Illuminating the dark side of the human transcriptome with long read transcript sequencing
Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provi...
Gespeichert in:
| Veröffentlicht in: | BMC genomics Jg. 21; H. 1; S. 751 - 22 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
30.10.2020
BioMed Central Ltd Springer Nature B.V BMC |
| Schlagworte: | |
| ISSN: | 1471-2164, 1471-2164 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Background
The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise.
Results
We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA’s genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models.
Conclusions
Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data. |
|---|---|
| AbstractList | The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise.
We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA's genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models.
Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data. The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA's genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data. Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. Results We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA’s genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Conclusions Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data. Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. Results We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA's genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Conclusions Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data. Keywords: Human, Transcriptome, Long read RNA sequencing, Iso-Seq, TAMA, Annotation, Pacbio, Nanopore, Gene models, Bioinformatics Abstract Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. Results We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA’s genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Conclusions Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data. Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. Results We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA’s genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. Conclusions Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data. The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise.BACKGROUNDThe human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise.We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA's genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models.RESULTSWe developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA's genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models.Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data.CONCLUSIONSLong read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data. |
| ArticleNumber | 751 |
| Audience | Academic |
| Author | Cheng, Yuanyuan Kuo, Richard I. Archibald, Alan L. Brown, John W. S. Burt, David W. Zhang, Runxuan Smith, Jacqueline |
| Author_xml | – sequence: 1 givenname: Richard I. orcidid: 0000-0002-7867-7594 surname: Kuo fullname: Kuo, Richard I. email: richard.kuo@roslin.ed.ac.uk organization: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh – sequence: 2 givenname: Yuanyuan surname: Cheng fullname: Cheng, Yuanyuan organization: The University of Queensland, School of Life and Environmental Sciences, University of Sydney – sequence: 3 givenname: Runxuan surname: Zhang fullname: Zhang, Runxuan organization: Information and Computational Sciences, The James Hutton Institute – sequence: 4 givenname: John W. S. surname: Brown fullname: Brown, John W. S. organization: Plant Sciences Division, School of Life Sciences, University of Dundee, Cell and Molecular Sciences, The James Hutton Institute – sequence: 5 givenname: Jacqueline surname: Smith fullname: Smith, Jacqueline organization: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh – sequence: 6 givenname: Alan L. surname: Archibald fullname: Archibald, Alan L. organization: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh – sequence: 7 givenname: David W. surname: Burt fullname: Burt, David W. organization: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, The University of Queensland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33126848$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv3CAUha0qVZNM-we6qCx1kyycgsGAN5WiqI-RIlXqY9MNwnDtYWrDFOw-_n3wTJrMRFXkhc3lOwdzdE6zI-cdZNlLjC4wFuxNxKVgtEAlKhDHJSn4k-wEU46LEjN6tPd9nJ3GuEYIc1FWz7JjQnDJBBUn2fdl30-DdWq0rsvHFeRGhR95tAZy324Hq2lQLh-DclEHuxn9APlvO67y3idJAGX2NvMIPydwOrk9z562qo_w4va9yL69f_f16mNx_enD8uryutCM4rFoGgEs_WiJK8Ix00TVAmNqRKOg4Y2gtTLYMNFyTolhwA0FDEijCutKGE4W2XLna7xay02wgwp_pVdWbgc-dFKF0eoeJKoqniJLRwGivIWaNHXyAJ7GRKflInu789pMzQBGg0tX6w9MD3ecXcnO_5K8qlldzwZntwbBpyDiKAcbNfS9cuCnKEtaMUowoTP6-gG69lNwKapEsRIhRDi_pzqVLmBd69O5ejaVl4wiglgtWKIu_kOlx8BgdapNa9P8QHB-IEjMCH_GTk0xyuWXz4fsq_1Q7tL416IElDtABx9jgPYOwUjOVZW7qspUVbmtqpwvJh6ItB1TDf0crO0fl5KdNKZzXAfhPrlHVDfjt_p4 |
| CitedBy_id | crossref_primary_10_1186_s13059_021_02296_0 crossref_primary_10_1111_nph_19965 crossref_primary_10_1111_tpj_15871 crossref_primary_10_1038_s41597_024_03840_w crossref_primary_10_1093_plcell_koae039 crossref_primary_10_1111_ppl_14280 crossref_primary_10_1093_g3journal_jkac304 crossref_primary_10_1242_bio_061721 crossref_primary_10_1111_mec_17775 crossref_primary_10_12688_f1000research_138571_1 crossref_primary_10_12688_f1000research_138571_2 crossref_primary_10_3390_biom11081111 crossref_primary_10_1371_journal_pone_0276956 crossref_primary_10_1016_j_chom_2025_07_011 crossref_primary_10_1093_gigascience_giab081 crossref_primary_10_1186_s13059_023_02923_y crossref_primary_10_1093_nargab_lqac092 crossref_primary_10_1038_s41467_023_44080_7 crossref_primary_10_1038_s41597_025_04887_z crossref_primary_10_1002_pld3_575 crossref_primary_10_1038_s41592_024_02298_3 crossref_primary_10_1111_cas_15058 crossref_primary_10_3390_ijms26030948 crossref_primary_10_1186_s13059_021_02369_0 crossref_primary_10_1038_s41592_023_01908_w crossref_primary_10_1093_genetics_iyac017 crossref_primary_10_1101_gr_279864_124 crossref_primary_10_1186_s12711_021_00668_5 crossref_primary_10_1038_s41597_025_05747_6 crossref_primary_10_1038_s41597_024_02929_6 crossref_primary_10_1111_tpj_16856 crossref_primary_10_1016_j_psj_2024_104697 crossref_primary_10_1101_gr_279865_124 crossref_primary_10_1016_j_cell_2023_04_012 crossref_primary_10_1038_s41597_025_05372_3 crossref_primary_10_1128_AEM_01418_21 crossref_primary_10_1186_s12864_024_11149_6 crossref_primary_10_1371_journal_pcbi_1011576 crossref_primary_10_1093_molbev_msad096 crossref_primary_10_1038_s41598_021_86068_7 crossref_primary_10_1093_g3journal_jkac253 crossref_primary_10_1159_000529376 crossref_primary_10_1016_j_dib_2023_109838 crossref_primary_10_1126_science_adj7026 crossref_primary_10_1186_s13059_022_02711_0 crossref_primary_10_1186_s12864_022_08887_w crossref_primary_10_1101_gr_279166_124 crossref_primary_10_3390_genes15121551 crossref_primary_10_1038_s41467_025_62887_4 crossref_primary_10_1093_gigascience_giab020 crossref_primary_10_1038_s41588_024_02069_y crossref_primary_10_1038_s41467_023_39336_1 crossref_primary_10_1093_bfgp_elae031 crossref_primary_10_1038_s41597_025_05546_z crossref_primary_10_3389_fpls_2023_1161539 crossref_primary_10_1038_s41598_021_96712_x crossref_primary_10_1038_s41597_025_05364_3 crossref_primary_10_3389_fgene_2022_995072 crossref_primary_10_1016_j_xgen_2025_100853 crossref_primary_10_1186_s12864_022_09000_x crossref_primary_10_1038_s41467_024_49523_3 crossref_primary_10_3390_ani13233704 crossref_primary_10_1016_j_cub_2022_10_015 crossref_primary_10_1146_annurev_genom_021623_121812 crossref_primary_10_1038_s41576_025_00828_z crossref_primary_10_1038_s41467_020_20340_8 crossref_primary_10_1016_j_cub_2025_01_005 crossref_primary_10_3390_ijms25073634 crossref_primary_10_1016_j_molp_2025_02_003 crossref_primary_10_1038_s41598_024_54522_x crossref_primary_10_1038_s41597_025_05280_6 crossref_primary_10_1093_nar_gkac1056 crossref_primary_10_1038_s41587_022_01565_y crossref_primary_10_1111_mec_17746 crossref_primary_10_1038_s41467_024_48117_3 crossref_primary_10_3389_fgene_2022_997460 crossref_primary_10_3390_ijms242015205 crossref_primary_10_1093_gigascience_giac100 crossref_primary_10_3390_genes16020187 crossref_primary_10_1093_g3journal_jkab268 crossref_primary_10_1186_s12915_021_01188_w crossref_primary_10_1038_s41597_024_04093_3 crossref_primary_10_1111_jfd_13374 crossref_primary_10_1093_g3journal_jkad088 |
| Cites_doi | 10.1186/s13059-019-1715-2 10.1101/672931 10.1186/s12859-016-1316-y 10.1186/s13059-020-1935-5 10.12688/f1000research.23297.1 10.1371/journal.pone.0132628 10.1186/s13059-015-0729-7 10.1093/nar/gku989 10.1038/s41467-020-15171-6 10.1186/s12864-017-3757-8 10.1089/cmb.1998.5.493 10.18632/oncotarget.9977 10.1261/rna.055558.115 10.1093/bioinformatics/bts649 10.1093/bioinformatics/btx668 10.1038/s41467-018-06910-x 10.1186/s12864-017-3691-9 10.1038/nature11233 10.1093/bioinformatics/btu538 10.1093/nar/gkt006 10.1371/journal.pone.0157779 10.1186/1471-2105-10-421 10.1093/nar/gkx1098 10.1093/bioinformatics/btp352 10.1146/annurev-animal-090414-014900 10.1038/ncomms11708 10.1093/bioinformatics/bty191 10.1101/gr.135350.111 10.1093/nar/gkh340 10.1186/s13059-019-1910-1 10.1093/bioinformatics/btq033 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
| DOI | 10.1186/s12864-020-07123-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection Download PDF from ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) View article at DOAJ |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database (subscription) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| EndPage | 22 |
| ExternalDocumentID | oai_doaj_org_article_0557864215e047fe93b958de75783ce9 PMC7596999 A640306986 33126848 10_1186_s12864_020_07123_7 |
| Genre | Journal Article |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/D/10002070,BB/N019202/1, BB/M011461/1, BB/M01844X/1 funderid: http://dx.doi.org/10.13039/501100000268 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/D/10002070,BB/N019202/1, BB/M011461/1, BB/M01844X/1 – fundername: ; grantid: BBS/E/D/10002070,BB/N019202/1, BB/M011461/1, BB/M01844X/1 |
| GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX AFFHD CITATION -A0 3V. ACRMQ ADINQ AIXEN ALIPV C24 CGR CUY CVF ECM EIF NPM 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c641t-bb8e64712153716c3a98114d8baeb7b849ad1d68f7743d6e7d4e1e0c051c58d73 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583029300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2164 |
| IngestDate | Mon Nov 10 04:29:17 EST 2025 Tue Nov 04 02:00:37 EST 2025 Thu Oct 02 11:04:59 EDT 2025 Mon Oct 20 02:51:57 EDT 2025 Tue Nov 11 10:14:06 EST 2025 Tue Nov 04 17:24:45 EST 2025 Thu Nov 13 14:22:35 EST 2025 Thu Jan 02 22:37:44 EST 2025 Sat Nov 29 01:46:06 EST 2025 Tue Nov 18 20:44:40 EST 2025 Sat Sep 06 07:21:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Human Long read RNA sequencing Iso-Seq TAMA Transcriptome Nanopore Gene models Bioinformatics Annotation Pacbio |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c641t-bb8e64712153716c3a98114d8baeb7b849ad1d68f7743d6e7d4e1e0c051c58d73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7867-7594 |
| OpenAccessLink | https://www.proquest.com/docview/2462000377?pq-origsite=%requestingapplication% |
| PMID | 33126848 |
| PQID | 2462000377 |
| PQPubID | 44682 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0557864215e047fe93b958de75783ce9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7596999 proquest_miscellaneous_2456431349 proquest_journals_2462000377 gale_infotracmisc_A640306986 gale_infotracacademiconefile_A640306986 gale_incontextgauss_ISR_A640306986 pubmed_primary_33126848 crossref_primary_10_1186_s12864_020_07123_7 crossref_citationtrail_10_1186_s12864_020_07123_7 springer_journals_10_1186_s12864_020_07123_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-30 |
| PublicationDateYYYYMMDD | 2020-10-30 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2020 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | S Djebali (7123_CR22) 2012; 489 J Harrow (7123_CR2) 2012; 22 B Wang (7123_CR5) 2016; 7 H Li (7123_CR31) 2009; 25 AR Quinlan (7123_CR32) 2010; 26 S Kovaka (7123_CR9) 2019; 20 R Hu (7123_CR20) 2016; 17 J Yao (7123_CR17) 2016; 22 C Camacho (7123_CR33) 2009; 10 RI Kuo (7123_CR4) 2017; 18 SL Salzberg (7123_CR1) 2019; 20 K Križanović (7123_CR11) 2018; 34 F Cunningham (7123_CR25) 2014; 43 AE Minoche (7123_CR3) 2015; 16 M Cartolano (7123_CR19) 2016; 11 7123_CR10 G Pertea (7123_CR15) 2020; 9 SL Amarasinghe (7123_CR29) 2020; 21 SP Gordon (7123_CR7) 2015; 10 Y Ono (7123_CR12) 2013; 29 I Holmes (7123_CR21) 1998; 5 AD Tang (7123_CR13) 2020; 11 L Salmela (7123_CR16) 2014; 30 NV Hoang (7123_CR6) 2017; 18 DR Zerbino (7123_CR18) 2018; 46 K-P Koepfli (7123_CR8) 2015; 3 7123_CR23 7123_CR24 H Li (7123_CR30) 2018; 34 A Kuosmanen (7123_CR14) 2016 L Wang (7123_CR27) 2013; 41 RC Edgar (7123_CR26) 2004; 32 7123_CR28 |
| References_xml | – volume: 20 start-page: 19 issue: 1 year: 2019 ident: 7123_CR1 publication-title: Genome Biol doi: 10.1186/s13059-019-1715-2 – start-page: 272 volume-title: Bioinforma 2016 - 7th Int Conf Bioinforma Model Methods Algorithms, Proceedings; Part 9th Int Jt Conf Biomed Eng Syst Technol BIOSTEC 2016 year: 2016 ident: 7123_CR14 – ident: 7123_CR10 doi: 10.1101/672931 – volume: 17 start-page: 1 issue: 1 year: 2016 ident: 7123_CR20 publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1316-y – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 7123_CR29 publication-title: Genome Biol doi: 10.1186/s13059-020-1935-5 – volume: 9 start-page: 304 year: 2020 ident: 7123_CR15 publication-title: F1000Research. doi: 10.12688/f1000research.23297.1 – volume: 10 start-page: 1 issue: 7 year: 2015 ident: 7123_CR7 publication-title: PLoS One doi: 10.1371/journal.pone.0132628 – volume: 43 start-page: 662 issue: October 2014 year: 2014 ident: 7123_CR25 publication-title: Nucleic Acids Res – volume: 16 start-page: 184 year: 2015 ident: 7123_CR3 publication-title: Genome Biol doi: 10.1186/s13059-015-0729-7 – ident: 7123_CR28 doi: 10.1093/nar/gku989 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 7123_CR13 publication-title: Nat Commun doi: 10.1038/s41467-020-15171-6 – volume: 18 issue: 1 year: 2017 ident: 7123_CR6 publication-title: BMC Genomics doi: 10.1186/s12864-017-3757-8 – volume: 5 start-page: 493 issue: 3 year: 1998 ident: 7123_CR21 publication-title: J Comput Biol doi: 10.1089/cmb.1998.5.493 – ident: 7123_CR24 doi: 10.18632/oncotarget.9977 – volume: 22 start-page: 597 issue: 4 year: 2016 ident: 7123_CR17 publication-title: Rna. doi: 10.1261/rna.055558.115 – volume: 29 start-page: 119 issue: 1 year: 2013 ident: 7123_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts649 – volume: 34 start-page: 748 issue: 5 year: 2018 ident: 7123_CR11 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btx668 – ident: 7123_CR23 doi: 10.1038/s41467-018-06910-x – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 7123_CR4 publication-title: BMC Genomics doi: 10.1186/s12864-017-3691-9 – volume: 489 start-page: 101 issue: 7414 year: 2012 ident: 7123_CR22 publication-title: Nature doi: 10.1038/nature11233 – volume: 30 start-page: 3506 issue: 24 year: 2014 ident: 7123_CR16 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu538 – volume: 41 start-page: e74 issue: 6 year: 2013 ident: 7123_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt006 – volume: 11 start-page: 1 issue: 6 year: 2016 ident: 7123_CR19 publication-title: PLoS One doi: 10.1371/journal.pone.0157779 – volume: 10 start-page: 1 year: 2009 ident: 7123_CR33 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – volume: 46 start-page: D754 issue: D1 year: 2018 ident: 7123_CR18 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1098 – volume: 25 start-page: 2078 issue: 16 year: 2009 ident: 7123_CR31 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp352 – volume: 3 start-page: 57 issue: 1 year: 2015 ident: 7123_CR8 publication-title: Annu Rev Anim Biosci doi: 10.1146/annurev-animal-090414-014900 – volume: 7 start-page: 11708 year: 2016 ident: 7123_CR5 publication-title: Nat Commun doi: 10.1038/ncomms11708 – volume: 34 start-page: 3094 issue: 18 year: 2018 ident: 7123_CR30 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bty191 – volume: 22 start-page: 1760 year: 2012 ident: 7123_CR2 publication-title: Genome Res doi: 10.1101/gr.135350.111 – volume: 32 start-page: 1792 issue: 5 year: 2004 ident: 7123_CR26 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh340 – volume: 20 start-page: 1 issue: 1 year: 2019 ident: 7123_CR9 publication-title: Genome Biol doi: 10.1186/s13059-019-1910-1 – volume: 26 start-page: 841 issue: 6 year: 2010 ident: 7123_CR32 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btq033 |
| SSID | ssj0017825 |
| Score | 2.6153204 |
| Snippet | Background
The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing... The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have... Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing... Abstract Background The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 751 |
| SubjectTerms | Algorithms Animal Genetics and Genomics Annotation Annotations Biomedical and Life Sciences Computer programs Data processing Datasets Error correction Error correction & detection Gene expression Gene Expression Profiling Gene mapping Gene sequencing Genes Genomes Genomics High-Throughput Nucleotide Sequencing Human Humans Iso-Seq Life Sciences Long read RNA sequencing Methods Microarrays Microbial Genetics and Genomics Model accuracy Molecular Sequence Annotation Plant Genetics and Genomics Porosity Proteins Proteomics Research Article Ribonucleic acid RNA RNA sequencing Sequence Analysis, RNA Software TAMA Transcription Transcriptome Transcriptomic methods |
| SummonAdditionalLinks | – databaseName: View article at DOAJ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAiwxC4gBRk9jx49giKnqpEA-p4mL5lbKiTarNLhL_nhknWTZFwIVrPI7imfE8nPE3hLwoKqdDwZtcNY3OuW3KHG1gzoK2QUUvrXWp2YQ8OVGnp_r9VqsvrAkb4IEHxu0jRpTC25h1LLhsomZO1ypExGFnPqare4XUUzI1_j8Av1dPV2SU2O_BCgueY6oELrViuZy5oYTW_7tN3nJKVwsmr_w1Tc7o6Da5NUaR9GD4-jvkWmzvkhtDX8kf98iXY-xfvMCDvvaMQohHg11-o9iZk3ZNepB689EVeqpkN7qLSPFMlp53MAUiybA1SMeCa3jbffL56O2nN-_ysYlC7gUvV7lzKgrgPjCQQW7kmdUKcqCgnI1OOsVBJmUQqoE4kAURZeCxjIWHzeqBz5I9IDtt18ZHhCodPFe2FFpBVslgsixLZ12UEKME0WSknHhq_Igwjo0uzk3KNJQwgxwMyMEkORiZkVebOZcDvsZfqQ9RVBtKxMZOD0BjzKgx5l8ak5HnKGiD6Bctltec2XXfm-OPH8yB4JhDaSUy8nIkajpYg7fjbQXgBAJmzSh3Z5SwPf18eNInM5qH3lRcVAn6B1b0bDOMM7HkrY3dGmlqiBYRPTIjDwf126ybsRJRelRG5EwxZ4yZj7SLrwk8XNZaQFKQkdeTCv_6rD8z_vH_YPwTcrPCLYiev9glO6vlOu6R6_77atEvn6YN_BMlyUUt priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Journals - Owned dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELaggNQL-xIoyCAkDhA1iR0vx4Ko6KVCFFDFxXJs5_FEm6CX95D498w4C01ZJLjGM1E8njW2vyHkaVZU2me8TlVd65TbOk_RB6bMa-tVcNLaKjabkIeH6vhYvx0uhXXjafdxSzJ66mjWSux24EkFT7HcgbBYsFReJJdKRJvBGv3o47R3ADGvHK_H_JZvFoIiUv-v_vhMQDp_WPLcjmkMRPvX_m8K18nVIfGke72m3CAXQnOTXOlbUX6_RT4dYMvjJf4bbBYUskLq7eoLxWaetK3jg9jOj64xuEVX054Gir9x6UkLLJB8-jODdDijDW-7TT7sv37_6k069F1IneD5Oq0qFQQsGGQDDMopx6xWUDZ5VdlQyUpxWMbcC1VD6si8CNLzkIfMgX27UnnJ7pCtpm3CPUKV9o4rmwutoBBlwCzzvLJVkJDWeFEnJB-XwrgBlBx7Y5yYWJwoYXqZGZCZiTIzMiHPJ56vPSTHX6lf4gpPlAinHR-0q4UZrNMgEJnCK79lyLisg2aVhpkEBPtnLuiEPEH9MAiY0eCJnIXddJ05OHpn9gTHsksrkZBnA1HdwhycHS44gCQQY2tGuTOjBIt28-FRDc3gUTpTcFFEtCCY0eNpGDnxlFwT2g3SlJBgIuBkQu72WjvNm7EcgX1UQuRMn2eCmY80y88Rb1yWWkAdkZAXo1b__Kw_C_7-v5E_INsFGgamBdkO2VqvNuEhuey-rZfd6lG08B-91Up3 priority: 102 providerName: Springer Nature |
| Title | Illuminating the dark side of the human transcriptome with long read transcript sequencing |
| URI | https://link.springer.com/article/10.1186/s12864-020-07123-7 https://www.ncbi.nlm.nih.gov/pubmed/33126848 https://www.proquest.com/docview/2462000377 https://www.proquest.com/docview/2456431349 https://pubmed.ncbi.nlm.nih.gov/PMC7596999 https://doaj.org/article/0557864215e047fe93b958de75783ce9 |
| Volume | 21 |
| WOSCitedRecordID | wos000583029300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (subscription) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals - Owned customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CDaRd-B4ERhUQEgeI1tSpP05oQ5vogarqABUulmM7pdpIRtMi8d_znpt2yxC7cKnU-Lmq_b6d598DeNXt5cp1syKRRaGSzBRpQjYwYU4ZJ70VxuSh2YQYDuVkokbNgVvdlFWubWIw1K6ydEa-38t4L6CliHfnPxPqGkVvV5sWGjdhm9pmk5yLySbhStH79dcXZSTfr9EW8yyhhAkda48louWMAmb_35b5kmu6WjZ55d1pcEnHd_93MffgThOMxgcr6bkPN3z5AG6v2lP-fgjfBtQGeUbnheU0xkgxdmZ-GlODz7gqwoPQ4i9ekMML5qf64WM62o3PKpyCAam7NBg3ddv4a4_g8_HRp_cfkqYXQ2J5li6SPJeeIxMxQmCYYllmlMRUysnc-FzkMkPWpo7LAsNJ5rgXLvOp71rUeduXTrBd2Cqr0j-BWCpnM2lSriQmpwwnizTNTe4FhjqOFxGka6Zo2wCVU7-MMx0SFsn1ipEaGakDI7WI4M1mzvkKpuNa6kPi9YaSILbDg2o-1Y3GagInk3QNuO-7mSi8YrnClXhqAMCsVxG8JEnRBKJRUpXO1CzrWg9OxvqAZ5SKKckjeN0QFRWuwZrm0gPuBOFutSj3WpSo5bY9vJYk3ViZWl-IUQQvNsM0kyrnSl8tiaaPQSeBUEbweCW_m3UzlhLYj4xAtCS7tTHtkXL2PWCQi77imFtE8HatAxd_698b__T6VTyDnR5pJ4UG3T3YWsyX_jncsr8Ws3reCbodPmUHtg-PhqNxJxyhdKhgd4TPRoOPo6_4bXzy5Q9zLFtr |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBc2JdAgYBAHCBqtvFyQKgsVUdtRxUUqXAxie0MI0pSJjOg_il-I-95kmlTRG89cI2fLdv5_BYv7wN4Esa5NGFaBKIoZJBmRRSQDgwSIzMjrOZZljuyCT4cir09ubMEv9u3MHStstWJTlGbStMe-WqcsthlS-GvDn4ExBpFp6sthcYcFpv28BeGbPXLwVv8v0_jeP3d7puNoGEVCDRLo2mQ58Iy7A7augSDBZ1kUmBQYESe2ZznIsVORoaJAh2jxDDLTWojG2pEr-4LwxNs9xwspwj2sAfLO4PtnU-Lcwu0t_32aY5gqzVqf5YGFKKhKY-TgHfMn2MJ-NsWHDOGJy9qnjitdUZw_cr_Nn1X4XLjbvtr8_VxDZZseR0uzAk4D2_A5wERPY9pR7Qc-egL-yabfPOJwtSvCvfBkRj6UzLpTsFW361Pm9f-foVV0OU2xwr95mY6tnYTPp7JwG5Br6xKewd8IY1ORRYxKTD8TrAyj6I8yy1HZ86wwoOoBYHSTSp2YgTZVy4kE0zNgaMQOMoBR3EPni_qHMwTkZwq_ZqwtZCkJOLuQzUZqUYnKUq_Juihc9-GKS-sTHKJI7FEcZBoKz14TMhUlCakpHtIo2xW12rw4b1aYykFm1IwD541QkWFY9BZ86wDZ4Iyi3UkVzqSqMd0t7hFrmr0aK2OYOvBo0Ux1aS7gaWtZiTTR7ea0mx6cHu-XhbjTpKI0hkJD3hnJXUmpltSjr-6LOu8LxlGTx68aNfcUbf-PfF3Tx_FQ7i4sbu9pbYGw817cCkmzUCOULgCvelkZu_Def1zOq4nDxrN4sOXs16NfwBc7LHj |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9QwDLZgOcQL91FYoCAkHqDa6SST43E5RoxAo9UuoBUvUZqks6Nd2tUcSPx77LQzTJdDQrw2dtU4dmw3zmeAZ71-oX2Pl5kqS51xW-YZ7YEZ89p6FZy0tojNJuR4rA4P9d7GLf5Y7b46kmzuNBBKU7XYOfVlY-JK7MxxVxU8o9QHXWSfZfI8XOCYyVBR1_7B5_U5Avq_weqqzG_5Ou4oovb_ujdvOKezhZNnTk-jUxpe-__pXIerbUCa7jYadAPOheomXGpaVH6_BV9G1Ap5Sv8Mq0mK0WLq7ew4pSafaV3GB7HNX7ogpxe3oPprSOn3bnpSIwsGpX5jMG1rt_Ftt-HT8O3H1--yth9D5gTPF1lRqCBwITFKYJhmOWa1wnTKq8KGQhaK4_LmXqgSQ0rmRZCehzz0HNq9Gygv2R3Yquoq3INUae-4srnQChNUhswyzwtbBInhjhdlAvlqWYxrwcqpZ8aJiUmLEqaRmUGZmSgzIxN4seY5baA6_kr9ilZ7TUkw2_FBPZuY1moNAZQpugo8CD0uy6BZoXEmgZoAMBd0Ak9JVwwBaVRUqTOxy_ncjA72za7glI5pJRJ43hKVNc7B2fbiA0qCsLc6lNsdSrR01x1eqaRpd5q56XPRjyhCOKMn62HipOq5KtRLohlg4ElAlAncbTR4PW_GcgL8UQnIjm53BNMdqaZHEYdcDrTA_CKBlysN__lZfxb8_X8jfwyX994MzYfR-P0DuNInG6HIobcNW4vZMjyEi-7bYjqfPYqG_wMPTFY_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Illuminating+the+dark+side+of+the+human+transcriptome+with+long+read+transcript+sequencing&rft.jtitle=BMC+genomics&rft.au=Kuo%2C+Richard+I&rft.au=Cheng%2C+Yuanyuan&rft.au=Zhang%2C+Runxuan&rft.au=Brown%2C+John+W.+S&rft.date=2020-10-30&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-020-07123-7&rft.externalDocID=A640306986 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |