, Salakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (bib0066) 2014; 8
Yoo, Fairneny, Chen, Choo, Panych, Park, Lee, Jolesz (bib0105) 2004; 15
Norouzi, Ranjbar, Mori (bib0063) 2009
Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv
Chenji, Jha, Lee, Brown, Seres, Mah, Kalra (bib0009) 2016; 11
Cristianini, Shawe-Taylor (bib0012) 2000
Kell, Yamins, Shook, Norman-Haignere, McDermott (bib0035) 2018; 98
Luo, Li, Urtasun, Zemel (bib0056) 2016
Kawahara, Brown, Miller, Booth, Chau, Grunau, Zwicker, Hamarneh (bib0034) 2017; 146
Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv
LeCun, Bengio, Hinton (bib0046) 2015; 521
Kim, Tegethoff, Meinlschmidt, Stalujanis, Belardi, Jo, Lee, Kim, Yoo, Lee (bib0039) 2019; 195
Varoquaux, Raamana, Engemann, Hoyos-Idrobo, Schwartz, Thirion (bib0096) 2017; 145
Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar (bib0068) 2011; 72
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0085) 2014; 15
Thibault, MacPherson, Lifshitz, Roth, Raz (bib0091) 2018; 172
Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib0104) 2014; 111
Zhao, Ge, Liu (bib0112) 2018; 47
Bell, Shine (bib0004) 2015; 5
Fox, Corbetta, Snyder, Vincent, Raichle (bib0017) 2006; 103
Li, Fan (bib0053) 2019; 202
Dou, Chen, Yu, Zhao, Qin, Wang, Mok, Shi, Heng (bib0015) 2016; 35
Li, Fan (bib0052) 2018
Maturana, Scherer (bib0058) 2015
Kragel, LaBar (bib0043) 2016; 20
Jang, Plis, Calhoun, Lee (bib0031) 2017; 145
Vossel, Geng, Fink (bib0097) 2014; 20
Agosta, Valsasina, Absinta, Riva, Sala, Prelle, Copetti, Comola, Comi, Filippi (bib0001) 2011; 21
Linden, Turner (bib0055) 2016; 29
Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv
Kim, Yoo, Tegethoff, Meinlschmidt, Lee (bib0037) 2015; 27
Kleesiek, Urban, Hubert, Schwarz, Maier-Hein, Bendszus, Biller (bib0042) 2016; 129
Poldrack (bib0067) 2007; 2
Kragel (10.1016/j.neuroimage.2020.117328_bib0043) 2016; 20
Thomas Yeo (10.1016/j.neuroimage.2020.117328_bib0092) 2011; 106
Dietterich (10.1016/j.neuroimage.2020.117328_bib0013) 1998; 10
Zhao (10.1016/j.neuroimage.2020.117328_bib0110) 2017; 42
Ramasangu (10.1016/j.neuroimage.2020.117328_bib0071) 2014
Dou (10.1016/j.neuroimage.2020.117328_bib0015) 2016; 35
Warrier (10.1016/j.neuroimage.2020.117328_bib0100) 2009; 29
LaConte (10.1016/j.neuroimage.2020.117328_bib0045) 2011; 56
Parkhi (10.1016/j.neuroimage.2020.117328_bib0064) 2015
Plis (10.1016/j.neuroimage.2020.117328_bib0066) 2014; 8
Van Essen (10.1016/j.neuroimage.2020.117328_bib0095) 2012; 62
Norouzi (10.1016/j.neuroimage.2020.117328_bib0063) 2009
Simonyan (10.1016/j.neuroimage.2020.117328_bib0080) 2014
Horikawa (10.1016/j.neuroimage.2020.117328_bib0027) 2017; 11
Kell (10.1016/j.neuroimage.2020.117328_bib0035) 2018; 98
Sitaram (10.1016/j.neuroimage.2020.117328_bib0082) 2017; 18
Glasser (10.1016/j.neuroimage.2020.117328_bib0018) 2016; 536
Zhao (10.1016/j.neuroimage.2020.117328_bib0111) 2017; 65
Schroff (10.1016/j.neuroimage.2020.117328_bib0074) 2015
Krizhevsky (10.1016/j.neuroimage.2020.117328_bib0044) 2012
Linden (10.1016/j.neuroimage.2020.117328_bib0055) 2016; 29
Goebel (10.1016/j.neuroimage.2020.117328_bib0020) 2010; 2
Eklund (10.1016/j.neuroimage.2020.117328_bib0016) 2016
Nie (10.1016/j.neuroimage.2020.117328_bib0062) 2016
LeCun (10.1016/j.neuroimage.2020.117328_bib0047) 1998; 86
Bell (10.1016/j.neuroimage.2020.117328_bib0004) 2015; 5
Shen (10.1016/j.neuroimage.2020.117328_bib0076) 2017; 19
Stoeckel (10.1016/j.neuroimage.2020.117328_bib0087) 2014; 5
Wachinger (10.1016/j.neuroimage.2020.117328_bib0098) 2018; 170
Varoquaux (10.1016/j.neuroimage.2020.117328_bib0096) 2017; 145
Sharif Razavian (10.1016/j.neuroimage.2020.117328_bib0075) 2014
Cristianini (10.1016/j.neuroimage.2020.117328_bib0012) 2000
Kawahara (10.1016/j.neuroimage.2020.117328_bib0034) 2017; 146
Kim (10.1016/j.neuroimage.2020.117328_bib0037) 2015; 27
Srivastava (10.1016/j.neuroimage.2020.117328_bib0085) 2014; 15
Vossel (10.1016/j.neuroimage.2020.117328_bib0097) 2014; 20
Kleesiek (10.1016/j.neuroimage.2020.117328_bib0042) 2016; 129
Van Essen (10.1016/j.neuroimage.2020.117328_bib0094) 2013; 80
LeCun (10.1016/j.neuroimage.2020.117328_bib0046) 2015; 521
Biswal (10.1016/j.neuroimage.2020.117328_bib0005) 1995; 34
Tzourio-Mazoyer (10.1016/j.neuroimage.2020.117328_bib0093) 2002; 15
10.1016/j.neuroimage.2020.117328_bib0032
Bressler (10.1016/j.neuroimage.2020.117328_bib0006) 2010; 14
Lee (10.1016/j.neuroimage.2020.117328_bib0050) 2009; 450
Ruiz (10.1016/j.neuroimage.2020.117328_bib0073) 2014; 95
Pu (10.1016/j.neuroimage.2020.117328_bib0069) 2016
Chenji (10.1016/j.neuroimage.2020.117328_bib0009) 2016; 11
Dohmatob (10.1016/j.neuroimage.2020.117328_bib0014) 2018; 12
Levi (10.1016/j.neuroimage.2020.117328_bib0051) 2015
10.1016/j.neuroimage.2020.117328_bib0029
Kim (10.1016/j.neuroimage.2020.117328_bib0039) 2019; 195
Barch (10.1016/j.neuroimage.2020.117328_bib0003) 2013; 80
Glasser (10.1016/j.neuroimage.2020.117328_bib0019) 2013; 80
Goodfellow (10.1016/j.neuroimage.2020.117328_bib0022) 2016
McNemar (10.1016/j.neuroimage.2020.117328_bib0059) 1947; 12
Khaligh-Razavi (10.1016/j.neuroimage.2020.117328_bib0036) 2014; 10
Weiskopf (10.1016/j.neuroimage.2020.117328_bib0101) 2012; 62
Shirer (10.1016/j.neuroimage.2020.117328_bib0078) 2012; 22
Lee (10.1016/j.neuroimage.2020.117328_bib0049) 2009; 13
Gordon (10.1016/j.neuroimage.2020.117328_bib0023) 2014; 26
Zou (10.1016/j.neuroimage.2020.117328_bib0114) 2005; 67
Fox (10.1016/j.neuroimage.2020.117328_bib0017) 2006; 103
Jain (10.1016/j.neuroimage.2020.117328_bib0030) 2018
10.1016/j.neuroimage.2020.117328_bib0099
Manly (10.1016/j.neuroimage.2020.117328_bib0057) 2018
Sulzer (10.1016/j.neuroimage.2020.117328_bib0089) 2013; 76
Song (10.1016/j.neuroimage.2020.117328_bib0083) 2011; 6
Yousry (10.1016/j.neuroimage.2020.117328_bib0106) 1997; 3
Huang (10.1016/j.neuroimage.2020.117328_bib0028) 2018; 37
Tavor (10.1016/j.neuroimage.2020.117328_bib0090) 2016; 352
Weiskopf (10.1016/j.neuroimage.2020.117328_bib0102) 2004; 51
Li (10.1016/j.neuroimage.2020.117328_bib0053) 2019; 202
Li (10.1016/j.neuroimage.2020.117328_bib0052) 2018
Luo (10.1016/j.neuroimage.2020.117328_bib0056) 2016
Thibault (10.1016/j.neuroimage.2020.117328_bib0091) 2018; 172
Maturana (10.1016/j.neuroimage.2020.117328_bib0058) 2015
Kim (10.1016/j.neuroimage.2020.117328_bib0038) 2019; 186
Cole (10.1016/j.neuroimage.2020.117328_bib0010) 2017; 163
Mikl (10.1016/j.neuroimage.2020.117328_bib0061) 2008; 26
10.1016/j.neuroimage.2020.117328_bib0079
Aguirre (10.1016/j.neuroimage.2020.117328_bib0002) 1998; 8
Jang (10.1016/j.neuroimage.2020.117328_bib0031) 2017; 145
Steimke (10.1016/j.neuroimage.2020.117328_bib0086) 2017; 12
Handwerker (10.1016/j.neuroimage.2020.117328_bib0025) 2004; 21
10.1016/j.neuroimage.2020.117328_bib0084
Golik (10.1016/j.neuroimage.2020.117328_bib0021) 2013
Zhao (10.1016/j.neuroimage.2020.117328_bib0112) 2018; 47
Kim (10.1016/j.neuroimage.2020.117328_bib0041) 2014; 27
Hazlett (10.1016/j.neuroimage.2020.117328_bib0026) 2017; 542
Sitaram (10.1016/j.neuroimage.2020.117328_bib0081) 2011; 56
Menon (10.1016/j.neuroimage.2020.117328_bib0060) 2015
Poldrack (10.1016/j.neuroimage.2020.117328_bib0067) 2007; 2
Wen (10.1016/j.neuroimage.2020.117328_bib0103) 2018; 12
Zanto (10.1016/j.neuroimage.2020.117328_bib0108) 2013; 17
Güçlü (10.1016/j.neuroimage.2020.117328_bib0024) 2015; 35
Li (10.1016/j.neuroimage.2020.117328_bib0054) 2017; 156
Yamins (10.1016/j.neuroimage.2020.117328_bib0104) 2014; 111
Calhoun (10.1016/j.neuroimage.2020.117328_bib0008) 2017; 38
Power (10.1016/j.neuroimage.2020.117328_bib0068) 2011; 72
Kim (10.1016/j.neuroimage.2020.117328_bib0040) 2016; 124
Pinto (10.1016/j.neuroimage.2020.117328_bib0065) 2008; 4
Zhang (10.1016/j.neuroimage.2020.117328_bib0109) 2018; 65
Yuan (10.1016/j.neuroimage.2020.117328_bib0107) 2016; 221
10.1016/j.neuroimage.2020.117328_bib0072
Agosta (10.1016/j.neuroimage.2020.117328_bib0001) 2011; 21
Suk (10.1016/j.neuroimage.2020.117328_bib0088) 2014; 101
Lee (10.1016/j.neuroimage.2020.117328_bib0048) 2012; 72
Yoo (10.1016/j.neuroimage.2020.117328_bib0105) 2004; 15
Shen (10.1016/j.neuroimage.2020.117328_bib0077) 2013; 82
10.1016/j.neuroimage.2020.117328_bib0070
Craddock (10.1016/j.neuroimage.2020.117328_bib0011) 2012; 33
Karpathy (10.1016/j.neuroimage.2020.117328_bib0033) 2014
Buckner (10.1016/j.neuroimage.2020.117328_bib0007) 2012; 62
Zhou (10.1016/j.neuroimage.2020.117328_bib0113) 2016
References_xml – start-page: 320
  year: 2018
  end-page: 328
  ident: bib0052
  article-title: Brain decoding from functional MRI using long short-term memory recurrent neural networks
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 12
  start-page: 1928
  year: 2017
  end-page: 1939
  ident: bib0086
  article-title: Salience network dynamics underlying successful resistance of temptation
  publication-title: Soc. Cogn. Affect. Neurosci.
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: bib0068
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– volume: 3
  start-page: 2
  year: 1997
  end-page: 12
  ident: bib0106
  article-title: Heschl's gyrus-Anatomic description and methods of identification on magnetic resonance imaging
  publication-title: Int. J. Neuroradiol.
– start-page: 2735
  year: 2009
  end-page: 2742
  ident: bib0063
  article-title: Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009
– reference: Wang, X., Liang, X., Zhou, Y., Wang, Y., Cui, J., Wang, H., Li, Y., Nguchu, B.A., Qiu, B., 2018. Task state decoding and mapping of individual four-dimensional fMRI time series using deep neural network. arXiv preprint arXiv:
– volume: 72
  start-page: 347
  year: 2012
  end-page: 354
  ident: bib0048
  article-title: Real-time fMRI-based neurofeedback reinforces causality of attention networks
  publication-title: Neurosci. Res.
– volume: 11
  year: 2017
  ident: bib0027
  article-title: Hierarchical neural representation of dreamed objects revealed by brain decoding with deep neural network features
  publication-title: Front. Comput. Neurosci.
– start-page: 212
  year: 2016
  end-page: 220
  ident: bib0062
  article-title: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 76
  start-page: 386
  year: 2013
  end-page: 399
  ident: bib0089
  article-title: Real-time fMRI neurofeedback: progress and challenges
  publication-title: NeuroImage
– start-page: 1756
  year: 2013
  end-page: 1760
  ident: bib0021
  article-title: Cross-entropy vs. squared error training: a theoretical and experimental comparison
  publication-title: Interspeech
– volume: 10
  start-page: 1895
  year: 1998
  end-page: 1923
  ident: bib0013
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Comput.
– reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:
– volume: 27
  start-page: 332
  year: 2014
  end-page: 336
  ident: bib0041
  article-title: Real-time functional MRI neurofeedback: a tool for psychiatry
  publication-title: Curr. Opin. Psychiatry
– volume: 22
  start-page: 158
  year: 2012
  end-page: 165
  ident: bib0078
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cereb. Cortex
– volume: 62
  start-page: 1137
  year: 2012
  end-page: 1145
  ident: bib0007
  article-title: The serendipitous discovery of the brain's default network
  publication-title: Neuroimage
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0094
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 146
  start-page: 1038
  year: 2017
  end-page: 1049
  ident: bib0034
  article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment
  publication-title: NeuroImage
– volume: 29
  start-page: 61
  year: 2009
  end-page: 69
  ident: bib0100
  article-title: Relating structure to function: Heschl's gyrus and acoustic processing
  publication-title: J. Neurosci.
– volume: 12
  start-page: 153
  year: 1947
  end-page: 157
  ident: bib0059
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
– volume: 37
  year: 2018
  ident: bib0028
  article-title: Modeling task fMRI data via deep convolutional autoencoder
  publication-title: IEEE Trans. Med. Imaging
– volume: 11
  year: 2016
  ident: bib0009
  article-title: Investigating default mode and sensorimotor network connectivity in amyotrophic lateral sclerosis
  publication-title: PLoS One
– volume: 536
  start-page: 171
  year: 2016
  ident: bib0018
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
– volume: 13
  start-page: 392
  year: 2009
  end-page: 404
  ident: bib0049
  article-title: Automated classification of fMRI data employing trial-based imagery tasks
  publication-title: Med. Image Anal.
– start-page: 922
  year: 2015
  end-page: 928
  ident: bib0058
  article-title: Voxnet: a 3d convolutional neural network for real-time object recognition
  publication-title: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0019
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– start-page: 568
  year: 2014
  end-page: 576
  ident: bib0080
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 352
  start-page: 216
  year: 2016
  end-page: 220
  ident: bib0090
  article-title: Task-free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
– volume: 27
  start-page: 1552
  year: 2015
  end-page: 1572
  ident: bib0037
  article-title: The inclusion of functional connectivity information into fMRI-based neurofeedback improves its efficacy in the reduction of cigarette cravings
  publication-title: J. Cogn. Neurosci.
– volume: 20
  start-page: 150
  year: 2014
  end-page: 159
  ident: bib0097
  article-title: Dorsal and ventral attention systems: distinct neural circuits but collaborative roles
  publication-title: Neuroscientist
– volume: 15
  start-page: 1591
  year: 2004
  end-page: 1595
  ident: bib0105
  article-title: Brain–computer interface using fMRI: spatial navigation by thoughts
  publication-title: Neuroreport
– reference: Kanazawa, A., Sharma, A., Jacobs, D., 2014. Locally scale-invariant convolutional neural networks. arXiv preprint arXiv:
– volume: 56
  start-page: 440
  year: 2011
  end-page: 454
  ident: bib0045
  article-title: Decoding fMRI brain states in real-time
  publication-title: NeuroImage
– start-page: 1
  year: 2014
  end-page: 5
  ident: bib0071
  article-title: Cognitive state classification using transformed fMRI data
  publication-title: Proceeding of the 2014 International Conference on Signal Processing and Communications (SPCOM)
– reference: Raschka, S., 2018. Model evaluation, model selection, and algorithm selection in machine learning. arXiv preprint arXiv:
– start-page: 806
  year: 2014
  end-page: 813
  ident: bib0075
  article-title: CNN features off-the-shelf: an astounding baseline for recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 95
  start-page: 4
  year: 2014
  end-page: 20
  ident: bib0073
  article-title: Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks
  publication-title: Biol. Psychol.
– volume: 65
  start-page: 1639
  year: 2018
  end-page: 1653
  ident: bib0109
  article-title: Euler elastica regularized logistic regression for whole-brain decoding of fMRI data
  publication-title: J. Mag.
– volume: 12
  start-page: 64
  year: 2018
  ident: bib0014
  article-title: Inter-subject registration of functional images: do we need anatomical images?
  publication-title: Front. Neurosci.
– volume: 4
  start-page: e27
  year: 2008
  ident: bib0065
  article-title: Why is real-world visual object recognition hard?
  publication-title: PLoS Comput. Biol.
– volume: 29
  start-page: 412
  year: 2016
  ident: bib0055
  article-title: Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation
  publication-title: Curr. Opin. Neurol.
– volume: 38
  start-page: 5331
  year: 2017
  end-page: 5342
  ident: bib0008
  article-title: The impact of T1 versus EPI spatial normalization templates for fMRI data analyses
  publication-title: Hum. Brain Mapp.
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib0005
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Resonanc. Med.
– volume: 202
  year: 2019
  ident: bib0053
  article-title: Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks
  publication-title: Neuroimage
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0046
  article-title: Deep learning
  publication-title: Nature
– volume: 186
  start-page: 607
  year: 2019
  end-page: 627
  ident: bib0038
  article-title: Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging
  publication-title: NeuroImage
– volume: 542
  start-page: 348
  year: 2017
  end-page: 351
  ident: bib0026
  article-title: Early brain development in infants at high risk for autism spectrum disorder
  publication-title: Nature
– volume: 51
  start-page: 966
  year: 2004
  end-page: 970
  ident: bib0102
  article-title: Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI)
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 163
  start-page: 115
  year: 2017
  end-page: 124
  ident: bib0010
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: NeuroImage
– year: 2016
  ident: bib0022
  article-title: Deep Learning
– start-page: 4898
  year: 2016
  end-page: 4906
  ident: bib0056
  article-title: Understanding the effective receptive field in deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: bib0076
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 62
  start-page: 682
  year: 2012
  end-page: 692
  ident: bib0101
  article-title: Real-time fMRI and its application to neurofeedback
  publication-title: NeuroImage
– volume: 21
  start-page: 1639
  year: 2004
  end-page: 1651
  ident: bib0025
  article-title: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
  publication-title: Neuroimage
– volume: 21
  start-page: 2291
  year: 2011
  end-page: 2298
  ident: bib0001
  article-title: Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis
  publication-title: Cereb. Cortex
– volume: 5
  start-page: 245
  year: 2014
  end-page: 255
  ident: bib0087
  article-title: Optimizing real time fMRI neurofeedback for therapeutic discovery and development
  publication-title: NeuroImage: Clin.
– volume: 26
  start-page: 490
  year: 2008
  end-page: 503
  ident: bib0061
  article-title: Effects of spatial smoothing on fMRI group inferences
  publication-title: Magn. Resonanc. Imaging
– volume: 111
  start-page: 8619
  year: 2014
  end-page: 8624
  ident: bib0104
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci.
– volume: 47
  start-page: 111
  year: 2018
  end-page: 126
  ident: bib0112
  article-title: Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization
  publication-title: Med. Image Anal.
– year: 2000
  ident: bib0012
  article-title: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0047
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0085
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 360
  year: 1998
  end-page: 369
  ident: bib0002
  article-title: The variability of human, BOLD hemodynamic responses
  publication-title: NeuroImage
– volume: 14
  start-page: 277
  year: 2010
  end-page: 290
  ident: bib0006
  article-title: Large-scale brain networks in cognition: emerging methods and principles
  publication-title: Trends Cogn. Sci.
– volume: 35
  start-page: 10005
  year: 2015
  end-page: 10014
  ident: bib0024
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  ident: bib0092
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
– start-page: 2352
  year: 2016
  end-page: 2360
  ident: bib0069
  article-title: Variational autoencoder for deep learning of images, labels and captions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 18
  start-page: 86
  year: 2017
  ident: bib0082
  article-title: Closed-loop brain training: the science of neurofeedback
  publication-title: Nat. Rev. Neurosci.
– volume: 145
  start-page: 314
  year: 2017
  end-page: 328
  ident: bib0031
  article-title: Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks
  publication-title: NeuroImage
– volume: 450
  start-page: 1
  year: 2009
  end-page: 6
  ident: bib0050
  article-title: Brain–machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm
  publication-title: Neurosci. Lett.
– volume: 33
  start-page: 1914
  year: 2012
  end-page: 1928
  ident: bib0011
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp.
– volume: 170
  start-page: 434
  year: 2018
  end-page: 445
  ident: bib0098
  article-title: DeepNAT: deep convolutional neural network for segmenting neuroanatomy
  publication-title: NeuroImage
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0044
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  ident: bib0088
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
– volume: 145
  start-page: 166
  year: 2017
  end-page: 179
  ident: bib0096
  article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines
  publication-title: NeuroImage
– volume: 103
  start-page: 10046
  year: 2006
  end-page: 10051
  ident: bib0017
  article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems
  publication-title: Proc. Natl. Acad. Sci.
– volume: 26
  start-page: 288
  year: 2014
  end-page: 303
  ident: bib0023
  article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations
  publication-title: Cereb. Cortex
– volume: 35
  start-page: 1182
  year: 2016
  end-page: 1195
  ident: bib0015
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: J. Mag.
– start-page: 6
  year: 2015
  ident: bib0064
  article-title: Deep Face Recognition
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: bib0003
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
– volume: 156
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib0054
  article-title: Large-scale sparse functional networks from resting state fMRI
  publication-title: Neuroimage
– start-page: 815
  year: 2015
  end-page: 823
  ident: bib0074
  article-title: Facenet: a unified embedding for face recognition and clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1725
  year: 2014
  end-page: 1732
  ident: bib0033
  article-title: Large-scale video classification with convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 129
  start-page: 460
  year: 2016
  end-page: 469
  ident: bib0042
  article-title: Deep MRI brain extraction: a 3D convolutional neural network for skull stripping
  publication-title: Neuroimage
– volume: 98
  start-page: e616
  year: 2018
  ident: bib0035
  article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy
  publication-title: Neuron
– year: 2015
  ident: bib0060
  article-title: Salience Network: Brain Mapping: An Encyclopedic Reference
– volume: 6
  start-page: e17191
  year: 2011
  ident: bib0083
  article-title: Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data
  publication-title: PloS one
– start-page: 2921
  year: 2016
  end-page: 2929
  ident: bib0113
  article-title: Learning deep features for discriminative localization
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 65
  start-page: 1975
  year: 2017
  end-page: 1984
  ident: bib0111
  article-title: Automatic recognition of fMRI-derived functional networks using 3-D convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 17
  start-page: 602
  year: 2013
  end-page: 603
  ident: bib0108
  article-title: Fronto-parietal network: flexible hub of cognitive control
  publication-title: Trends Cogn. Sci.
– start-page: 34
  year: 2015
  end-page: 42
  ident: bib0051
  article-title: Age and gender classification using convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 8
  start-page: 229
  year: 2014
  ident: bib0066
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci.
– volume: 5
  start-page: 565
  year: 2015
  end-page: 574
  ident: bib0004
  article-title: Estimating large-scale network convergence in the human functional connectome
  publication-title: Brain Connect.
– volume: 20
  start-page: 444
  year: 2016
  end-page: 455
  ident: bib0043
  article-title: Decoding the nature of emotion in the brain
  publication-title: Trends Cogn. Sci.
– reference: Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:
– volume: 82
  start-page: 403
  year: 2013
  end-page: 415
  ident: bib0077
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
– reference: Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: visualizing image classification models and saliency maps. arXiv preprint arXiv:
– year: 2018
  ident: bib0030
  article-title: Incorporating context into language encoding models for fMRI
  publication-title: bioRxiv
– volume: 12
  start-page: 23
  year: 2018
  ident: bib0103
  article-title: Deep learning methods to process fMRI data and their application in the diagnosis of cognitive impairment: a brief overview and our opinion
  publication-title: Front. Neuroinf.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib0114
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
– volume: 124
  start-page: 127
  year: 2016
  end-page: 146
  ident: bib0040
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: Neuroimage
– volume: 10
  year: 2014
  ident: bib0036
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
– reference: Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:
– volume: 221
  start-page: 1971
  year: 2016
  end-page: 1984
  ident: bib0107
  article-title: Functional topography of the thalamocortical system in human
  publication-title: Brain Struct. Funct.
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib0095
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
– volume: 172
  start-page: 786
  year: 2018
  end-page: 807
  ident: bib0091
  article-title: Neurofeedback with fMRI: a critical systematic review
  publication-title: Neuroimage
– volume: 42
  start-page: 200
  year: 2017
  end-page: 211
  ident: bib0110
  article-title: Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder
  publication-title: Med. Image Anal.
– reference: .
– volume: 2
  start-page: 407
  year: 2010
  end-page: 415
  ident: bib0020
  article-title: Real-time fMRI-based brain–computer interfacing for neurofeedback therapy and compensation of lost motor functions
  publication-title: Imaging in Medicine
– volume: 56
  start-page: 753
  year: 2011
  end-page: 765
  ident: bib0081
  article-title: Real-time support vector classification and feedback of multiple emotional brain states
  publication-title: Neuroimage
– year: 2016
  ident: bib0016
  article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates
  publication-title: Proc. Natl. Acad. Sci.
– volume: 2
  start-page: 67
  year: 2007
  end-page: 70
  ident: bib0067
  article-title: Region of interest analysis for fMRI
  publication-title: Soc. Cogn. Affect. Neurosci.
– year: 2018
  ident: bib0057
  article-title: Randomization, Bootstrap and Monte Carlo Methods in Biology
– volume: 195
  start-page: 409
  year: 2019
  end-page: 432
  ident: bib0039
  article-title: Mediation analysis of triple networks revealed functional feature of mindfulness from real-time fMRI neurofeedback
  publication-title: NeuroImage
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib0093
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– ident: 10.1016/j.neuroimage.2020.117328_bib0070
– volume: 56
  start-page: 753
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117328_bib0081
  article-title: Real-time support vector classification and feedback of multiple emotional brain states
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.007
– volume: 13
  start-page: 392
  year: 2009
  ident: 10.1016/j.neuroimage.2020.117328_bib0049
  article-title: Automated classification of fMRI data employing trial-based imagery tasks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.01.001
– volume: 76
  start-page: 386
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117328_bib0089
  article-title: Real-time fMRI neurofeedback: progress and challenges
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.033
– volume: 352
  start-page: 216
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0090
  article-title: Task-free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
  doi: 10.1126/science.aad8127
– start-page: 2352
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0069
  article-title: Variational autoencoder for deep learning of images, labels and captions
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117328_bib0064
– volume: 29
  start-page: 412
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0055
  article-title: Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000340
– volume: 42
  start-page: 200
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0110
  article-title: Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.08.005
– volume: 14
  start-page: 277
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117328_bib0006
  article-title: Large-scale brain networks in cognition: emerging methods and principles
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2010.04.004
– start-page: 1756
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117328_bib0021
  article-title: Cross-entropy vs. squared error training: a theoretical and experimental comparison
  publication-title: Interspeech
– volume: 82
  start-page: 403
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117328_bib0077
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.081
– year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0016
  article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1602413113
– volume: 11
  issue: 4
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0027
  article-title: Hierarchical neural representation of dreamed objects revealed by brain decoding with deep neural network features
  publication-title: Front. Comput. Neurosci.
– volume: 27
  start-page: 1552
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117328_bib0037
  article-title: The inclusion of functional connectivity information into fMRI-based neurofeedback improves its efficacy in the reduction of cigarette cravings
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_00802
– volume: 56
  start-page: 440
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117328_bib0045
  article-title: Decoding fMRI brain states in real-time
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.052
– volume: 22
  start-page: 158
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117328_bib0078
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr099
– volume: 145
  start-page: 166
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0096
  article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.038
– volume: 20
  start-page: 150
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0097
  article-title: Dorsal and ventral attention systems: distinct neural circuits but collaborative roles
  publication-title: Neuroscientist
  doi: 10.1177/1073858413494269
– volume: 2
  start-page: 67
  year: 2007
  ident: 10.1016/j.neuroimage.2020.117328_bib0067
  article-title: Region of interest analysis for fMRI
  publication-title: Soc. Cogn. Affect. Neurosci.
  doi: 10.1093/scan/nsm006
– volume: 6
  start-page: e17191
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117328_bib0083
  article-title: Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data
  publication-title: PloS one
  doi: 10.1371/journal.pone.0017191
– volume: 10
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0036
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003915
– start-page: 2735
  year: 2009
  ident: 10.1016/j.neuroimage.2020.117328_bib0063
  article-title: Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning
– volume: 146
  start-page: 1038
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0034
  article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.09.046
– volume: 111
  start-page: 8619
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0104
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1403112111
– volume: 202
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117328_bib0053
  article-title: Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116059
– volume: 4
  start-page: e27
  year: 2008
  ident: 10.1016/j.neuroimage.2020.117328_bib0065
  article-title: Why is real-world visual object recognition hard?
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0040027
– start-page: 815
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117328_bib0074
  article-title: Facenet: a unified embedding for face recognition and clustering
– volume: 18
  start-page: 86
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0082
  article-title: Closed-loop brain training: the science of neurofeedback
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2016.164
– start-page: 1725
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0033
  article-title: Large-scale video classification with convolutional neural networks
– volume: 5
  start-page: 565
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117328_bib0004
  article-title: Estimating large-scale network convergence in the human functional connectome
  publication-title: Brain Connect.
  doi: 10.1089/brain.2015.0348
– volume: 34
  start-page: 537
  year: 1995
  ident: 10.1016/j.neuroimage.2020.117328_bib0005
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Resonanc. Med.
  doi: 10.1002/mrm.1910340409
– start-page: 34
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117328_bib0051
  article-title: Age and gender classification using convolutional neural networks
– start-page: 568
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0080
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 1914
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117328_bib0011
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21333
– start-page: 806
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0075
  article-title: CNN features off-the-shelf: an astounding baseline for recognition
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neuroimage.2020.117328_bib0093
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 8
  start-page: 229
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0066
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00229
– volume: 72
  start-page: 665
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117328_bib0068
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 2
  start-page: 407
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117328_bib0020
  article-title: Real-time fMRI-based brain–computer interfacing for neurofeedback therapy and compensation of lost motor functions
  publication-title: Imaging in Medicine
  doi: 10.2217/iim.10.35
– volume: 10
  start-page: 1895
  year: 1998
  ident: 10.1016/j.neuroimage.2020.117328_bib0013
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017197
– volume: 35
  start-page: 1182
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0015
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: J. Mag.
– volume: 95
  start-page: 4
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0073
  article-title: Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2013.04.010
– volume: 12
  start-page: 1928
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0086
  article-title: Salience network dynamics underlying successful resistance of temptation
  publication-title: Soc. Cogn. Affect. Neurosci.
  doi: 10.1093/scan/nsx123
– start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0071
  article-title: Cognitive state classification using transformed fMRI data
– volume: 62
  start-page: 1137
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117328_bib0007
  article-title: The serendipitous discovery of the brain's default network
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.035
– volume: 3
  start-page: 2
  year: 1997
  ident: 10.1016/j.neuroimage.2020.117328_bib0106
  article-title: Heschl's gyrus-Anatomic description and methods of identification on magnetic resonance imaging
  publication-title: Int. J. Neuroradiol.
– volume: 19
  start-page: 221
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0076
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: 10.1016/j.neuroimage.2020.117328_bib0084
– volume: 80
  start-page: 169
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117328_bib0003
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.033
– volume: 145
  start-page: 314
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0031
  article-title: Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.04.003
– volume: 8
  start-page: 360
  year: 1998
  ident: 10.1016/j.neuroimage.2020.117328_bib0002
  article-title: The variability of human, BOLD hemodynamic responses
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0369
– volume: 12
  start-page: 64
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117328_bib0014
  article-title: Inter-subject registration of functional images: do we need anatomical images?
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00064
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117328_bib0019
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 29
  start-page: 61
  year: 2009
  ident: 10.1016/j.neuroimage.2020.117328_bib0100
  article-title: Relating structure to function: Heschl's gyrus and acoustic processing
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3489-08.2009
– year: 2018
  ident: 10.1016/j.neuroimage.2020.117328_bib0030
  article-title: Incorporating context into language encoding models for fMRI
  publication-title: bioRxiv
– volume: 195
  start-page: 409
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117328_bib0039
  article-title: Mediation analysis of triple networks revealed functional feature of mindfulness from real-time fMRI neurofeedback
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.03.066
– year: 2018
  ident: 10.1016/j.neuroimage.2020.117328_bib0057
– volume: 65
  start-page: 1639
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117328_bib0109
  article-title: Euler elastica regularized logistic regression for whole-brain decoding of fMRI data
  publication-title: J. Mag.
– start-page: 4898
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0056
  article-title: Understanding the effective receptive field in deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 37
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117328_bib0028
  article-title: Modeling task fMRI data via deep convolutional autoencoder
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2715285
– volume: 51
  start-page: 966
  year: 2004
  ident: 10.1016/j.neuroimage.2020.117328_bib0102
  article-title: Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI)
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827063
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117328_bib0094
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.neuroimage.2020.117328_bib0114
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 62
  start-page: 2222
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117328_bib0095
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 536
  start-page: 171
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0018
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117328_bib0046
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 12
  start-page: 23
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117328_bib0103
  article-title: Deep learning methods to process fMRI data and their application in the diagnosis of cognitive impairment: a brief overview and our opinion
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2018.00023
– volume: 17
  start-page: 602
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117328_bib0108
  article-title: Fronto-parietal network: flexible hub of cognitive control
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2013.10.001
– start-page: 212
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0062
  article-title: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients
– volume: 156
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0054
  article-title: Large-scale sparse functional networks from resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.05.004
– volume: 5
  start-page: 245
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0087
  article-title: Optimizing real time fMRI neurofeedback for therapeutic discovery and development
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2014.07.002
– year: 2000
  ident: 10.1016/j.neuroimage.2020.117328_bib0012
– volume: 21
  start-page: 1639
  year: 2004
  ident: 10.1016/j.neuroimage.2020.117328_bib0025
  article-title: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.11.029
– volume: 163
  start-page: 115
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0010
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.07.059
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.neuroimage.2020.117328_bib0047
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 62
  start-page: 682
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117328_bib0101
  article-title: Real-time fMRI and its application to neurofeedback
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.009
– volume: 35
  start-page: 10005
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117328_bib0024
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5023-14.2015
– volume: 103
  start-page: 10046
  year: 2006
  ident: 10.1016/j.neuroimage.2020.117328_bib0017
  article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0604187103
– volume: 129
  start-page: 460
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0042
  article-title: Deep MRI brain extraction: a 3D convolutional neural network for skull stripping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.024
– volume: 38
  start-page: 5331
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0008
  article-title: The impact of T1 versus EPI spatial normalization templates for fMRI data analyses
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23737
– ident: 10.1016/j.neuroimage.2020.117328_bib0079
– volume: 170
  start-page: 434
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117328_bib0098
  article-title: DeepNAT: deep convolutional neural network for segmenting neuroanatomy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.02.035
– volume: 11
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0009
  article-title: Investigating default mode and sensorimotor network connectivity in amyotrophic lateral sclerosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157443
– volume: 65
  start-page: 1975
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0111
  article-title: Automatic recognition of fMRI-derived functional networks using 3-D convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2715281
– start-page: 922
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117328_bib0058
  article-title: Voxnet: a 3d convolutional neural network for real-time object recognition
– volume: 450
  start-page: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2020.117328_bib0050
  article-title: Brain–machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2008.11.024
– volume: 20
  start-page: 444
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0043
  article-title: Decoding the nature of emotion in the brain
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2016.03.011
– volume: 542
  start-page: 348
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117328_bib0026
  article-title: Early brain development in infants at high risk for autism spectrum disorder
  publication-title: Nature
  doi: 10.1038/nature21369
– volume: 106
  start-page: 1125
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117328_bib0092
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– ident: 10.1016/j.neuroimage.2020.117328_bib0072
– volume: 27
  start-page: 332
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0041
  article-title: Real-time functional MRI neurofeedback: a tool for psychiatry
  publication-title: Curr. Opin. Psychiatry
  doi: 10.1097/YCO.0000000000000087
– volume: 26
  start-page: 490
  year: 2008
  ident: 10.1016/j.neuroimage.2020.117328_bib0061
  article-title: Effects of spatial smoothing on fMRI group inferences
  publication-title: Magn. Resonanc. Imaging
  doi: 10.1016/j.mri.2007.08.006
– start-page: 2921
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0113
  article-title: Learning deep features for discriminative localization
– volume: 221
  start-page: 1971
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0107
  article-title: Functional topography of the thalamocortical system in human
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-015-1018-7
– volume: 15
  start-page: 1591
  year: 2004
  ident: 10.1016/j.neuroimage.2020.117328_bib0105
  article-title: Brain–computer interface using fMRI: spatial navigation by thoughts
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000133296.39160.fe
– ident: 10.1016/j.neuroimage.2020.117328_bib0099
– volume: 186
  start-page: 607
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117328_bib0038
  article-title: Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.10.054
– volume: 101
  start-page: 569
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0088
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 26
  start-page: 288
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0023
  article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu239
– volume: 12
  start-page: 153
  year: 1947
  ident: 10.1016/j.neuroimage.2020.117328_bib0059
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117328_bib0085
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2015
  ident: 10.1016/j.neuroimage.2020.117328_bib0060
– start-page: 320
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117328_bib0052
  article-title: Brain decoding from functional MRI using long short-term memory recurrent neural networks
– volume: 172
  start-page: 786
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117328_bib0091
  article-title: Neurofeedback with fMRI: a critical systematic review
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.071
– ident: 10.1016/j.neuroimage.2020.117328_bib0032
– volume: 21
  start-page: 2291
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117328_bib0001
  article-title: Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr002
– ident: 10.1016/j.neuroimage.2020.117328_bib0029
– volume: 124
  start-page: 127
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0040
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.018
– volume: 47
  start-page: 111
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117328_bib0112
  article-title: Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.04.002
– start-page: 1097
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117328_bib0044
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: 10.1016/j.neuroimage.2020.117328_bib0022
– volume: 98
  start-page: e616
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117328_bib0035
  article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.03.044
– volume: 72
  start-page: 347
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117328_bib0048
  article-title: Real-time fMRI-based neurofeedback reinforces causality of attention networks
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2012.01.002
SSID ssj0009148
Score 2.4404283
Snippet Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117328
SubjectTerms Adult
Attention
Attention - physiology
Auditory Perception - physiology
Brain - physiology
Brain mapping
Brain Mapping - methods
Brain research
Classification
Convolutional neural networks
Deep learning
Deep neural networks
Functional magnetic resonance imaging
Functional MRI
Human Connectome Project
Humans
Image processing
Investigations
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Motor Activity
Neural networks
Neural Networks, Computer
Neuroimaging
Psychomotor Performance
Real-time fMRI
Sensorimotor system
Sensorimotor tasks
Sensory integration
Support Vector Machine
Support vector machines
Time series
Visual perception
Visual Perception - physiology
Visual stimuli
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQCiEuiDeBBRmJa4SfTS1OvFZw2BVCIO3Nsh0bipYUNSm_nxnbCcsB0QOnVq3HcmfGnm_qLzOEPGMuIDBQLUQ71SrDQusSF60IwvmVU1q40myiOztbn5-bD5dafSEnrJQHLop7zmXHIWizlWBerZPxQoXAjWOG-dSrhKcv68ycTM3ldgHlV95OYXPl6pCb77BHIScU-a5SYgf2S8Eo1-z_Iyb9DXPm2HNyk9yooJG-LIu9Ra7E4Ta5dlqvxe-QKZ1-fE_LQUMD4mEkAGWdUyS2f6GOyjcUGebV02A2XGt-yTxwutv6_TjRaUvHr5sEOJS6oacjmBDe5t-FQvgYRPkTd7xLPp-8_fT6XVvbKbRhpfjURtjPSa360Buvje90jMxrxxkLvYMhxsteG6l55CEaIZISjqnEtBOQQUsv75GjYTvEB4Q6HoOGibjzaxXyXV7UKcYOu-IBaGxIN-vVhlprHFteXNiZVPbN_raIRYvYYpGG8EXyR6m3cYDMKzTdMh4rZucPwI9s9SP7Lz9qiJkNb-eHUuEYhYk2ByzgxSJbgUsBJAdKH89-ZusBMlqhtDQ5wWvI0-Vr2Pp4n-OGuN3jGEjOEaTxhtwv_rnoAOaFRFbKh_9DN4_IdVxvYfEck6Npt4-PydXwc9qMuyd55_0Ce48zog
  priority: 102
  providerName: Directory of Open Access Journals
Title fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811920308144
https://dx.doi.org/10.1016/j.neuroimage.2020.117328
https://www.ncbi.nlm.nih.gov/pubmed/32896633
https://www.proquest.com/docview/2453900305
https://www.proquest.com/docview/2440900211
https://doaj.org/article/13712640620b48f9b24cc19a090bfd4f
Volume 223
WOSCitedRecordID wos000582799600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhtBe-GYERmUkXiP82cTiATHYBA-tqgmkvkW242xFkIwm5e_HZzstPIAq8ZJEre8U587nn33nO4ReEW0BGIjcz3YiF4rYXDeU5cwybaZaSKZjsYliPi-XS7VIG259CqscbWIw1HVnYY_8NROSq4B43978yKFqFHhXUwmNA3QEWRJYCN1b7JLuUhGPwkmel5SqFMkT47tCvsjVdz9q_SqRBe8lh5rsv01PIYv_H7PU31BomI0u7v1vP-6juwmH4ndRcR6gW659iO7Mkqf9ERqa2eUnHG0XtgCxIaYoiBFDrPwV1ph_wBC0npTXc4POhlsILcfrzmz6AQ8d7q9XjYe2WLc17r1W-MfwYYAITlbEfeH-Mfpycf75_cc8VWjI7VTQIXe-H42Y1rZWRipTSOeIkZoSYmvtmyjDa6m4pI5apxhrBNNENERq5hfl3PAn6LDtWvcUYU2dlZ4R1aYUNrgHnWycK6DQnsehGSpGwVQ2pS-HKhrfqjFO7Wu1E2kFIq2iSDNEt5Q3MYXHHjRnIPtte0jCHX7o1ldVGtMV5QX1eJJMGTGibJRhwlqqNFHENLVoMqRGzanGc67eMntGqz1e4M2WNmGhiHH2pD4dla9KNqmvdpqXoZfbv701AReRbl23gTZ-vQ-4j2boJCr49ht4vn5tzPmzfzN_jo7hTWLIzyk6HNYb9wLdtj-HVb-eoINiWYRrOUFHZ-fzxeUk7IP464zNJmEA_wLnEUl2
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQMAL90thgJHgMcJ27LYWQggY06qtFUJD2ptnO87WCZrRpCD-FL-Rc-ykhQdQX_bAU6rU58hxPp9LfC6EPGPWo2EgM9B2MpOa-cyWXGTCC-v6ViphU7OJwWQyPDzUHzbIzy4XBsMqO5kYBXVRefxG_kJIleto8b4--5ph1yg8Xe1aaCRY7IUf38Flq1-NtuH9Phdi5_3Bu92s7SqQ-b7kTRaARyn7hS-0U9oNVAjMKcsZ84WFIdrlhdK54oH7oIUopbBMlkxZAY5k7nLge4FclJgyiqGCYrwq8stlSr1TeTbkXLeRQymeLNannH4BKQFeqYinpTn2gP9NHcauAX9oxb9ZvVH77Vz_39btBrnW2tn0TdoYN8lGmN0il8dtJMFt0pTjjyOaZDP16EJgzFSEKcVcgGNqab5NMSi_3ZzADRc3XmLoPJ1XblE3tKlofTItwXSndlbQGlAPP-OLQCLMHEnfves75NO5PPNdsjmrZuE-oZYHr4ARt24ofTz-DKoMYYCNBMHO7pFBBwTj2_Ls2CXks-ni8E7NCkIGIWQShHqELynPUomSNWjeItaW47HIeLxRzY9NK7MMzwcc7GXWF8zJYamdkN5zbZlmrixk2SO6Q6rp8nhB8wCj6RoTeLmkbW29ZMOtSb3Vgd20Mrc2K6T3yNPl3yAt8QjMzkK1wDESZg92Le-Re2lDLdcA-ILvn-cP_s38CbmyezDeN_ujyd5DchVnlcKbtshmM1-ER-SS_9ZM6_njKBwoOTrvXfULavug_A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhyZeuF8KA4wEj9Fsx25qIYQY3UQ1VlUTSHsLtmOPImhGk4L4a_w6ji9p4QHUlz3wlCr1OXKcc_kcnwtCT4kyHhjwDLwdz7gkJlOOsowZpvRAccFUbDZRTCbD01M53UI_u1wYH1bZ2cRgqKva-G_ke4yLXAbEu-dSWMR0dPjy_GvmO0j5k9aunUYUkSP74zts35oX4xG862eMHR68e_0mSx0GMjPgtM0s8HN8UJlKaiF1IawlWihKiKkUDJE6r4TMBbXUWMmY40wR7ohQDDaVuc6B7yW0XQDI4D20vX8wmZ6sS_5SHhPxRJ4NKZUpjihGl4VqlbMvYDNgj8rC2WnuO8L_5hxDD4E_fOTfMHDwhYfX_udVvI6uJgSOX0WVuYG27Pwm2jlOMQa3UOuOT8Y4Wm1s_ObCR1MFAcY-S-AMK5yPsA_XT2oL3PxCh0sIqseLWi-bFrc1bj7OHIB6rOYVbkAf4Gd4KZ7I55TEL-LNbfT-Qp75DurN67m9h7Ci1ghgRJUechMORq1w1ha-xSAg8D4qOqEoTSrc7vuHfC67CL1P5VqcSi9OZRSnPqIryvNYvGQDmn0vd6vxvvx4uFEvzspkzUqaFxSQNBkwovnQSc24MVQqIol2FXd9JDupLbsMX_BJwGi2wQSer2gTCozobkPq3U7wy2SNm3It9X30ZPU32FF_OKbmtl76MRxmD4iX9tHdqFyrNQC-EpB5fv_fzB-jHVCm8u14cvQAXfGTinFPu6jXLpb2IbpsvrWzZvEoWQqMPly0Wv0CYE-rFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=fMRI+volume+classification+using+a+3D+convolutional+neural+network+robust+to+shifted+and+scaled+neuronal+activations&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Vu%2C+Hanh&rft.au=Kim%2C+Hyun-Chul&rft.au=Jung%2C+Minyoung&rft.au=Lee%2C+Jong-Hwan&rft.date=2020-12-01&rft.eissn=1095-9572&rft.volume=223&rft.spage=117328&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117328&rft_id=info%3Apmid%2F32896633&rft.externalDocID=32896633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon