Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides

Background Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 22; no. 1; pp. 239 - 17
Main Authors: Boone, Kyle, Wisdom, Cate, Camarda, Kyle, Spencer, Paulette, Tamerler, Candan
Format: Journal Article
Language:English
Published: London BioMed Central 11.05.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space. Methods Here we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process. Results We use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis , a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis. Conclusions Our results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences.
AbstractList Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space. Here we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process. We use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis, a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis. Our results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences.
Background Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space. Methods Here we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process. Results We use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis , a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis. Conclusions Our results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences.
Background Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space. Methods Here we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process. Results We use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis, a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis. Conclusions Our results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences. Keywords: Antibacterial, Antimicrobial peptide, Machine learning, Rough set theory, Genetic algorithm
Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space. Here we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process. We use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis, a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis. Our results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences.
Background Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space. Methods Here we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process. Results We use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis, a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis. Conclusions Our results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences.
Abstract Background Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space. Methods Here we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process. Results We use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis, a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis. Conclusions Our results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences.
Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space.BACKGROUNDCurrent methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space.Here we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process.METHODSHere we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process.We use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis, a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis.RESULTSWe use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis, a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis.Our results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences.CONCLUSIONSOur results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences.
ArticleNumber 239
Audience Academic
Author Boone, Kyle
Wisdom, Cate
Tamerler, Candan
Camarda, Kyle
Spencer, Paulette
Author_xml – sequence: 1
  givenname: Kyle
  surname: Boone
  fullname: Boone, Kyle
  organization: Bioengineering Program, University of Kansas, Institute of Bioengineering Research, University of Kansas
– sequence: 2
  givenname: Cate
  surname: Wisdom
  fullname: Wisdom, Cate
  organization: Bioengineering Program, University of Kansas, Institute of Bioengineering Research, University of Kansas
– sequence: 3
