GloMPO (Globally Managed Parallel Optimization): a tool for expensive, black-box optimizations, application to ReaxFF reparameterizations

In this work we explore the properties which make many real-life global optimization problems extremely difficult to handle, and some of the common techniques used in literature to address them. We then introduce a general optimization management tool called GloMPO (Globally Managed Parallel Optimiz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cheminformatics Ročník 14; číslo 1; s. 7 - 29
Hlavní autoři: Freitas Gustavo, Michael, Verstraelen, Toon
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 16.02.2022
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1758-2946, 1758-2946
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work we explore the properties which make many real-life global optimization problems extremely difficult to handle, and some of the common techniques used in literature to address them. We then introduce a general optimization management tool called GloMPO (Globally Managed Parallel Optimization) to help address some of the challenges faced by practitioners. GloMPO manages and shares information between traditional optimization algorithms run in parallel. We hope that GloMPO will be a flexible framework which allows for customization and hybridization of various optimization ideas, while also providing a substitute for human interventions and decisions which are a common feature of optimization processes of hard problems. GloMPO is shown to produce lower minima than traditional optimization approaches on global optimization test functions, the Lennard-Jones cluster problem, and ReaxFF reparameterizations. The novel feature of forced optimizer termination was shown to find better minima than normal optimization. GloMPO is also shown to provide qualitative benefits such a identifying degenerate minima, and providing a standardized interface and workflow manager.
AbstractList In this work we explore the properties which make many real-life global optimization problems extremely difficult to handle, and some of the common techniques used in literature to address them. We then introduce a general optimization management tool called GloMPO (Globally Managed Parallel Optimization) to help address some of the challenges faced by practitioners. GloMPO manages and shares information between traditional optimization algorithms run in parallel. We hope that GloMPO will be a flexible framework which allows for customization and hybridization of various optimization ideas, while also providing a substitute for human interventions and decisions which are a common feature of optimization processes of hard problems. GloMPO is shown to produce lower minima than traditional optimization approaches on global optimization test functions, the Lennard-Jones cluster problem, and ReaxFF reparameterizations. The novel feature of forced optimizer termination was shown to find better minima than normal optimization. GloMPO is also shown to provide qualitative benefits such a identifying degenerate minima, and providing a standardized interface and workflow manager.
In this work we explore the properties which make many real-life global optimization problems extremely difficult to handle, and some of the common techniques used in literature to address them. We then introduce a general optimization management tool called GloMPO (Globally Managed Parallel Optimization) to help address some of the challenges faced by practitioners. GloMPO manages and shares information between traditional optimization algorithms run in parallel. We hope that GloMPO will be a flexible framework which allows for customization and hybridization of various optimization ideas, while also providing a substitute for human interventions and decisions which are a common feature of optimization processes of hard problems. GloMPO is shown to produce lower minima than traditional optimization approaches on global optimization test functions, the Lennard-Jones cluster problem, and ReaxFF reparameterizations. The novel feature of forced optimizer termination was shown to find better minima than normal optimization. GloMPO is also shown to provide qualitative benefits such a identifying degenerate minima, and providing a standardized interface and workflow manager.In this work we explore the properties which make many real-life global optimization problems extremely difficult to handle, and some of the common techniques used in literature to address them. We then introduce a general optimization management tool called GloMPO (Globally Managed Parallel Optimization) to help address some of the challenges faced by practitioners. GloMPO manages and shares information between traditional optimization algorithms run in parallel. We hope that GloMPO will be a flexible framework which allows for customization and hybridization of various optimization ideas, while also providing a substitute for human interventions and decisions which are a common feature of optimization processes of hard problems. GloMPO is shown to produce lower minima than traditional optimization approaches on global optimization test functions, the Lennard-Jones cluster problem, and ReaxFF reparameterizations. The novel feature of forced optimizer termination was shown to find better minima than normal optimization. GloMPO is also shown to provide qualitative benefits such a identifying degenerate minima, and providing a standardized interface and workflow manager.
Abstract In this work we explore the properties which make many real-life global optimization problems extremely difficult to handle, and some of the common techniques used in literature to address them. We then introduce a general optimization management tool called GloMPO (Globally Managed Parallel Optimization) to help address some of the challenges faced by practitioners. GloMPO manages and shares information between traditional optimization algorithms run in parallel. We hope that GloMPO will be a flexible framework which allows for customization and hybridization of various optimization ideas, while also providing a substitute for human interventions and decisions which are a common feature of optimization processes of hard problems. GloMPO is shown to produce lower minima than traditional optimization approaches on global optimization test functions, the Lennard-Jones cluster problem, and ReaxFF reparameterizations. The novel feature of forced optimizer termination was shown to find better minima than normal optimization. GloMPO is also shown to provide qualitative benefits such a identifying degenerate minima, and providing a standardized interface and workflow manager.
In this work we explore the properties which make many real-life global optimization problems extremely difficult to handle, and some of the common techniques used in literature to address them. We then introduce a general optimization management tool called GloMPO (Globally Managed Parallel Optimization) to help address some of the challenges faced by practitioners. GloMPO manages and shares information between traditional optimization algorithms run in parallel. We hope that GloMPO will be a flexible framework which allows for customization and hybridization of various optimization ideas, while also providing a substitute for human interventions and decisions which are a common feature of optimization processes of hard problems. GloMPO is shown to produce lower minima than traditional optimization approaches on global optimization test functions, the Lennard-Jones cluster problem, and ReaxFF reparameterizations. The novel feature of forced optimizer termination was shown to find better minima than normal optimization. GloMPO is also shown to provide qualitative benefits such a identifying degenerate minima, and providing a standardized interface and workflow manager. Keywords: ReaxFF, Global optimization, Reparameterization, Black-box optimization, Python, Parallel computation
ArticleNumber 7
Audience Academic
Author Freitas Gustavo, Michael
Verstraelen, Toon
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0002-1832-8413
  surname: Freitas Gustavo
  fullname: Freitas Gustavo, Michael
  organization: Center for Molecular Modeling, Ghent University, Software for Chemistry and Materials
– sequence: 2
  givenname: Toon
  orcidid: 0000-0001-9288-5608
  surname: Verstraelen
  fullname: Verstraelen, Toon
  email: toon.verstraelen@ugent.be
  organization: Center for Molecular Modeling, Ghent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35172881$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1q2zAcxc3oWD-2F9jFEOymhbqTZFuWejEoZekCLS3ddi1k-S9PmWN5klPSvMHeemrSrEkZRRf68O8cS4ezn-x0roMkeU_wCSGcfQokyyhJMaUpxgUn6eJVskfKgqdU5GxnY72b7IcwwZgVJS7fJLtZQUrKOdlL_ly07urmGh3GuVJte4-uVKcaqNGN8nEPLbruBzu1CzVY1x2dIoUG51pknEcw76EL9g6OUdUq_Sut3By5DTwcI9X3rdXLXRSiW1Dz0Qh56KP9FAbwa_Rt8tqoNsC7x_kg-TH68v38a3p5fTE-P7tMNcvJkOr4ZFNWDIsyxyQvag1EAddca1xXhmNFlckANDVUsBIXwghW58ZkNa5ZmWcHyXjlWzs1kb23U-XvpVNWLg-cb6Tyg9UtSA6EFdQUmVB5zotaAEAhSI6rulKigOj1eeXVz6opxKt0Qwxty3T7S2d_ysbdSc7zGH8RDQ4fDbz7PYMwyKkNGtpWdeBmQVJGBWccZ2VEPz5DJ27muxjVkiKMlkw8UY2KD7CdcfG_-sFUnjGRY5oJyiN18h8qjhqmVseWGRvPtwRHW4LIDDAfGjULQY6_3W6zHzZD-ZfGunQR4CtAexeCByO1HZYliLewrSRYPvRbrvotY7_lst9yEaX0mXTt_qIoW4lChLsG_FNyL6j-AnzSDb8
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102596
crossref_primary_10_1063_5_0258496
Cites_doi 10.1287/IJOC.1.3.190
10.1002/jcc.23246
10.1016/J.ENGAPPAI.2019.02.003
10.1016/j.cplett.2006.03.003
10.1080/0892702031000104887
10.1007/S10710-014-9214-4
10.1109/SIS.2005.1501604
10.1007/3-540-58484-6_264
10.1002/jcc.24481
10.1021/acs.jctc.6b00461
10.1021/acs.jctc.7b01272
10.1145/2001858.2002123
10.1016/j.amc.2003.11.023
10.1111/ITOR.12001
10.1134/S0040577916040139
10.1021/acs.jpcc.7b09948
10.1007/978-3-642-13800-3_27
10.1162/106365601750190398
10.1145/2001576.2001808
10.1021/jp405992m
10.1021/jp911867r
10.1016/J.COMPTC.2016.09.032
10.1007/s00158-009-0420-2
10.1002/(SICI)1096-987X(199912)20:16<1752::AID-JCC7>3.0.CO;2-0
10.1021/acs.jctc.9b00769
10.1016/j.asoc.2015.04.061
10.1007/s10898-007-9149-x
10.1021/acs.jctc.7b00445
10.1007/3-540-44864-0_91
10.1002/nme.1960
10.1021/jp970984n
10.4236/am.2012.330215
10.1016/j.commatsci.2019.109393
10.1021/acs.jctc.8b00151
10.1002/jcc.23382
10.1007/978-1-4757-4137-7_11
10.1038/npjcompumats.2015.11
10.1021/acs.jctc.7b00870
10.1038/s41592-019-0686-2
10.1007/s11047-008-9098-4
10.1016/S0098-1354(98)00251-8
10.1016/j.ejor.2012.10.012
10.1021/acs.jcim.1c00333
10.1039/FT9949002881
10.1007/0-306-48126-X_4
10.1016/j.chemphys.2020.110888
10.1007/BFb0029787
10.1109/CEC.2001.934312
10.1021/jp004368u
10.1007/3-540-46033-0_19
10.1007/978-3-642-17390-5_4
10.3390/inorganics5040064
10.1109/CEC.2013.6557585
10.1088/0953-8984/21/8/084208
10.1002/jcc.23966
10.1007/s11590-016-1037-1
10.1021/jp709896w
10.1109/TEVC.2016.2627581
10.32614/rj-2013-002
10.1016/j.ins.2019.09.065
10.1142/S021821300600262X
10.1007/978-3-540-30217-9_29
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7X7
7XB
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13321-022-00581-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Publicly Available Content Database

PubMed


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Access via ProQuest (Open Access)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1758-2946
EndPage 29
ExternalDocumentID oai_doaj_org_article_8e1652f539a4485d9eee59140bdba95e
PMC8848815
A694023928
35172881
10_1186_s13321_022_00581_z
Genre Journal Article
GrantInformation_xml – fundername: h2020 marie sklodowska-curie actions
  grantid: 814143; 814143
  funderid: http://dx.doi.org/10.13039/100010665
– fundername: h2020 marie sklodowska-curie actions
  grantid: 814143
– fundername: ;
  grantid: 814143; 814143
GroupedDBID -5F
-5G
-A0
-BR
0R~
29K
2WC
3V.
4.4
40G
53G
5VS
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ACULB
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFGXO
AFKRA
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
D-I
D1I
DIK
E3Z
EBLON
EBS
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KB.
KQ8
LK8
M48
M7P
MK0
M~E
O5R
O5S
OK1
P62
PDBOC
PGMZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
RPM
RSV
RVI
SOJ
SPH
TR2
TUS
U2A
UKHRP
AASML
AAYXX
AFPKN
CITATION
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c641t-c321f7b609740145dce1ae8c8cc0dbf80a2af3eec2f2967059f96d4ff3d0d6743
IEDL.DBID C24
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000756821000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1758-2946
IngestDate Fri Oct 03 12:46:31 EDT 2025
Tue Nov 04 01:59:23 EST 2025
Sun Nov 09 10:20:55 EST 2025
Sat Oct 18 23:45:41 EDT 2025
Mon Oct 20 22:19:58 EDT 2025
Mon Oct 20 16:46:43 EDT 2025
Thu Oct 16 14:42:56 EDT 2025
Mon Jul 21 06:04:35 EDT 2025
Tue Nov 18 22:29:26 EST 2025
Sat Nov 29 05:55:22 EST 2025
Fri Feb 21 02:47:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ReaxFF
Global optimization
Parallel computation
Reparameterization
Black-box optimization
Python
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-c321f7b609740145dce1ae8c8cc0dbf80a2af3eec2f2967059f96d4ff3d0d6743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1832-8413
0000-0001-9288-5608
OpenAccessLink https://link.springer.com/10.1186/s13321-022-00581-z
PMID 35172881
PQID 2629162769
PQPubID 54992
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_8e1652f539a4485d9eee59140bdba95e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8848815
proquest_miscellaneous_2629868037
proquest_journals_2629162769
gale_infotracmisc_A694023928
gale_infotracacademiconefile_A694023928
gale_incontextgauss_ISR_A694023928
pubmed_primary_35172881
crossref_citationtrail_10_1186_s13321_022_00581_z
crossref_primary_10_1186_s13321_022_00581_z
springer_journals_10_1186_s13321_022_00581_z
PublicationCentury 2000
PublicationDate 2022-02-16
PublicationDateYYYYMMDD 2022-02-16
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-16
  day: 16
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle Journal of cheminformatics
PublicationTitleAbbrev J Cheminform
PublicationTitleAlternate J Cheminform
PublicationYear 2022
Publisher Springer International Publishing
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: Springer International Publishing
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Global Optim200739345947110.1007/s10898-007-9149-x
XiangYGubianSSuomelaBHoengJGeneralized simulated annealing for global optimization: the GenSA packageR J201351132810.32614/rj-2013-002
ElyasafASipperMSoftware review: the HeuristicLab frameworkGenet Program Evolvable Mach201415221521810.1007/S10710-014-9214-4
DieterichJMHartkeBEmpirical review of standard benchmark functions using evolutionary global optimizationAppl Math201231552156410.4236/am.2012.330215
SörensenKMetaheuristics-the metaphor exposedInt Trans Oper Res201522131810.1111/ITOR.12001
BianchiLDorigoMGambardellaLMGutjahrWJA survey on metaheuristics for stochastic combinatorial optimizationNat Comput20098223928710.1007/s11047-008-9098-4
Hansen N (2011) Injecting external solutions into CMA-ES. arXiv:1110.4181
DieterichJHartkeBImproved cluster structure optimization: hybridizing evolutionary algorithms with local heat pulsesInorganics201754641:CAS:528:DC%2BC1cXitVCmtrzN10.3390/inorganics5040064
Schlierkamp-Voosen D, Mühlenbein H (1994) Strategy adaptation by competing subpopulations. Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 866 LNCS, p 199–208. https://doi.org/10.1007/3-540-58484-6_264
Lukasiewycz M, Glaß M, Reimann F, Teich J (2011) Opt4J: a modular framework for meta-heuristic optimization. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation—GECCO ’11, ACM Press, New York, p 1723. https://doi.org/10.1145/2001576.2001808
Dyer D (2010) Watchmaker framework for evolutionary computing. https://watchmaker.uncommons.org
Kronfeld M, Planatscher H, Zell A (2010) The EvA2 optimization framework. Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6073 LNCS, p 247–250, https://doi.org/10.1007/978-3-642-13800-3_27
HubinPOJacqueminDLeherteLVercauterenDPParameterization of the ReaxFF reactive force field for a proline-catalyzed aldol reactionJ Comput Chem20163729256425721:CAS:528:DC%2BC28XhsVOqtr7K10.1002/jcc.2448127592688
Van DuinACTDasguptaSLorantFGoddardWAReaxFF: a reactive force field for hydrocarbonsJ Phys Chem A200110541939694091:CAS:528:DC%2BD3MXmvFChu78%3D10.1021/jp004368u
StepanovaMMShefovKSSlavyanovSYMultifactorial global search algorithm in the problem of optimizing a reactive force fieldTheoretical Math Phys (Russian Federation)2016187160361710.1134/S0040577916040139
Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: 2005 IEEE Swarm Intelligence Symposium, SIS 2005, p 68–75. https://doi.org/10.1109/SIS.2005.1501604
DittnerMMüllerJAktulgaHMHartkeBEfficient global optimization of reactive force-field parametersJ Comput Chem20153620155015611:CAS:528:DC%2BC2MXhtVensr3J10.1002/jcc.2396626085201
HuXSchusterJSchulzSEMultiparameter and parallel optimization of ReaxFF reactive force field for modeling the atomic layer deposition of copperJ Phys Chem C20171215028,07728,0891:CAS:528:DC%2BC2sXhvV2mtLfN10.1021/acs.jpcc.7b09948
GagnéCParizeauMGenericity in evolutionary computation software tools: principles and case-studyInt J Artif Intell Tools200615217319410.1142/S021821300600262X
SenftleTPHongSIslamMMKylasaSBZhengYShinYKJunkermeierCEngel-HerbertRJanikMJAktulgaHMVerstraelenTGramaAVan DuinACTThe ReaxFF reactive force-field: development, applications and future directionsnpj Comput Mater2016215,0111:CAS:528:DC%2BC2sXlslantL4%3D10.1038/npjcompumats.2015.11
DittnerMHartkeBGlobally optimal catalytic fields—inverse design of abstract embeddings for maximum reaction rate accelerationJ Chem Theory Comput2018147354735641:CAS:528:DC%2BC1cXhtFSrt7%2FE10.1021/acs.jctc.8b0015129883539
KomissarovLRügerRHellströmMVerstraelenTParAMS: parameter optimization for atomistic and molecular simulationsJ Chem Inf Model2021618373737431:CAS:528:DC%2BB3MXhtVOis7vN10.1021/acs.jcim.1c0033333983727
Parejo JA, Racero J, Guerrero F, Kwok T, Smith KA (2003) FOM: a framework for metaheuristic optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2660 LNCS, p 886–895. https://doi.org/10.1007/3-540-44864-0_91
SalaRBaldanziniNPieriniMGlobal optimization test problems based on random field compositionOptimization Lett20171169971310.1007/s11590-016-1037-1
TrnkaTTvaroškaIKočaJAutomated training of ReaxFF reactive force fields for energetics of enzymatic reactionsJ Chem Theory Comput20181412913021:CAS:528:DC%2BC2sXhvVars7bM10.1021/acs.jctc.7b0087029156140
Swersky K, Snoek J, Adams RP (2014) Freeze-thaw Bayesian optimization. http://arxiv.org/abs/1406.3896
HanagandiVNikolaouMA hybrid approach to global optimization using a clustering algorithm in a genetic search frameworkComput Chem Eng19982212191319251:CAS:528:DyaK1MXkslSktQ%3D%3D10.1016/S0098-1354(98)00251-8
ChenowethKVan DuinACTGoddardWAReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidationJ Phys Chem A20081125104010531:CAS:528:DC%2BD1cXmtFOrtw%3D%3D10.1021/jp709896w18197648
MartíRResendeMGCRibeiroCCMulti-start methods for combinatorial optimizationEur J Oper Res201322611810.1016/j.ejor.2012.10.012
SaudLJMohamedMJInvestigating the guidance feature of searching in the genetic algorithmIraqi J Comput Commun Control Syst Eng20141412134
WeiLZhaoMA niche hybrid genetic algorithm for global optimization of continuous multimodal functionsAppl Math Comput2005160364966110.1016/j.amc.2003.11.023
LarssonHRVan DuinACTHartkeBGlobal optimization of parameters in the reactive force field ReaxFF for SiOHJ Comput Chem20133425217821891:CAS:528:DC%2BC3sXhtFShu7nK10.1002/jcc.2338223852672
ShanSWangGGSurvey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functionsStruct Multidiscip Optim201041221924110.1007/s00158-009-0420-2
Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. In: Evolutionary computation, vol 9(2). MIT Press, p 159–195, https://doi.org/10.1162/106365601750190398
PorterBXueFNiche evolution strategy for global optimizationProc IEEE Conf Evol Comput ICEC200121086109210.1109/CEC.2001.934312
GongYChenWZhanZZhangJLiYZhangQLiJDistributed evolutionary algorithms and their models: a survey of the state-of-the-artAppl Soft Comput20153428630010.1016/j.asoc.2015.04.061
BaeGTAikensCMImproved ReaxFF force field parameters for Au-S-C-H systemsJ Phys Chem A20131174010,43810,4461:CAS:528:DC%2BC3sXhsVGjt7vE10.1021/jp405992m
Tung L (2020) Programming language Python’s popularity: ahead of Java for first time but still trailing C. https://zd.net/3C17olF
Keijzer M, Merelo JJ, Romero G, Schoenauer M (2001) Evolving objects: a general purpose evolutionary computation library. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2310 LNCS:231–242. https://doi.org/10.1007/3-540-46033-0_19
YangMZhouALiCGuanJYanXCCFR2: a more efficient cooperative co-evolutionary framework for large-scale global optimizationInf Sci2020512647910.1016/j.ins.2019.09.065
RossiGFerrandoRSearching for low-energy structures of nanoparticles: a comparison of different methods and algorithmsJ Phys Condens Matter2009218084,2081:CAS:528:DC%2BD1MXjsVWrtbc%3D10.1088/0953-8984/21/8/084208
Freitas Gustavo M (2020) Globally managed parallel optimization. GitHub repository. https://github.com/mfgustavo/glompo
VirtanenPGommersROliphantTEHaberlandMReddyTCournapeauDBurovskiEPetersonPWeckesserWBrightJvan der WaltSJBrettMWilsonJMillmanKJMayorovNNelsonARJJonesEKernRLarsonECareyCJPolatIFengYMooreEWVanderPlasJLaxaldeDPerktoldJCimrmanRHenriksenIQuinteroEAHarrisCRArchibaldAMRibeiroAHPedregosaFvan MulbregtPSciPy v1 ContributorsSciPy 1.0: fundamental algorithms for scientific computing in PythonNat Methods2020172612721:CAS:528:DC%2BB3cXislCjuro%3D10.1038/s41592-019-0686-23201554332015543
FurmanDCarmeliBZeiriYKosloffREnhanced particle swarm optimization algorithm: efficient training of ReaxFF reactive force fieldsJ Chem Theory Comput2018146310031121:CAS:528:DC%2BC1cXptVCitb8%3D10.1021/acs.jctc.7b0127229727570
IypeEHütterMJansenAPJNedeaSVRindtCCMParameterization of a reactive force field using a Monte-Carlo algorithmJ Comput Chem20133413114311541:CAS:528:DC%2BC3sXislyls7g%3D10.1002/jcc.2324623420666
Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 3242 LNCS. Springer, p 282–291, https://doi.org/10.1007/978-3-540-30217-9_29
SCM, van Duin ACT, Goddard WA, Islam MM, van Schoot H, Trnka T, Yakovlev AL (2020) ReaxAMS 2020 (r89496). https://scm.com
Fink A, Voß S (2002) Hotframe: a heuristic optimization framework. In: Voß S, Woodruff DL (eds) Optimization Software Class Libraries. Springer, Boston, p 81–154. https://doi.org/10.1007/0-306-48126-X_4
SchutteJFHaftkaRTFreglyBJImproved global convergence probability using multiple independent optimizationsInt J Numer Meth Eng200771667870210.1002/nme.1960
OptTek (2021) OptQuest. https://www.opttek.com/products/optquest
YangMOmidvarMNLiCLiXCaiZKazimipourBYaoXEfficient resource allocation in cooperative co-evolution for large-scale global optimizationIEEE Trans Evol Comput201721449350510.1109/TEVC.2016.2627581
Barrera J, Coello Coello CA (2011) Test function generators for assessing the performance of PSO algorithms in multimodal optimization. In: Panigrahi BK, Shi Y, Lim M (eds) Handbook of Swarm Intelligence: concepts, Principles and Applications, Springer, Berlin Heidelberg, p 89–117, https://doi.org/10.1007/978-3-642-17390-5_4
ShchygolGYakovlevATrnkaTVan DuinACTVerstraelenTReaxFF parameter optimization with Monte-Carlo and evolutionary algorithms: guide
MR Labrosse (581_CR37) 2010; 114
R Martí (581_CR42) 2013; 226
L Komissarov (581_CR35) 2021; 61
M Yang (581_CR70) 2017; 21
J Dieterich (581_CR8) 2017; 5
G Shchygol (581_CR58) 2019; 15
581_CR53
Y Xiang (581_CR69) 2013; 5
MM Stepanova (581_CR60) 2016; 187
T Trnka (581_CR62) 2018; 14
581_CR45
581_CR44
G Rossi (581_CR49) 2006; 423
J Müller (581_CR43) 2016; 12
581_CR48
M Dittner (581_CR9) 2017; 1107
JF Schutte (581_CR54) 2007; 71
A Elyasaf (581_CR14) 2014; 15
M Dittner (581_CR11) 2015; 36
ACT Van Duin (581_CR64) 1994; 90
581_CR41
D Karaboga (581_CR33) 2007; 39
581_CR36
581_CR34
581_CR39
F Guo (581_CR22) 2020; 172
K Chenoweth (581_CR6) 2008; 112
JD Gale (581_CR19) 2003; 29
R Sala (581_CR51) 2017; 11
F Glover (581_CR20) 1989; 1
L Wei (581_CR68) 2005; 160
K Sörensen (581_CR59) 2015; 22
Y Gong (581_CR21) 2015; 34
PO Hubin (581_CR31) 2016; 37
DJ Wales (581_CR67) 1997; 101
581_CR1
A Ramírez (581_CR47) 2019; 81
TP Senftle (581_CR56) 2016; 2
581_CR4
ACT Van Duin (581_CR65) 2001; 105
C Gagné (581_CR18) 2006; 15
581_CR25
581_CR24
L Bianchi (581_CR5) 2009; 8
S Shan (581_CR57) 2010; 41
M Yang (581_CR71) 2020; 512
581_CR29
581_CR28
581_CR27
581_CR26
E Iype (581_CR32) 2013; 34
B Porter (581_CR46) 2001; 2
LJ Saud (581_CR52) 2014; 14
G Rossi (581_CR50) 2009; 21
V Hanagandi (581_CR23) 1998; 22
581_CR61
P Virtanen (581_CR66) 2020; 17
GT Bae (581_CR2) 2013; 117
G Barcaro (581_CR3) 2017; 13
X Hu (581_CR30) 2017; 121
581_CR63
HR Larsson (581_CR38) 2013; 34
581_CR13
581_CR12
D Furman (581_CR17) 2018; 14
581_CR55
Y Liu (581_CR40) 2020; 538
581_CR16
581_CR15
M Dittner (581_CR10) 2018; 14
JM Dieterich (581_CR7) 2012; 3
References_xml – reference: Rapin J, Teytaud O (2018) Nevergrad—a gradient-free optimization platform (v0.4.0.post3). GitHub repository. https://github.com/FacebookResearch/Nevergrad
– reference: BianchiLDorigoMGambardellaLMGutjahrWJA survey on metaheuristics for stochastic combinatorial optimizationNat Comput20098223928710.1007/s11047-008-9098-4
– reference: GagnéCParizeauMGenericity in evolutionary computation software tools: principles and case-studyInt J Artif Intell Tools200615217319410.1142/S021821300600262X
– reference: HuXSchusterJSchulzSEMultiparameter and parallel optimization of ReaxFF reactive force field for modeling the atomic layer deposition of copperJ Phys Chem C20171215028,07728,0891:CAS:528:DC%2BC2sXhvV2mtLfN10.1021/acs.jpcc.7b09948
– reference: Dorne R, Voudouris C (2004) HSF: the iOpt’s framework to easily design metaheuristic methods. In: Metaheuristics: computer decision-making. Springer, Boston, p 237–256, https://doi.org/10.1007/978-1-4757-4137-7_11
– reference: Ali MZ, Awad NH, Reynolds RG (2013) Hybrid niche cultural algorithm for numerical global optimization. In: 2013 IEEE Congress on Evolutionary Computation, New York, IEEE. p 309–316, https://doi.org/10.1109/CEC.2013.6557585
– reference: Barrera J, Coello Coello CA (2011) Test function generators for assessing the performance of PSO algorithms in multimodal optimization. In: Panigrahi BK, Shi Y, Lim M (eds) Handbook of Swarm Intelligence: concepts, Principles and Applications, Springer, Berlin Heidelberg, p 89–117, https://doi.org/10.1007/978-3-642-17390-5_4
– reference: MüllerJHartkeBReaxFF reactive force field for disulfide mechanochemistry, fitted to multireference ab initio dataJ Chem Theory Comput2016128391339251:CAS:528:DC%2BC28XhtFKrtL%2FM10.1021/acs.jctc.6b0046127415976
– reference: Dyer D (2010) Watchmaker framework for evolutionary computing. https://watchmaker.uncommons.org/
– reference: ShchygolGYakovlevATrnkaTVan DuinACTVerstraelenTReaxFF parameter optimization with Monte-Carlo and evolutionary algorithms: guidelines and insightsJ Chem Theory Comput20191512679968121:CAS:528:DC%2BC1MXitVGmsL%2FM10.1021/acs.jctc.9b0076931657217
– reference: GloverFTabu search—part IORSA J Comput19891319020610.1287/IJOC.1.3.190
– reference: LabrosseMRJohnsonJKVan DuinACTDevelopment of a transferable reactive force field for cobaltJ Phys Chem A201011418585558611:CAS:528:DC%2BC3cXkslKksL0%3D10.1021/jp911867r20394398
– reference: ShanSWangGGSurvey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functionsStruct Multidiscip Optim201041221924110.1007/s00158-009-0420-2
– reference: Swersky K, Snoek J, Adams RP (2014) Freeze-thaw Bayesian optimization. http://arxiv.org/abs/1406.3896
– reference: Keijzer M, Merelo JJ, Romero G, Schoenauer M (2001) Evolving objects: a general purpose evolutionary computation library. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2310 LNCS:231–242. https://doi.org/10.1007/3-540-46033-0_19
– reference: Lukasiewycz M, Glaß M, Reimann F, Teich J (2011) Opt4J: a modular framework for meta-heuristic optimization. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation—GECCO ’11, ACM Press, New York, p 1723. https://doi.org/10.1145/2001576.2001808
– reference: MartíRResendeMGCRibeiroCCMulti-start methods for combinatorial optimizationEur J Oper Res201322611810.1016/j.ejor.2012.10.012
– reference: SenftleTPHongSIslamMMKylasaSBZhengYShinYKJunkermeierCEngel-HerbertRJanikMJAktulgaHMVerstraelenTGramaAVan DuinACTThe ReaxFF reactive force-field: development, applications and future directionsnpj Comput Mater2016215,0111:CAS:528:DC%2BC2sXlslantL4%3D10.1038/npjcompumats.2015.11
– reference: RossiGFerrandoRSearching for low-energy structures of nanoparticles: a comparison of different methods and algorithmsJ Phys Condens Matter2009218084,2081:CAS:528:DC%2BD1MXjsVWrtbc%3D10.1088/0953-8984/21/8/084208
– reference: SCM, van Duin ACT, Goddard WA, Islam MM, van Schoot H, Trnka T, Yakovlev AL (2020) ReaxAMS 2020 (r89496). https://scm.com
– reference: LiuYHuJHouHWangBDevelopment and application of a ReaxFF reactive force field for molecular dynamics of perfluorinatedketones thermal decompositionChem Phys20205381108881:CAS:528:DC%2BB3cXhtFyjsrrF10.1016/j.chemphys.2020.110888
– reference: RossiGFerrandoRGlobal optimization by excitable walkersChem Phys Lett20064231–317221:CAS:528:DC%2BD28XktlGksLk%3D10.1016/j.cplett.2006.03.003
– reference: GaleJDRohlALThe general utility lattice program (GULP)Mol Simul20032952913411:CAS:528:DC%2BD3sXjtlSntLo%3D10.1080/0892702031000104887
– reference: Parejo JA, Racero J, Guerrero F, Kwok T, Smith KA (2003) FOM: a framework for metaheuristic optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2660 LNCS, p 886–895. https://doi.org/10.1007/3-540-44864-0_91
– reference: Hartke B (1999) Global cluster geometry optimization by a phenotype algorithm with niches: location of elusive minima, and low-order scaling with cluster size. J Comput Chem 20:1752–1759. https://doi.org/10.1002/(SICI)1096-987X(199912)20:16<1752::AID-JCC7>3.0.CO;2-0.
– reference: Tung L (2020) Programming language Python’s popularity: ahead of Java for first time but still trailing C. https://zd.net/3C17olF
– reference: GuoFWenYSFengSQLiXDLiHSCuiSXZhangZRHuHQZhangGQChengXLIntelligent-ReaxFF: evaluating the reactive force field parameters with machine learningComput Mater Sci20201721093931:CAS:528:DC%2BC1MXitFGgu7bN10.1016/j.commatsci.2019.109393
– reference: DieterichJMHartkeBEmpirical review of standard benchmark functions using evolutionary global optimizationAppl Math201231552156410.4236/am.2012.330215
– reference: Van DuinACTBaasJMAVan De GraafBDelft molecular mechanics: a new approach to hydrocarbon force fields. Inclusion of a geometry-dependent charge calculationJ Chem Soc Faraday Trans199490192881289510.1039/FT9949002881
– reference: OptTek (2021) OptQuest. https://www.opttek.com/products/optquest/
– reference: TrnkaTTvaroškaIKočaJAutomated training of ReaxFF reactive force fields for energetics of enzymatic reactionsJ Chem Theory Comput20181412913021:CAS:528:DC%2BC2sXhvVars7bM10.1021/acs.jctc.7b0087029156140
– reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Global Optim200739345947110.1007/s10898-007-9149-x
– reference: LarssonHRVan DuinACTHartkeBGlobal optimization of parameters in the reactive force field ReaxFF for SiOHJ Comput Chem20133425217821891:CAS:528:DC%2BC3sXhtFShu7nK10.1002/jcc.2338223852672
– reference: VirtanenPGommersROliphantTEHaberlandMReddyTCournapeauDBurovskiEPetersonPWeckesserWBrightJvan der WaltSJBrettMWilsonJMillmanKJMayorovNNelsonARJJonesEKernRLarsonECareyCJPolatIFengYMooreEWVanderPlasJLaxaldeDPerktoldJCimrmanRHenriksenIQuinteroEAHarrisCRArchibaldAMRibeiroAHPedregosaFvan MulbregtPSciPy v1 ContributorsSciPy 1.0: fundamental algorithms for scientific computing in PythonNat Methods2020172612721:CAS:528:DC%2BB3cXislCjuro%3D10.1038/s41592-019-0686-23201554332015543
– reference: WeiLZhaoMA niche hybrid genetic algorithm for global optimization of continuous multimodal functionsAppl Math Comput2005160364966110.1016/j.amc.2003.11.023
– reference: HanagandiVNikolaouMA hybrid approach to global optimization using a clustering algorithm in a genetic search frameworkComput Chem Eng19982212191319251:CAS:528:DyaK1MXkslSktQ%3D%3D10.1016/S0098-1354(98)00251-8
– reference: ElyasafASipperMSoftware review: the HeuristicLab frameworkGenet Program Evolvable Mach201415221521810.1007/S10710-014-9214-4
– reference: ChenowethKVan DuinACTGoddardWAReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidationJ Phys Chem A20081125104010531:CAS:528:DC%2BD1cXmtFOrtw%3D%3D10.1021/jp709896w18197648
– reference: DittnerMMüllerJAktulgaHMHartkeBEfficient global optimization of reactive force-field parametersJ Comput Chem20153620155015611:CAS:528:DC%2BC2MXhtVensr3J10.1002/jcc.2396626085201
– reference: Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 3242 LNCS. Springer, p 282–291, https://doi.org/10.1007/978-3-540-30217-9_29
– reference: GongYChenWZhanZZhangJLiYZhangQLiJDistributed evolutionary algorithms and their models: a survey of the state-of-the-artAppl Soft Comput20153428630010.1016/j.asoc.2015.04.061
– reference: KomissarovLRügerRHellströmMVerstraelenTParAMS: parameter optimization for atomistic and molecular simulationsJ Chem Inf Model2021618373737431:CAS:528:DC%2BB3MXhtVOis7vN10.1021/acs.jcim.1c0033333983727
– reference: WalesDJDoyeJPKGlobal optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atomsJ Phys Chem A199710128511151161:CAS:528:DyaK2sXktVGrurY%3D10.1021/jp970984n
– reference: DieterichJHartkeBImproved cluster structure optimization: hybridizing evolutionary algorithms with local heat pulsesInorganics201754641:CAS:528:DC%2BC1cXitVCmtrzN10.3390/inorganics5040064
– reference: SchutteJFHaftkaRTFreglyBJImproved global convergence probability using multiple independent optimizationsInt J Numer Meth Eng200771667870210.1002/nme.1960
– reference: Van DuinACTDasguptaSLorantFGoddardWAReaxFF: a reactive force field for hydrocarbonsJ Phys Chem A200110541939694091:CAS:528:DC%2BD3MXmvFChu78%3D10.1021/jp004368u
– reference: SalaRBaldanziniNPieriniMGlobal optimization test problems based on random field compositionOptimization Lett20171169971310.1007/s11590-016-1037-1
– reference: Schlierkamp-Voosen D, Mühlenbein H (1994) Strategy adaptation by competing subpopulations. Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 866 LNCS, p 199–208. https://doi.org/10.1007/3-540-58484-6_264
– reference: DittnerMHartkeBConquering the hard cases of Lennard-Jones clusters with simple recipesComput Theor Chem201711077131:CAS:528:DC%2BC28Xhs1emsbrF10.1016/J.COMPTC.2016.09.032
– reference: FurmanDCarmeliBZeiriYKosloffREnhanced particle swarm optimization algorithm: efficient training of ReaxFF reactive force fieldsJ Chem Theory Comput2018146310031121:CAS:528:DC%2BC1cXptVCitb8%3D10.1021/acs.jctc.7b0127229727570
– reference: Hoffmeister F, Bäck T (1991) Genetic algorithms and evolution strategies: similarities and differences. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 496 LNCS. Springer, Verlag. p 455–469. https://doi.org/10.1007/BFb0029787
– reference: BaeGTAikensCMImproved ReaxFF force field parameters for Au-S-C-H systemsJ Phys Chem A20131174010,43810,4461:CAS:528:DC%2BC3sXhsVGjt7vE10.1021/jp405992m
– reference: YangMZhouALiCGuanJYanXCCFR2: a more efficient cooperative co-evolutionary framework for large-scale global optimizationInf Sci2020512647910.1016/j.ins.2019.09.065
– reference: HubinPOJacqueminDLeherteLVercauterenDPParameterization of the ReaxFF reactive force field for a proline-catalyzed aldol reactionJ Comput Chem20163729256425721:CAS:528:DC%2BC28XhsVOqtr7K10.1002/jcc.2448127592688
– reference: Hansen N, Baudis P, Akimoto Y (2019) CMA-ES, covariance matrix adaptation evolution strategy for non-linear numerical optimization in Python (v2.7.0). PyPI Project. https://pypi.org/project/cma/2.7.0/
– reference: Fink A, Voß S (2002) Hotframe: a heuristic optimization framework. In: Voß S, Woodruff DL (eds) Optimization Software Class Libraries. Springer, Boston, p 81–154. https://doi.org/10.1007/0-306-48126-X_4
– reference: Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: 2005 IEEE Swarm Intelligence Symposium, SIS 2005, p 68–75. https://doi.org/10.1109/SIS.2005.1501604
– reference: RamírezARomeroJRGarcía-MartínezCVenturaSJCLEC-MO: a Java suite for solving many-objective optimization engineering problemsEng Appl Artif Intell201981142810.1016/J.ENGAPPAI.2019.02.003
– reference: Kronfeld M, Planatscher H, Zell A (2010) The EvA2 optimization framework. Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6073 LNCS, p 247–250, https://doi.org/10.1007/978-3-642-13800-3_27
– reference: Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. In: Evolutionary computation, vol 9(2). MIT Press, p 159–195, https://doi.org/10.1162/106365601750190398
– reference: YangMOmidvarMNLiCLiXCaiZKazimipourBYaoXEfficient resource allocation in cooperative co-evolution for large-scale global optimizationIEEE Trans Evol Comput201721449350510.1109/TEVC.2016.2627581
– reference: XiangYGubianSSuomelaBHoengJGeneralized simulated annealing for global optimization: the GenSA packageR J201351132810.32614/rj-2013-002
– reference: StepanovaMMShefovKSSlavyanovSYMultifactorial global search algorithm in the problem of optimizing a reactive force fieldTheoretical Math Phys (Russian Federation)2016187160361710.1134/S0040577916040139
– reference: BarcaroGMontiSSementaLCarravettaVParametrization of a reactive force field (ReaxFF) for molecular dynamics simulations of Si nanoparticlesJ Chem Theory Comput2017138385438611:CAS:528:DC%2BC2sXhtVClsrnL10.1021/acs.jctc.7b0044528640604
– reference: PorterBXueFNiche evolution strategy for global optimizationProc IEEE Conf Evol Comput ICEC200121086109210.1109/CEC.2001.934312
– reference: Hansen N (2011) Injecting external solutions into CMA-ES. arXiv:1110.4181
– reference: Freitas Gustavo M (2020) Globally managed parallel optimization. GitHub repository. https://github.com/mfgustavo/glompo
– reference: SaudLJMohamedMJInvestigating the guidance feature of searching in the genetic algorithmIraqi J Comput Commun Control Syst Eng20141412134
– reference: DittnerMHartkeBGlobally optimal catalytic fields—inverse design of abstract embeddings for maximum reaction rate accelerationJ Chem Theory Comput2018147354735641:CAS:528:DC%2BC1cXhtFSrt7%2FE10.1021/acs.jctc.8b0015129883539
– reference: SörensenKMetaheuristics-the metaphor exposedInt Trans Oper Res201522131810.1111/ITOR.12001
– reference: IypeEHütterMJansenAPJNedeaSVRindtCCMParameterization of a reactive force field using a Monte-Carlo algorithmJ Comput Chem20133413114311541:CAS:528:DC%2BC3sXislyls7g%3D10.1002/jcc.2324623420666
– volume: 1
  start-page: 190
  issue: 3
  year: 1989
  ident: 581_CR20
  publication-title: ORSA J Comput
  doi: 10.1287/IJOC.1.3.190
– volume: 34
  start-page: 1143
  issue: 13
  year: 2013
  ident: 581_CR32
  publication-title: J Comput Chem
  doi: 10.1002/jcc.23246
– volume: 81
  start-page: 14
  year: 2019
  ident: 581_CR47
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/J.ENGAPPAI.2019.02.003
– volume: 423
  start-page: 17
  issue: 1–3
  year: 2006
  ident: 581_CR49
  publication-title: Chem Phys Lett
  doi: 10.1016/j.cplett.2006.03.003
– volume: 29
  start-page: 291
  issue: 5
  year: 2003
  ident: 581_CR19
  publication-title: Mol Simul
  doi: 10.1080/0892702031000104887
– volume: 14
  start-page: 21
  issue: 1
  year: 2014
  ident: 581_CR52
  publication-title: Iraqi J Comput Commun Control Syst Eng
– volume: 15
  start-page: 215
  issue: 2
  year: 2014
  ident: 581_CR14
  publication-title: Genet Program Evolvable Mach
  doi: 10.1007/S10710-014-9214-4
– ident: 581_CR39
  doi: 10.1109/SIS.2005.1501604
– ident: 581_CR53
  doi: 10.1007/3-540-58484-6_264
– ident: 581_CR27
– volume: 37
  start-page: 2564
  issue: 29
  year: 2016
  ident: 581_CR31
  publication-title: J Comput Chem
  doi: 10.1002/jcc.24481
– volume: 12
  start-page: 3913
  issue: 8
  year: 2016
  ident: 581_CR43
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.6b00461
– volume: 14
  start-page: 3100
  issue: 6
  year: 2018
  ident: 581_CR17
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.7b01272
– ident: 581_CR24
  doi: 10.1145/2001858.2002123
– volume: 160
  start-page: 649
  issue: 3
  year: 2005
  ident: 581_CR68
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2003.11.023
– volume: 22
  start-page: 3
  issue: 1
  year: 2015
  ident: 581_CR59
  publication-title: Int Trans Oper Res
  doi: 10.1111/ITOR.12001
– ident: 581_CR55
– volume: 187
  start-page: 603
  issue: 1
  year: 2016
  ident: 581_CR60
  publication-title: Theoretical Math Phys (Russian Federation)
  doi: 10.1134/S0040577916040139
– volume: 121
  start-page: 28,077
  issue: 50
  year: 2017
  ident: 581_CR30
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.7b09948
– ident: 581_CR36
  doi: 10.1007/978-3-642-13800-3_27
– ident: 581_CR26
  doi: 10.1162/106365601750190398
– ident: 581_CR41
  doi: 10.1145/2001576.2001808
– volume: 117
  start-page: 10,438
  issue: 40
  year: 2013
  ident: 581_CR2
  publication-title: J Phys Chem A
  doi: 10.1021/jp405992m
– volume: 114
  start-page: 5855
  issue: 18
  year: 2010
  ident: 581_CR37
  publication-title: J Phys Chem A
  doi: 10.1021/jp911867r
– ident: 581_CR61
– volume: 1107
  start-page: 7
  year: 2017
  ident: 581_CR9
  publication-title: Comput Theor Chem
  doi: 10.1016/J.COMPTC.2016.09.032
– volume: 41
  start-page: 219
  issue: 2
  year: 2010
  ident: 581_CR57
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-009-0420-2
– ident: 581_CR28
  doi: 10.1002/(SICI)1096-987X(199912)20:16<1752::AID-JCC7>3.0.CO;2-0
– volume: 15
  start-page: 6799
  issue: 12
  year: 2019
  ident: 581_CR58
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.9b00769
– volume: 34
  start-page: 286
  year: 2015
  ident: 581_CR21
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.04.061
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 581_CR33
  publication-title: J Global Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 13
  start-page: 3854
  issue: 8
  year: 2017
  ident: 581_CR3
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.7b00445
– ident: 581_CR45
  doi: 10.1007/3-540-44864-0_91
– volume: 71
  start-page: 678
  issue: 6
  year: 2007
  ident: 581_CR54
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1960
– volume: 101
  start-page: 5111
  issue: 28
  year: 1997
  ident: 581_CR67
  publication-title: J Phys Chem A
  doi: 10.1021/jp970984n
– volume: 3
  start-page: 1552
  year: 2012
  ident: 581_CR7
  publication-title: Appl Math
  doi: 10.4236/am.2012.330215
– volume: 172
  start-page: 393
  issue: 109
  year: 2020
  ident: 581_CR22
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2019.109393
– ident: 581_CR13
– volume: 14
  start-page: 3547
  issue: 7
  year: 2018
  ident: 581_CR10
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.8b00151
– volume: 34
  start-page: 2178
  issue: 25
  year: 2013
  ident: 581_CR38
  publication-title: J Comput Chem
  doi: 10.1002/jcc.23382
– ident: 581_CR12
  doi: 10.1007/978-1-4757-4137-7_11
– volume: 2
  start-page: 15,011
  year: 2016
  ident: 581_CR56
  publication-title: npj Comput Mater
  doi: 10.1038/npjcompumats.2015.11
– volume: 14
  start-page: 291
  issue: 1
  year: 2018
  ident: 581_CR62
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.7b00870
– volume: 17
  start-page: 261
  year: 2020
  ident: 581_CR66
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0686-2
– ident: 581_CR48
– ident: 581_CR44
– volume: 8
  start-page: 239
  issue: 2
  year: 2009
  ident: 581_CR5
  publication-title: Nat Comput
  doi: 10.1007/s11047-008-9098-4
– volume: 22
  start-page: 1913
  issue: 12
  year: 1998
  ident: 581_CR23
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(98)00251-8
– volume: 226
  start-page: 1
  issue: 1
  year: 2013
  ident: 581_CR42
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2012.10.012
– volume: 61
  start-page: 3737
  issue: 8
  year: 2021
  ident: 581_CR35
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.1c00333
– volume: 90
  start-page: 2881
  issue: 19
  year: 1994
  ident: 581_CR64
  publication-title: J Chem Soc Faraday Trans
  doi: 10.1039/FT9949002881
– ident: 581_CR15
  doi: 10.1007/0-306-48126-X_4
– volume: 538
  start-page: 888
  issue: 110
  year: 2020
  ident: 581_CR40
  publication-title: Chem Phys
  doi: 10.1016/j.chemphys.2020.110888
– ident: 581_CR16
– ident: 581_CR29
  doi: 10.1007/BFb0029787
– volume: 2
  start-page: 1086
  year: 2001
  ident: 581_CR46
  publication-title: Proc IEEE Conf Evol Comput ICEC
  doi: 10.1109/CEC.2001.934312
– volume: 105
  start-page: 9396
  issue: 41
  year: 2001
  ident: 581_CR65
  publication-title: J Phys Chem A
  doi: 10.1021/jp004368u
– ident: 581_CR34
  doi: 10.1007/3-540-46033-0_19
– ident: 581_CR4
  doi: 10.1007/978-3-642-17390-5_4
– volume: 5
  start-page: 64
  issue: 4
  year: 2017
  ident: 581_CR8
  publication-title: Inorganics
  doi: 10.3390/inorganics5040064
– ident: 581_CR1
  doi: 10.1109/CEC.2013.6557585
– volume: 21
  start-page: 084,208
  issue: 8
  year: 2009
  ident: 581_CR50
  publication-title: J Phys Condens Matter
  doi: 10.1088/0953-8984/21/8/084208
– volume: 36
  start-page: 1550
  issue: 20
  year: 2015
  ident: 581_CR11
  publication-title: J Comput Chem
  doi: 10.1002/jcc.23966
– ident: 581_CR63
– volume: 11
  start-page: 699
  year: 2017
  ident: 581_CR51
  publication-title: Optimization Lett
  doi: 10.1007/s11590-016-1037-1
– volume: 112
  start-page: 1040
  issue: 5
  year: 2008
  ident: 581_CR6
  publication-title: J Phys Chem A
  doi: 10.1021/jp709896w
– volume: 21
  start-page: 493
  issue: 4
  year: 2017
  ident: 581_CR70
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2016.2627581
– volume: 5
  start-page: 13
  issue: 1
  year: 2013
  ident: 581_CR69
  publication-title: R J
  doi: 10.32614/rj-2013-002
– volume: 512
  start-page: 64
  year: 2020
  ident: 581_CR71
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.09.065
– volume: 15
  start-page: 173
  issue: 2
  year: 2006
  ident: 581_CR18
  publication-title: Int J Artif Intell Tools
  doi: 10.1142/S021821300600262X
– ident: 581_CR25
  doi: 10.1007/978-3-540-30217-9_29
SSID ssj0065707
Score 2.27142
Snippet In this work we explore the properties which make many real-life global optimization problems extremely difficult to handle, and some of the common techniques...
Abstract In this work we explore the properties which make many real-life global optimization problems extremely difficult to handle, and some of the common...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms Algorithms
Black-box optimization
Chemistry
Chemistry and Materials Science
Computational Biology/Bioinformatics
Computer Applications in Chemistry
Documentation and Information in Chemistry
Global optimization
Hybridization
Minima
Optimization
Parallel computation
Python
ReaxFF
Reparameterization
Software
Theoretical and Computational Chemistry
Workflow
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQXxJtAQQYhAWKjJk784lYqFjjQrgpIvVl2YpdK2wRtdlHpP-BfM5PHsikCLlzjmSieGY898cw3hDz1VmTe8zKWwWZx7iSPnc3L2PIiYzJ4zpRtm03I_X11dKRnG62-MCesgwfuBLejfCo4CzzTFiIJXmoPr9YQFrjSWc09et9E6iGY6nww5nPIoURGiZ0GIjEGYTMEXthHL43PR9tQi9b_u0_e2JQuJkxeuDVtN6PpdXKtP0XS3e7rb5BLvrpJruwNzdtukR9v5_WH2QF93mH6z7_TLs-lpDO7wPYpc3oAzuK0r8J88YpauqzrOYUzLEXU_zatfUId_t-LXX1G6w3yZkI3Lr6BkR56ezad0oVHKPFTTLEZSG-Tz9M3n_bexX3XhbgQebqMQUdpkE4kGpv15RwmnVqvClUUSemCSiyzAfRbsMC0kHA8C1qUeQhZmZRY0nCHbFV15e8RCkw-ybRSeeHyzAJ34oUrhcslDxDrRSQdlGCKHpIcO2PMTRuaKGE6xRlQnGkVZ84j8nLN87UD5Pgr9WvU7ZoSwbTbB2Bipjcx8y8Ti8gTtAyDcBkV5uMc21XTmPcfD82u0DmWBzMVkWc9UahhDoXtyxtAEoiwNaLcHlGCZRTj4cEATe9PGsMEg3M8k0JH5PF6GDkxR67y9aqjUUIlmYzI3c5e1_POOPYhU2lE5MiSR4IZj1QnX1q0cdAeMPKITAab__VZfxb8_f8h-AfkKmvXLItTsU22louVf0guF9-WJ83iUbvifwKub1s9
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGF9yNQkEFIgLpREyd2HC6oVCxwoF0VkHqzHMculbZJ2eyi0n_Av2bGSbabInrhGs9Isedhjz0zHyEvrBaJtbwMM6eTMC0yHhY6LUPNTcIyZzmT2oNNZDs7cn8_n3QXbk2XVtn7RO-oy9rgHfkmEwxOMiwT-dvjHyGiRuHragehcZlcwS4JzKfuTXpPjFkdWV8oI8VmA_EYg-AZwi9E04vD08Fm5Hv2_-2ZV7am82mT595O_ZY0vvm_k7lFbnSHUbrVas9tcslWd8i17R4D7i75_WFaf57s0lctNMD0F23TZUo60TNEYZnSXfA5R10x5-s3VNN5XU8pHIUpggf47PgRLfCaMCzqE1qvkDcjuvJ-Dox0z-qT8ZjOLHYkP8JMnZ70Hvk2fv91-2PYgTeERqTxPARRxy4rRJQj5l_KYdVibaWRxkRl4WSkmXagJoY5losMTnkuF2XqXFJGJVZG3CdrVV3Zh4QCk42SXMrUFGmigTuyoihFkWbcQcgYkLiXojJdZ3ME2JgqH-FIoVrJK5C88pJXpwHZWPIct309LqR-h8qxpMSe3P5DPTtQnYkraWPBmeNJriHm5WVuwQhyCGCLstA5twF5jqqlsOtGhWk9B3rRNOrTlz21JfIUq4yZDMjLjsjVMAejuyoJWAls1DWgXB9QgmaY4XCveqpzS40607uAPFsOIyem2lW2XrQ0UsgoyQLyoFX45bwTjnBmMg5INjCFwcIMR6rD775pOUgPGHlARr3RnP3Wvxf-0cWzeEyuM2_OLIzFOlmbzxb2Cblqfs4Pm9lT7wz-AE3QaSs
  priority: 102
  providerName: ProQuest
Title GloMPO (Globally Managed Parallel Optimization): a tool for expensive, black-box optimizations, application to ReaxFF reparameterizations
URI https://link.springer.com/article/10.1186/s13321-022-00581-z
https://www.ncbi.nlm.nih.gov/pubmed/35172881
https://www.proquest.com/docview/2629162769
https://www.proquest.com/docview/2629868037
https://pubmed.ncbi.nlm.nih.gov/PMC8848815
https://doaj.org/article/8e1652f539a4485d9eee59140bdba95e
Volume 14
WOSCitedRecordID wos000756821000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: RBZ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: C24
  dateStart: 20090112
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYhgQvfH8ERmUQEiAaSJz4I7ytVQsTWhcNJhVeLCdxxqQuQU2Lxh5457_m7CSlGR8SvPihvpPq893ZF9_dD6HHWrFAa5q5PFeBGyacuokKM1fRNCA815QIZcEm-GQiptMoborCqjbbvX2StJ7amrVgLyuIpgiEvhA8GSw83z3bQFvUF5FJ5BuaGofa_5pcDt6Wx_yWr3ME2U79v_rjtQPpfLLkuRdTexCNr_7fEq6hK83FE-_UmnIdXdDFDXRp2OK93UTfX8_KvXgfP61hAGZfcZ0ak-FYzQ3iygzvg385aQo3n73CCi_Kcobh2osNUIDNhO_jxHwSdJPyFJdr5FUfr72VAyM-0Op0PMZzbbqPn5isnJb0Fjocj94P37gNUIObstBfuLCtfs4T5kUG3y-kICtfaZGKNPWyJBeeIioHlUhJTiLG4UaXRywL8zzIvMxUQdxGm0VZ6LsIA5P2gkiIME3CQAG3p1mSsSTkNIfw0EF-u3cybbqYGzCNmbTRjGCyFrIEIUsrZHnmoOcrns91D4-_Ug-MSqwoTf9t-0M5P5KNOUuhfUZJToNIQXxLs0iDwkcQrCZZoiKqHfTIKJQ0HTYKk8JzpJZVJXffHcgdFoWmopgIBz1piPIS1pCqpiICJGGacnUotzuUoBlpd7rVW9m4oEoSRuDqTziLHPRwNW04TVpdoctlTSOY8ALuoDu1mq_WHVADXSZ8B_GOAXQE050pjj_ZBuWwe8BIHdRvzeDn3_qz4O_9G_l9dJlYSyKuz7bR5mK-1A_QxfTL4ria99AGn3I7ih7aGowm8UHPuome_eoC49vBi57J9I3N-G0EY0w_Am28uxd_-AFcDGlI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1tb9MwED6NDml84f0lMMAgEEM0WuIkjoOE0BiUVVu3agxpfDKO44xJXTOaFrb9A_4Mv5FzXrpmiH3bB77Wd5V9ee7sS873ADzTknlaB4kdptKz_TgM7Fj6iS0D5dEw1QHlsiCbCDc3-e5u1J-D3_VdGFNWWcfEIlAnmTLvyJcpo3iSoSGL3h5-tw1rlPm6WlNolLBY18c_MWXL33Tf4_N9Tmnnw87qml2xCtiK-e7Yxjm4aRgzJzJkdH6QKO1KzRVXyknilDuSyhTnr2hKIxbi8SONWOKnqZc4iSnZx_-9BPO-AXsL5vvdXv9LHftNHUlYX83hbDnHDJBiuo4Jn-Hvc-2TxvZXsAT8vRfMbIZnCzXPfK0tNsHOtf_NfNfhanXcJiulf9yAOT28CQurNcvdLfj1cZD1-ltkqSQ_GByTsiAoIX05MjwzA7KFUfWguq768jWRZJxlA4KHfWLoEYr6_zaJzYtQO86OSDYjnrfJTIUAKpJtLY86HTLSpuf6galFqkVvw-cLscQdaA2zob4HBJW040Wc-yr2PYnajmZxwmI_DFJMii1wa9QIVfVuNxQiA1HkcJyJEmkCkSYKpIkTC15NdQ7LziXnSr8zYJxKmq7jxQ_ZaE9UQUxw7bKApoEXSczqgyTS6OYRpuhxEsso0BY8NVAWpq_I0BQu7clJnovup22xwiLf3KOm3IIXlVCa4RqUrO6BoCVMK7KG5GJDEpGhmsM11EUVeHNxinMLnkyHjaYpJhzqbFLKcMYdL7Tgbulg03V7gSFs464FYcP1GoZpjgz3vxVt2fHpoWJgQbt20tNp_dvw989fxWNYWNvpbYiN7ub6A7hCi1BCbZctQms8muiHcFn9GO_no0dVKCLw9aLd9w-XIskC
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtQwELVKQcAL90uggEGggmjUxIkdBwmh0rJQFdpVAanixTiOXSptN2WzhbZ_wC_xdczksm2K6FsfeI1notg5M_YkM3MIeWy1iKzluZ84HflxlnA_03Hua24iljjLmdQV2USyuio3NtL-FPnd1sJgWmXrEytHnRcGv5HPM8HgJMMSkc67Ji2iv9R7tfPdRwYp_NPa0mnUEFmx-z8hfCtfLi_Bu37CWO_Np8V3fsMw4BsRh2Mfnid0SSaCFInpYp4bG2orjTQmyDMnA820g7kY5lgqEjiKuFTksXNRHuSYvg_3PUPOJhBjYjphn39pdwHMKEnaIh0p5kuIBRkE7hD6IZNf6B90NsKKL-DvXeHItng8ZfPYf9tqO-xd_p8X8gq51BzC6UJtNVfJlB1eIxcWW-676-TX20Hxob9Gn9aUCIN9WqcJ5bSvR8g-M6Br4Gu3myLWZy-opuOiGFAIASiSJlRVAXM0w8-jflbs0eKIeDlHj-QNgCJdt3qv16Mji53YtzFDqRW9QT6fykrcJNPDYmhvEwpKNohSKWOTxZEG7cCKLBdZnHAHobJHwhZByjQd3ZFYZKCqyE4KVaNOAepUhTp14JHnE52dup_JidKvEZgTSexFXl0oRpuqcW1K2lBw5niUaoj1eZ5aMP4UAvcsz3TKrUceIawVdhsZItw29W5ZquWP62pBpDFWVzPpkdlGyBUwB6Ob6hBYCWxQ1pGc6UgCMkx3uIW9atxxqQ4x75GHk2HUxBTDoS12axkpZBAlHrlVG9tk3hFHGjcZeiTpmGFnYbojw61vVbN2eHugyD0y1xrs4WP9e-HvnDyLB-Q82Kx6v7y6cpdcZJVXYX4oZsj0eLRr75Fz5sd4qxzdr3wSJV9P23b_AOco0GU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GloMPO+%3A+a+tool+for+expensive%2C+black-box+optimizations%2C+application+to+ReaxFF+reparameterizations&rft.jtitle=Journal+of+cheminformatics&rft.au=Freitas+Gustavo%2C+Michael&rft.au=Verstraelen%2C+Toon&rft.date=2022-02-16&rft.pub=BioMed+Central+Ltd&rft.issn=1758-2946&rft.eissn=1758-2946&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1186%2Fs13321-022-00581-z&rft.externalDocID=A694023928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2946&client=summon