A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations
Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been a...
Uložené v:
| Vydané v: | BMC bioinformatics Ročník 22; číslo 1; s. 136 - 20 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
21.03.2021
BioMed Central Ltd Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background
Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately.
Results
We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach.
Conclusion
Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at
https://github.com/zhanglabNKU/VGAELDA
. |
|---|---|
| AbstractList | Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately.
We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach.
Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA . Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. Results We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Conclusion Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at Keywords: Variational inference, Graph autoencoder, lncRNA-disease association, Representation learning Abstract Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. Results We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Conclusion Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA . Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA. Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. Results We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Conclusion Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA. Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately.BACKGROUNDNumerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately.We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach.RESULTSWe proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach.Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA .CONCLUSIONCross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA . Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. Results We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Conclusion Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA . |
| ArticleNumber | 136 |
| Audience | Academic |
| Author | Quan, Xiongwen Zhang, Han Jin, Chen Shi, Zhuangwei Yin, Yanbin |
| Author_xml | – sequence: 1 givenname: Zhuangwei surname: Shi fullname: Shi, Zhuangwei organization: College of Artificial Intelligence, Nankai University – sequence: 2 givenname: Han surname: Zhang fullname: Zhang, Han email: zhanghan@nankai.edu.cn organization: College of Artificial Intelligence, Nankai University – sequence: 3 givenname: Chen surname: Jin fullname: Jin, Chen organization: College of Computer Science, Nankai University – sequence: 4 givenname: Xiongwen surname: Quan fullname: Quan, Xiongwen organization: College of Artificial Intelligence, Nankai University – sequence: 5 givenname: Yanbin surname: Yin fullname: Yin, Yanbin organization: Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33745450$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktr3DAUhU1JaR7tH-iiGLppF04lWZbtTWEIfQRCC2n24lq-chQ80lTyhDab_vXeGadJJpRgsM3xd46sq3OY7fngMctec3bMeaM-JC6aqi2Y4AWTrC6Lm2fZAZc1LwRn1d6D9_3sMKUrxnjdsOpFtl-WtaxkxQ6yP4s84ipiQj_B5ILPR4TonR_yZehxzDtI2OekX0N0WwLG3HmLEb3BHHyfDxFWlzmsp0ASmWJuQ8wptHdm2iSN3px_WxS9S0hpOaQUzJyVXmbPLYwJX90-j7KLz58uTr4WZ9-_nJ4szgqjJJ8KBaUqeddJKwBF3ypmu050XWeZVW1Zg4KWtlRLhVx00IMsFTPW1I3llarLo-x0ju0DXOlVdEuIv3UAp7dCiIOGODkzoq4F9G3TWyktStEyUIaEukWBNVopKOvjnLVad0vsDU0uwrgTuvvFu0s9hGtdt00pFKOAd7cBMfxcY5r00iWD4wgewzppUbFSNYruhL59hF6FdaQj2FBcCsVbJu6pAWgDdDiB1jWbUL1QlaJuMNEQdfwfiq4el85QtawjfcfwfsdAzIS_pgHWKenTH-e77JuHQ7mbxr-mESBmwMSQUkR7h3CmN3XWc5011Vlv66xvyNQ8Mhk315R-3Y1PW8vZmmgdP2C8n9wTrr8y3ArI |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2025_108431 crossref_primary_10_1038_s41598_024_81862_5 crossref_primary_10_3389_fmicb_2024_1438942 crossref_primary_10_1186_s12859_021_04467_z crossref_primary_10_1016_j_compbiomed_2024_108623 crossref_primary_10_1109_JBHI_2023_3286917 crossref_primary_10_1093_bfgp_elae010 crossref_primary_10_3389_fcell_2021_753027 crossref_primary_10_1093_bib_bbab604 crossref_primary_10_1093_bib_bbac539 crossref_primary_10_1186_s12864_024_09998_2 crossref_primary_10_1038_s41392_022_00994_0 crossref_primary_10_12677_ecl_2024_1341816 crossref_primary_10_1109_ACCESS_2024_3472688 crossref_primary_10_1093_bib_bbac370 crossref_primary_10_3389_fgene_2023_1332273 crossref_primary_10_1186_s12859_024_05672_2 crossref_primary_10_3389_fgene_2022_1023615 crossref_primary_10_1016_j_ymeth_2023_01_006 crossref_primary_10_1007_s13042_024_02375_1 crossref_primary_10_1186_s12911_023_02384_0 crossref_primary_10_1093_bib_bbad069 crossref_primary_10_1016_j_ab_2023_115297 crossref_primary_10_1371_journal_pone_0281061 crossref_primary_10_3390_ijms241210299 crossref_primary_10_1186_s12859_023_05625_1 crossref_primary_10_12677_hjbm_2025_153070 crossref_primary_10_3103_S0891416824700204 crossref_primary_10_1186_s12859_022_04715_w crossref_primary_10_1109_JBHI_2024_3385352 crossref_primary_10_3390_biom12010064 crossref_primary_10_1016_j_neucom_2021_08_029 crossref_primary_10_1016_j_physa_2025_130883 crossref_primary_10_1109_TNNLS_2023_3307149 crossref_primary_10_1109_TCBB_2022_3203564 crossref_primary_10_1186_s12859_024_05893_5 crossref_primary_10_1093_bib_bbac364 crossref_primary_10_3390_ijms23020972 crossref_primary_10_1109_ACCESS_2025_3580833 crossref_primary_10_1038_s41598_025_16177_0 crossref_primary_10_1007_s12539_025_00717_3 crossref_primary_10_1016_j_compbiomed_2025_110870 crossref_primary_10_1007_s11227_024_06013_z crossref_primary_10_1093_bib_bbae179 crossref_primary_10_1016_j_artmed_2023_102665 crossref_primary_10_1016_j_compbiolchem_2022_107722 crossref_primary_10_1016_j_artmed_2025_103238 crossref_primary_10_1016_j_compbiomed_2022_106527 crossref_primary_10_1109_TCBB_2023_3248787 crossref_primary_10_1007_s11042_023_16382_x crossref_primary_10_1016_j_knosys_2024_111622 crossref_primary_10_1007_s12539_023_00573_z crossref_primary_10_1109_TBDATA_2024_3433380 crossref_primary_10_1007_s00438_022_01909_y |
| Cites_doi | 10.1093/bioinformatics/bty327 10.1093/bib/bbaa028 10.1007/s10208-009-9045-5 10.1371/journal.pone.0141287 10.1109/TKDE.2007.190672 10.3390/cells8091012 10.1093/bioinformatics/btx794 10.1186/s12920-020-00757-2 10.1038/srep22366 10.1093/bib/bbaa186 10.1007/978-94-011-5014-9_12 10.3389/fgene.2019.00416 10.18632/aging.102080 10.1561/2200000016 10.1093/nar/gks1099 10.1093/bioinformatics/btz965 10.1093/bioinformatics/btw639 10.1038/srep11338 10.12659/MSM.910955 10.1016/j.yexcr.2016.08.012 10.1007/s13277-013-1142-z 10.1016/j.omtn.2019.07.022 10.1093/nar/gkw943 10.1145/279943.279962 10.1109/TNN.2008.2005605 10.1109/TPAMI.2008.216 10.1002/jcb.27630 10.1093/bioinformatics/btq510 10.3322/caac.21492 10.1016/j.compbiolchem.2020.107282 10.1093/bioinformatics/btu269 10.1093/bioinformatics/btz825 10.1038/nm1784 10.1093/bioinformatics/btx545 10.1093/nar/gky1032 10.1186/s12864-019-6413-7 10.1038/s41598-018-19357-3 10.1093/bioinformatics/btv148 10.1016/j.tcb.2011.04.001 10.1093/bib/bbaa067 10.1093/bioinformatics/bty503 10.1093/bioinformatics/btt426 10.1109/JBHI.2019.2958389 10.1186/s12859-020-3458-1 10.1186/1752-0509-4-S2-S6 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1186/s12859-021-04073-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_72ad98df44fe4290a6cad979e2e7ef42 PMC7983260 A656407028 33745450 10_1186_s12859_021_04073_z |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61973174 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61973174 – fundername: ; grantid: 61973174 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c641t-6a3631bb4f2ae2d960fbb2bbbf0f6937a6a9745746e12bada4360cfc78f15673 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000630974200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:45:29 EDT 2025 Tue Nov 04 01:53:11 EST 2025 Sun Nov 09 12:35:58 EST 2025 Tue Oct 07 05:20:00 EDT 2025 Tue Nov 11 10:38:48 EST 2025 Tue Nov 04 17:53:02 EST 2025 Thu Nov 13 14:36:48 EST 2025 Thu Apr 03 07:03:12 EDT 2025 Sat Nov 29 05:40:09 EST 2025 Tue Nov 18 22:25:28 EST 2025 Sat Sep 06 07:27:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Representation learning Graph autoencoder Variational inference lncRNA-disease association |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c641t-6a3631bb4f2ae2d960fbb2bbbf0f6937a6a9745746e12bada4360cfc78f15673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2514261902?pq-origsite=%requestingapplication% |
| PMID | 33745450 |
| PQID | 2514261902 |
| PQPubID | 44065 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_72ad98df44fe4290a6cad979e2e7ef42 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7983260 proquest_miscellaneous_2503686503 proquest_journals_2514261902 gale_infotracmisc_A656407028 gale_infotracacademiconefile_A656407028 gale_incontextgauss_ISR_A656407028 pubmed_primary_33745450 crossref_primary_10_1186_s12859_021_04073_z crossref_citationtrail_10_1186_s12859_021_04073_z springer_journals_10_1186_s12859_021_04073_z |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-21 |
| PublicationDateYYYYMMDD | 2021-03-21 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2021 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | X Chen (4073_CR12) 2013; 29 4073_CR23 X Chen (4073_CR3) 2016; 18 M Qu (4073_CR36) 2019; 97 X Chen (4073_CR13) 2015; 5 K-X Lou (4073_CR48) 2018; 22 4073_CR62 4073_CR61 Q Le (4073_CR39) 2014; 32 4073_CR60 4073_CR28 F Scarselli (4073_CR31) 2009; 20 F Wang (4073_CR54) 2008; 20 J Wang (4073_CR56) 2009; 31 F Monti (4073_CR20) 2017; 30 LM Schriml (4073_CR42) 2018; 47 D Chicco (4073_CR44) 2020; 21 4073_CR19 E Asgari (4073_CR40) 2015; 10 A Poursheikhani (4073_CR50) 2020; 13 4073_CR58 M Belkin (4073_CR7) 2006; 7 G Chen (4073_CR38) 2012; 41 4073_CR57 D Yao (4073_CR27) 2020; 21 R Johnson (4073_CR55) 2007; 8 M Cui (4073_CR49) 2019; 120 O Wapinski (4073_CR1) 2011; 21 F Bray (4073_CR45) 2018; 68 Q Xiao (4073_CR11) 2018; 34 E Candès (4073_CR8) 2009; 9 J Li (4073_CR17) 2020; 36 4073_CR43 D Zhou (4073_CR53) 2004; 16 C Lu (4073_CR18) 2018; 34 X Wu (4073_CR35) 2020; 87 X Chen (4073_CR16) 2018; 34 C Lu (4073_CR21) 2018; 24 G Fu (4073_CR25) 2017; 34 N Srivastava (4073_CR63) 2014; 15 Z Xia (4073_CR9) 2010; 4 R Zhang (4073_CR51) 2018; 24 J Piñero (4073_CR41) 2016; 45 M Sun (4073_CR5) 2014; 35 W Lan (4073_CR24) 2016; 33 L Wang (4073_CR22) 2019; 36 S Jalali (4073_CR2) 2015; 31 4073_CR34 4073_CR33 P Xuan (4073_CR29) 2019; 10 4073_CR30 G Xie (4073_CR14) 2019; 18 Y Sang (4073_CR4) 2016; 6 MA Faghihi (4073_CR6) 2008; 14 N Natarajan (4073_CR15) 2014; 30 4073_CR37 L Ding (4073_CR26) 2018; 8 F Alimirah (4073_CR46) 2016; 349 Z-H You (4073_CR10) 2010; 26 C Han (4073_CR47) 2019; 11 S Boyd (4073_CR59) 2011; 3 P Xuan (4073_CR32) 2019; 8 M Belkin (4073_CR52) 2002; 15 |
| References_xml | – volume: 15 start-page: 1929 year: 2014 ident: 4073_CR63 publication-title: J Mach Learn Res – volume: 34 start-page: 3357 issue: 19 year: 2018 ident: 4073_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty327 – ident: 4073_CR23 doi: 10.1093/bib/bbaa028 – volume: 8 start-page: 1489 issue: 53 year: 2007 ident: 4073_CR55 publication-title: J Mach Learn Res – volume: 97 start-page: 5241 year: 2019 ident: 4073_CR36 publication-title: Proc Mach Learn Res – ident: 4073_CR33 – volume: 9 start-page: 717 issue: 6 year: 2009 ident: 4073_CR8 publication-title: Found Comput Math doi: 10.1007/s10208-009-9045-5 – ident: 4073_CR37 – volume: 18 start-page: 558 issue: 4 year: 2016 ident: 4073_CR3 publication-title: Brief Bioinform – volume: 10 start-page: 0141287 issue: 11 year: 2015 ident: 4073_CR40 publication-title: PLoS ONE doi: 10.1371/journal.pone.0141287 – volume: 20 start-page: 55 issue: 1 year: 2008 ident: 4073_CR54 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2007.190672 – volume: 8 start-page: 1012 issue: 9 year: 2019 ident: 4073_CR32 publication-title: Cells doi: 10.3390/cells8091012 – volume: 34 start-page: 1529 issue: 9 year: 2017 ident: 4073_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx794 – volume: 13 start-page: 108 year: 2020 ident: 4073_CR50 publication-title: BMC Med Genomics doi: 10.1186/s12920-020-00757-2 – ident: 4073_CR19 – volume: 6 start-page: 22366 year: 2016 ident: 4073_CR4 publication-title: Sci Rep doi: 10.1038/srep22366 – ident: 4073_CR28 doi: 10.1093/bib/bbaa186 – ident: 4073_CR57 doi: 10.1007/978-94-011-5014-9_12 – volume: 10 start-page: 416 year: 2019 ident: 4073_CR29 publication-title: Front Genet doi: 10.3389/fgene.2019.00416 – volume: 11 start-page: 4858 issue: 14 year: 2019 ident: 4073_CR47 publication-title: Aging (Albany NY) doi: 10.18632/aging.102080 – ident: 4073_CR60 – ident: 4073_CR43 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 4073_CR59 publication-title: Found Trends Mach Learn doi: 10.1561/2200000016 – volume: 41 start-page: 983 issue: D1 year: 2012 ident: 4073_CR38 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1099 – volume: 36 start-page: 2538 issue: 8 year: 2020 ident: 4073_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz965 – volume: 33 start-page: 458 issue: 3 year: 2016 ident: 4073_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw639 – volume: 22 start-page: 1358 issue: 5 year: 2018 ident: 4073_CR48 publication-title: Eur Rev Med Pharmacol Sci – volume: 5 start-page: 11338 issue: 1 year: 2015 ident: 4073_CR13 publication-title: Sci Rep doi: 10.1038/srep11338 – volume: 24 start-page: 8685 year: 2018 ident: 4073_CR51 publication-title: Med Sci Monitor doi: 10.12659/MSM.910955 – volume: 349 start-page: 15 issue: 1 year: 2016 ident: 4073_CR46 publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2016.08.012 – volume: 35 start-page: 1065 year: 2014 ident: 4073_CR5 publication-title: Tumor Biol doi: 10.1007/s13277-013-1142-z – volume: 30 start-page: 3697 year: 2017 ident: 4073_CR20 publication-title: Adv Neural Inf Process Syst – volume: 18 start-page: 45 issue: 6 year: 2019 ident: 4073_CR14 publication-title: Mol Ther Nucl Acids doi: 10.1016/j.omtn.2019.07.022 – volume: 45 start-page: 833 issue: D1 year: 2016 ident: 4073_CR41 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw943 – ident: 4073_CR58 doi: 10.1145/279943.279962 – volume: 20 start-page: 61 issue: 1 year: 2009 ident: 4073_CR31 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2005605 – volume: 31 start-page: 1600 issue: 9 year: 2009 ident: 4073_CR56 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.216 – volume: 120 start-page: 6926 issue: 5 year: 2019 ident: 4073_CR49 publication-title: J Cell Biochem doi: 10.1002/jcb.27630 – volume: 26 start-page: 2744 issue: 21 year: 2010 ident: 4073_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq510 – ident: 4073_CR61 – volume: 68 start-page: 394 issue: 6 year: 2018 ident: 4073_CR45 publication-title: CA Cancer J Clin doi: 10.3322/caac.21492 – volume: 87 start-page: 107282 year: 2020 ident: 4073_CR35 publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2020.107282 – volume: 30 start-page: 60 issue: 12 year: 2014 ident: 4073_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu269 – volume: 36 start-page: 4038 issue: 13 year: 2019 ident: 4073_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz825 – volume: 32 start-page: 1188 year: 2014 ident: 4073_CR39 publication-title: Proc Mach Learn Res – volume: 14 start-page: 723 issue: 7 year: 2008 ident: 4073_CR6 publication-title: Nat Med doi: 10.1038/nm1784 – volume: 34 start-page: 239 issue: 2 year: 2018 ident: 4073_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx545 – volume: 47 start-page: 955 issue: D1 year: 2018 ident: 4073_CR42 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1032 – volume: 21 start-page: 6 year: 2020 ident: 4073_CR44 publication-title: BMC Genom doi: 10.1186/s12864-019-6413-7 – volume: 8 start-page: 1065 issue: 1 year: 2018 ident: 4073_CR26 publication-title: Sci Rep doi: 10.1038/s41598-018-19357-3 – volume: 31 start-page: 2241 issue: 14 year: 2015 ident: 4073_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv148 – volume: 21 start-page: 354 issue: 6 year: 2011 ident: 4073_CR1 publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2011.04.001 – ident: 4073_CR30 doi: 10.1093/bib/bbaa067 – volume: 34 start-page: 4256 issue: 24 year: 2018 ident: 4073_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty503 – ident: 4073_CR34 – ident: 4073_CR62 – volume: 29 start-page: 2617 issue: 20 year: 2013 ident: 4073_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt426 – volume: 24 start-page: 2420 issue: 8 year: 2018 ident: 4073_CR21 publication-title: IEEE J Biomed Health doi: 10.1109/JBHI.2019.2958389 – volume: 21 start-page: 126 year: 2020 ident: 4073_CR27 publication-title: BMC Bioinform doi: 10.1186/s12859-020-3458-1 – volume: 4 start-page: 6 issue: Suppl 2 year: 2010 ident: 4073_CR9 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-S2-S6 – volume: 15 start-page: 585 year: 2002 ident: 4073_CR52 publication-title: Adv Neural Inf Process Syst – volume: 16 start-page: 321 year: 2004 ident: 4073_CR53 publication-title: Adv Neural Inf Process Syst – volume: 7 start-page: 2399 issue: 1 year: 2006 ident: 4073_CR7 publication-title: J Mach Learn Res |
| SSID | ssj0017805 |
| Score | 2.5959802 |
| Snippet | Background
Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential... Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential... Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential... Abstract Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 136 |
| SubjectTerms | Algorithms Alzheimer's disease Bioinformatics Biomedical and Life Sciences Breast cancer Case studies Computational Biology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data mining Datasets Deep learning Genes Graph autoencoder Graphic methods Graphical representations Health aspects Humans Inference Learning algorithms Life Sciences lncRNA-disease association Machine Learning Medical genetics Medical research Medicine, Experimental Methods Microarrays Model testing Neural networks Non-coding RNA Performance evaluation Propagation Representation learning Research Article RNA RNA, Long Noncoding - genetics Robustness (mathematics) Software Source code Training Variational inference |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQQYhcQCrSZy14-OCqOCyQqWH3iw_y0pVFm12K9ELf50Zx9k2RcCFqz1OnJnxeCYef0PI68oHxL9VDGLlloGVnDEVQ2Tc8qYtjWpEcKnYhFws2pMT9eVKqS_MCRvggQfGHcjaeNX62DQxgO0sjXDQIFWogwyxSda3lGoMpvL5ASL1j1dkWnHQV4jTxjAdAZRWcnYx2YYSWv_vNvnKpnQ9YfLaqWnajA7vkjvZi6TzYfb3yI3Q3Se3hrqSPx6Qn3OawCrHi0UdzcUhTmmqfENx7_IU2s8hVM6_A-lyvPtHTedpQrKmZrtZIdSlD2sK7i2Fh3q8RAJPOuvc0WLO8gkPNZdy7h-S48OPxx8-sVxpgTnRVBsmDBe8sraJtQm1h6gmWltba2MZBTgwRhiIO2YSJFfV1njTcFG66GQbIf6T_BHZ61ZdeEKoVaFxVVS-RZiasjbWz2YewiZwNCT3sSDVyHftMgo5FsM40ykaaYUeZKVBVjrJSl8U5O1uzPcBg-Ov1O9RnDtKxM9ODaBVOmuV_pdWFeQVKoNGhIwOU3BOzbbv9eevR3oOHjC8CfyygrzJRHEF3-BMvtEAnEBQrQnl_oQSlrCbdo86p7MJ6TU4nim8LWEyL3fdOBLT4rqw2iINOCAtONm8II8HFd19N-cgMRBBQeREeSeMmfZ0y28JYFwqsPMCRr4b1fxyWn9m_NP_wfhn5HadlilndbVP9jbrbXhObrrzzbJfv0iL_Be941aj priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaggMSF9yNQkEFIHMAiibO2c1wQFVxWaFuh3iw_l5WqBG12K9ELf52x46SkPCS42uMkHo89M_HMNwi9KKwL-Lc1AV9ZEDglZ6T2zhOqaSVyVVfMmVhsgi8W4vi4_pSSwroh2n24kownddzWgr3pioC1RkJIAQgep-TsMroC6k6Egg3Lw8_j3UFA6R_SY347bqKCIlL_r-fxTwrpYrDkhRvTqIgObv7fFG6hG8nwxPNeUm6jS665g671pSi_3UXf5zjiWw65SA1O9SRWOBbLwUHdWQztp-Bdpz-IeD2kC2LVWBzBr7HabduAjmndBoNFjOGhNuSdwJNOGrNczEm6FMLqXDS6e-jo4P3Ruw8kFWcghlXFljBFGS20rnypXGnBEfJal1prn3sGNo9iClyVGYfFLkqtrKooy403XHhwGTm9j_aatnEPEda1q0zhaysCsk1eKm1nMwueFtgmnFqfoWJYLmkScHmon3EiowMjmOz5KoGvMvJVnmXo1Tjmaw_b8Vfqt0EKRsoAuR0b2s1Kph0sealsLayvKu9AieeKGWjgtSsdd74qM_Q8yJAMoBpNiNpZqV3XyY-HSzkHoxneBKZchl4mIt_CHIxKSRDAiYDDNaHcn1DCrjfT7kFUZTp1Ogm2avSIc_iYZ2N3GBki6RrX7gIN2CwC7HKaoQe9ZI_zphRWDJYgQ3wi8xPGTHua9ZeISc5rUA0MRr4eJP_8s_7M-Ef_Rv4YXS_j5qGkLPbR3nazc0_QVXO6XXebp_EU-AE-Flqc priority: 102 providerName: Springer Nature |
| Title | A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations |
| URI | https://link.springer.com/article/10.1186/s12859-021-04073-z https://www.ncbi.nlm.nih.gov/pubmed/33745450 https://www.proquest.com/docview/2514261902 https://www.proquest.com/docview/2503686503 https://pubmed.ncbi.nlm.nih.gov/PMC7983260 https://doaj.org/article/72ad98df44fe4290a6cad979e2e7ef42 |
| Volume | 22 |
| WOSCitedRecordID | wos000630974200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYBhIXvj8CozIIiQNYS-w0Tk6oQ5uYEFXUTWhwsRx_lEpTMpp2Ervwr_PsOi0ZYhculhrbSe33_D7s599D6HWijcO_LQj4yjkBKTkkhTWWsIqleSyLNDPKJ5vg43F-elqUYcOtDWGVnUz0glo3yu2R74Ee9tZ-TN-f_yAua5Q7XQ0pNLbQjkNJoD50r1yfIji8_u6iTJ7ttYlDayMuKAFYlzNy2VNGHrP_b8n8h2q6GjZ55ezUq6TDu_87mHvoTjBG8WjFPffRDVM_QLdW6Sl_PkS_RthjXnb3k2occkxMsU-gg50K1BieX4DHHXYV8ay7QohlrbEHxMZyuWgcYqY2cwxWMoaXancXBd50VqvJeETCQRGWG3ZpH6GTw4OTDx9JSNhAVJYmC5JJlrGkqlJLpaEanCNbVbSqKhvbDOwgmUlwX4YcGCChldQyZVmsrOK5BTeSs8dou25q8xThqjCpSmyhc4d2E1NZ6eFQg_cF9gpn2kYo6QgnVAAzdzk1zoR3avJMrIgtgNjCE1tcRujtus_5Csrj2tb7jh_WLR0Mt3_QzKcirGrBqdRFrm2aWgOKPZaZgge8MNRwY1MaoVeOm4QD2qhdJM9ULttWHB1PxAgMafgSmHcRehMa2QbGoGS4GAEz4bC5ei13ey1BEqh-dcdtIkiiVmxYLUIv19Wup4uuq02zdG3AjsnBVmcRerLi8fW4GQOKAQkixHvc35uYfk09--5xynkB6iKDnu-6dbL5W_-e-GfXj-I5uk39CmaEJrtoezFfmhfoprpYzNr5AG3xU-7LfIB29g_G5WTgt1mg_MTJwMsHKMvhN6gvjz6XX-HX5PjLb01hbI8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAZUL-xIoYBCoB7Ca2Jk4OSA0LFVHU0aozKE3y_EyHalKymSmqL3wi_iPPDvJDCmitx64xs9ObL819vseQq8ibRz-bUYgVk4JaMkeyayxhOUsTkOZxYlRvtgEH43Sg4Ps6xr61ebCuGuVrU70ilqXyv0j3wY77L39kL4__k5c1Sh3utqW0KjZYmhOf0DIVr0bfIL9fU3pzufxx13SVBUgKomjOUkkS1iU57Gl0lANHrzNc5rnuQ1tAsZaJhJ87B6Hr4xoLrWMWRIqq3hqIdbhDIa9gq7GLOVOrIacLA8tXHmANi8nTbaryIHDEXcHAiSFM3LWsX2-RMDfhuAPS3j-lua5o1pvAXdu_WdrdxvdbFxt3K9l4w5aM8VddL0uvnl6D_3sY4_o2WZfFbipoDHBvjwQdgZeY3h-ImfT5p8pnrYJklgWGnu4bywX89LhgWozwxADYBhUu0wbGOmoUPujPmmOwbBcCUN1H40vY_IP0HpRFuYRwnlmYhXZTKcOyyekMte9nobYErwxzrQNUNTyiVANVLurGHIkfMiWJqLmLQG8JTxvibMAvVn2Oa6BSi6k_uDYb0npQMb9g3I2EY3OEpxKnaXaxrE14LaEMlHwgGeGGm5sTAP00jGvcDAihbunNJGLqhKDb_uiD2ECvAmc1wBtNUS2hDko2aR9wEo45LEO5WaHEvSc6ja3zC0aPVuJFWcH6MWy2fV0dwcLUy4cDXhpKUQiLEAPa5Fazpsx2DHYggDxjrB1FqbbUkwPPQo7z8AYJtDzbSuWq8_698I_vngWz9HG7vjLntgbjIZP0A3qlQcjNNpE6_PZwjxF19TJfFrNnnnVg5G4ZHH9DasGwFY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagHOKF-wgUMAiJB7CaxFk7eVyOigq0qtoK9c3yuaxUZavNbiX6wl9nxkm2TTkkxKs9TuLx2DMTz3xDyKvMecS_rRj4yiWDU3LEquAD44YXZaqrQngbi03IyaQ8PKx2z2Xxx2j3_kqyzWlAlKZ6uXXsQrvFS7HVZIi7xjC8AIRQcnZ6mVwpMJAe_fX9r-t7BETs71NlfjtuoI4iav-vZ_M55XQxcPLC7WlUStu3_n86t8nNziCl41aC7pBLvr5LrrUlKr_fIz_GNOJe9jlKNe3qTExpLKJDUQ06Cu0n4HV3fxbprE8jpLp2NIJiU71azhE10_kFBUuZwkMd5qPAk45quzcZs-6yiOozkWnuk4PtjwfvP7GuaAOzosiWTGgueGZMEXLtcwcOUjAmN8aENAiwhbTQ4MKMJAhBlhvtdMFFaoOVZQBXUvIHZKOe1_4Roabyhc1C5UpEvElzbdxo5MADA5tFchcSkvVLp2wHaI51NY5UdGxKoVq-KuCrinxVpwl5sx5z3MJ5_JX6HUrEmhKhuGPDfDFV3c5WMteuKl0oiuBBuadaWGiQlc-99KHIE_IS5Ukh2EaN0TxTvWoatbO_p8ZgTMObwMRLyOuOKMxhDlZ3yRHACcTnGlBuDijhNLDD7l5sVXcaNQps2Ogpp_AxL9bdOBIj7Go_XyEN2DIl2Os8IQ9bKV_Pm3NYMViChMiB_A8YM-ypZ98iVrmsQGUIGPm23wVnn_Vnxj_-N_Ln5Pruh231ZWfy-Qm5kcd9xFmebZKN5WLln5Kr9mQ5axbP4uHwE3jKZmQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+representation+learning+model+based+on+variational+inference+and+graph+autoencoder+for+predicting+lncRNA-disease+associations&rft.jtitle=BMC+bioinformatics&rft.au=Shi%2C+Zhuangwei&rft.au=Zhang%2C+Han&rft.au=Jin%2C+Chen&rft.au=Quan%2C+Xiongwen&rft.date=2021-03-21&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-021-04073-z&rft.externalDocID=A656407028 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |