Illuminating the dark side of the human transcriptome with long read transcript sequencing

Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics Jg. 21; H. 1; S. 751 - 22
Hauptverfasser: Kuo, Richard I., Cheng, Yuanyuan, Zhang, Runxuan, Brown, John W. S., Smith, Jacqueline, Archibald, Alan L., Burt, David W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 30.10.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1471-2164, 1471-2164
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. Results We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA’s genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Conclusions Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data.
AbstractList The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA's genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data.
The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA's genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data.
Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. Results We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA’s genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Conclusions Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data.
Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. Results We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA's genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Conclusions Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data. Keywords: Human, Transcriptome, Long read RNA sequencing, Iso-Seq, TAMA, Annotation, Pacbio, Nanopore, Gene models, Bioinformatics
Abstract Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. Results We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA’s genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Conclusions Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data.
Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. Results We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA’s genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Conclusions Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data.
The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise.BACKGROUNDThe human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise.We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA's genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models.RESULTSWe developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA's genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models.Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data.CONCLUSIONSLong read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data.
ArticleNumber 751
Audience Academic
Author Cheng, Yuanyuan
Kuo, Richard I.
Archibald, Alan L.
Brown, John W. S.
Burt, David W.
Zhang, Runxuan
Smith, Jacqueline
Author_xml – sequence: 1
  givenname: Richard I.
  orcidid: 0000-0002-7867-7594
  surname: Kuo
  fullname: Kuo, Richard I.
  email: richard.kuo@roslin.ed.ac.uk
  organization: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh
– sequence: 2
  givenname: Yuanyuan
  surname: Cheng
  fullname: Cheng, Yuanyuan
  organization: The University of Queensland, School of Life and Environmental Sciences, University of Sydney
– sequence: 3
  givenname: Runxuan
  surname: Zhang
  fullname: Zhang, Runxuan
  organization: Information and Computational Sciences, The James Hutton Institute
– sequence: 4
  givenname: John W. S.
  surname: Brown
  fullname: Brown, John W. S.
  organization: Plant Sciences Division, School of Life Sciences, University of Dundee, Cell and Molecular Sciences, The James Hutton Institute
– sequence: 5
  givenname: Jacqueline
  surname: Smith
  fullname: Smith, Jacqueline
  organization: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh
– sequence: 6
  givenname: Alan L.
  surname: Archibald
  fullname: Archibald, Alan L.
  organization: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh
– sequence: 7
  givenname: David W.
  surname: Burt
  fullname: Burt, David W.
  organization: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, The University of Queensland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33126848$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAUha0qVZNM-we6qCx1kyycgsGAN5WiqI-RIlXqY9MNwnDtYWrDFOw-_n3wTJrMRFXkhc3lOwdzdE6zI-cdZNlLjC4wFuxNxKVgtEAlKhDHJSn4k-wEU46LEjN6tPd9nJ3GuEYIc1FWz7JjQnDJBBUn2fdl30-DdWq0rsvHFeRGhR95tAZy324Hq2lQLh-DclEHuxn9APlvO67y3idJAGX2NvMIPydwOrk9z562qo_w4va9yL69f_f16mNx_enD8uryutCM4rFoGgEs_WiJK8Ix00TVAmNqRKOg4Y2gtTLYMNFyTolhwA0FDEijCutKGE4W2XLna7xay02wgwp_pVdWbgc-dFKF0eoeJKoqniJLRwGivIWaNHXyAJ7GRKflInu789pMzQBGg0tX6w9MD3ecXcnO_5K8qlldzwZntwbBpyDiKAcbNfS9cuCnKEtaMUowoTP6-gG69lNwKapEsRIhRDi_pzqVLmBd69O5ejaVl4wiglgtWKIu_kOlx8BgdapNa9P8QHB-IEjMCH_GTk0xyuWXz4fsq_1Q7tL416IElDtABx9jgPYOwUjOVZW7qspUVbmtqpwvJh6ItB1TDf0crO0fl5KdNKZzXAfhPrlHVDfjt_p4
CitedBy_id crossref_primary_10_1186_s13059_021_02296_0
crossref_primary_10_1111_nph_19965
crossref_primary_10_1111_tpj_15871
crossref_primary_10_1038_s41597_024_03840_w
crossref_primary_10_1093_plcell_koae039
crossref_primary_10_1111_ppl_14280
crossref_primary_10_1093_g3journal_jkac304
crossref_primary_10_1242_bio_061721
crossref_primary_10_1111_mec_17775
crossref_primary_10_12688_f1000research_138571_1
crossref_primary_10_12688_f1000research_138571_2
crossref_primary_10_3390_biom11081111
crossref_primary_10_1371_journal_pone_0276956
crossref_primary_10_1016_j_chom_2025_07_011
crossref_primary_10_1093_gigascience_giab081
crossref_primary_10_1186_s13059_023_02923_y
crossref_primary_10_1093_nargab_lqac092
crossref_primary_10_1038_s41467_023_44080_7
crossref_primary_10_1038_s41597_025_04887_z
crossref_primary_10_1002_pld3_575
crossref_primary_10_1038_s41592_024_02298_3
crossref_primary_10_1111_cas_15058
crossref_primary_10_3390_ijms26030948
crossref_primary_10_1186_s13059_021_02369_0
crossref_primary_10_1038_s41592_023_01908_w
crossref_primary_10_1093_genetics_iyac017
crossref_primary_10_1101_gr_279864_124
crossref_primary_10_1186_s12711_021_00668_5
crossref_primary_10_1038_s41597_025_05747_6
crossref_primary_10_1038_s41597_024_02929_6
crossref_primary_10_1111_tpj_16856
crossref_primary_10_1016_j_psj_2024_104697
crossref_primary_10_1101_gr_279865_124
crossref_primary_10_1016_j_cell_2023_04_012
crossref_primary_10_1038_s41597_025_05372_3
crossref_primary_10_1128_AEM_01418_21
crossref_primary_10_1186_s12864_024_11149_6
crossref_primary_10_1371_journal_pcbi_1011576
crossref_primary_10_1093_molbev_msad096
crossref_primary_10_1038_s41598_021_86068_7
crossref_primary_10_1093_g3journal_jkac253
crossref_primary_10_1159_000529376
crossref_primary_10_1016_j_dib_2023_109838
crossref_primary_10_1126_science_adj7026
crossref_primary_10_1186_s13059_022_02711_0
crossref_primary_10_1186_s12864_022_08887_w
crossref_primary_10_1101_gr_279166_124
crossref_primary_10_3390_genes15121551
crossref_primary_10_1038_s41467_025_62887_4
crossref_primary_10_1093_gigascience_giab020
crossref_primary_10_1038_s41588_024_02069_y
crossref_primary_10_1038_s41467_023_39336_1
crossref_primary_10_1093_bfgp_elae031
crossref_primary_10_1038_s41597_025_05546_z
crossref_primary_10_3389_fpls_2023_1161539
crossref_primary_10_1038_s41598_021_96712_x
crossref_primary_10_1038_s41597_025_05364_3
crossref_primary_10_3389_fgene_2022_995072
crossref_primary_10_1016_j_xgen_2025_100853
crossref_primary_10_1186_s12864_022_09000_x
crossref_primary_10_1038_s41467_024_49523_3
crossref_primary_10_3390_ani13233704
crossref_primary_10_1016_j_cub_2022_10_015
crossref_primary_10_1146_annurev_genom_021623_121812
crossref_primary_10_1038_s41576_025_00828_z
crossref_primary_10_1038_s41467_020_20340_8
crossref_primary_10_1016_j_cub_2025_01_005
crossref_primary_10_3390_ijms25073634
crossref_primary_10_1016_j_molp_2025_02_003
crossref_primary_10_1038_s41598_024_54522_x
crossref_primary_10_1038_s41597_025_05280_6
crossref_primary_10_1093_nar_gkac1056
crossref_primary_10_1038_s41587_022_01565_y
crossref_primary_10_1111_mec_17746
crossref_primary_10_1038_s41467_024_48117_3
crossref_primary_10_3389_fgene_2022_997460
crossref_primary_10_3390_ijms242015205
crossref_primary_10_1093_gigascience_giac100
crossref_primary_10_3390_genes16020187
crossref_primary_10_1093_g3journal_jkab268
crossref_primary_10_1186_s12915_021_01188_w
crossref_primary_10_1038_s41597_024_04093_3
crossref_primary_10_1111_jfd_13374
crossref_primary_10_1093_g3journal_jkad088
Cites_doi 10.1186/s13059-019-1715-2
10.1101/672931
10.1186/s12859-016-1316-y
10.1186/s13059-020-1935-5
10.12688/f1000research.23297.1
10.1371/journal.pone.0132628
10.1186/s13059-015-0729-7
10.1093/nar/gku989
10.1038/s41467-020-15171-6
10.1186/s12864-017-3757-8
10.1089/cmb.1998.5.493
10.18632/oncotarget.9977
10.1261/rna.055558.115
10.1093/bioinformatics/bts649
10.1093/bioinformatics/btx668
10.1038/s41467-018-06910-x
10.1186/s12864-017-3691-9
10.1038/nature11233
10.1093/bioinformatics/btu538
10.1093/nar/gkt006
10.1371/journal.pone.0157779
10.1186/1471-2105-10-421
10.1093/nar/gkx1098
10.1093/bioinformatics/btp352
10.1146/annurev-animal-090414-014900
10.1038/ncomms11708
10.1093/bioinformatics/bty191
10.1101/gr.135350.111
10.1093/nar/gkh340
10.1186/s13059-019-1910-1
10.1093/bioinformatics/btq033
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-020-07123-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Download PDF from ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
View article at DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database (subscription)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 22
ExternalDocumentID oai_doaj_org_article_0557864215e047fe93b958de75783ce9
PMC7596999
A640306986
33126848
10_1186_s12864_020_07123_7
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/D/10002070,BB/N019202/1, BB/M011461/1, BB/M01844X/1
  funderid: http://dx.doi.org/10.13039/501100000268
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/D/10002070,BB/N019202/1, BB/M011461/1, BB/M01844X/1
– fundername: ;
  grantid: BBS/E/D/10002070,BB/N019202/1, BB/M011461/1, BB/M01844X/1
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
AIXEN
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c641t-bb8e64712153716c3a98114d8baeb7b849ad1d68f7743d6e7d4e1e0c051c58d73
IEDL.DBID 7X7
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583029300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2164
IngestDate Mon Nov 10 04:29:17 EST 2025
Tue Nov 04 02:00:37 EST 2025
Thu Oct 02 11:04:59 EDT 2025
Mon Oct 20 02:51:57 EDT 2025
Tue Nov 11 10:14:06 EST 2025
Tue Nov 04 17:24:45 EST 2025
Thu Nov 13 14:22:35 EST 2025
Thu Jan 02 22:37:44 EST 2025
Sat Nov 29 01:46:06 EST 2025
Tue Nov 18 20:44:40 EST 2025
Sat Sep 06 07:21:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
Long read RNA sequencing
Iso-Seq
TAMA
Transcriptome
Nanopore
Gene models
Bioinformatics
Annotation
Pacbio
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-bb8e64712153716c3a98114d8baeb7b849ad1d68f7743d6e7d4e1e0c051c58d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7867-7594
OpenAccessLink https://www.proquest.com/docview/2462000377?pq-origsite=%requestingapplication%
PMID 33126848
PQID 2462000377
PQPubID 44682
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_0557864215e047fe93b958de75783ce9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7596999
proquest_miscellaneous_2456431349
proquest_journals_2462000377
gale_infotracmisc_A640306986
gale_infotracacademiconefile_A640306986
gale_incontextgauss_ISR_A640306986
pubmed_primary_33126848
crossref_primary_10_1186_s12864_020_07123_7
crossref_citationtrail_10_1186_s12864_020_07123_7
springer_journals_10_1186_s12864_020_07123_7
PublicationCentury 2000
PublicationDate 2020-10-30
PublicationDateYYYYMMDD 2020-10-30
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References S Djebali (7123_CR22) 2012; 489
J Harrow (7123_CR2) 2012; 22
B Wang (7123_CR5) 2016; 7
H Li (7123_CR31) 2009; 25
AR Quinlan (7123_CR32) 2010; 26
S Kovaka (7123_CR9) 2019; 20
R Hu (7123_CR20) 2016; 17
J Yao (7123_CR17) 2016; 22
C Camacho (7123_CR33) 2009; 10
RI Kuo (7123_CR4) 2017; 18
SL Salzberg (7123_CR1) 2019; 20
K Križanović (7123_CR11) 2018; 34
F Cunningham (7123_CR25) 2014; 43
AE Minoche (7123_CR3) 2015; 16
M Cartolano (7123_CR19) 2016; 11
7123_CR10
G Pertea (7123_CR15) 2020; 9
SL Amarasinghe (7123_CR29) 2020; 21
SP Gordon (7123_CR7) 2015; 10
Y Ono (7123_CR12) 2013; 29
I Holmes (7123_CR21) 1998; 5
AD Tang (7123_CR13) 2020; 11
L Salmela (7123_CR16) 2014; 30
NV Hoang (7123_CR6) 2017; 18
DR Zerbino (7123_CR18) 2018; 46
K-P Koepfli (7123_CR8) 2015; 3
7123_CR23
7123_CR24
H Li (7123_CR30) 2018; 34
A Kuosmanen (7123_CR14) 2016
L Wang (7123_CR27) 2013; 41
RC Edgar (7123_CR26) 2004; 32
7123_CR28
References_xml – volume: 20
  start-page: 19
  issue: 1
  year: 2019
  ident: 7123_CR1
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1715-2
– start-page: 272
  volume-title: Bioinforma 2016 - 7th Int Conf Bioinforma Model Methods Algorithms, Proceedings; Part 9th Int Jt Conf Biomed Eng Syst Technol BIOSTEC 2016
  year: 2016
  ident: 7123_CR14
– ident: 7123_CR10
  doi: 10.1101/672931
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: 7123_CR20
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1316-y
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 7123_CR29
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-1935-5
– volume: 9
  start-page: 304
  year: 2020
  ident: 7123_CR15
  publication-title: F1000Research.
  doi: 10.12688/f1000research.23297.1
– volume: 10
  start-page: 1
  issue: 7
  year: 2015
  ident: 7123_CR7
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0132628
– volume: 43
  start-page: 662
  issue: October 2014
  year: 2014
  ident: 7123_CR25
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: 184
  year: 2015
  ident: 7123_CR3
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0729-7
– ident: 7123_CR28
  doi: 10.1093/nar/gku989
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 7123_CR13
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15171-6
– volume: 18
  issue: 1
  year: 2017
  ident: 7123_CR6
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3757-8
– volume: 5
  start-page: 493
  issue: 3
  year: 1998
  ident: 7123_CR21
  publication-title: J Comput Biol
  doi: 10.1089/cmb.1998.5.493
– ident: 7123_CR24
  doi: 10.18632/oncotarget.9977
– volume: 22
  start-page: 597
  issue: 4
  year: 2016
  ident: 7123_CR17
  publication-title: Rna.
  doi: 10.1261/rna.055558.115
– volume: 29
  start-page: 119
  issue: 1
  year: 2013
  ident: 7123_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts649
– volume: 34
  start-page: 748
  issue: 5
  year: 2018
  ident: 7123_CR11
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btx668
– ident: 7123_CR23
  doi: 10.1038/s41467-018-06910-x
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: 7123_CR4
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3691-9
– volume: 489
  start-page: 101
  issue: 7414
  year: 2012
  ident: 7123_CR22
  publication-title: Nature
  doi: 10.1038/nature11233
– volume: 30
  start-page: 3506
  issue: 24
  year: 2014
  ident: 7123_CR16
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu538
– volume: 41
  start-page: e74
  issue: 6
  year: 2013
  ident: 7123_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt006
– volume: 11
  start-page: 1
  issue: 6
  year: 2016
  ident: 7123_CR19
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157779
– volume: 10
  start-page: 1
  year: 2009
  ident: 7123_CR33
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-421
– volume: 46
  start-page: D754
  issue: D1
  year: 2018
  ident: 7123_CR18
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1098
– volume: 25
  start-page: 2078
  issue: 16
  year: 2009
  ident: 7123_CR31
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp352
– volume: 3
  start-page: 57
  issue: 1
  year: 2015
  ident: 7123_CR8
  publication-title: Annu Rev Anim Biosci
  doi: 10.1146/annurev-animal-090414-014900
– volume: 7
  start-page: 11708
  year: 2016
  ident: 7123_CR5
  publication-title: Nat Commun
  doi: 10.1038/ncomms11708
– volume: 34
  start-page: 3094
  issue: 18
  year: 2018
  ident: 7123_CR30
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bty191
– volume: 22
  start-page: 1760
  year: 2012
  ident: 7123_CR2
  publication-title: Genome Res
  doi: 10.1101/gr.135350.111
– volume: 32
  start-page: 1792
  issue: 5
  year: 2004
  ident: 7123_CR26
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh340
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: 7123_CR9
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1910-1
– volume: 26
  start-page: 841
  issue: 6
  year: 2010
  ident: 7123_CR32
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btq033
SSID ssj0017825
Score 2.6153204
Snippet Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing...
The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have...
Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing...
Abstract Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 751
SubjectTerms Algorithms
Animal Genetics and Genomics
Annotation
Annotations
Biomedical and Life Sciences
Computer programs
Data processing
Datasets
Error correction
Error correction & detection
Gene expression
Gene Expression Profiling
Gene mapping
Gene sequencing
Genes
Genomes
Genomics
High-Throughput Nucleotide Sequencing
Human
Humans
Iso-Seq
Life Sciences
Long read RNA sequencing
Methods
Microarrays
Microbial Genetics and Genomics
Model accuracy
Molecular Sequence Annotation
Plant Genetics and Genomics
Porosity
Proteins
Proteomics
Research Article
Ribonucleic acid
RNA
RNA sequencing
Sequence Analysis, RNA
Software
TAMA
Transcription
Transcriptome
Transcriptomic methods
SummonAdditionalLinks – databaseName: View article at DOAJ
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAiwxC4gBRk9jx49giKnqpEA-p4mL5lbKiTarNLhL_nhknWTZFwIVrPI7imfE8nPE3hLwoKqdDwZtcNY3OuW3KHG1gzoK2QUUvrXWp2YQ8OVGnp_r9VqsvrAkb4IEHxu0jRpTC25h1LLhsomZO1ypExGFnPqare4XUUzI1_j8Av1dPV2SU2O_BCgueY6oELrViuZy5oYTW_7tN3nJKVwsmr_w1Tc7o6Da5NUaR9GD4-jvkWmzvkhtDX8kf98iXY-xfvMCDvvaMQohHg11-o9iZk3ZNepB689EVeqpkN7qLSPFMlp53MAUiybA1SMeCa3jbffL56O2nN-_ysYlC7gUvV7lzKgrgPjCQQW7kmdUKcqCgnI1OOsVBJmUQqoE4kAURZeCxjIWHzeqBz5I9IDtt18ZHhCodPFe2FFpBVslgsixLZ12UEKME0WSknHhq_Igwjo0uzk3KNJQwgxwMyMEkORiZkVebOZcDvsZfqQ9RVBtKxMZOD0BjzKgx5l8ak5HnKGiD6Bctltec2XXfm-OPH8yB4JhDaSUy8nIkajpYg7fjbQXgBAJmzSh3Z5SwPf18eNInM5qH3lRcVAn6B1b0bDOMM7HkrY3dGmlqiBYRPTIjDwf126ybsRJRelRG5EwxZ4yZj7SLrwk8XNZaQFKQkdeTCv_6rD8z_vH_YPwTcrPCLYiev9glO6vlOu6R6_77atEvn6YN_BMlyUUt
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Journals - Owned
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELaggNQL-xIoyCAkDhA1iR0vx4Ko6KVCFFDFxXJs5_FEm6CX95D498w4C01ZJLjGM1E8njW2vyHkaVZU2me8TlVd65TbOk_RB6bMa-tVcNLaKjabkIeH6vhYvx0uhXXjafdxSzJ66mjWSux24EkFT7HcgbBYsFReJJdKRJvBGv3o47R3ADGvHK_H_JZvFoIiUv-v_vhMQDp_WPLcjmkMRPvX_m8K18nVIfGke72m3CAXQnOTXOlbUX6_RT4dYMvjJf4bbBYUskLq7eoLxWaetK3jg9jOj64xuEVX054Gir9x6UkLLJB8-jODdDijDW-7TT7sv37_6k069F1IneD5Oq0qFQQsGGQDDMopx6xWUDZ5VdlQyUpxWMbcC1VD6si8CNLzkIfMgX27UnnJ7pCtpm3CPUKV9o4rmwutoBBlwCzzvLJVkJDWeFEnJB-XwrgBlBx7Y5yYWJwoYXqZGZCZiTIzMiHPJ56vPSTHX6lf4gpPlAinHR-0q4UZrNMgEJnCK79lyLisg2aVhpkEBPtnLuiEPEH9MAiY0eCJnIXddJ05OHpn9gTHsksrkZBnA1HdwhycHS44gCQQY2tGuTOjBIt28-FRDc3gUTpTcFFEtCCY0eNpGDnxlFwT2g3SlJBgIuBkQu72WjvNm7EcgX1UQuRMn2eCmY80y88Rb1yWWkAdkZAXo1b__Kw_C_7-v5E_INsFGgamBdkO2VqvNuEhuey-rZfd6lG08B-91Up3
  priority: 102
  providerName: Springer Nature
Title Illuminating the dark side of the human transcriptome with long read transcript sequencing
URI https://link.springer.com/article/10.1186/s12864-020-07123-7
https://www.ncbi.nlm.nih.gov/pubmed/33126848
https://www.proquest.com/docview/2462000377
https://www.proquest.com/docview/2456431349
https://pubmed.ncbi.nlm.nih.gov/PMC7596999
https://doaj.org/article/0557864215e047fe93b958de75783ce9
Volume 21
WOSCitedRecordID wos000583029300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (subscription)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals - Owned
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CDaRd-B4ERhUQEgeI1tSpP05oQ5vogarqABUulmM7pdpIRtMi8d_znpt2yxC7cKnU-Lmq_b6d598DeNXt5cp1syKRRaGSzBRpQjYwYU4ZJ70VxuSh2YQYDuVkokbNgVvdlFWubWIw1K6ydEa-38t4L6CliHfnPxPqGkVvV5sWGjdhm9pmk5yLySbhStH79dcXZSTfr9EW8yyhhAkda48louWMAmb_35b5kmu6WjZ55d1pcEnHd_93MffgThOMxgcr6bkPN3z5AG6v2lP-fgjfBtQGeUbnheU0xkgxdmZ-GlODz7gqwoPQ4i9ekMML5qf64WM62o3PKpyCAam7NBg3ddv4a4_g8_HRp_cfkqYXQ2J5li6SPJeeIxMxQmCYYllmlMRUysnc-FzkMkPWpo7LAsNJ5rgXLvOp71rUeduXTrBd2Cqr0j-BWCpnM2lSriQmpwwnizTNTe4FhjqOFxGka6Zo2wCVU7-MMx0SFsn1ipEaGakDI7WI4M1mzvkKpuNa6kPi9YaSILbDg2o-1Y3GagInk3QNuO-7mSi8YrnClXhqAMCsVxG8JEnRBKJRUpXO1CzrWg9OxvqAZ5SKKckjeN0QFRWuwZrm0gPuBOFutSj3WpSo5bY9vJYk3ViZWl-IUQQvNsM0kyrnSl8tiaaPQSeBUEbweCW_m3UzlhLYj4xAtCS7tTHtkXL2PWCQi77imFtE8HatAxd_698b__T6VTyDnR5pJ4UG3T3YWsyX_jncsr8Ws3reCbodPmUHtg-PhqNxJxyhdKhgd4TPRoOPo6_4bXzy5Q9zLFtr
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBc2JdAgYBAHCBqtvFyQKgsVUdtRxUUqXAxie0MI0pSJjOg_il-I-95kmlTRG89cI2fLdv5_BYv7wN4Esa5NGFaBKIoZJBmRRSQDgwSIzMjrOZZljuyCT4cir09ubMEv9u3MHStstWJTlGbStMe-WqcsthlS-GvDn4ExBpFp6sthcYcFpv28BeGbPXLwVv8v0_jeP3d7puNoGEVCDRLo2mQ58Iy7A7augSDBZ1kUmBQYESe2ZznIsVORoaJAh2jxDDLTWojG2pEr-4LwxNs9xwspwj2sAfLO4PtnU-Lcwu0t_32aY5gqzVqf5YGFKKhKY-TgHfMn2MJ-NsWHDOGJy9qnjitdUZw_cr_Nn1X4XLjbvtr8_VxDZZseR0uzAk4D2_A5wERPY9pR7Qc-egL-yabfPOJwtSvCvfBkRj6UzLpTsFW361Pm9f-foVV0OU2xwr95mY6tnYTPp7JwG5Br6xKewd8IY1ORRYxKTD8TrAyj6I8yy1HZ86wwoOoBYHSTSp2YgTZVy4kE0zNgaMQOMoBR3EPni_qHMwTkZwq_ZqwtZCkJOLuQzUZqUYnKUq_Juihc9-GKS-sTHKJI7FEcZBoKz14TMhUlCakpHtIo2xW12rw4b1aYykFm1IwD541QkWFY9BZ86wDZ4Iyi3UkVzqSqMd0t7hFrmr0aK2OYOvBo0Ux1aS7gaWtZiTTR7ea0mx6cHu-XhbjTpKI0hkJD3hnJXUmpltSjr-6LOu8LxlGTx68aNfcUbf-PfF3Tx_FQ7i4sbu9pbYGw817cCkmzUCOULgCvelkZu_Def1zOq4nDxrN4sOXs16NfwBc7LHj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9QwDLZgOcQL91FYoCAkHqDa6SST43E5RoxAo9UuoBUvUZqks6Nd2tUcSPx77LQzTJdDQrw2dtU4dmw3zmeAZ71-oX2Pl5kqS51xW-YZ7YEZ89p6FZy0tojNJuR4rA4P9d7GLf5Y7b46kmzuNBBKU7XYOfVlY-JK7MxxVxU8o9QHXWSfZfI8XOCYyVBR1_7B5_U5Avq_weqqzG_5Ou4oovb_ujdvOKezhZNnTk-jUxpe-__pXIerbUCa7jYadAPOheomXGpaVH6_BV9G1Ap5Sv8Mq0mK0WLq7ew4pSafaV3GB7HNX7ogpxe3oPprSOn3bnpSIwsGpX5jMG1rt_Ftt-HT8O3H1--yth9D5gTPF1lRqCBwITFKYJhmOWa1wnTKq8KGQhaK4_LmXqgSQ0rmRZCehzz0HNq9Gygv2R3Yquoq3INUae-4srnQChNUhswyzwtbBInhjhdlAvlqWYxrwcqpZ8aJiUmLEqaRmUGZmSgzIxN4seY5baA6_kr9ilZ7TUkw2_FBPZuY1moNAZQpugo8CD0uy6BZoXEmgZoAMBd0Ak9JVwwBaVRUqTOxy_ncjA72za7glI5pJRJ43hKVNc7B2fbiA0qCsLc6lNsdSrR01x1eqaRpd5q56XPRjyhCOKMn62HipOq5KtRLohlg4ElAlAncbTR4PW_GcgL8UQnIjm53BNMdqaZHEYdcDrTA_CKBlysN__lZfxb8_X8jfwyX994MzYfR-P0DuNInG6HIobcNW4vZMjyEi-7bYjqfPYqG_wMPTFY_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Illuminating+the+dark+side+of+the+human+transcriptome+with+long+read+transcript+sequencing&rft.jtitle=BMC+genomics&rft.au=Kuo%2C+Richard+I&rft.au=Cheng%2C+Yuanyuan&rft.au=Zhang%2C+Runxuan&rft.au=Brown%2C+John+W.+S&rft.date=2020-10-30&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-020-07123-7&rft.externalDocID=A640306986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon