GEP-EpiSeeker: a gene expression programming-based method for epistatic interaction detection in genome-wide association studies

Background Identification of epistatic interactions provides a systematic way for exploring associations among different single nucleotide polymorphism (SNP) and complex diseases. Although considerable progress has been made in epistasis detection, efficiently and accurately identifying epistatic in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC genomics Ročník 22; číslo Suppl 1; s. 910 - 21
Hlavní autoři: Peng, Yu Zhong, Lin, Yanmei, Huang, Yiran, Li, Ying, Luo, Guangsheng, Liao, Jianping
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 20.12.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-2164, 1471-2164
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Background Identification of epistatic interactions provides a systematic way for exploring associations among different single nucleotide polymorphism (SNP) and complex diseases. Although considerable progress has been made in epistasis detection, efficiently and accurately identifying epistatic interactions remains a challenge due to the intensive growth of measuring SNP combinations. Results In this work, we formulate the detection of epistatic interactions by a combinational optimization problem, and propose a novel evolutionary-based framework, called GEP-EpiSeeker, to detect epistatic interactions using Gene Expression Programming. In GEP-EpiSeeker, we propose several tailor-made chromosome rules to describe SNP combinations, and incorporate Bayesian network-based fitness evaluation into the evolution of tailor-made chromosomes to find suspected SNP combinations, and adopt the Chi-square test to identify optimal solutions from suspected SNP combinations. Moreover, to improve the convergence and accuracy of the algorithm, we design two genetic operators with multiple and adjacent mutations and an adaptive genetic manipulation method with fuzzy control to efficiently manipulate the evolution of tailor-made chromosomes. We compared GEP-EpiSeeker with state-of-the-art methods including BEAM, BOOST, AntEpiSeeker, MACOED, and EACO in terms of power, recall, precision and F 1-score on the GWAS datasets of 12 DME disease models and 10 DNME disease models. Our experimental results show that GEP-EpiSeeker outperforms comparative methods. Conclusions Here we presented a novel method named GEP-EpiSeeker, based on the Gene Expression Programming algorithm, to identify epistatic interactions in Genome-wide Association Studies. The results indicate that GEP-EpiSeeker could be a promising alternative to the existing methods in epistasis detection and will provide a new way for accurately identifying epistasis.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-021-08207-8