  givenname: Kyle
  surname: Camarda
  fullname: Camarda, Kyle
  organization: Chemical and Petroleum Engineering Department, University of Kansas
– sequence: 4
  givenname: Paulette
  surname: Spencer
  fullname: Spencer, Paulette
  organization: Mechanical Engineering Department, University of Kansas, Institute of Bioengineering Research, University of Kansas
– sequence: 5
  givenname: Candan
  orcidid: 0000-0002-1960-2218
  surname: Tamerler
  fullname: Tamerler, Candan
  email: ctamerler@ku.edu
  organization: Mechanical Engineering Department, University of Kansas, Institute of Bioengineering Research, University of Kansas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33975547$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhU1JaR7tH-iiGLppF04lWbKtTSEMfQwECn2shR7XHg22NJU07fTfV55Jk0wowWDL0neOdK_OeXHivIOieInRJcZd8y5i0jFeIYIrRDFrqt2T4gzTFlcEI3Zyb3xanMe4Rgi3HWLPitO65i1jtD0rVgs_KeusG8oBHCSrSzkOPti0msrf-V1OUq-sg3IEGfZcTEEmGCzEsvehNBDtsF_Y-AQuldIlO1kdvLJyLDewSTYzz4unvRwjvLj5XhQ_Pn74vvhcXX_5tFxcXVe6oThVDXSdxkTlH0oUxpwT2ivNZceNpgwZ1PSGtlwazUBBlwltpGTQN6rDPa8viuXB13i5FptgJxn-CC-t2E_4MAgZcpkjCKU0kbjBQDmiVLWqbVXd1pr3iBlDTfZ6f_DabNUERufqghyPTI9XnF2Jwf8S-ViYsy4bvLkxCP7nFmISk40axlE68NsoCCMNZpggmtHXD9C13waXWzVTHUd1TckdNchcgHW9z_vq2VRcNQ2jNWrI7HX5Hyo_BvLF5BD1Ns8fCd4eCTKTYJcGuY1RLL99PWZf3W_KbTf-ZSoD5ADkCMQYoL9FMBJzcMUhuCIHV-yDK3ZZ1D0QaZtksn5urB0fl9YHacz7uAHCXeceUf0FIMYC-A
CitedBy_id crossref_primary_10_3389_fdmed_2024_1372534
crossref_primary_10_1016_j_copbio_2022_102718
crossref_primary_10_1016_j_heliyon_2024_e40265
crossref_primary_10_1016_j_jpha_2024_101046
crossref_primary_10_1038_s41467_023_36994_z
crossref_primary_10_3390_microorganisms12081682
crossref_primary_10_1002_smll_202305375
crossref_primary_10_1002_advs_202503443
crossref_primary_10_1016_j_csbj_2023_09_038
crossref_primary_10_1039_D3ME00109A
crossref_primary_10_1016_j_scitotenv_2024_172150
crossref_primary_10_1109_TCBB_2024_3411024
crossref_primary_10_1016_j_biortech_2022_128522
crossref_primary_10_3390_molecules29204889
crossref_primary_10_1111_myc_70007
crossref_primary_10_3389_fdmed_2022_1007753
crossref_primary_10_1016_j_ijantimicag_2025_107611
crossref_primary_10_1016_j_ejmech_2023_116072
crossref_primary_10_3390_microorganisms12050842
crossref_primary_10_1371_journal_pone_0315477
crossref_primary_10_3390_ijms22126552
crossref_primary_10_1016_j_bioactmat_2021_08_014
crossref_primary_10_3389_fcimb_2022_1065235
crossref_primary_10_3389_fmicb_2024_1370826
crossref_primary_10_1021_acs_biomac_5c00244
crossref_primary_10_1016_j_alit_2025_08_006
crossref_primary_10_1111_jam_15314
crossref_primary_10_3390_ijms23137404
crossref_primary_10_1108_ILT_06_2023_0196
crossref_primary_10_1557_s43580_023_00629_8
crossref_primary_10_3389_fmicb_2023_1116766
crossref_primary_10_1002_adbi_202400461
crossref_primary_10_21468_SciPostChem_4_1_001
crossref_primary_10_1002_adhm_202101113
crossref_primary_10_1016_j_neucom_2024_127758
crossref_primary_10_1016_j_biotechadv_2022_107968
crossref_primary_10_1016_j_biochi_2025_07_019
crossref_primary_10_1016_j_tifs_2025_104887
crossref_primary_10_3390_antibiotics11101451
crossref_primary_10_3390_app15052608
crossref_primary_10_1016_j_mib_2023_102305
crossref_primary_10_3389_fphar_2022_864412
crossref_primary_10_3390_antibiotics11070936
crossref_primary_10_1038_s44222_024_00152_x
crossref_primary_10_1016_j_drudis_2023_103629
crossref_primary_10_1007_s10462_025_11148_3
Cites_doi 10.1371/journal.pone.0045848
10.1186/1741-7007-4-41
10.1038/s41598-017-16221-8
10.1016/j.cep.2008.02.008
10.1111/j.1747-0285.2010.01044.x
10.1038/nature10388
10.1021/acsbiomaterials.9b01213
10.1371/journal.pcbi.1005324
10.1002/pro.5560041006
10.1038/nature24270
10.3390/app9030557
10.1016/j.dci.2018.05.002
10.1007/s11837-015-1350-7
10.1186/s12859-016-1199-y
10.1080/019697298125470
10.1007/s10844-015-0385-0
10.1016/j.ab.2013.01.019
10.1016/j.chempr.2018.01.005
10.1016/j.compchemeng.2004.10.008
10.1109/BIBM.2015.7359652
10.1038/s41598-020-58014-6
10.1093/nar/gkv1278
10.1007/978-1-4939-6737-7_1
10.1109/AISP.2012.6313744
10.1016/j.jtbi.2016.09.018
10.1109/ICCV.2015.425
10.1016/j.jsb.2017.09.001
10.1080/00031305.1998.10480559
10.4236/jcc.2016.49002
10.1038/s41598-016-0001-8
10.1186/1471-2105-8-65
10.1002/pro.5560060605
10.1002/cphc.201601034
10.1021/acs.jcim.7b00414
10.1093/bioinformatics/bty179
10.1186/s12859-018-2514-6
10.1371/journal.pone.0097539
10.1002/prot.22488
10.1186/s13040-019-0196-x
10.1016/j.ijid.2016.11.415
10.1016/j.dci.2019.103471
10.1023/A:1008095802767
10.1002/pro.5560030405
10.1093/nar/gkm998
10.1038/227561a0
10.1016/j.compchemeng.2015.03.009
10.1016/j.intimp.2018.10.021
10.1177/0022034516679973
10.1016/j.tim.2015.11.004
10.1371/journal.pone.0135961
10.1021/acsami.5b03697
10.1038/nrd3591
10.1007/978-981-13-3588-4_1
10.1016/B978-0-444-63683-6.00008-3
10.1016/S1473-3099(15)00424-7
10.1073/pnas.1821309116
10.1016/j.bbamem.2008.10.020
10.1039/C9SC03532J
10.1021/acsapm.9b00921
10.2174/157489309787158134
10.1016/j.bpj.2019.11.310
10.1142/S2251237316400050
10.1006/jmbi.1996.0897
10.1109/TCBB.2015.2462364
10.1038/d41586-019-03013-5
10.1002/mds3.10144
10.1016/j.actbio.2016.11.026
10.1021/cb800240j
10.1016/j.bbagen.2018.06.011
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-021-04156-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE



Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 17
ExternalDocumentID oai_doaj_org_article_bbc2a161e49044b7b77b373c9f05dd4d
PMC8111958
A665430624
33975547
10_1186_s12859_021_04156_x
Genre Journal Article
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GrantInformation_xml – fundername: National Institute of Dental and Craniofacial Research
  grantid: R01DE025476; R01DE025476
  funderid: http://dx.doi.org/10.13039/100000072
– fundername: NIDCR NIH HHS
  grantid: R01 DE025476
– fundername: NIDCR NIH HHS
  grantid: R01DE025476
– fundername: ;
  grantid: R01DE025476; R01DE025476
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c641t-6e88c12b64142b119924fbc9a89dc450d06fd479adc5ebe8119cdaa5ef6b81f93
IEDL.DBID DOA
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655599300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:53:19 EDT 2025
Tue Nov 04 01:48:28 EST 2025
Sun Nov 09 09:26:51 EST 2025
Mon Oct 06 18:20:34 EDT 2025
Tue Nov 11 10:21:01 EST 2025
Tue Nov 04 17:58:32 EST 2025
Thu Nov 13 14:58:20 EST 2025
Thu Apr 03 07:02:38 EDT 2025
Sat Nov 29 05:40:09 EST 2025
Tue Nov 18 21:53:05 EST 2025
Sat Sep 06 07:27:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rough set theory
Antibacterial
Genetic algorithm
Machine learning
Antimicrobial peptide
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-6e88c12b64142b119924fbc9a89dc450d06fd479adc5ebe8119cdaa5ef6b81f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1960-2218
OpenAccessLink https://doaj.org/article/bbc2a161e49044b7b77b373c9f05dd4d
PMID 33975547
PQID 2528903342
PQPubID 44065
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_bbc2a161e49044b7b77b373c9f05dd4d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8111958
proquest_miscellaneous_2526151204
proquest_journals_2528903342
gale_infotracmisc_A665430624
gale_infotracacademiconefile_A665430624
gale_incontextgauss_ISR_A665430624
pubmed_primary_33975547
crossref_primary_10_1186_s12859_021_04156_x
crossref_citationtrail_10_1186_s12859_021_04156_x
springer_journals_10_1186_s12859_021_04156_x
PublicationCentury 2000
PublicationDate 2021-05-11
PublicationDateYYYYMMDD 2021-05-11
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References D Heaven (4156_CR3) 2019; 574
J Lei (4156_CR27) 2019; 11
M Movahedi (4156_CR61) 2016; 17
AT Muller (4156_CR37) 2018; 58
Z Abbas (4156_CR7) 2016; 4
L Xu (4156_CR34) 2020; 10
S Spänig (4156_CR46) 2019; 12
DH Simpson (4156_CR17) 2019; 10
X Xiao (4156_CR75) 2013; 436
H Yazici (4156_CR22) 2016; 8
K Boone (4156_CR40) 2017; 39
JR Desjarlais (4156_CR59) 1995; 4
C Wisdom (4156_CR23) 2016; 4
B Lin (4156_CR42) 2005; 29
SX Xie (4156_CR21) 2019; 9
GA Lazar (4156_CR57) 1997; 6
S Wang (4156_CR5) 2017; 13
VM D'Costa (4156_CR69) 2011; 477
4156_CR2
M Korichi (4156_CR54) 2008; 47
S Giannerini (4156_CR65) 2012; 370
F Crick (4156_CR76) 1970; 227
JV Lorenzo-Ginori (4156_CR64) 2009; 4
4156_CR9
S Kawashima (4156_CR73) 2008; 36
S Mai (4156_CR31) 2017; 49
PG Clark (4156_CR8) 2016; 47
S Lebre (4156_CR66) 2017; 415
S-X Xie (4156_CR25) 2020; 2
S Spanig (4156_CR6) 2019; 12
CT Yeh (4156_CR60) 2018; 201
CD Fjell (4156_CR43) 2011; 77
H Choi (4156_CR16) 2016; 24
JL Hintze (4156_CR50) 1998; 52
4156_CR55
DT Jones (4156_CR68) 1994; 3
4156_CR15
G Jones (4156_CR56) 1997; 267
L Fan (4156_CR30) 2016; 6
AM Czyzewski (4156_CR32) 2016; 11
YY Liu (4156_CR11) 2016; 16
M Yoshida (4156_CR18) 2018; 4
S Rotem (4156_CR33) 2009; 1788
E Brunk (4156_CR62) 2016; 17
B Bechinger (4156_CR19) 2017; 96
D Veltri (4156_CR38) 2017; 14
EC Wisdom (4156_CR26) 2019; 6
G Wang (4156_CR29) 2016; 44
GG Krivov (4156_CR58) 2009; 77
D Silver (4156_CR1) 2017; 550
D Veltri (4156_CR44) 2018; 34
4156_CR45
A Afshar (4156_CR20) 2021; 4
DT Yucesoy (4156_CR24) 2015; 67
4156_CR49
LY Ng (4156_CR41) 2015; 81
WF Porto (4156_CR35) 2018; 1862
Z Li (4156_CR51) 2014; 9
4156_CR70
JA Al-Tawfiq (4156_CR10) 2017; 54
A Strzepa (4156_CR12) 2018; 65
A Cherkasov (4156_CR39) 2009; 4
AF Dishman (4156_CR28) 2020; 118
O Conchillo-Sole (4156_CR48) 2007; 8
S Patel (4156_CR67) 1998; 12
Z Pawlak (4156_CR72) 1998; 29
EM Gertz (4156_CR52) 2006; 4
CH Kim (4156_CR14) 2018; 86
JW Grzymala-Busse (4156_CR74) 2010; 100
K Boone (4156_CR47) 2018; 19
J Xu (4156_CR4) 2019; 116
GD Brand (4156_CR53) 2012; 7
CD Fjell (4156_CR71) 2012; 11
4156_CR36
V Opuu (4156_CR63) 2017; 7
M Shelomi (4156_CR13) 2020; 103
References_xml – volume: 7
  start-page: e45848
  year: 2012
  ident: 4156_CR53
  publication-title: Plos One.
  doi: 10.1371/journal.pone.0045848
– volume: 4
  start-page: 41
  year: 2006
  ident: 4156_CR52
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-4-41
– volume: 7
  start-page: 15873
  year: 2017
  ident: 4156_CR63
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-16221-8
– volume: 47
  start-page: 1902
  year: 2008
  ident: 4156_CR54
  publication-title: Chem Eng Process
  doi: 10.1016/j.cep.2008.02.008
– volume: 77
  start-page: 48
  year: 2011
  ident: 4156_CR43
  publication-title: Chem Biol Drug Des
  doi: 10.1111/j.1747-0285.2010.01044.x
– volume: 477
  start-page: 457
  year: 2011
  ident: 4156_CR69
  publication-title: Nature
  doi: 10.1038/nature10388
– volume: 6
  start-page: 2682
  year: 2019
  ident: 4156_CR26
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.9b01213
– volume: 13
  start-page: e 1005324
  year: 2017
  ident: 4156_CR5
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1005324
– volume: 4
  start-page: 2006
  year: 1995
  ident: 4156_CR59
  publication-title: Protein Sci
  doi: 10.1002/pro.5560041006
– volume: 550
  start-page: 354
  year: 2017
  ident: 4156_CR1
  publication-title: Nature
  doi: 10.1038/nature24270
– volume: 9
  start-page: 557
  year: 2019
  ident: 4156_CR21
  publication-title: Appl Sci (Basel)
  doi: 10.3390/app9030557
– volume: 86
  start-page: 203
  year: 2018
  ident: 4156_CR14
  publication-title: Dev Comp Immunol
  doi: 10.1016/j.dci.2018.05.002
– ident: 4156_CR9
– volume: 67
  start-page: 754
  year: 2015
  ident: 4156_CR24
  publication-title: JOM
  doi: 10.1007/s11837-015-1350-7
– volume: 17
  start-page: 353
  year: 2016
  ident: 4156_CR61
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1199-y
– volume: 29
  start-page: 661
  year: 1998
  ident: 4156_CR72
  publication-title: Cybern Syst
  doi: 10.1080/019697298125470
– volume: 47
  start-page: 515
  year: 2016
  ident: 4156_CR8
  publication-title: J Intell Inf Syst
  doi: 10.1007/s10844-015-0385-0
– volume: 370
  start-page: 2987
  year: 2012
  ident: 4156_CR65
  publication-title: Philos Trans A Math Phys Eng Sci
– volume: 436
  start-page: 168
  year: 2013
  ident: 4156_CR75
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2013.01.019
– volume: 4
  start-page: 533
  year: 2018
  ident: 4156_CR18
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.01.005
– volume: 29
  start-page: 337
  year: 2005
  ident: 4156_CR42
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2004.10.008
– ident: 4156_CR70
  doi: 10.1109/BIBM.2015.7359652
– volume: 10
  start-page: 944
  year: 2020
  ident: 4156_CR34
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-58014-6
– volume: 44
  start-page: D1087
  year: 2016
  ident: 4156_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1278
– ident: 4156_CR49
  doi: 10.1007/978-1-4939-6737-7_1
– ident: 4156_CR55
  doi: 10.1109/AISP.2012.6313744
– volume: 415
  start-page: 90
  year: 2017
  ident: 4156_CR66
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2016.09.018
– ident: 4156_CR2
  doi: 10.1109/ICCV.2015.425
– volume: 201
  start-page: 100
  year: 2018
  ident: 4156_CR60
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2017.09.001
– volume: 52
  start-page: 181
  year: 1998
  ident: 4156_CR50
  publication-title: Am Stat
  doi: 10.1080/00031305.1998.10480559
– volume: 4
  start-page: 10
  year: 2016
  ident: 4156_CR7
  publication-title: J Comput Commun
  doi: 10.4236/jcc.2016.49002
– volume: 6
  start-page: 1
  year: 2016
  ident: 4156_CR30
  publication-title: Sci Rep
  doi: 10.1038/s41598-016-0001-8
– volume: 8
  start-page: 65
  year: 2007
  ident: 4156_CR48
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-65
– volume: 6
  start-page: 1167
  year: 1997
  ident: 4156_CR57
  publication-title: Protein Sci
  doi: 10.1002/pro.5560060605
– volume: 17
  start-page: 3831
  year: 2016
  ident: 4156_CR62
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201601034
– volume: 58
  start-page: 472
  year: 2018
  ident: 4156_CR37
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00414
– volume: 34
  start-page: 2740
  year: 2018
  ident: 4156_CR44
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty179
– volume: 19
  start-page: 1
  year: 2018
  ident: 4156_CR47
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2514-6
– volume: 9
  start-page: e 97539
  year: 2014
  ident: 4156_CR51
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0097539
– volume: 77
  start-page: 778
  year: 2009
  ident: 4156_CR58
  publication-title: Proteins
  doi: 10.1002/prot.22488
– volume: 12
  start-page: 7
  year: 2019
  ident: 4156_CR6
  publication-title: BioData Min
  doi: 10.1186/s13040-019-0196-x
– volume: 54
  start-page: 77
  year: 2017
  ident: 4156_CR10
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2016.11.415
– volume: 103
  start-page: 103471
  year: 2020
  ident: 4156_CR13
  publication-title: Dev Comp Immunol.
  doi: 10.1016/j.dci.2019.103471
– volume: 12
  start-page: 543
  year: 1998
  ident: 4156_CR67
  publication-title: J Comput Aided Mol Des
  doi: 10.1023/A:1008095802767
– volume: 3
  start-page: 567
  year: 1994
  ident: 4156_CR68
  publication-title: Protein Sci
  doi: 10.1002/pro.5560030405
– volume: 36
  start-page: D202
  year: 2008
  ident: 4156_CR73
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm998
– volume: 227
  start-page: 561
  year: 1970
  ident: 4156_CR76
  publication-title: Nature
  doi: 10.1038/227561a0
– volume: 81
  start-page: 115
  year: 2015
  ident: 4156_CR41
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2015.03.009
– volume: 65
  start-page: 328
  year: 2018
  ident: 4156_CR12
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2018.10.021
– volume: 96
  start-page: 254
  year: 2017
  ident: 4156_CR19
  publication-title: J Dent Res
  doi: 10.1177/0022034516679973
– volume: 24
  start-page: 111
  year: 2016
  ident: 4156_CR16
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2015.11.004
– volume: 11
  start-page: e 0135961
  year: 2016
  ident: 4156_CR32
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0135961
– volume: 8
  start-page: 5070
  year: 2016
  ident: 4156_CR22
  publication-title: ACS Appl Mater Interfaces.
  doi: 10.1021/acsami.5b03697
– volume: 11
  start-page: 37
  year: 2012
  ident: 4156_CR71
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3591
– ident: 4156_CR15
  doi: 10.1007/978-981-13-3588-4_1
– volume: 39
  start-page: 221
  year: 2017
  ident: 4156_CR40
  publication-title: Comput Aided Chem Eng
  doi: 10.1016/B978-0-444-63683-6.00008-3
– volume: 16
  start-page: 161
  year: 2016
  ident: 4156_CR11
  publication-title: Lancet Infect Dis.
  doi: 10.1016/S1473-3099(15)00424-7
– volume: 116
  start-page: 16856
  year: 2019
  ident: 4156_CR4
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1821309116
– volume: 1788
  start-page: 1582
  year: 2009
  ident: 4156_CR33
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamem.2008.10.020
– ident: 4156_CR45
– volume: 10
  start-page: 9708
  year: 2019
  ident: 4156_CR17
  publication-title: Chem Sci
  doi: 10.1039/C9SC03532J
– volume: 2
  start-page: 1134
  year: 2020
  ident: 4156_CR25
  publication-title: ACS Appl Polym Mater
  doi: 10.1021/acsapm.9b00921
– volume: 4
  start-page: 28
  year: 2009
  ident: 4156_CR64
  publication-title: Curr Bioinform
  doi: 10.2174/157489309787158134
– volume: 100
  start-page: 99
  year: 2010
  ident: 4156_CR74
  publication-title: Fund Inform
– volume: 12
  start-page: 7
  year: 2019
  ident: 4156_CR46
  publication-title: BioData Mining
  doi: 10.1186/s13040-019-0196-x
– volume: 118
  start-page: 24a
  year: 2020
  ident: 4156_CR28
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2019.11.310
– volume: 4
  start-page: 1640005
  year: 2016
  ident: 4156_CR23
  publication-title: J Mol Eng Mater
  doi: 10.1142/S2251237316400050
– ident: 4156_CR36
– volume: 267
  start-page: 727
  year: 1997
  ident: 4156_CR56
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0897
– volume: 14
  start-page: 300
  year: 2017
  ident: 4156_CR38
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2015.2462364
– volume: 574
  start-page: 163
  year: 2019
  ident: 4156_CR3
  publication-title: Nature
  doi: 10.1038/d41586-019-03013-5
– volume: 4
  start-page: 10144
  year: 2021
  ident: 4156_CR20
  publication-title: Med Dev Sens.
  doi: 10.1002/mds3.10144
– volume: 49
  start-page: 16
  year: 2017
  ident: 4156_CR31
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2016.11.026
– volume: 11
  start-page: 3919
  year: 2019
  ident: 4156_CR27
  publication-title: Am J Transl Res
– volume: 4
  start-page: 65
  year: 2009
  ident: 4156_CR39
  publication-title: ACS Chem Biol
  doi: 10.1021/cb800240j
– volume: 1862
  start-page: 2043
  year: 2018
  ident: 4156_CR35
  publication-title: Biochim Biophys Acta Gen Subj
  doi: 10.1016/j.bbagen.2018.06.011
SSID ssj0017805
Score 2.5702052
Snippet Background Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related...
Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural...
Background Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related...
Abstract Background Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 239
SubjectTerms Algorithms
Amino Acid Sequence
Antibacterial
Antibacterial agents
Antibiotic resistance
Antibiotics
Antiinfectives and antibacterials
Antimicrobial activity
Antimicrobial agents
Antimicrobial Cationic Peptides
Antimicrobial peptide
Antimicrobial peptides
Bacteria
Bioinformatics
Biomedical and Life Sciences
Biomimetics
Chemical compounds
Codon
Combinatorial analysis
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Customization
Decision making
Deep learning
Deoxyribonucleic acid
Design
DNA
Drug development
Drug resistance
Drug Resistance, Microbial
Genetic algorithm
Genetic algorithms
Identification and classification
Immune system
Learning algorithms
Life Sciences
Machine Learning
Machine Learning and Artificial Intelligence in Bioinformatics
Microarrays
Microbiological research
Microorganisms
Neural networks
Nucleotide sequence
Peptides
Pharmacology
Pore Forming Cytotoxic Proteins
Research Article
Rough set theory
Set theory
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkEFIHMBqHo7jnFBBVHCpKh5Sb5Zf2V2pmyybFJV_z4zX2ZIieuGYeJzEnhl7Yn_-hpBXUvPGGueZ0Kln3DeSmUKXrPaC28borLIyJJuoDg_l8XF9FBfc-girHMfEMFC7zuIa-V5e4pZYUfD83eoHw6xRuLsaU2hcJdeQJSEP0L2j7S4C8vWPB2Wk2OszZGtjCErAg-mCnU0mo8DZ__fI_MfUdBE2eWHvNExJB7f_tzF3yK0YjNL9jfXcJVd8e4_c2KSn_HWfzGGwMCGBBAUzw9OOVJ_M4DnDfElxAZcuAxTT05h7Ykb7YaSeoBANUxfwIViw6iA4HyjocbFcBPInePEKITUg84B8P_j47cMnFjMzMCt4NjDhpbRZbuCC5yZDCCtvjK21rJ3lZepS0The1drZEqxEgoR1Wpe-EUZmTV08JDtt1_rHhIoSaspCptIabi1IF4X2pS9F7RqIzhKSjSpSNtKWY_aMExV-X6RQG7UqUKsKalVnCXmzrbPakHZcKv0eNb-VRMLtcKNbz1T0X2WMzTVEx57XKeemMlVliqqwNXyjc9wl5CXajUJKjRYxOzN92vfq89cvah8TPMOfWc4T8joKNR20wep4BAJ6Alm4JpK7E0nweTstHu1KxTGnV-dGlZAX22KsiTi61nenQQZD2DyFRzzaWPO23QWEphBcVgmpJnY-6ZhpSbuYB0ZyUDCSFiXk7egR55_1745_cnkrnpKbefDVkmXZLtkZ1qf-Gblufw6Lfv08ePpvRQpeEA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQAYkL70egIIOQOEDUJHYc51gQFVwq1ALqzfIruyt1k9Umi-DfM-M8IOUhwXHjz9l4PGNP4plvCHkuNa-scT4WOvEx95WMDdN5XHrBbWV0WlgZik0Ux8fy7Kz8MCSFtWO0-3gkGVbqYNZSHLQpcq3FGFKAaeUiBs_xMmx3Egs2nJx-ns4OkKV_TI_5bb_ZFhSY-n9dj3_akC4GS144MQ0b0dGN_xvCTXJ9cDzpYa8pt8glX98mV_tSlN_ukCUsDCYUi6CgUpjZSPX5otmuuuWa4sdaug5hl54OdSYWtO1GmgkKni91IRYEGzYNOOIdhTlbrVeB6An-eIPhM4C5Sz4dvf345l08VGGIreBpFwsvpU0zAz94ZlIMV-WVsaWWpbM8T1wiKseLUjubg0ZIQFinde4rYWRalewe2aub2j8gVOTQUzKZSGu4tYBmTPvc56J0FXhiEUnHiVF2oCjHShnnKryqSKF6CSqQoAoSVF8j8nLqs-kJOv6Kfo3zPSGRXDtcaLYLNdiqMsZmGjxhz8uEc1OYojCsYLaEZ3SOu4g8Q21RSJ9RY3zOQu_aVr0_PVGHWMwZ3sIyHpEXA6hqYAxWD-kOIAlk3Joh92dIsG87bx6VUg3rS6uyHA-IGeNZRJ5OzdgTY-Zq3-wCBt3VLIFb3O91eBo3AzcUHMkiIsVMu2eCmbfUq2VgH4cJRoKiiLwadfzHY_1Z8A__Df6IXMuCmeRxmu6TvW6784_JFfulW7XbJ8HevwPRSFUH
  priority: 102
  providerName: Springer Nature
Title Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides
URI https://link.springer.com/article/10.1186/s12859-021-04156-x
https://www.ncbi.nlm.nih.gov/pubmed/33975547
https://www.proquest.com/docview/2528903342
https://www.proquest.com/docview/2526151204
https://pubmed.ncbi.nlm.nih.gov/PMC8111958
https://doaj.org/article/bbc2a161e49044b7b77b373c9f05dd4d
Volume 22
WOSCitedRecordID wos000655599300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdggMQL4pvAqAJC4gGi5cOxnccNbWJCVFEHqPBi2Y7TVlrTqknR-O-5c5KyDAEvvFhKfW6Su7N9jn_-HSGvhKKl0YUNmAptQG0pAp2oNMgso6bUKuJGuGQTfDwW02mWX0r1hZiwlh64VdyB1iZWEJZYmoWUaq451wlPTFaGaVHQAkffkGf9YqrbP0Cm_v6IjGAHdYQ8bQHCEfBIOgsuBtOQY-v_fUy-NCldBUxe2TV1k9HJXXKniyL9w_bp75FrtrpPbrV5JX88IHPo5dplfvDBP_CYoq_OZ6vNopkvffzy6i8dhtL6XdKImV83PWeED2GsXzhgB1asVxBVNz4YYLFcONYmuPEasTAg85B8Pjn-9O590KVUCAyjURMwK4SJYg0XNNYRYk9pqU2mRFYYmoZFyMqC8kwVJgXzCpAwhVKpLZkWUZklj8hetarsE-KzFFqKRITCaGoMSCeJsqlNWVaAbZhHol7D0nR845j24ly6dYdgsrWKBKtIZxV54ZE3uzbrlm3jr9JHaLidJDJlux_Af2TnP_Jf_uORl2h2iVwYFYJtZmpb1_L0bCIPMTMzLKli6pHXnVC5gncwqju7AJpA-qyB5P5AEjqrGVb33iW7waKWcYq7vUlCY4-82FVjSwTAVXa1dTIYe8Yh_MXj1hl3751ATAlRIfcIH7jpQDHDmmoxd1TiYGBkG_LI296hfz3WnxX_9H8o_hm5HbsOmQZRtE_2ms3WPic3zfdmUW9G5DqfcleKEblxdDzOJyPXxaH8wIMRYnRzKPP0G9Tnpx_zr3A1OfvyE5X_WXI
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoIL70eggEEgDhA1DydxDgiVR9XVlgpBkXozfmV3pW522WSh_VP8RmacZEuK6K0Hjrse79rOzHgcz3wfIc-4ZIVWxvqpDKzPbMF9FcvEz23KdKFkmGnuyCayvT1-cJB_WiO_uloYTKvsfKJz1Gam8R35ZpTglVgcs-jN_LuPrFF4u9pRaDRqMbTHP-HIVr0evIfn-zyKtj_sv9vxW1YBX6csrP3Ucq7DSMEHFqkQ0y9ZoXQueW40SwITpIVhWS6NTmCGHCS0kTKxRap4WCD4Erj8CyzmGdrVMPNXtxbID9AV5vB0swoRHc7HJAgshE_9o97m5zgC_t4J_tgKT6dpnrqrdVvg9rX_bfGuk6ttsE23Guu4QdZseZNcaug3j2-RMThD5QgyKJgRVnNSeTiCcdfjKcUX1HTqUk0tbbk1RrSqO2gNCtE-NS7_BRvmMzh81BT0dDKdOHAr-OM5pgyBzG3y9VymeYesl7PS3iM0TaAnj3nAtWJag3QcS5vYJM1NAdGnR8JOJYRuYdmRHeRQuOMZT0WjRgLUSDg1EkceebnqM29ASc6UfouatpJEQHH3xWwxEq1_EkrpSEL0b1keMKYylWUqzmKdwxiNYcYjT1FPBUKGlJiTNJLLqhKDL5_FFhJYw8kzYh550QoVM5iDlm2JB6wEooz1JDd6kuDTdL-502PR-tRKnCixR56smrEn5gmWdrZ0MhiiRwH8xN3GelbzjiH0huA580jWs6vewvRbysnYIa7DA0ZQJo-86izwZFj_Xvj7Z8_iMbm8s_9xV-wO9oYPyJXI-YnED8MNsl4vlvYhuah_1JNq8ch5GUq-nbdl_ga7B7xE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELbQcogX7iOwgEFIPLDR5nAc53E5KlagasUC2jfLV9pK26RqUgT_nhknKZvlkBCPjT-n9nhsj-OZbwh5LhQrjbYu5CpyIXOlCHWqsrBwnJlSqzg3wiebyKdTcXJSHJ2J4vfe7sOVZBfTgCxNVbu_smU3xQXfb2LkXQvRvQBDzHkIVuRFho70eF4__rK9R0DG_iFU5rf1RtuRZ-3_dW0-szmdd5w8d3vqN6XJ9f_vzg1yrTdI6UGnQTfJBVfdIpe7FJXfb5M5LBjaJ5GgoGoY8UjV6axeL9r5kuJHXLr07piO9vknZrRpB_oJChYxtd5HBAtWNbaJwlgulgtPAAV_vEK3GsDcIZ8nbz-9fhf22RlCw1nchtwJYeJEww-W6BjdWFmpTaFEYQ3LIhvx0rK8UNZkoCkCEMYqlbmSaxGXRXqX7FR15e4TyjOoKVIRCaOZMYBOU-Uyl_HClmChBSQeBkmanrocM2icSn-EEVx2EpQgQeklKL8F5OW2zqoj7vgr-hWO_RaJpNv-Qb2eyX4OS61NosBCdqyIGNO5znOd5qkpoI3WMhuQZ6g5Emk1KvTbmalN08jD44_yAJM8w-ksYQF50YPKGvpgVB8GAZJAJq4RcneEhHlvxsWDgsp-3WlkkuHFcZqyJCBPt8VYE33pKldvPAbN2CSCV9zr9Hnb7xTMUzAw84DkI00fCWZcUi3mnpUcBhiJiwKyN-j7z2b9WfAP_g3-hFw5ejORHw6n7x-Sq4mfMVkYx7tkp11v3CNyyXxtF836sV8GfgAr9mDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+genetic+algorithm+with+machine+learning+strategies+for+designing+potent+antimicrobial+peptides&rft.jtitle=BMC+bioinformatics&rft.au=Kyle+Boone&rft.au=Cate+Wisdom&rft.au=Kyle+Camarda&rft.au=Paulette+Spencer&rft.date=2021-05-11&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1186%2Fs12859-021-04156-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bbc2a161e49044b7b77b373c9f05dd4d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon