fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations
Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample t...
Saved in:
| Published in: | NeuroImage (Orlando, Fla.) Vol. 223; p. 117328 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
01.12.2020
Elsevier Limited Elsevier |
| Subjects: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample to provide a feature map for the subsequent layers. In our study, we hypothesized that a 3D-CNN model with down-sampling operations such as pooling and/or stride would have the ability to extract robust feature maps from the shifted and scaled neuronal activations in a single functional MRI (fMRI) volume for the classification of task information associated with that volume. Thus, the 3D-CNN model would be able to ameliorate the potential misalignment of neuronal activations and over-/under-activation in local brain regions caused by imperfections in spatial alignment algorithms, confounded by variability in blood-oxygenation-level-dependent (BOLD) responses across sessions and/or subjects. To this end, the fMRI volumes acquired from four sensorimotor tasks (left-hand clenching, right-hand clenching, auditory attention, and visual stimulation) were used as input for our 3D-CNN model to classify task information using a single fMRI volume. The classification performance of the 3D-CNN was systematically evaluated using fMRI volumes obtained from various minimal preprocessing scenarios applied to raw fMRI volumes that excluded spatial normalization to a template and those obtained from full preprocessing that included spatial normalization. Alternative classifier models such as the 1D fully connected DNN (1D-fcDNN) and support vector machine (SVM) were also used for comparison. The classification performance was also assessed for several k-fold cross-validation (CV) schemes, including leave-one-subject-out CV (LOOCV). Overall, the classification results of the 3D-CNN model were superior to that of the 1D-fcDNN and SVM models. When using the fully-processed fMRI volumes with LOOCV, the mean error rates (± the standard error of the mean) for the 3D-CNN, 1D-fcDNN, and SVM models were 2.1% (± 0.9), 3.1% (± 1.2), and 4.1% (± 1.5), respectively (p = 0.041 from a one-way ANOVA). The error rates for 3-fold CV were higher (2.4% ± 1.0, 4.2% ± 1.3, and 10.1% ± 2.0; p < 0.0003 from a one-way ANOVA). The mean error rates also increased considerably using the raw fMRI 3D volume data without preprocessing (26.2% for the 3D-CNN, 75.0% for the 1D-fcDNN, and 75.0% for the SVM). Furthermore, the ability of the pre-trained 3D-CNN model to handle shifted and scaled neuronal activations was demonstrated in an online scenario for five-class classification (i.e., four sensorimotor tasks and the resting state) using the real-time fMRI of three participants. The resulting classification accuracy was 78.5% (± 1.4), 26.7% (± 5.9), and 21.5% (± 3.1) for the 3D-CNN, 1D-fcDNN, and SVM models, respectively. The superior performance of the 3D-CNN compared to the 1D-fcDNN was verified by analyzing the resulting feature maps and convolution filters that handled the shifted and scaled neuronal activations and by utilizing an independent public dataset from the Human Connectome Project. |
|---|---|
| AbstractList | Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample to provide a feature map for the subsequent layers. In our study, we hypothesized that a 3D-CNN model with down-sampling operations such as pooling and/or stride would have the ability to extract robust feature maps from the shifted and scaled neuronal activations in a single functional MRI (fMRI) volume for the classification of task information associated with that volume. Thus, the 3D-CNN model would be able to ameliorate the potential misalignment of neuronal activations and over-/under-activation in local brain regions caused by imperfections in spatial alignment algorithms, confounded by variability in blood-oxygenation-level-dependent (BOLD) responses across sessions and/or subjects. To this end, the fMRI volumes acquired from four sensorimotor tasks (left-hand clenching, right-hand clenching, auditory attention, and visual stimulation) were used as input for our 3D-CNN model to classify task information using a single fMRI volume. The classification performance of the 3D-CNN was systematically evaluated using fMRI volumes obtained from various minimal preprocessing scenarios applied to raw fMRI volumes that excluded spatial normalization to a template and those obtained from full preprocessing that included spatial normalization. Alternative classifier models such as the 1D fully connected DNN (1D-fcDNN) and support vector machine (SVM) were also used for comparison. The classification performance was also assessed for several k-fold cross-validation (CV) schemes, including leave-one-subject-out CV (LOOCV). Overall, the classification results of the 3D-CNN model were superior to that of the 1D-fcDNN and SVM models. When using the fully-processed fMRI volumes with LOOCV, the mean error rates (± the standard error of the mean) for the 3D-CNN, 1D-fcDNN, and SVM models were 2.1% (± 0.9), 3.1% (± 1.2), and 4.1% (± 1.5), respectively (p = 0.041 from a one-way ANOVA). The error rates for 3-fold CV were higher (2.4% ± 1.0, 4.2% ± 1.3, and 10.1% ± 2.0; p < 0.0003 from a one-way ANOVA). The mean error rates also increased considerably using the raw fMRI 3D volume data without preprocessing (26.2% for the 3D-CNN, 75.0% for the 1D-fcDNN, and 75.0% for the SVM). Furthermore, the ability of the pre-trained 3D-CNN model to handle shifted and scaled neuronal activations was demonstrated in an online scenario for five-class classification (i.e., four sensorimotor tasks and the resting state) using the real-time fMRI of three participants. The resulting classification accuracy was 78.5% (± 1.4), 26.7% (± 5.9), and 21.5% (± 3.1) for the 3D-CNN, 1D-fcDNN, and SVM models, respectively. The superior performance of the 3D-CNN compared to the 1D-fcDNN was verified by analyzing the resulting feature maps and convolution filters that handled the shifted and scaled neuronal activations and by utilizing an independent public dataset from the Human Connectome Project.Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample to provide a feature map for the subsequent layers. In our study, we hypothesized that a 3D-CNN model with down-sampling operations such as pooling and/or stride would have the ability to extract robust feature maps from the shifted and scaled neuronal activations in a single functional MRI (fMRI) volume for the classification of task information associated with that volume. Thus, the 3D-CNN model would be able to ameliorate the potential misalignment of neuronal activations and over-/under-activation in local brain regions caused by imperfections in spatial alignment algorithms, confounded by variability in blood-oxygenation-level-dependent (BOLD) responses across sessions and/or subjects. To this end, the fMRI volumes acquired from four sensorimotor tasks (left-hand clenching, right-hand clenching, auditory attention, and visual stimulation) were used as input for our 3D-CNN model to classify task information using a single fMRI volume. The classification performance of the 3D-CNN was systematically evaluated using fMRI volumes obtained from various minimal preprocessing scenarios applied to raw fMRI volumes that excluded spatial normalization to a template and those obtained from full preprocessing that included spatial normalization. Alternative classifier models such as the 1D fully connected DNN (1D-fcDNN) and support vector machine (SVM) were also used for comparison. The classification performance was also assessed for several k-fold cross-validation (CV) schemes, including leave-one-subject-out CV (LOOCV). Overall, the classification results of the 3D-CNN model were superior to that of the 1D-fcDNN and SVM models. When using the fully-processed fMRI volumes with LOOCV, the mean error rates (± the standard error of the mean) for the 3D-CNN, 1D-fcDNN, and SVM models were 2.1% (± 0.9), 3.1% (± 1.2), and 4.1% (± 1.5), respectively (p = 0.041 from a one-way ANOVA). The error rates for 3-fold CV were higher (2.4% ± 1.0, 4.2% ± 1.3, and 10.1% ± 2.0; p < 0.0003 from a one-way ANOVA). The mean error rates also increased considerably using the raw fMRI 3D volume data without preprocessing (26.2% for the 3D-CNN, 75.0% for the 1D-fcDNN, and 75.0% for the SVM). Furthermore, the ability of the pre-trained 3D-CNN model to handle shifted and scaled neuronal activations was demonstrated in an online scenario for five-class classification (i.e., four sensorimotor tasks and the resting state) using the real-time fMRI of three participants. The resulting classification accuracy was 78.5% (± 1.4), 26.7% (± 5.9), and 21.5% (± 3.1) for the 3D-CNN, 1D-fcDNN, and SVM models, respectively. The superior performance of the 3D-CNN compared to the 1D-fcDNN was verified by analyzing the resulting feature maps and convolution filters that handled the shifted and scaled neuronal activations and by utilizing an independent public dataset from the Human Connectome Project. Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample to provide a feature map for the subsequent layers. In our study, we hypothesized that a 3D-CNN model with down-sampling operations such as pooling and/or stride would have the ability to extract robust feature maps from the shifted and scaled neuronal activations in a single functional MRI (fMRI) volume for the classification of task information associated with that volume. Thus, the 3D-CNN model would be able to ameliorate the potential misalignment of neuronal activations and over-/under-activation in local brain regions caused by imperfections in spatial alignment algorithms, confounded by variability in blood-oxygenation-level-dependent (BOLD) responses across sessions and/or subjects. To this end, the fMRI volumes acquired from four sensorimotor tasks (left-hand clenching, right-hand clenching, auditory attention, and visual stimulation) were used as input for our 3D-CNN model to classify task information using a single fMRI volume. The classification performance of the 3D-CNN was systematically evaluated using fMRI volumes obtained from various minimal preprocessing scenarios applied to raw fMRI volumes that excluded spatial normalization to a template and those obtained from full preprocessing that included spatial normalization. Alternative classifier models such as the 1D fully connected DNN (1D-fcDNN) and support vector machine (SVM) were also used for comparison. The classification performance was also assessed for several k-fold cross-validation (CV) schemes, including leave-one-subject-out CV (LOOCV). Overall, the classification results of the 3D-CNN model were superior to that of the 1D-fcDNN and SVM models. When using the fully-processed fMRI volumes with LOOCV, the mean error rates (± the standard error of the mean) for the 3D-CNN, 1D-fcDNN, and SVM models were 2.1% (± 0.9), 3.1% (± 1.2), and 4.1% (± 1.5), respectively (p = 0.041 from a one-way ANOVA). The error rates for 3-fold CV were higher (2.4% ± 1.0, 4.2% ± 1.3, and 10.1% ± 2.0; p < 0.0003 from a one-way ANOVA). The mean error rates also increased considerably using the raw fMRI 3D volume data without preprocessing (26.2% for the 3D-CNN, 75.0% for the 1D-fcDNN, and 75.0% for the SVM). Furthermore, the ability of the pre-trained 3D-CNN model to handle shifted and scaled neuronal activations was demonstrated in an online scenario for five-class classification (i.e., four sensorimotor tasks and the resting state) using the real-time fMRI of three participants. The resulting classification accuracy was 78.5% (± 1.4), 26.7% (± 5.9), and 21.5% (± 3.1) for the 3D-CNN, 1D-fcDNN, and SVM models, respectively. The superior performance of the 3D-CNN compared to the 1D-fcDNN was verified by analyzing the resulting feature maps and convolution filters that handled the shifted and scaled neuronal activations and by utilizing an independent public dataset from the Human Connectome Project. Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional neural network (CNN) is a type of DNN that employs a convolution kernel that covers a local area of the input sample and moves across the sample to provide a feature map for the subsequent layers. In our study, we hypothesized that a 3D-CNN model with down-sampling operations such as pooling and/or stride would have the ability to extract robust feature maps from the shifted and scaled neuronal activations in a single functional MRI (fMRI) volume for the classification of task information associated with that volume. Thus, the 3D-CNN model would be able to ameliorate the potential misalignment of neuronal activations and over-/under-activation in local brain regions caused by imperfections in spatial alignment algorithms, confounded by variability in blood-oxygenation-level-dependent (BOLD) responses across sessions and/or subjects. To this end, the fMRI volumes acquired from four sensorimotor tasks (left-hand clenching, right-hand clenching, auditory attention, and visual stimulation) were used as input for our 3D-CNN model to classify task information using a single fMRI volume. The classification performance of the 3D-CNN was systematically evaluated using fMRI volumes obtained from various minimal preprocessing scenarios applied to raw fMRI volumes that excluded spatial normalization to a template and those obtained from full preprocessing that included spatial normalization. Alternative classifier models such as the 1D fully connected DNN (1D-fcDNN) and support vector machine (SVM) were also used for comparison. The classification performance was also assessed for several k-fold cross-validation (CV) schemes, including leave-one-subject-out CV (LOOCV). Overall, the classification results of the 3D-CNN model were superior to that of the 1D-fcDNN and SVM models. When using the fully-processed fMRI volumes with LOOCV, the mean error rates (± the standard error of the mean) for the 3D-CNN, 1D-fcDNN, and SVM models were 2.1% (± 0.9), 3.1% (± 1.2), and 4.1% (± 1.5), respectively (p = 0.041 from a one-way ANOVA). The error rates for 3-fold CV were higher (2.4% ± 1.0, 4.2% ± 1.3, and 10.1% ± 2.0; p < 0.0003 from a one-way ANOVA). The mean error rates also increased considerably using the raw fMRI 3D volume data without preprocessing (26.2% for the 3D-CNN, 75.0% for the 1D-fcDNN, and 75.0% for the SVM). Furthermore, the ability of the pre-trained 3D-CNN model to handle shifted and scaled neuronal activations was demonstrated in an online scenario for five-class classification (i.e., four sensorimotor tasks and the resting state) using the real-time fMRI of three participants. The resulting classification accuracy was 78.5% (± 1.4), 26.7% (± 5.9), and 21.5% (± 3.1) for the 3D-CNN, 1D-fcDNN, and SVM models, respectively. The superior performance of the 3D-CNN compared to the 1D-fcDNN was verified by analyzing the resulting feature maps and convolution filters that handled the shifted and scaled neuronal activations and by utilizing an independent public dataset from the Human Connectome Project. |
| ArticleNumber | 117328 |
| Author | Kim, Hyun-Chul Jung, Minyoung Vu, Hanh Lee, Jong-Hwan |
| Author_xml | – sequence: 1 givenname: Hanh surname: Vu fullname: Vu, Hanh – sequence: 2 givenname: Hyun-Chul surname: Kim fullname: Kim, Hyun-Chul – sequence: 3 givenname: Minyoung surname: Jung fullname: Jung, Minyoung – sequence: 4 givenname: Jong-Hwan orcidid: 0000-0002-8902-6009 surname: Lee fullname: Lee, Jong-Hwan email: jonghwan_lee@korea.ac.kr |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32896633$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1vEzEQhi1URNvAX0CWuHDZ4K_dxBcELV-RipAQnC2vdxycOutie4P67_HuliLllJOt0TOPrZn3Ep31oQeEMCVLSmjzZrfsYYjB7fUWloywUqYrztZP0AUlsq5kvWJn473m1ZpSeY4uU9oRQiQV62fovKCyaTi_QNl-_b7Bh-CHPWDjdUrOOqOzCz0ekuu3WGP-AZvQj8xY1h6Pj09H_hPiLY6hHVLGOeD0y9kMHdZ9h5PRvlynj45N2mR3mMTpOXpqtU_w4uFcoJ-fPv64_lLdfPu8uX5_U5lG0FwB4cSKpjOdbGvZrmoA0taaEmI6XRDZ8q6WvKZADUjGrGCaCEtqzSRZ8ZYv0Gb2dkHv1F0s84r3KminpkKIW6VjdsaDonxFWSNIw0gr1la2TBhDpSaStLYTtrhez667GH4PkLLau2TAe91DGJJiQhSWMEoL-uoI3YUhlhmMVM0LxctiFujlAzW0e-gev_dvNwVYz4CJIaUI9hGhRI0xUDv1PwZqjIGaY1Ba3x61Gpen2eeonT9FcDULoKzn4CCqZBz0BjoXweQyP3eK5N2RxHjXl3T5W7g_TfEXUdLq2w |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2023_120164 crossref_primary_10_1109_JBHI_2024_3426930 crossref_primary_10_1109_TMI_2024_3507008 crossref_primary_10_1007_s44163_025_00377_8 crossref_primary_10_1007_s13369_023_07786_w crossref_primary_10_1097_WNR_0000000000001653 crossref_primary_10_1016_j_ijsolstr_2023_112545 crossref_primary_10_1002_mp_17833 crossref_primary_10_1016_j_jpsychires_2022_12_037 crossref_primary_10_1523_JNEUROSCI_0670_24_2024 crossref_primary_10_1177_15500594221122699 crossref_primary_10_3389_fnins_2025_1606801 crossref_primary_10_1155_2021_6633755 crossref_primary_10_1093_gigascience_giad029 crossref_primary_10_1002_hbm_25627 crossref_primary_10_1002_hbm_25813 |
| Cites_doi | 10.1016/j.neuroimage.2010.08.007 10.1016/j.media.2009.01.001 10.1016/j.neuroimage.2013.03.033 10.1126/science.aad8127 10.1097/WCO.0000000000000340 10.1016/j.media.2017.08.005 10.1016/j.tics.2010.04.004 10.1016/j.neuroimage.2013.05.081 10.1073/pnas.1602413113 10.1162/jocn_a_00802 10.1016/j.neuroimage.2010.06.052 10.1093/cercor/bhr099 10.1016/j.neuroimage.2016.10.038 10.1177/1073858413494269 10.1093/scan/nsm006 10.1371/journal.pone.0017191 10.1371/journal.pcbi.1003915 10.1016/j.neuroimage.2016.09.046 10.1073/pnas.1403112111 10.1016/j.neuroimage.2019.116059 10.1371/journal.pcbi.0040027 10.1038/nrn.2016.164 10.1089/brain.2015.0348 10.1002/mrm.1910340409 10.1002/hbm.21333 10.1006/nimg.2001.0978 10.3389/fnins.2014.00229 10.1016/j.neuron.2011.09.006 10.2217/iim.10.35 10.1162/089976698300017197 10.1016/j.biopsycho.2013.04.010 10.1093/scan/nsx123 10.1016/j.neuroimage.2011.10.035 10.1146/annurev-bioeng-071516-044442 10.1016/j.neuroimage.2013.05.033 10.1016/j.neuroimage.2016.04.003 10.1006/nimg.1998.0369 10.3389/fnins.2018.00064 10.1016/j.neuroimage.2013.04.127 10.1523/JNEUROSCI.3489-08.2009 10.1016/j.neuroimage.2019.03.066 10.1109/TMI.2017.2715285 10.1109/TBME.2004.827063 10.1016/j.neuroimage.2013.05.041 10.1111/j.1467-9868.2005.00503.x 10.1016/j.neuroimage.2012.02.018 10.1038/nature18933 10.1038/nature14539 10.3389/fninf.2018.00023 10.1016/j.tics.2013.10.001 10.1016/j.neuroimage.2017.05.004 10.1016/j.nicl.2014.07.002 10.1016/j.neuroimage.2003.11.029 10.1016/j.neuroimage.2017.07.059 10.1109/5.726791 10.1016/j.neuroimage.2011.10.009 10.1523/JNEUROSCI.5023-14.2015 10.1073/pnas.0604187103 10.1016/j.neuroimage.2016.01.024 10.1002/hbm.23737 10.1016/j.neuroimage.2017.02.035 10.1371/journal.pone.0157443 10.1109/TBME.2017.2715281 10.1016/j.neulet.2008.11.024 10.1016/j.tics.2016.03.011 10.1038/nature21369 10.1152/jn.00338.2011 10.1097/YCO.0000000000000087 10.1016/j.mri.2007.08.006 10.1007/s00429-015-1018-7 10.1097/01.wnr.0000133296.39160.fe 10.1016/j.neuroimage.2018.10.054 10.1016/j.neuroimage.2014.06.077 10.1093/cercor/bhu239 10.1007/BF02295996 10.1016/j.neuroimage.2017.12.071 10.1093/cercor/bhr002 10.1016/j.neuroimage.2015.05.018 10.1016/j.media.2018.04.002 10.1016/j.neuron.2018.03.044 10.1016/j.neures.2012.01.002 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright © 2020. Published by Elsevier Inc. Copyright Elsevier Limited Dec 2020 |
| Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Dec 2020 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
| DOI | 10.1016/j.neuroimage.2020.117328 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| ExternalDocumentID | oai_doaj_org_article_13712640620b48f9b24cc19a090bfd4f 32896633 10_1016_j_neuroimage_2020_117328 S1053811920308144 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 9DU AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c641t-e030f46dcd9b59b75ee0b5a100cdac649b3d59351e1ce922f42a04f05a29073b3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582799600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Fri Oct 03 12:35:55 EDT 2025 Sun Sep 28 12:16:27 EDT 2025 Tue Oct 07 07:00:36 EDT 2025 Thu Apr 03 06:59:51 EDT 2025 Sat Nov 29 06:55:52 EST 2025 Tue Nov 18 22:35:03 EST 2025 Fri Feb 23 02:46:25 EST 2024 Tue Oct 14 19:39:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Human Connectome Project Real-time fMRI Deep neural networks Classification Machine learning Sensorimotor tasks Functional MRI Convolutional neural networks |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020. Published by Elsevier Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c641t-e030f46dcd9b59b75ee0b5a100cdac649b3d59351e1ce922f42a04f05a29073b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8902-6009 |
| OpenAccessLink | https://doaj.org/article/13712640620b48f9b24cc19a090bfd4f |
| PMID | 32896633 |
| PQID | 2453900305 |
| PQPubID | 2031077 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_13712640620b48f9b24cc19a090bfd4f proquest_miscellaneous_2440900211 proquest_journals_2453900305 pubmed_primary_32896633 crossref_primary_10_1016_j_neuroimage_2020_117328 crossref_citationtrail_10_1016_j_neuroimage_2020_117328 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117328 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_117328 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 2020-12-00 20201201 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Zanto, Gazzaley (bib0108) 2013; 17 Zhou, Khosla, Lapedriza, Oliva, Torralba (bib0113) 2016 Weiskopf, Mathiak, Bock, Scharnowski, Veit, Grodd, Goebel, Birbaumer (bib0102) 2004; 51 Manly (bib0057) 2018 Ramasangu, Sinha (bib0071) 2014 Dohmatob, Varoquaux, Thirion (bib0014) 2018; 12 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib0094) 2013; 80 Sharif Razavian, Azizpour, Sullivan, Carlsson (bib0075) 2014 Tavor, Jones, Mars, Smith, Behrens, Jbabdi (bib0090) 2016; 352 Bressler, Menon (bib0006) 2010; 14 Mikl, Mareček, Hluštík, Pavlicová, Drastich, Chlebus, Brázdil, Krupa (bib0061) 2008; 26 Cole, Poudel, Tsagkrasoulis, Caan, Steves, Spector, Montana (bib0010) 2017; 163 Handwerker, Ollinger, D'Esposito (bib0025) 2004; 21 Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bib0078) 2012; 22 Kim, Bandettini, Lee (bib0038) 2019; 186 Gordon, Laumann, Adeyemo, Huckins, Kelley, Petersen (bib0023) 2014; 26 Stoeckel, Garrison, Ghosh, Wighton, Hanlon, Gilman, Greer, Turk-Browne, deBettencourt, Scheinost (bib0087) 2014; 5 Pinto, Cox, DiCarlo (bib0065) 2008; 4 Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss (bib0095) 2012; 62 . Hazlett, Gu, Munsell, Kim, Styner, Wolff, Elison, Swanson, Zhu, Botteron, Collins, Constantino, Dager, Estes, Evans, Fonov, Gerig, Kostopoulos, McKinstry, Pandey, Paterson, Pruett, Schultz, Shaw, Zwaigenbaum, Piven (bib0026) 2017; 542 Steimke, Nomi, Calhoun, Stelzel, Paschke, Gaschler, Goschke, Walter, Uddin (bib0086) 2017; 12 LaConte (bib0045) 2011; 56 Ruiz, Buyukturkoglu, Rana, Birbaumer, Sitaram (bib0073) 2014; 95 Schroff, Kalenichenko, Philbin (bib0074) 2015 Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt (bib0003) 2013; 80 Sitaram, Lee, Ruiz, Rana, Veit, Birbaumer (bib0081) 2011; 56 Huang, Hu, Zhao, Makkie, Dong, Zhao, Guo, Liu (bib0028) 2018; 37 Güçlü, van Gerven (bib0024) 2015; 35 Raschka, S., 2018. Model evaluation, model selection, and algorithm selection in machine learning. arXiv preprint arXiv Khaligh-Razavi, Kriegeskorte (bib0036) 2014; 10 Pu, Gan, Henao, Yuan, Li, Stevens, Carin (bib0069) 2016 Wang, X., Liang, X., Zhou, Y., Wang, Y., Cui, J., Wang, H., Li, Y., Nguchu, B.A., Qiu, B., 2018. Task state decoding and mapping of individual four-dimensional fMRI time series using deep neural network. arXiv preprint arXiv Craddock, James, Holtzheimer, Hu, Mayberg (bib0011) 2012; 33 Calhoun, Wager, Krishnan, Rosch, Seymour, Nebel, Mostofsky, Nyalakanai, Kiehl (bib0008) 2017; 38 Shen, Wu, Suk (bib0076) 2017; 19 Zhao, Dong, Chen, Iraji, Li, Makkie, Kou, Liu (bib0110) 2017; 42 Song, Zhan, Long, Zhang, Yao (bib0083) 2011; 6 Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson (bib0018) 2016; 536 Kim, Birbaumer (bib0041) 2014; 27 Jain, Huth (bib0030) 2018 Lee, Ryu, Jolesz, Cho, Yoo (bib0050) 2009; 450 Aguirre, Zarahn, D'esposito (bib0002) 1998; 8 Buckner (bib0007) 2012; 62 Golik, Doetsch, Ney (bib0021) 2013 Goebel, Zilverstand, Sorger (bib0020) 2010; 2 Dietterich (bib0013) 1998; 10 Zhang, Yao, Song, Wen, Zhao, Long (bib0109) 2018; 65 Yuan, Di, Taylor, Gohel, Tsai, Biswal (bib0107) 2016; 221 Shen, Tokoglu, Papademetris, Constable (bib0077) 2013; 82 Suk, Lee, Shen, Initiative (bib0088) 2014; 101 LeCun, Bottou, Bengio, Haffner (bib0047) 1998; 86 Eklund, Nichols, Knutsson (bib0016) 2016 Horikawa, Kamitani (bib0027) 2017; 11 Wachinger, Reuter, Klein (bib0098) 2018; 170 Li, Satterthwaite, Fan (bib0054) 2017; 156 Weiskopf (bib0101) 2012; 62 Levi, Hassner (bib0051) 2015 Thomas Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni (bib0092) 2011; 106 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0093) 2002; 15 Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: visualizing image classification models and saliency maps. arXiv preprint arXiv Biswal, Zerrin Yetkin, Haughton, Hyde (bib0005) 1995; 34 Zou, Hastie (bib0114) 2005; 67 Lee, Marzelli, Jolesz, Yoo (bib0049) 2009; 13 Krizhevsky, Sutskever, Hinton (bib0044) 2012 Lee, Kim, Yoo (bib0048) 2012; 72 Goodfellow, Bengio, Courville (bib0022) 2016 Wen, Wei, Zhou, Li, Zhang, Han (bib0103) 2018; 12 Sulzer, Haller, Scharnowski, Weiskopf, Birbaumer, Blefari, Bruehl, Cohen, DeCharms, Gassert (bib0089) 2013; 76 McNemar (bib0059) 1947; 12 Karpathy, Toderici, Shetty, Leung, Sukthankar, Fei-Fei (bib0033) 2014 Zhao, Dong, Zhang, Zhang, Chen, Jiang, Guo, Hu, Han, Liu (bib0111) 2017; 65 Parkhi, Vedaldi, Zisserman (bib0064) 2015 Menon (bib0060) 2015 Warrier, Wong, Penhune, Zatorre, Parrish, Abrams, Kraus (bib0100) 2009; 29 Simonyan, Zisserman (bib0080) 2014 Sitaram, Ros, Stoeckel, Haller, Scharnowski, Lewis-Peacock, Weiskopf, Blefari, Rana, Oblak (bib0082) 2017; 18 Kim, Calhoun, Shim, Lee (bib0040) 2016; 124 Nie, Zhang, Adeli, Liu, Shen (bib0062) 2016 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib0019) 2013; 80 Kanazawa, A., Sharma, A., Jacobs, D., 2014. Locally scale-invariant convolutional neural networks. arXiv preprint arXiv Yousry, Fesl, Buttner, Noachtar, Schmid (bib0106) 1997; 3 Plis, Hjelm, Salakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (bib0066) 2014; 8 Yoo, Fairneny, Chen, Choo, Panych, Park, Lee, Jolesz (bib0105) 2004; 15 Norouzi, Ranjbar, Mori (bib0063) 2009 Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv Chenji, Jha, Lee, Brown, Seres, Mah, Kalra (bib0009) 2016; 11 Cristianini, Shawe-Taylor (bib0012) 2000 Kell, Yamins, Shook, Norman-Haignere, McDermott (bib0035) 2018; 98 Luo, Li, Urtasun, Zemel (bib0056) 2016 Kawahara, Brown, Miller, Booth, Chau, Grunau, Zwicker, Hamarneh (bib0034) 2017; 146 Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv LeCun, Bengio, Hinton (bib0046) 2015; 521 Kim, Tegethoff, Meinlschmidt, Stalujanis, Belardi, Jo, Lee, Kim, Yoo, Lee (bib0039) 2019; 195 Varoquaux, Raamana, Engemann, Hoyos-Idrobo, Schwartz, Thirion (bib0096) 2017; 145 Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar (bib0068) 2011; 72 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0085) 2014; 15 Thibault, MacPherson, Lifshitz, Roth, Raz (bib0091) 2018; 172 Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib0104) 2014; 111 Zhao, Ge, Liu (bib0112) 2018; 47 Bell, Shine (bib0004) 2015; 5 Fox, Corbetta, Snyder, Vincent, Raichle (bib0017) 2006; 103 Li, Fan (bib0053) 2019; 202 Dou, Chen, Yu, Zhao, Qin, Wang, Mok, Shi, Heng (bib0015) 2016; 35 Li, Fan (bib0052) 2018 Maturana, Scherer (bib0058) 2015 Kragel, LaBar (bib0043) 2016; 20 Jang, Plis, Calhoun, Lee (bib0031) 2017; 145 Vossel, Geng, Fink (bib0097) 2014; 20 Agosta, Valsasina, Absinta, Riva, Sala, Prelle, Copetti, Comola, Comi, Filippi (bib0001) 2011; 21 Linden, Turner (bib0055) 2016; 29 Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv Kim, Yoo, Tegethoff, Meinlschmidt, Lee (bib0037) 2015; 27 Kleesiek, Urban, Hubert, Schwarz, Maier-Hein, Bendszus, Biller (bib0042) 2016; 129 Poldrack (bib0067) 2007; 2 Kragel (10.1016/j.neuroimage.2020.117328_bib0043) 2016; 20 Thomas Yeo (10.1016/j.neuroimage.2020.117328_bib0092) 2011; 106 Dietterich (10.1016/j.neuroimage.2020.117328_bib0013) 1998; 10 Zhao (10.1016/j.neuroimage.2020.117328_bib0110) 2017; 42 Ramasangu (10.1016/j.neuroimage.2020.117328_bib0071) 2014 Dou (10.1016/j.neuroimage.2020.117328_bib0015) 2016; 35 Warrier (10.1016/j.neuroimage.2020.117328_bib0100) 2009; 29 LaConte (10.1016/j.neuroimage.2020.117328_bib0045) 2011; 56 Parkhi (10.1016/j.neuroimage.2020.117328_bib0064) 2015 Plis (10.1016/j.neuroimage.2020.117328_bib0066) 2014; 8 Van Essen (10.1016/j.neuroimage.2020.117328_bib0095) 2012; 62 Norouzi (10.1016/j.neuroimage.2020.117328_bib0063) 2009 Simonyan (10.1016/j.neuroimage.2020.117328_bib0080) 2014 Horikawa (10.1016/j.neuroimage.2020.117328_bib0027) 2017; 11 Kell (10.1016/j.neuroimage.2020.117328_bib0035) 2018; 98 Sitaram (10.1016/j.neuroimage.2020.117328_bib0082) 2017; 18 Glasser (10.1016/j.neuroimage.2020.117328_bib0018) 2016; 536 Zhao (10.1016/j.neuroimage.2020.117328_bib0111) 2017; 65 Schroff (10.1016/j.neuroimage.2020.117328_bib0074) 2015 Krizhevsky (10.1016/j.neuroimage.2020.117328_bib0044) 2012 Linden (10.1016/j.neuroimage.2020.117328_bib0055) 2016; 29 Goebel (10.1016/j.neuroimage.2020.117328_bib0020) 2010; 2 Eklund (10.1016/j.neuroimage.2020.117328_bib0016) 2016 Nie (10.1016/j.neuroimage.2020.117328_bib0062) 2016 LeCun (10.1016/j.neuroimage.2020.117328_bib0047) 1998; 86 Bell (10.1016/j.neuroimage.2020.117328_bib0004) 2015; 5 Shen (10.1016/j.neuroimage.2020.117328_bib0076) 2017; 19 Stoeckel (10.1016/j.neuroimage.2020.117328_bib0087) 2014; 5 Wachinger (10.1016/j.neuroimage.2020.117328_bib0098) 2018; 170 Varoquaux (10.1016/j.neuroimage.2020.117328_bib0096) 2017; 145 Sharif Razavian (10.1016/j.neuroimage.2020.117328_bib0075) 2014 Cristianini (10.1016/j.neuroimage.2020.117328_bib0012) 2000 Kawahara (10.1016/j.neuroimage.2020.117328_bib0034) 2017; 146 Kim (10.1016/j.neuroimage.2020.117328_bib0037) 2015; 27 Srivastava (10.1016/j.neuroimage.2020.117328_bib0085) 2014; 15 Vossel (10.1016/j.neuroimage.2020.117328_bib0097) 2014; 20 Kleesiek (10.1016/j.neuroimage.2020.117328_bib0042) 2016; 129 Van Essen (10.1016/j.neuroimage.2020.117328_bib0094) 2013; 80 LeCun (10.1016/j.neuroimage.2020.117328_bib0046) 2015; 521 Biswal (10.1016/j.neuroimage.2020.117328_bib0005) 1995; 34 Tzourio-Mazoyer (10.1016/j.neuroimage.2020.117328_bib0093) 2002; 15 10.1016/j.neuroimage.2020.117328_bib0032 Bressler (10.1016/j.neuroimage.2020.117328_bib0006) 2010; 14 Lee (10.1016/j.neuroimage.2020.117328_bib0050) 2009; 450 Ruiz (10.1016/j.neuroimage.2020.117328_bib0073) 2014; 95 Pu (10.1016/j.neuroimage.2020.117328_bib0069) 2016 Chenji (10.1016/j.neuroimage.2020.117328_bib0009) 2016; 11 Dohmatob (10.1016/j.neuroimage.2020.117328_bib0014) 2018; 12 Levi (10.1016/j.neuroimage.2020.117328_bib0051) 2015 10.1016/j.neuroimage.2020.117328_bib0029 Kim (10.1016/j.neuroimage.2020.117328_bib0039) 2019; 195 Barch (10.1016/j.neuroimage.2020.117328_bib0003) 2013; 80 Glasser (10.1016/j.neuroimage.2020.117328_bib0019) 2013; 80 Goodfellow (10.1016/j.neuroimage.2020.117328_bib0022) 2016 McNemar (10.1016/j.neuroimage.2020.117328_bib0059) 1947; 12 Khaligh-Razavi (10.1016/j.neuroimage.2020.117328_bib0036) 2014; 10 Weiskopf (10.1016/j.neuroimage.2020.117328_bib0101) 2012; 62 Shirer (10.1016/j.neuroimage.2020.117328_bib0078) 2012; 22 Lee (10.1016/j.neuroimage.2020.117328_bib0049) 2009; 13 Gordon (10.1016/j.neuroimage.2020.117328_bib0023) 2014; 26 Zou (10.1016/j.neuroimage.2020.117328_bib0114) 2005; 67 Fox (10.1016/j.neuroimage.2020.117328_bib0017) 2006; 103 Jain (10.1016/j.neuroimage.2020.117328_bib0030) 2018 10.1016/j.neuroimage.2020.117328_bib0099 Manly (10.1016/j.neuroimage.2020.117328_bib0057) 2018 Sulzer (10.1016/j.neuroimage.2020.117328_bib0089) 2013; 76 Song (10.1016/j.neuroimage.2020.117328_bib0083) 2011; 6 Yousry (10.1016/j.neuroimage.2020.117328_bib0106) 1997; 3 Huang (10.1016/j.neuroimage.2020.117328_bib0028) 2018; 37 Tavor (10.1016/j.neuroimage.2020.117328_bib0090) 2016; 352 Weiskopf (10.1016/j.neuroimage.2020.117328_bib0102) 2004; 51 Li (10.1016/j.neuroimage.2020.117328_bib0053) 2019; 202 Li (10.1016/j.neuroimage.2020.117328_bib0052) 2018 Luo (10.1016/j.neuroimage.2020.117328_bib0056) 2016 Thibault (10.1016/j.neuroimage.2020.117328_bib0091) 2018; 172 Maturana (10.1016/j.neuroimage.2020.117328_bib0058) 2015 Kim (10.1016/j.neuroimage.2020.117328_bib0038) 2019; 186 Cole (10.1016/j.neuroimage.2020.117328_bib0010) 2017; 163 Mikl (10.1016/j.neuroimage.2020.117328_bib0061) 2008; 26 10.1016/j.neuroimage.2020.117328_bib0079 Aguirre (10.1016/j.neuroimage.2020.117328_bib0002) 1998; 8 Jang (10.1016/j.neuroimage.2020.117328_bib0031) 2017; 145 Steimke (10.1016/j.neuroimage.2020.117328_bib0086) 2017; 12 Handwerker (10.1016/j.neuroimage.2020.117328_bib0025) 2004; 21 10.1016/j.neuroimage.2020.117328_bib0084 Golik (10.1016/j.neuroimage.2020.117328_bib0021) 2013 Zhao (10.1016/j.neuroimage.2020.117328_bib0112) 2018; 47 Kim (10.1016/j.neuroimage.2020.117328_bib0041) 2014; 27 Hazlett (10.1016/j.neuroimage.2020.117328_bib0026) 2017; 542 Sitaram (10.1016/j.neuroimage.2020.117328_bib0081) 2011; 56 Menon (10.1016/j.neuroimage.2020.117328_bib0060) 2015 Poldrack (10.1016/j.neuroimage.2020.117328_bib0067) 2007; 2 Wen (10.1016/j.neuroimage.2020.117328_bib0103) 2018; 12 Zanto (10.1016/j.neuroimage.2020.117328_bib0108) 2013; 17 Güçlü (10.1016/j.neuroimage.2020.117328_bib0024) 2015; 35 Li (10.1016/j.neuroimage.2020.117328_bib0054) 2017; 156 Yamins (10.1016/j.neuroimage.2020.117328_bib0104) 2014; 111 Calhoun (10.1016/j.neuroimage.2020.117328_bib0008) 2017; 38 Power (10.1016/j.neuroimage.2020.117328_bib0068) 2011; 72 Kim (10.1016/j.neuroimage.2020.117328_bib0040) 2016; 124 Pinto (10.1016/j.neuroimage.2020.117328_bib0065) 2008; 4 Zhang (10.1016/j.neuroimage.2020.117328_bib0109) 2018; 65 Yuan (10.1016/j.neuroimage.2020.117328_bib0107) 2016; 221 10.1016/j.neuroimage.2020.117328_bib0072 Agosta (10.1016/j.neuroimage.2020.117328_bib0001) 2011; 21 Suk (10.1016/j.neuroimage.2020.117328_bib0088) 2014; 101 Lee (10.1016/j.neuroimage.2020.117328_bib0048) 2012; 72 Yoo (10.1016/j.neuroimage.2020.117328_bib0105) 2004; 15 Shen (10.1016/j.neuroimage.2020.117328_bib0077) 2013; 82 10.1016/j.neuroimage.2020.117328_bib0070 Craddock (10.1016/j.neuroimage.2020.117328_bib0011) 2012; 33 Karpathy (10.1016/j.neuroimage.2020.117328_bib0033) 2014 Buckner (10.1016/j.neuroimage.2020.117328_bib0007) 2012; 62 Zhou (10.1016/j.neuroimage.2020.117328_bib0113) 2016 |
| References_xml | – start-page: 320 year: 2018 end-page: 328 ident: bib0052 article-title: Brain decoding from functional MRI using long short-term memory recurrent neural networks publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 12 start-page: 1928 year: 2017 end-page: 1939 ident: bib0086 article-title: Salience network dynamics underlying successful resistance of temptation publication-title: Soc. Cogn. Affect. Neurosci. – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: bib0068 article-title: Functional network organization of the human brain publication-title: Neuron – volume: 3 start-page: 2 year: 1997 end-page: 12 ident: bib0106 article-title: Heschl's gyrus-Anatomic description and methods of identification on magnetic resonance imaging publication-title: Int. J. Neuroradiol. – start-page: 2735 year: 2009 end-page: 2742 ident: bib0063 article-title: Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009 – reference: Wang, X., Liang, X., Zhou, Y., Wang, Y., Cui, J., Wang, H., Li, Y., Nguchu, B.A., Qiu, B., 2018. Task state decoding and mapping of individual four-dimensional fMRI time series using deep neural network. arXiv preprint arXiv: – volume: 72 start-page: 347 year: 2012 end-page: 354 ident: bib0048 article-title: Real-time fMRI-based neurofeedback reinforces causality of attention networks publication-title: Neurosci. Res. – volume: 11 year: 2017 ident: bib0027 article-title: Hierarchical neural representation of dreamed objects revealed by brain decoding with deep neural network features publication-title: Front. Comput. Neurosci. – start-page: 212 year: 2016 end-page: 220 ident: bib0062 article-title: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 76 start-page: 386 year: 2013 end-page: 399 ident: bib0089 article-title: Real-time fMRI neurofeedback: progress and challenges publication-title: NeuroImage – start-page: 1756 year: 2013 end-page: 1760 ident: bib0021 article-title: Cross-entropy vs. squared error training: a theoretical and experimental comparison publication-title: Interspeech – volume: 10 start-page: 1895 year: 1998 end-page: 1923 ident: bib0013 article-title: Approximate statistical tests for comparing supervised classification learning algorithms publication-title: Neural Comput. – reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv: – volume: 27 start-page: 332 year: 2014 end-page: 336 ident: bib0041 article-title: Real-time functional MRI neurofeedback: a tool for psychiatry publication-title: Curr. Opin. Psychiatry – volume: 22 start-page: 158 year: 2012 end-page: 165 ident: bib0078 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cereb. Cortex – volume: 62 start-page: 1137 year: 2012 end-page: 1145 ident: bib0007 article-title: The serendipitous discovery of the brain's default network publication-title: Neuroimage – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib0094 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage – volume: 146 start-page: 1038 year: 2017 end-page: 1049 ident: bib0034 article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment publication-title: NeuroImage – volume: 29 start-page: 61 year: 2009 end-page: 69 ident: bib0100 article-title: Relating structure to function: Heschl's gyrus and acoustic processing publication-title: J. Neurosci. – volume: 12 start-page: 153 year: 1947 end-page: 157 ident: bib0059 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika – volume: 37 year: 2018 ident: bib0028 article-title: Modeling task fMRI data via deep convolutional autoencoder publication-title: IEEE Trans. Med. Imaging – volume: 11 year: 2016 ident: bib0009 article-title: Investigating default mode and sensorimotor network connectivity in amyotrophic lateral sclerosis publication-title: PLoS One – volume: 536 start-page: 171 year: 2016 ident: bib0018 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature – volume: 13 start-page: 392 year: 2009 end-page: 404 ident: bib0049 article-title: Automated classification of fMRI data employing trial-based imagery tasks publication-title: Med. Image Anal. – start-page: 922 year: 2015 end-page: 928 ident: bib0058 article-title: Voxnet: a 3d convolutional neural network for real-time object recognition publication-title: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0019 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – start-page: 568 year: 2014 end-page: 576 ident: bib0080 article-title: Two-stream convolutional networks for action recognition in videos publication-title: Adv. Neural Inf. Process. Syst. – volume: 352 start-page: 216 year: 2016 end-page: 220 ident: bib0090 article-title: Task-free MRI predicts individual differences in brain activity during task performance publication-title: Science – volume: 27 start-page: 1552 year: 2015 end-page: 1572 ident: bib0037 article-title: The inclusion of functional connectivity information into fMRI-based neurofeedback improves its efficacy in the reduction of cigarette cravings publication-title: J. Cogn. Neurosci. – volume: 20 start-page: 150 year: 2014 end-page: 159 ident: bib0097 article-title: Dorsal and ventral attention systems: distinct neural circuits but collaborative roles publication-title: Neuroscientist – volume: 15 start-page: 1591 year: 2004 end-page: 1595 ident: bib0105 article-title: Brain–computer interface using fMRI: spatial navigation by thoughts publication-title: Neuroreport – reference: Kanazawa, A., Sharma, A., Jacobs, D., 2014. Locally scale-invariant convolutional neural networks. arXiv preprint arXiv: – volume: 56 start-page: 440 year: 2011 end-page: 454 ident: bib0045 article-title: Decoding fMRI brain states in real-time publication-title: NeuroImage – start-page: 1 year: 2014 end-page: 5 ident: bib0071 article-title: Cognitive state classification using transformed fMRI data publication-title: Proceeding of the 2014 International Conference on Signal Processing and Communications (SPCOM) – reference: Raschka, S., 2018. Model evaluation, model selection, and algorithm selection in machine learning. arXiv preprint arXiv: – start-page: 806 year: 2014 end-page: 813 ident: bib0075 article-title: CNN features off-the-shelf: an astounding baseline for recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – volume: 95 start-page: 4 year: 2014 end-page: 20 ident: bib0073 article-title: Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks publication-title: Biol. Psychol. – volume: 65 start-page: 1639 year: 2018 end-page: 1653 ident: bib0109 article-title: Euler elastica regularized logistic regression for whole-brain decoding of fMRI data publication-title: J. Mag. – volume: 12 start-page: 64 year: 2018 ident: bib0014 article-title: Inter-subject registration of functional images: do we need anatomical images? publication-title: Front. Neurosci. – volume: 4 start-page: e27 year: 2008 ident: bib0065 article-title: Why is real-world visual object recognition hard? publication-title: PLoS Comput. Biol. – volume: 29 start-page: 412 year: 2016 ident: bib0055 article-title: Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation publication-title: Curr. Opin. Neurol. – volume: 38 start-page: 5331 year: 2017 end-page: 5342 ident: bib0008 article-title: The impact of T1 versus EPI spatial normalization templates for fMRI data analyses publication-title: Hum. Brain Mapp. – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib0005 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Resonanc. Med. – volume: 202 year: 2019 ident: bib0053 article-title: Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks publication-title: Neuroimage – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0046 article-title: Deep learning publication-title: Nature – volume: 186 start-page: 607 year: 2019 end-page: 627 ident: bib0038 article-title: Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging publication-title: NeuroImage – volume: 542 start-page: 348 year: 2017 end-page: 351 ident: bib0026 article-title: Early brain development in infants at high risk for autism spectrum disorder publication-title: Nature – volume: 51 start-page: 966 year: 2004 end-page: 970 ident: bib0102 article-title: Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI) publication-title: IEEE Trans. Biomed. Eng. – volume: 163 start-page: 115 year: 2017 end-page: 124 ident: bib0010 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: NeuroImage – year: 2016 ident: bib0022 article-title: Deep Learning – start-page: 4898 year: 2016 end-page: 4906 ident: bib0056 article-title: Understanding the effective receptive field in deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 19 start-page: 221 year: 2017 end-page: 248 ident: bib0076 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. – volume: 62 start-page: 682 year: 2012 end-page: 692 ident: bib0101 article-title: Real-time fMRI and its application to neurofeedback publication-title: NeuroImage – volume: 21 start-page: 1639 year: 2004 end-page: 1651 ident: bib0025 article-title: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses publication-title: Neuroimage – volume: 21 start-page: 2291 year: 2011 end-page: 2298 ident: bib0001 article-title: Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis publication-title: Cereb. Cortex – volume: 5 start-page: 245 year: 2014 end-page: 255 ident: bib0087 article-title: Optimizing real time fMRI neurofeedback for therapeutic discovery and development publication-title: NeuroImage: Clin. – volume: 26 start-page: 490 year: 2008 end-page: 503 ident: bib0061 article-title: Effects of spatial smoothing on fMRI group inferences publication-title: Magn. Resonanc. Imaging – volume: 111 start-page: 8619 year: 2014 end-page: 8624 ident: bib0104 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. – volume: 47 start-page: 111 year: 2018 end-page: 126 ident: bib0112 article-title: Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization publication-title: Med. Image Anal. – year: 2000 ident: bib0012 article-title: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0047 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib0085 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 360 year: 1998 end-page: 369 ident: bib0002 article-title: The variability of human, BOLD hemodynamic responses publication-title: NeuroImage – volume: 14 start-page: 277 year: 2010 end-page: 290 ident: bib0006 article-title: Large-scale brain networks in cognition: emerging methods and principles publication-title: Trends Cogn. Sci. – volume: 35 start-page: 10005 year: 2015 end-page: 10014 ident: bib0024 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: bib0092 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. – start-page: 2352 year: 2016 end-page: 2360 ident: bib0069 article-title: Variational autoencoder for deep learning of images, labels and captions publication-title: Adv. Neural Inf. Process. Syst. – volume: 18 start-page: 86 year: 2017 ident: bib0082 article-title: Closed-loop brain training: the science of neurofeedback publication-title: Nat. Rev. Neurosci. – volume: 145 start-page: 314 year: 2017 end-page: 328 ident: bib0031 article-title: Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks publication-title: NeuroImage – volume: 450 start-page: 1 year: 2009 end-page: 6 ident: bib0050 article-title: Brain–machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm publication-title: Neurosci. Lett. – volume: 33 start-page: 1914 year: 2012 end-page: 1928 ident: bib0011 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum. Brain Mapp. – volume: 170 start-page: 434 year: 2018 end-page: 445 ident: bib0098 article-title: DeepNAT: deep convolutional neural network for segmenting neuroanatomy publication-title: NeuroImage – start-page: 1097 year: 2012 end-page: 1105 ident: bib0044 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 101 start-page: 569 year: 2014 end-page: 582 ident: bib0088 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage – volume: 145 start-page: 166 year: 2017 end-page: 179 ident: bib0096 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: NeuroImage – volume: 103 start-page: 10046 year: 2006 end-page: 10051 ident: bib0017 article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems publication-title: Proc. Natl. Acad. Sci. – volume: 26 start-page: 288 year: 2014 end-page: 303 ident: bib0023 article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations publication-title: Cereb. Cortex – volume: 35 start-page: 1182 year: 2016 end-page: 1195 ident: bib0015 article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks publication-title: J. Mag. – start-page: 6 year: 2015 ident: bib0064 article-title: Deep Face Recognition – volume: 80 start-page: 169 year: 2013 end-page: 189 ident: bib0003 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: Neuroimage – volume: 156 start-page: 1 year: 2017 end-page: 13 ident: bib0054 article-title: Large-scale sparse functional networks from resting state fMRI publication-title: Neuroimage – start-page: 815 year: 2015 end-page: 823 ident: bib0074 article-title: Facenet: a unified embedding for face recognition and clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1725 year: 2014 end-page: 1732 ident: bib0033 article-title: Large-scale video classification with convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 129 start-page: 460 year: 2016 end-page: 469 ident: bib0042 article-title: Deep MRI brain extraction: a 3D convolutional neural network for skull stripping publication-title: Neuroimage – volume: 98 start-page: e616 year: 2018 ident: bib0035 article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy publication-title: Neuron – year: 2015 ident: bib0060 article-title: Salience Network: Brain Mapping: An Encyclopedic Reference – volume: 6 start-page: e17191 year: 2011 ident: bib0083 article-title: Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data publication-title: PloS one – start-page: 2921 year: 2016 end-page: 2929 ident: bib0113 article-title: Learning deep features for discriminative localization publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 65 start-page: 1975 year: 2017 end-page: 1984 ident: bib0111 article-title: Automatic recognition of fMRI-derived functional networks using 3-D convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. – volume: 17 start-page: 602 year: 2013 end-page: 603 ident: bib0108 article-title: Fronto-parietal network: flexible hub of cognitive control publication-title: Trends Cogn. Sci. – start-page: 34 year: 2015 end-page: 42 ident: bib0051 article-title: Age and gender classification using convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – volume: 8 start-page: 229 year: 2014 ident: bib0066 article-title: Deep learning for neuroimaging: a validation study publication-title: Front. Neurosci. – volume: 5 start-page: 565 year: 2015 end-page: 574 ident: bib0004 article-title: Estimating large-scale network convergence in the human functional connectome publication-title: Brain Connect. – volume: 20 start-page: 444 year: 2016 end-page: 455 ident: bib0043 article-title: Decoding the nature of emotion in the brain publication-title: Trends Cogn. Sci. – reference: Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv: – volume: 82 start-page: 403 year: 2013 end-page: 415 ident: bib0077 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage – reference: Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: visualizing image classification models and saliency maps. arXiv preprint arXiv: – year: 2018 ident: bib0030 article-title: Incorporating context into language encoding models for fMRI publication-title: bioRxiv – volume: 12 start-page: 23 year: 2018 ident: bib0103 article-title: Deep learning methods to process fMRI data and their application in the diagnosis of cognitive impairment: a brief overview and our opinion publication-title: Front. Neuroinf. – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib0114 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) – volume: 124 start-page: 127 year: 2016 end-page: 146 ident: bib0040 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: Neuroimage – volume: 10 year: 2014 ident: bib0036 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. – reference: Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv: – volume: 221 start-page: 1971 year: 2016 end-page: 1984 ident: bib0107 article-title: Functional topography of the thalamocortical system in human publication-title: Brain Struct. Funct. – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: bib0095 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage – volume: 172 start-page: 786 year: 2018 end-page: 807 ident: bib0091 article-title: Neurofeedback with fMRI: a critical systematic review publication-title: Neuroimage – volume: 42 start-page: 200 year: 2017 end-page: 211 ident: bib0110 article-title: Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder publication-title: Med. Image Anal. – reference: . – volume: 2 start-page: 407 year: 2010 end-page: 415 ident: bib0020 article-title: Real-time fMRI-based brain–computer interfacing for neurofeedback therapy and compensation of lost motor functions publication-title: Imaging in Medicine – volume: 56 start-page: 753 year: 2011 end-page: 765 ident: bib0081 article-title: Real-time support vector classification and feedback of multiple emotional brain states publication-title: Neuroimage – year: 2016 ident: bib0016 article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates publication-title: Proc. Natl. Acad. Sci. – volume: 2 start-page: 67 year: 2007 end-page: 70 ident: bib0067 article-title: Region of interest analysis for fMRI publication-title: Soc. Cogn. Affect. Neurosci. – year: 2018 ident: bib0057 article-title: Randomization, Bootstrap and Monte Carlo Methods in Biology – volume: 195 start-page: 409 year: 2019 end-page: 432 ident: bib0039 article-title: Mediation analysis of triple networks revealed functional feature of mindfulness from real-time fMRI neurofeedback publication-title: NeuroImage – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib0093 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – ident: 10.1016/j.neuroimage.2020.117328_bib0070 – volume: 56 start-page: 753 year: 2011 ident: 10.1016/j.neuroimage.2020.117328_bib0081 article-title: Real-time support vector classification and feedback of multiple emotional brain states publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.007 – volume: 13 start-page: 392 year: 2009 ident: 10.1016/j.neuroimage.2020.117328_bib0049 article-title: Automated classification of fMRI data employing trial-based imagery tasks publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.01.001 – volume: 76 start-page: 386 year: 2013 ident: 10.1016/j.neuroimage.2020.117328_bib0089 article-title: Real-time fMRI neurofeedback: progress and challenges publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.033 – volume: 352 start-page: 216 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0090 article-title: Task-free MRI predicts individual differences in brain activity during task performance publication-title: Science doi: 10.1126/science.aad8127 – start-page: 2352 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0069 article-title: Variational autoencoder for deep learning of images, labels and captions publication-title: Adv. Neural Inf. Process. Syst. – start-page: 6 year: 2015 ident: 10.1016/j.neuroimage.2020.117328_bib0064 – volume: 29 start-page: 412 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0055 article-title: Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0000000000000340 – volume: 42 start-page: 200 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0110 article-title: Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.08.005 – volume: 14 start-page: 277 year: 2010 ident: 10.1016/j.neuroimage.2020.117328_bib0006 article-title: Large-scale brain networks in cognition: emerging methods and principles publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2010.04.004 – start-page: 1756 year: 2013 ident: 10.1016/j.neuroimage.2020.117328_bib0021 article-title: Cross-entropy vs. squared error training: a theoretical and experimental comparison publication-title: Interspeech – volume: 82 start-page: 403 year: 2013 ident: 10.1016/j.neuroimage.2020.117328_bib0077 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.081 – year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0016 article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1602413113 – volume: 11 issue: 4 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0027 article-title: Hierarchical neural representation of dreamed objects revealed by brain decoding with deep neural network features publication-title: Front. Comput. Neurosci. – volume: 27 start-page: 1552 year: 2015 ident: 10.1016/j.neuroimage.2020.117328_bib0037 article-title: The inclusion of functional connectivity information into fMRI-based neurofeedback improves its efficacy in the reduction of cigarette cravings publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_00802 – volume: 56 start-page: 440 year: 2011 ident: 10.1016/j.neuroimage.2020.117328_bib0045 article-title: Decoding fMRI brain states in real-time publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.052 – volume: 22 start-page: 158 year: 2012 ident: 10.1016/j.neuroimage.2020.117328_bib0078 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr099 – volume: 145 start-page: 166 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0096 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.038 – volume: 20 start-page: 150 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0097 article-title: Dorsal and ventral attention systems: distinct neural circuits but collaborative roles publication-title: Neuroscientist doi: 10.1177/1073858413494269 – volume: 2 start-page: 67 year: 2007 ident: 10.1016/j.neuroimage.2020.117328_bib0067 article-title: Region of interest analysis for fMRI publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nsm006 – volume: 6 start-page: e17191 year: 2011 ident: 10.1016/j.neuroimage.2020.117328_bib0083 article-title: Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data publication-title: PloS one doi: 10.1371/journal.pone.0017191 – volume: 10 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0036 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003915 – start-page: 2735 year: 2009 ident: 10.1016/j.neuroimage.2020.117328_bib0063 article-title: Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning – volume: 146 start-page: 1038 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0034 article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.09.046 – volume: 111 start-page: 8619 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0104 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1403112111 – volume: 202 year: 2019 ident: 10.1016/j.neuroimage.2020.117328_bib0053 article-title: Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116059 – volume: 4 start-page: e27 year: 2008 ident: 10.1016/j.neuroimage.2020.117328_bib0065 article-title: Why is real-world visual object recognition hard? publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0040027 – start-page: 815 year: 2015 ident: 10.1016/j.neuroimage.2020.117328_bib0074 article-title: Facenet: a unified embedding for face recognition and clustering – volume: 18 start-page: 86 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0082 article-title: Closed-loop brain training: the science of neurofeedback publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2016.164 – start-page: 1725 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0033 article-title: Large-scale video classification with convolutional neural networks – volume: 5 start-page: 565 year: 2015 ident: 10.1016/j.neuroimage.2020.117328_bib0004 article-title: Estimating large-scale network convergence in the human functional connectome publication-title: Brain Connect. doi: 10.1089/brain.2015.0348 – volume: 34 start-page: 537 year: 1995 ident: 10.1016/j.neuroimage.2020.117328_bib0005 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Resonanc. Med. doi: 10.1002/mrm.1910340409 – start-page: 34 year: 2015 ident: 10.1016/j.neuroimage.2020.117328_bib0051 article-title: Age and gender classification using convolutional neural networks – start-page: 568 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0080 article-title: Two-stream convolutional networks for action recognition in videos publication-title: Adv. Neural Inf. Process. Syst. – volume: 33 start-page: 1914 year: 2012 ident: 10.1016/j.neuroimage.2020.117328_bib0011 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21333 – start-page: 806 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0075 article-title: CNN features off-the-shelf: an astounding baseline for recognition – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2020.117328_bib0093 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 8 start-page: 229 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0066 article-title: Deep learning for neuroimaging: a validation study publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00229 – volume: 72 start-page: 665 year: 2011 ident: 10.1016/j.neuroimage.2020.117328_bib0068 article-title: Functional network organization of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 2 start-page: 407 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2020.117328_bib0020 article-title: Real-time fMRI-based brain–computer interfacing for neurofeedback therapy and compensation of lost motor functions publication-title: Imaging in Medicine doi: 10.2217/iim.10.35 – volume: 10 start-page: 1895 year: 1998 ident: 10.1016/j.neuroimage.2020.117328_bib0013 article-title: Approximate statistical tests for comparing supervised classification learning algorithms publication-title: Neural Comput. doi: 10.1162/089976698300017197 – volume: 35 start-page: 1182 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0015 article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks publication-title: J. Mag. – volume: 95 start-page: 4 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0073 article-title: Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2013.04.010 – volume: 12 start-page: 1928 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0086 article-title: Salience network dynamics underlying successful resistance of temptation publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nsx123 – start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0071 article-title: Cognitive state classification using transformed fMRI data – volume: 62 start-page: 1137 year: 2012 ident: 10.1016/j.neuroimage.2020.117328_bib0007 article-title: The serendipitous discovery of the brain's default network publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.035 – volume: 3 start-page: 2 year: 1997 ident: 10.1016/j.neuroimage.2020.117328_bib0106 article-title: Heschl's gyrus-Anatomic description and methods of identification on magnetic resonance imaging publication-title: Int. J. Neuroradiol. – volume: 19 start-page: 221 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0076 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – ident: 10.1016/j.neuroimage.2020.117328_bib0084 – volume: 80 start-page: 169 year: 2013 ident: 10.1016/j.neuroimage.2020.117328_bib0003 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.033 – volume: 145 start-page: 314 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0031 article-title: Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.04.003 – volume: 8 start-page: 360 year: 1998 ident: 10.1016/j.neuroimage.2020.117328_bib0002 article-title: The variability of human, BOLD hemodynamic responses publication-title: NeuroImage doi: 10.1006/nimg.1998.0369 – volume: 12 start-page: 64 year: 2018 ident: 10.1016/j.neuroimage.2020.117328_bib0014 article-title: Inter-subject registration of functional images: do we need anatomical images? publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00064 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2020.117328_bib0019 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 29 start-page: 61 year: 2009 ident: 10.1016/j.neuroimage.2020.117328_bib0100 article-title: Relating structure to function: Heschl's gyrus and acoustic processing publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3489-08.2009 – year: 2018 ident: 10.1016/j.neuroimage.2020.117328_bib0030 article-title: Incorporating context into language encoding models for fMRI publication-title: bioRxiv – volume: 195 start-page: 409 year: 2019 ident: 10.1016/j.neuroimage.2020.117328_bib0039 article-title: Mediation analysis of triple networks revealed functional feature of mindfulness from real-time fMRI neurofeedback publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.03.066 – year: 2018 ident: 10.1016/j.neuroimage.2020.117328_bib0057 – volume: 65 start-page: 1639 year: 2018 ident: 10.1016/j.neuroimage.2020.117328_bib0109 article-title: Euler elastica regularized logistic regression for whole-brain decoding of fMRI data publication-title: J. Mag. – start-page: 4898 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0056 article-title: Understanding the effective receptive field in deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 37 year: 2018 ident: 10.1016/j.neuroimage.2020.117328_bib0028 article-title: Modeling task fMRI data via deep convolutional autoencoder publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2715285 – volume: 51 start-page: 966 year: 2004 ident: 10.1016/j.neuroimage.2020.117328_bib0102 article-title: Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI) publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827063 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2020.117328_bib0094 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.neuroimage.2020.117328_bib0114 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 62 start-page: 2222 year: 2012 ident: 10.1016/j.neuroimage.2020.117328_bib0095 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 536 start-page: 171 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0018 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.neuroimage.2020.117328_bib0046 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 12 start-page: 23 year: 2018 ident: 10.1016/j.neuroimage.2020.117328_bib0103 article-title: Deep learning methods to process fMRI data and their application in the diagnosis of cognitive impairment: a brief overview and our opinion publication-title: Front. Neuroinf. doi: 10.3389/fninf.2018.00023 – volume: 17 start-page: 602 year: 2013 ident: 10.1016/j.neuroimage.2020.117328_bib0108 article-title: Fronto-parietal network: flexible hub of cognitive control publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2013.10.001 – start-page: 212 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0062 article-title: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients – volume: 156 start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0054 article-title: Large-scale sparse functional networks from resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.05.004 – volume: 5 start-page: 245 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0087 article-title: Optimizing real time fMRI neurofeedback for therapeutic discovery and development publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2014.07.002 – year: 2000 ident: 10.1016/j.neuroimage.2020.117328_bib0012 – volume: 21 start-page: 1639 year: 2004 ident: 10.1016/j.neuroimage.2020.117328_bib0025 article-title: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.11.029 – volume: 163 start-page: 115 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0010 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.07.059 – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.neuroimage.2020.117328_bib0047 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 62 start-page: 682 year: 2012 ident: 10.1016/j.neuroimage.2020.117328_bib0101 article-title: Real-time fMRI and its application to neurofeedback publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.009 – volume: 35 start-page: 10005 year: 2015 ident: 10.1016/j.neuroimage.2020.117328_bib0024 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5023-14.2015 – volume: 103 start-page: 10046 year: 2006 ident: 10.1016/j.neuroimage.2020.117328_bib0017 article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0604187103 – volume: 129 start-page: 460 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0042 article-title: Deep MRI brain extraction: a 3D convolutional neural network for skull stripping publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.01.024 – volume: 38 start-page: 5331 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0008 article-title: The impact of T1 versus EPI spatial normalization templates for fMRI data analyses publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23737 – ident: 10.1016/j.neuroimage.2020.117328_bib0079 – volume: 170 start-page: 434 year: 2018 ident: 10.1016/j.neuroimage.2020.117328_bib0098 article-title: DeepNAT: deep convolutional neural network for segmenting neuroanatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.02.035 – volume: 11 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0009 article-title: Investigating default mode and sensorimotor network connectivity in amyotrophic lateral sclerosis publication-title: PLoS One doi: 10.1371/journal.pone.0157443 – volume: 65 start-page: 1975 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0111 article-title: Automatic recognition of fMRI-derived functional networks using 3-D convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2715281 – start-page: 922 year: 2015 ident: 10.1016/j.neuroimage.2020.117328_bib0058 article-title: Voxnet: a 3d convolutional neural network for real-time object recognition – volume: 450 start-page: 1 year: 2009 ident: 10.1016/j.neuroimage.2020.117328_bib0050 article-title: Brain–machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2008.11.024 – volume: 20 start-page: 444 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0043 article-title: Decoding the nature of emotion in the brain publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2016.03.011 – volume: 542 start-page: 348 year: 2017 ident: 10.1016/j.neuroimage.2020.117328_bib0026 article-title: Early brain development in infants at high risk for autism spectrum disorder publication-title: Nature doi: 10.1038/nature21369 – volume: 106 start-page: 1125 year: 2011 ident: 10.1016/j.neuroimage.2020.117328_bib0092 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – ident: 10.1016/j.neuroimage.2020.117328_bib0072 – volume: 27 start-page: 332 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0041 article-title: Real-time functional MRI neurofeedback: a tool for psychiatry publication-title: Curr. Opin. Psychiatry doi: 10.1097/YCO.0000000000000087 – volume: 26 start-page: 490 year: 2008 ident: 10.1016/j.neuroimage.2020.117328_bib0061 article-title: Effects of spatial smoothing on fMRI group inferences publication-title: Magn. Resonanc. Imaging doi: 10.1016/j.mri.2007.08.006 – start-page: 2921 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0113 article-title: Learning deep features for discriminative localization – volume: 221 start-page: 1971 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0107 article-title: Functional topography of the thalamocortical system in human publication-title: Brain Struct. Funct. doi: 10.1007/s00429-015-1018-7 – volume: 15 start-page: 1591 year: 2004 ident: 10.1016/j.neuroimage.2020.117328_bib0105 article-title: Brain–computer interface using fMRI: spatial navigation by thoughts publication-title: Neuroreport doi: 10.1097/01.wnr.0000133296.39160.fe – ident: 10.1016/j.neuroimage.2020.117328_bib0099 – volume: 186 start-page: 607 year: 2019 ident: 10.1016/j.neuroimage.2020.117328_bib0038 article-title: Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.10.054 – volume: 101 start-page: 569 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0088 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.077 – volume: 26 start-page: 288 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0023 article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations publication-title: Cereb. Cortex doi: 10.1093/cercor/bhu239 – volume: 12 start-page: 153 year: 1947 ident: 10.1016/j.neuroimage.2020.117328_bib0059 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika doi: 10.1007/BF02295996 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.neuroimage.2020.117328_bib0085 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 2015 ident: 10.1016/j.neuroimage.2020.117328_bib0060 – start-page: 320 year: 2018 ident: 10.1016/j.neuroimage.2020.117328_bib0052 article-title: Brain decoding from functional MRI using long short-term memory recurrent neural networks – volume: 172 start-page: 786 year: 2018 ident: 10.1016/j.neuroimage.2020.117328_bib0091 article-title: Neurofeedback with fMRI: a critical systematic review publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.071 – ident: 10.1016/j.neuroimage.2020.117328_bib0032 – volume: 21 start-page: 2291 year: 2011 ident: 10.1016/j.neuroimage.2020.117328_bib0001 article-title: Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr002 – ident: 10.1016/j.neuroimage.2020.117328_bib0029 – volume: 124 start-page: 127 year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0040 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.018 – volume: 47 start-page: 111 year: 2018 ident: 10.1016/j.neuroimage.2020.117328_bib0112 article-title: Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.04.002 – start-page: 1097 year: 2012 ident: 10.1016/j.neuroimage.2020.117328_bib0044 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: 10.1016/j.neuroimage.2020.117328_bib0022 – volume: 98 start-page: e616 year: 2018 ident: 10.1016/j.neuroimage.2020.117328_bib0035 article-title: A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy publication-title: Neuron doi: 10.1016/j.neuron.2018.03.044 – volume: 72 start-page: 347 year: 2012 ident: 10.1016/j.neuroimage.2020.117328_bib0048 article-title: Real-time fMRI-based neurofeedback reinforces causality of attention networks publication-title: Neurosci. Res. doi: 10.1016/j.neures.2012.01.002 |
| SSID | ssj0009148 |
| Score | 2.4404283 |
| Snippet | Deep-learning methods based on deep neural networks (DNNs) have recently been successfully utilized in the analysis of neuroimaging data. A convolutional... |
| SourceID | doaj proquest pubmed crossref elsevier |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 117328 |
| SubjectTerms | Adult Attention Attention - physiology Auditory Perception - physiology Brain - physiology Brain mapping Brain Mapping - methods Brain research Classification Convolutional neural networks Deep learning Deep neural networks Functional magnetic resonance imaging Functional MRI Human Connectome Project Humans Image processing Investigations Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical imaging Motor Activity Neural networks Neural Networks, Computer Neuroimaging Psychomotor Performance Real-time fMRI Sensorimotor system Sensorimotor tasks Sensory integration Support Vector Machine Support vector machines Time series Visual perception Visual Perception - physiology Visual stimuli Young Adult |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQCiEuiDeBBRmJa4SfTS1OvFZw2BVCIO3Nsh0bipYUNSm_nxnbCcsB0QOnVq3HcmfGnm_qLzOEPGMuIDBQLUQ71SrDQusSF60IwvmVU1q40myiOztbn5-bD5dafSEnrJQHLop7zmXHIWizlWBerZPxQoXAjWOG-dSrhKcv68ycTM3ldgHlV95OYXPl6pCb77BHIScU-a5SYgf2S8Eo1-z_Iyb9DXPm2HNyk9yooJG-LIu9Ra7E4Ta5dlqvxe-QKZ1-fE_LQUMD4mEkAGWdUyS2f6GOyjcUGebV02A2XGt-yTxwutv6_TjRaUvHr5sEOJS6oacjmBDe5t-FQvgYRPkTd7xLPp-8_fT6XVvbKbRhpfjURtjPSa360Buvje90jMxrxxkLvYMhxsteG6l55CEaIZISjqnEtBOQQUsv75GjYTvEB4Q6HoOGibjzaxXyXV7UKcYOu-IBaGxIN-vVhlprHFteXNiZVPbN_raIRYvYYpGG8EXyR6m3cYDMKzTdMh4rZucPwI9s9SP7Lz9qiJkNb-eHUuEYhYk2ByzgxSJbgUsBJAdKH89-ZusBMlqhtDQ5wWvI0-Vr2Pp4n-OGuN3jGEjOEaTxhtwv_rnoAOaFRFbKh_9DN4_IdVxvYfEck6Npt4-PydXwc9qMuyd55_0Ce48zog priority: 102 providerName: Directory of Open Access Journals |
| Title | fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811920308144 https://dx.doi.org/10.1016/j.neuroimage.2020.117328 https://www.ncbi.nlm.nih.gov/pubmed/32896633 https://www.proquest.com/docview/2453900305 https://www.proquest.com/docview/2440900211 https://doaj.org/article/13712640620b48f9b24cc19a090bfd4f |
| Volume | 223 |
| WOSCitedRecordID | wos000582799600045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhtBe-GYERmUkXiP82cTiATHYBA-tqgmkvkW242xFkIwm5e_HZzstPIAq8ZJEre8U587nn33nO4ReEW0BGIjcz3YiF4rYXDeU5cwybaZaSKZjsYliPi-XS7VIG259CqscbWIw1HVnYY_8NROSq4B43978yKFqFHhXUwmNA3QEWRJYCN1b7JLuUhGPwkmel5SqFMkT47tCvsjVdz9q_SqRBe8lh5rsv01PIYv_H7PU31BomI0u7v1vP-6juwmH4ndRcR6gW659iO7Mkqf9ERqa2eUnHG0XtgCxIaYoiBFDrPwV1ph_wBC0npTXc4POhlsILcfrzmz6AQ8d7q9XjYe2WLc17r1W-MfwYYAITlbEfeH-Mfpycf75_cc8VWjI7VTQIXe-H42Y1rZWRipTSOeIkZoSYmvtmyjDa6m4pI5apxhrBNNENERq5hfl3PAn6LDtWvcUYU2dlZ4R1aYUNrgHnWycK6DQnsehGSpGwVQ2pS-HKhrfqjFO7Wu1E2kFIq2iSDNEt5Q3MYXHHjRnIPtte0jCHX7o1ldVGtMV5QX1eJJMGTGibJRhwlqqNFHENLVoMqRGzanGc67eMntGqz1e4M2WNmGhiHH2pD4dla9KNqmvdpqXoZfbv701AReRbl23gTZ-vQ-4j2boJCr49ht4vn5tzPmzfzN_jo7hTWLIzyk6HNYb9wLdtj-HVb-eoINiWYRrOUFHZ-fzxeUk7IP464zNJmEA_wLnEUl2 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQMAL90thgJHgMcJ27LYWQggY06qtFUJD2ptnO87WCZrRpCD-FL-Rc-ykhQdQX_bAU6rU58hxPp9LfC6EPGPWo2EgM9B2MpOa-cyWXGTCC-v6ViphU7OJwWQyPDzUHzbIzy4XBsMqO5kYBXVRefxG_kJIleto8b4--5ph1yg8Xe1aaCRY7IUf38Flq1-NtuH9Phdi5_3Bu92s7SqQ-b7kTRaARyn7hS-0U9oNVAjMKcsZ84WFIdrlhdK54oH7oIUopbBMlkxZAY5k7nLge4FclJgyiqGCYrwq8stlSr1TeTbkXLeRQymeLNannH4BKQFeqYinpTn2gP9NHcauAX9oxb9ZvVH77Vz_39btBrnW2tn0TdoYN8lGmN0il8dtJMFt0pTjjyOaZDP16EJgzFSEKcVcgGNqab5NMSi_3ZzADRc3XmLoPJ1XblE3tKlofTItwXSndlbQGlAPP-OLQCLMHEnfves75NO5PPNdsjmrZuE-oZYHr4ARt24ofTz-DKoMYYCNBMHO7pFBBwTj2_Ls2CXks-ni8E7NCkIGIWQShHqELynPUomSNWjeItaW47HIeLxRzY9NK7MMzwcc7GXWF8zJYamdkN5zbZlmrixk2SO6Q6rp8nhB8wCj6RoTeLmkbW29ZMOtSb3Vgd20Mrc2K6T3yNPl3yAt8QjMzkK1wDESZg92Le-Re2lDLdcA-ILvn-cP_s38CbmyezDeN_ujyd5DchVnlcKbtshmM1-ER-SS_9ZM6_njKBwoOTrvXfULavug_A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhyZeuF8KA4wEj9Fsx25qIYQY3UQ1VlUTSHsLtmOPImhGk4L4a_w6ji9p4QHUlz3wlCr1OXKcc_kcnwtCT4kyHhjwDLwdz7gkJlOOsowZpvRAccFUbDZRTCbD01M53UI_u1wYH1bZ2cRgqKva-G_ke4yLXAbEu-dSWMR0dPjy_GvmO0j5k9aunUYUkSP74zts35oX4xG862eMHR68e_0mSx0GMjPgtM0s8HN8UJlKaiF1IawlWihKiKkUDJE6r4TMBbXUWMmY40wR7ohQDDaVuc6B7yW0XQDI4D20vX8wmZ6sS_5SHhPxRJ4NKZUpjihGl4VqlbMvYDNgj8rC2WnuO8L_5hxDD4E_fOTfMHDwhYfX_udVvI6uJgSOX0WVuYG27Pwm2jlOMQa3UOuOT8Y4Wm1s_ObCR1MFAcY-S-AMK5yPsA_XT2oL3PxCh0sIqseLWi-bFrc1bj7OHIB6rOYVbkAf4Gd4KZ7I55TEL-LNbfT-Qp75DurN67m9h7Ci1ghgRJUechMORq1w1ha-xSAg8D4qOqEoTSrc7vuHfC67CL1P5VqcSi9OZRSnPqIryvNYvGQDmn0vd6vxvvx4uFEvzspkzUqaFxSQNBkwovnQSc24MVQqIol2FXd9JDupLbsMX_BJwGi2wQSer2gTCozobkPq3U7wy2SNm3It9X30ZPU32FF_OKbmtl76MRxmD4iX9tHdqFyrNQC-EpB5fv_fzB-jHVCm8u14cvQAXfGTinFPu6jXLpb2IbpsvrWzZvEoWQqMPly0Wv0CYE-rFg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=fMRI+volume+classification+using+a+3D+convolutional+neural+network+robust+to+shifted+and+scaled+neuronal+activations&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Vu%2C+Hanh&rft.au=Kim%2C+Hyun-Chul&rft.au=Jung%2C+Minyoung&rft.au=Lee%2C+Jong-Hwan&rft.date=2020-12-01&rft.eissn=1095-9572&rft.volume=223&rft.spage=117328&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117328&rft_id=info%3Apmid%2F32896633&rft.externalDocID=32896633 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |