An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation

This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with an...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 11; no. 3; p. e0149589
Main Authors: Warid, Warid, Hizam, Hashim, Mariun, Norman, Abdul-Wahab, Noor Izzri
Format: Journal Article
Language:English
Published: United States Public Library of Science 08.03.2016
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: WW HH NM NIA. Performed the experiments: WW. Analyzed the data: WW. Contributed reagents/materials/analysis tools: WW. Wrote the paper: WW. Established and validated the models: WW. Provided ideas for the discussion: HH NM NIA. Reviewed the paper: WW HH NM NIA.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0149589