A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations

Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 22; číslo 1; s. 136 - 20
Hlavní autori: Shi, Zhuangwei, Zhang, Han, Jin, Chen, Quan, Xiongwen, Yin, Yanbin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 21.03.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. Results We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Conclusion Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA .
AbstractList Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA .
Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. Results We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Conclusion Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at Keywords: Variational inference, Graph autoencoder, lncRNA-disease association, Representation learning
Abstract Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. Results We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Conclusion Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA .
Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA.
Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. Results We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Conclusion Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA.
Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately.BACKGROUNDNumerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately.We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach.RESULTSWe proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach.Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA .CONCLUSIONCross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA .
Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been adopted to this problem, yet it is still challenging to learn efficient low-dimensional representations from high-dimensional features of lncRNAs and diseases to predict unknown lncRNA-disease associations accurately. Results We proposed an end-to-end model, VGAELDA, which integrates variational inference and graph autoencoders for lncRNA-disease associations prediction. VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders (VGAE) infer representations from features of lncRNAs and diseases respectively, while graph autoencoders propagate labels via known lncRNA-disease associations. These two kinds of autoencoders are trained alternately by adopting variational expectation maximization algorithm. The integration of both the VGAE for graph representation learning, and the alternate training via variational inference, strengthens the capability of VGAELDA to capture efficient low-dimensional representations from high-dimensional features, and hence promotes the robustness and preciseness for predicting unknown lncRNA-disease associations. Further analysis illuminates that the designed co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix completion problem for capturing efficient low-dimensional representations via a deep learning approach. Conclusion Cross validations and numerical experiments illustrate that VGAELDA outperforms the current state-of-the-art methods in lncRNA-disease association prediction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-disease associations. The source code and data are available at https://github.com/zhanglabNKU/VGAELDA .
ArticleNumber 136
Audience Academic
Author Quan, Xiongwen
Zhang, Han
Jin, Chen
Shi, Zhuangwei
Yin, Yanbin
Author_xml – sequence: 1
  givenname: Zhuangwei
  surname: Shi
  fullname: Shi, Zhuangwei
  organization: College of Artificial Intelligence, Nankai University
– sequence: 2
  givenname: Han
  surname: Zhang
  fullname: Zhang, Han
  email: zhanghan@nankai.edu.cn
  organization: College of Artificial Intelligence, Nankai University
– sequence: 3
  givenname: Chen
  surname: Jin
  fullname: Jin, Chen
  organization: College of Computer Science, Nankai University
– sequence: 4
  givenname: Xiongwen
  surname: Quan
  fullname: Quan, Xiongwen
  organization: College of Artificial Intelligence, Nankai University
– sequence: 5
  givenname: Yanbin
  surname: Yin
  fullname: Yin, Yanbin
  organization: Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33745450$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhU1JaR7tH-iiGLppF04lWZbtTWEIfQRCC2n24lq-chQ80lTyhDab_vXeGadJJpRgsM3xd46sq3OY7fngMctec3bMeaM-JC6aqi2Y4AWTrC6Lm2fZAZc1LwRn1d6D9_3sMKUrxnjdsOpFtl-WtaxkxQ6yP4s84ipiQj_B5ILPR4TonR_yZehxzDtI2OekX0N0WwLG3HmLEb3BHHyfDxFWlzmsp0ASmWJuQ8wptHdm2iSN3px_WxS9S0hpOaQUzJyVXmbPLYwJX90-j7KLz58uTr4WZ9-_nJ4szgqjJJ8KBaUqeddJKwBF3ypmu050XWeZVW1Zg4KWtlRLhVx00IMsFTPW1I3llarLo-x0ju0DXOlVdEuIv3UAp7dCiIOGODkzoq4F9G3TWyktStEyUIaEukWBNVopKOvjnLVad0vsDU0uwrgTuvvFu0s9hGtdt00pFKOAd7cBMfxcY5r00iWD4wgewzppUbFSNYruhL59hF6FdaQj2FBcCsVbJu6pAWgDdDiB1jWbUL1QlaJuMNEQdfwfiq4el85QtawjfcfwfsdAzIS_pgHWKenTH-e77JuHQ7mbxr-mESBmwMSQUkR7h3CmN3XWc5011Vlv66xvyNQ8Mhk315R-3Y1PW8vZmmgdP2C8n9wTrr8y3ArI
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108431
crossref_primary_10_1038_s41598_024_81862_5
crossref_primary_10_3389_fmicb_2024_1438942
crossref_primary_10_1186_s12859_021_04467_z
crossref_primary_10_1016_j_compbiomed_2024_108623
crossref_primary_10_1109_JBHI_2023_3286917
crossref_primary_10_1093_bfgp_elae010
crossref_primary_10_3389_fcell_2021_753027
crossref_primary_10_1093_bib_bbab604
crossref_primary_10_1093_bib_bbac539
crossref_primary_10_1186_s12864_024_09998_2
crossref_primary_10_1038_s41392_022_00994_0
crossref_primary_10_12677_ecl_2024_1341816
crossref_primary_10_1109_ACCESS_2024_3472688
crossref_primary_10_1093_bib_bbac370
crossref_primary_10_3389_fgene_2023_1332273
crossref_primary_10_1186_s12859_024_05672_2
crossref_primary_10_3389_fgene_2022_1023615
crossref_primary_10_1016_j_ymeth_2023_01_006
crossref_primary_10_1007_s13042_024_02375_1
crossref_primary_10_1186_s12911_023_02384_0
crossref_primary_10_1093_bib_bbad069
crossref_primary_10_1016_j_ab_2023_115297
crossref_primary_10_1371_journal_pone_0281061
crossref_primary_10_3390_ijms241210299
crossref_primary_10_1186_s12859_023_05625_1
crossref_primary_10_12677_hjbm_2025_153070
crossref_primary_10_3103_S0891416824700204
crossref_primary_10_1186_s12859_022_04715_w
crossref_primary_10_1109_JBHI_2024_3385352
crossref_primary_10_3390_biom12010064
crossref_primary_10_1016_j_neucom_2021_08_029
crossref_primary_10_1016_j_physa_2025_130883
crossref_primary_10_1109_TNNLS_2023_3307149
crossref_primary_10_1109_TCBB_2022_3203564
crossref_primary_10_1186_s12859_024_05893_5
crossref_primary_10_1093_bib_bbac364
crossref_primary_10_3390_ijms23020972
crossref_primary_10_1109_ACCESS_2025_3580833
crossref_primary_10_1038_s41598_025_16177_0
crossref_primary_10_1007_s12539_025_00717_3
crossref_primary_10_1016_j_compbiomed_2025_110870
crossref_primary_10_1007_s11227_024_06013_z
crossref_primary_10_1093_bib_bbae179
crossref_primary_10_1016_j_artmed_2023_102665
crossref_primary_10_1016_j_compbiolchem_2022_107722
crossref_primary_10_1016_j_artmed_2025_103238
crossref_primary_10_1016_j_compbiomed_2022_106527
crossref_primary_10_1109_TCBB_2023_3248787
crossref_primary_10_1007_s11042_023_16382_x
crossref_primary_10_1016_j_knosys_2024_111622
crossref_primary_10_1007_s12539_023_00573_z
crossref_primary_10_1109_TBDATA_2024_3433380
crossref_primary_10_1007_s00438_022_01909_y
Cites_doi 10.1093/bioinformatics/bty327
10.1093/bib/bbaa028
10.1007/s10208-009-9045-5
10.1371/journal.pone.0141287
10.1109/TKDE.2007.190672
10.3390/cells8091012
10.1093/bioinformatics/btx794
10.1186/s12920-020-00757-2
10.1038/srep22366
10.1093/bib/bbaa186
10.1007/978-94-011-5014-9_12
10.3389/fgene.2019.00416
10.18632/aging.102080
10.1561/2200000016
10.1093/nar/gks1099
10.1093/bioinformatics/btz965
10.1093/bioinformatics/btw639
10.1038/srep11338
10.12659/MSM.910955
10.1016/j.yexcr.2016.08.012
10.1007/s13277-013-1142-z
10.1016/j.omtn.2019.07.022
10.1093/nar/gkw943
10.1145/279943.279962
10.1109/TNN.2008.2005605
10.1109/TPAMI.2008.216
10.1002/jcb.27630
10.1093/bioinformatics/btq510
10.3322/caac.21492
10.1016/j.compbiolchem.2020.107282
10.1093/bioinformatics/btu269
10.1093/bioinformatics/btz825
10.1038/nm1784
10.1093/bioinformatics/btx545
10.1093/nar/gky1032
10.1186/s12864-019-6413-7
10.1038/s41598-018-19357-3
10.1093/bioinformatics/btv148
10.1016/j.tcb.2011.04.001
10.1093/bib/bbaa067
10.1093/bioinformatics/bty503
10.1093/bioinformatics/btt426
10.1109/JBHI.2019.2958389
10.1186/s12859-020-3458-1
10.1186/1752-0509-4-S2-S6
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-021-04073-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE




Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 20
ExternalDocumentID oai_doaj_org_article_72ad98df44fe4290a6cad979e2e7ef42
PMC7983260
A656407028
33745450
10_1186_s12859_021_04073_z
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61973174
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61973174
– fundername: ;
  grantid: 61973174
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c641t-6a3631bb4f2ae2d960fbb2bbbf0f6937a6a9745746e12bada4360cfc78f15673
IEDL.DBID M7P
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000630974200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:45:29 EDT 2025
Tue Nov 04 01:53:11 EST 2025
Sun Nov 09 12:35:58 EST 2025
Tue Oct 07 05:20:00 EDT 2025
Tue Nov 11 10:38:48 EST 2025
Tue Nov 04 17:53:02 EST 2025
Thu Nov 13 14:36:48 EST 2025
Thu Apr 03 07:03:12 EDT 2025
Sat Nov 29 05:40:09 EST 2025
Tue Nov 18 22:25:28 EST 2025
Sat Sep 06 07:27:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Representation learning
Graph autoencoder
Variational inference
lncRNA-disease association
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-6a3631bb4f2ae2d960fbb2bbbf0f6937a6a9745746e12bada4360cfc78f15673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2514261902?pq-origsite=%requestingapplication%
PMID 33745450
PQID 2514261902
PQPubID 44065
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_72ad98df44fe4290a6cad979e2e7ef42
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7983260
proquest_miscellaneous_2503686503
proquest_journals_2514261902
gale_infotracmisc_A656407028
gale_infotracacademiconefile_A656407028
gale_incontextgauss_ISR_A656407028
pubmed_primary_33745450
crossref_primary_10_1186_s12859_021_04073_z
crossref_citationtrail_10_1186_s12859_021_04073_z
springer_journals_10_1186_s12859_021_04073_z
PublicationCentury 2000
PublicationDate 2021-03-21
PublicationDateYYYYMMDD 2021-03-21
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References X Chen (4073_CR12) 2013; 29
4073_CR23
X Chen (4073_CR3) 2016; 18
M Qu (4073_CR36) 2019; 97
X Chen (4073_CR13) 2015; 5
K-X Lou (4073_CR48) 2018; 22
4073_CR62
4073_CR61
Q Le (4073_CR39) 2014; 32
4073_CR60
4073_CR28
F Scarselli (4073_CR31) 2009; 20
F Wang (4073_CR54) 2008; 20
J Wang (4073_CR56) 2009; 31
F Monti (4073_CR20) 2017; 30
LM Schriml (4073_CR42) 2018; 47
D Chicco (4073_CR44) 2020; 21
4073_CR19
E Asgari (4073_CR40) 2015; 10
A Poursheikhani (4073_CR50) 2020; 13
4073_CR58
M Belkin (4073_CR7) 2006; 7
G Chen (4073_CR38) 2012; 41
4073_CR57
D Yao (4073_CR27) 2020; 21
R Johnson (4073_CR55) 2007; 8
M Cui (4073_CR49) 2019; 120
O Wapinski (4073_CR1) 2011; 21
F Bray (4073_CR45) 2018; 68
Q Xiao (4073_CR11) 2018; 34
E Candès (4073_CR8) 2009; 9
J Li (4073_CR17) 2020; 36
4073_CR43
D Zhou (4073_CR53) 2004; 16
C Lu (4073_CR18) 2018; 34
X Wu (4073_CR35) 2020; 87
X Chen (4073_CR16) 2018; 34
C Lu (4073_CR21) 2018; 24
G Fu (4073_CR25) 2017; 34
N Srivastava (4073_CR63) 2014; 15
Z Xia (4073_CR9) 2010; 4
R Zhang (4073_CR51) 2018; 24
J Piñero (4073_CR41) 2016; 45
M Sun (4073_CR5) 2014; 35
W Lan (4073_CR24) 2016; 33
L Wang (4073_CR22) 2019; 36
S Jalali (4073_CR2) 2015; 31
4073_CR34
4073_CR33
P Xuan (4073_CR29) 2019; 10
4073_CR30
G Xie (4073_CR14) 2019; 18
Y Sang (4073_CR4) 2016; 6
MA Faghihi (4073_CR6) 2008; 14
N Natarajan (4073_CR15) 2014; 30
4073_CR37
L Ding (4073_CR26) 2018; 8
F Alimirah (4073_CR46) 2016; 349
Z-H You (4073_CR10) 2010; 26
C Han (4073_CR47) 2019; 11
S Boyd (4073_CR59) 2011; 3
P Xuan (4073_CR32) 2019; 8
M Belkin (4073_CR52) 2002; 15
References_xml – volume: 15
  start-page: 1929
  year: 2014
  ident: 4073_CR63
  publication-title: J Mach Learn Res
– volume: 34
  start-page: 3357
  issue: 19
  year: 2018
  ident: 4073_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty327
– ident: 4073_CR23
  doi: 10.1093/bib/bbaa028
– volume: 8
  start-page: 1489
  issue: 53
  year: 2007
  ident: 4073_CR55
  publication-title: J Mach Learn Res
– volume: 97
  start-page: 5241
  year: 2019
  ident: 4073_CR36
  publication-title: Proc Mach Learn Res
– ident: 4073_CR33
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  ident: 4073_CR8
  publication-title: Found Comput Math
  doi: 10.1007/s10208-009-9045-5
– ident: 4073_CR37
– volume: 18
  start-page: 558
  issue: 4
  year: 2016
  ident: 4073_CR3
  publication-title: Brief Bioinform
– volume: 10
  start-page: 0141287
  issue: 11
  year: 2015
  ident: 4073_CR40
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0141287
– volume: 20
  start-page: 55
  issue: 1
  year: 2008
  ident: 4073_CR54
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2007.190672
– volume: 8
  start-page: 1012
  issue: 9
  year: 2019
  ident: 4073_CR32
  publication-title: Cells
  doi: 10.3390/cells8091012
– volume: 34
  start-page: 1529
  issue: 9
  year: 2017
  ident: 4073_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx794
– volume: 13
  start-page: 108
  year: 2020
  ident: 4073_CR50
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-020-00757-2
– ident: 4073_CR19
– volume: 6
  start-page: 22366
  year: 2016
  ident: 4073_CR4
  publication-title: Sci Rep
  doi: 10.1038/srep22366
– ident: 4073_CR28
  doi: 10.1093/bib/bbaa186
– ident: 4073_CR57
  doi: 10.1007/978-94-011-5014-9_12
– volume: 10
  start-page: 416
  year: 2019
  ident: 4073_CR29
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00416
– volume: 11
  start-page: 4858
  issue: 14
  year: 2019
  ident: 4073_CR47
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.102080
– ident: 4073_CR60
– ident: 4073_CR43
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 4073_CR59
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000016
– volume: 41
  start-page: 983
  issue: D1
  year: 2012
  ident: 4073_CR38
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1099
– volume: 36
  start-page: 2538
  issue: 8
  year: 2020
  ident: 4073_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz965
– volume: 33
  start-page: 458
  issue: 3
  year: 2016
  ident: 4073_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw639
– volume: 22
  start-page: 1358
  issue: 5
  year: 2018
  ident: 4073_CR48
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 5
  start-page: 11338
  issue: 1
  year: 2015
  ident: 4073_CR13
  publication-title: Sci Rep
  doi: 10.1038/srep11338
– volume: 24
  start-page: 8685
  year: 2018
  ident: 4073_CR51
  publication-title: Med Sci Monitor
  doi: 10.12659/MSM.910955
– volume: 349
  start-page: 15
  issue: 1
  year: 2016
  ident: 4073_CR46
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2016.08.012
– volume: 35
  start-page: 1065
  year: 2014
  ident: 4073_CR5
  publication-title: Tumor Biol
  doi: 10.1007/s13277-013-1142-z
– volume: 30
  start-page: 3697
  year: 2017
  ident: 4073_CR20
  publication-title: Adv Neural Inf Process Syst
– volume: 18
  start-page: 45
  issue: 6
  year: 2019
  ident: 4073_CR14
  publication-title: Mol Ther Nucl Acids
  doi: 10.1016/j.omtn.2019.07.022
– volume: 45
  start-page: 833
  issue: D1
  year: 2016
  ident: 4073_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw943
– ident: 4073_CR58
  doi: 10.1145/279943.279962
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 4073_CR31
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2005605
– volume: 31
  start-page: 1600
  issue: 9
  year: 2009
  ident: 4073_CR56
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.216
– volume: 120
  start-page: 6926
  issue: 5
  year: 2019
  ident: 4073_CR49
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.27630
– volume: 26
  start-page: 2744
  issue: 21
  year: 2010
  ident: 4073_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq510
– ident: 4073_CR61
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  ident: 4073_CR45
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21492
– volume: 87
  start-page: 107282
  year: 2020
  ident: 4073_CR35
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2020.107282
– volume: 30
  start-page: 60
  issue: 12
  year: 2014
  ident: 4073_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu269
– volume: 36
  start-page: 4038
  issue: 13
  year: 2019
  ident: 4073_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz825
– volume: 32
  start-page: 1188
  year: 2014
  ident: 4073_CR39
  publication-title: Proc Mach Learn Res
– volume: 14
  start-page: 723
  issue: 7
  year: 2008
  ident: 4073_CR6
  publication-title: Nat Med
  doi: 10.1038/nm1784
– volume: 34
  start-page: 239
  issue: 2
  year: 2018
  ident: 4073_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx545
– volume: 47
  start-page: 955
  issue: D1
  year: 2018
  ident: 4073_CR42
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1032
– volume: 21
  start-page: 6
  year: 2020
  ident: 4073_CR44
  publication-title: BMC Genom
  doi: 10.1186/s12864-019-6413-7
– volume: 8
  start-page: 1065
  issue: 1
  year: 2018
  ident: 4073_CR26
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-19357-3
– volume: 31
  start-page: 2241
  issue: 14
  year: 2015
  ident: 4073_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv148
– volume: 21
  start-page: 354
  issue: 6
  year: 2011
  ident: 4073_CR1
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2011.04.001
– ident: 4073_CR30
  doi: 10.1093/bib/bbaa067
– volume: 34
  start-page: 4256
  issue: 24
  year: 2018
  ident: 4073_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty503
– ident: 4073_CR34
– ident: 4073_CR62
– volume: 29
  start-page: 2617
  issue: 20
  year: 2013
  ident: 4073_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt426
– volume: 24
  start-page: 2420
  issue: 8
  year: 2018
  ident: 4073_CR21
  publication-title: IEEE J Biomed Health
  doi: 10.1109/JBHI.2019.2958389
– volume: 21
  start-page: 126
  year: 2020
  ident: 4073_CR27
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-020-3458-1
– volume: 4
  start-page: 6
  issue: Suppl 2
  year: 2010
  ident: 4073_CR9
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-S2-S6
– volume: 15
  start-page: 585
  year: 2002
  ident: 4073_CR52
  publication-title: Adv Neural Inf Process Syst
– volume: 16
  start-page: 321
  year: 2004
  ident: 4073_CR53
  publication-title: Adv Neural Inf Process Syst
– volume: 7
  start-page: 2399
  issue: 1
  year: 2006
  ident: 4073_CR7
  publication-title: J Mach Learn Res
SSID ssj0017805
Score 2.5959802
Snippet Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential...
Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential...
Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential...
Abstract Background Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 136
SubjectTerms Algorithms
Alzheimer's disease
Bioinformatics
Biomedical and Life Sciences
Breast cancer
Case studies
Computational Biology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data mining
Datasets
Deep learning
Genes
Graph autoencoder
Graphic methods
Graphical representations
Health aspects
Humans
Inference
Learning algorithms
Life Sciences
lncRNA-disease association
Machine Learning
Medical genetics
Medical research
Medicine, Experimental
Methods
Microarrays
Model testing
Neural networks
Non-coding RNA
Performance evaluation
Propagation
Representation learning
Research Article
RNA
RNA, Long Noncoding - genetics
Robustness (mathematics)
Software
Source code
Training
Variational inference
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQQYhcQCrSZy14-OCqOCyQqWH3iw_y0pVFm12K9ELf50Zx9k2RcCFqz1OnJnxeCYef0PI68oHxL9VDGLlloGVnDEVQ2Tc8qYtjWpEcKnYhFws2pMT9eVKqS_MCRvggQfGHcjaeNX62DQxgO0sjXDQIFWogwyxSda3lGoMpvL5ASL1j1dkWnHQV4jTxjAdAZRWcnYx2YYSWv_vNvnKpnQ9YfLaqWnajA7vkjvZi6TzYfb3yI3Q3Se3hrqSPx6Qn3OawCrHi0UdzcUhTmmqfENx7_IU2s8hVM6_A-lyvPtHTedpQrKmZrtZIdSlD2sK7i2Fh3q8RAJPOuvc0WLO8gkPNZdy7h-S48OPxx8-sVxpgTnRVBsmDBe8sraJtQm1h6gmWltba2MZBTgwRhiIO2YSJFfV1njTcFG66GQbIf6T_BHZ61ZdeEKoVaFxVVS-RZiasjbWz2YewiZwNCT3sSDVyHftMgo5FsM40ykaaYUeZKVBVjrJSl8U5O1uzPcBg-Ov1O9RnDtKxM9ODaBVOmuV_pdWFeQVKoNGhIwOU3BOzbbv9eevR3oOHjC8CfyygrzJRHEF3-BMvtEAnEBQrQnl_oQSlrCbdo86p7MJ6TU4nim8LWEyL3fdOBLT4rqw2iINOCAtONm8II8HFd19N-cgMRBBQeREeSeMmfZ0y28JYFwqsPMCRr4b1fxyWn9m_NP_wfhn5HadlilndbVP9jbrbXhObrrzzbJfv0iL_Be941aj
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaggMSF9yNQkEFIHMAiibO2c1wQFVxWaFuh3iw_l5WqBG12K9ELf52x46SkPCS42uMkHo89M_HMNwi9KKwL-Lc1AV9ZEDglZ6T2zhOqaSVyVVfMmVhsgi8W4vi4_pSSwroh2n24kownddzWgr3pioC1RkJIAQgep-TsMroC6k6Egg3Lw8_j3UFA6R_SY347bqKCIlL_r-fxTwrpYrDkhRvTqIgObv7fFG6hG8nwxPNeUm6jS665g671pSi_3UXf5zjiWw65SA1O9SRWOBbLwUHdWQztp-Bdpz-IeD2kC2LVWBzBr7HabduAjmndBoNFjOGhNuSdwJNOGrNczEm6FMLqXDS6e-jo4P3Ruw8kFWcghlXFljBFGS20rnypXGnBEfJal1prn3sGNo9iClyVGYfFLkqtrKooy403XHhwGTm9j_aatnEPEda1q0zhaysCsk1eKm1nMwueFtgmnFqfoWJYLmkScHmon3EiowMjmOz5KoGvMvJVnmXo1Tjmaw_b8Vfqt0EKRsoAuR0b2s1Kph0sealsLayvKu9AieeKGWjgtSsdd74qM_Q8yJAMoBpNiNpZqV3XyY-HSzkHoxneBKZchl4mIt_CHIxKSRDAiYDDNaHcn1DCrjfT7kFUZTp1Ogm2avSIc_iYZ2N3GBki6RrX7gIN2CwC7HKaoQe9ZI_zphRWDJYgQ3wi8xPGTHua9ZeISc5rUA0MRr4eJP_8s_7M-Ef_Rv4YXS_j5qGkLPbR3nazc0_QVXO6XXebp_EU-AE-Flqc
  priority: 102
  providerName: Springer Nature
Title A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations
URI https://link.springer.com/article/10.1186/s12859-021-04073-z
https://www.ncbi.nlm.nih.gov/pubmed/33745450
https://www.proquest.com/docview/2514261902
https://www.proquest.com/docview/2503686503
https://pubmed.ncbi.nlm.nih.gov/PMC7983260
https://doaj.org/article/72ad98df44fe4290a6cad979e2e7ef42
Volume 22
WOSCitedRecordID wos000630974200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYBhIXvj8CozIIiQNYS-w0Tk6oQ5uYEFXUTWhwsRx_lEpTMpp2Ervwr_PsOi0ZYhculhrbSe33_D7s599D6HWijcO_LQj4yjkBKTkkhTWWsIqleSyLNDPKJ5vg43F-elqUYcOtDWGVnUz0glo3yu2R74Ee9tZ-TN-f_yAua5Q7XQ0pNLbQjkNJoD50r1yfIji8_u6iTJ7ttYlDayMuKAFYlzNy2VNGHrP_b8n8h2q6GjZ55ezUq6TDu_87mHvoTjBG8WjFPffRDVM_QLdW6Sl_PkS_RthjXnb3k2occkxMsU-gg50K1BieX4DHHXYV8ay7QohlrbEHxMZyuWgcYqY2cwxWMoaXancXBd50VqvJeETCQRGWG3ZpH6GTw4OTDx9JSNhAVJYmC5JJlrGkqlJLpaEanCNbVbSqKhvbDOwgmUlwX4YcGCChldQyZVmsrOK5BTeSs8dou25q8xThqjCpSmyhc4d2E1NZ6eFQg_cF9gpn2kYo6QgnVAAzdzk1zoR3avJMrIgtgNjCE1tcRujtus_5Csrj2tb7jh_WLR0Mt3_QzKcirGrBqdRFrm2aWgOKPZaZgge8MNRwY1MaoVeOm4QD2qhdJM9ULttWHB1PxAgMafgSmHcRehMa2QbGoGS4GAEz4bC5ei13ey1BEqh-dcdtIkiiVmxYLUIv19Wup4uuq02zdG3AjsnBVmcRerLi8fW4GQOKAQkixHvc35uYfk09--5xynkB6iKDnu-6dbL5W_-e-GfXj-I5uk39CmaEJrtoezFfmhfoprpYzNr5AG3xU-7LfIB29g_G5WTgt1mg_MTJwMsHKMvhN6gvjz6XX-HX5PjLb01hbI8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAZUL-xIoYBCoB7Ca2Jk4OSA0LFVHU0aozKE3y_EyHalKymSmqL3wi_iPPDvJDCmitx64xs9ObL819vseQq8ibRz-bUYgVk4JaMkeyayxhOUsTkOZxYlRvtgEH43Sg4Ps6xr61ebCuGuVrU70ilqXyv0j3wY77L39kL4__k5c1Sh3utqW0KjZYmhOf0DIVr0bfIL9fU3pzufxx13SVBUgKomjOUkkS1iU57Gl0lANHrzNc5rnuQ1tAsZaJhJ87B6Hr4xoLrWMWRIqq3hqIdbhDIa9gq7GLOVOrIacLA8tXHmANi8nTbaryIHDEXcHAiSFM3LWsX2-RMDfhuAPS3j-lua5o1pvAXdu_WdrdxvdbFxt3K9l4w5aM8VddL0uvnl6D_3sY4_o2WZfFbipoDHBvjwQdgZeY3h-ImfT5p8pnrYJklgWGnu4bywX89LhgWozwxADYBhUu0wbGOmoUPujPmmOwbBcCUN1H40vY_IP0HpRFuYRwnlmYhXZTKcOyyekMte9nobYErwxzrQNUNTyiVANVLurGHIkfMiWJqLmLQG8JTxvibMAvVn2Oa6BSi6k_uDYb0npQMb9g3I2EY3OEpxKnaXaxrE14LaEMlHwgGeGGm5sTAP00jGvcDAihbunNJGLqhKDb_uiD2ECvAmc1wBtNUS2hDko2aR9wEo45LEO5WaHEvSc6ja3zC0aPVuJFWcH6MWy2fV0dwcLUy4cDXhpKUQiLEAPa5Fazpsx2DHYggDxjrB1FqbbUkwPPQo7z8AYJtDzbSuWq8_698I_vngWz9HG7vjLntgbjIZP0A3qlQcjNNpE6_PZwjxF19TJfFrNnnnVg5G4ZHH9DasGwFY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagHOKF-wgUMAiJB7CaxFk7eVyOigq0qtoK9c3yuaxUZavNbiX6wl9nxkm2TTkkxKs9TuLx2DMTz3xDyKvMecS_rRj4yiWDU3LEquAD44YXZaqrQngbi03IyaQ8PKx2z2Xxx2j3_kqyzWlAlKZ6uXXsQrvFS7HVZIi7xjC8AIRQcnZ6mVwpMJAe_fX9r-t7BETs71NlfjtuoI4iav-vZ_M55XQxcPLC7WlUStu3_n86t8nNziCl41aC7pBLvr5LrrUlKr_fIz_GNOJe9jlKNe3qTExpLKJDUQ06Cu0n4HV3fxbprE8jpLp2NIJiU71azhE10_kFBUuZwkMd5qPAk45quzcZs-6yiOozkWnuk4PtjwfvP7GuaAOzosiWTGgueGZMEXLtcwcOUjAmN8aENAiwhbTQ4MKMJAhBlhvtdMFFaoOVZQBXUvIHZKOe1_4Roabyhc1C5UpEvElzbdxo5MADA5tFchcSkvVLp2wHaI51NY5UdGxKoVq-KuCrinxVpwl5sx5z3MJ5_JX6HUrEmhKhuGPDfDFV3c5WMteuKl0oiuBBuadaWGiQlc-99KHIE_IS5Ukh2EaN0TxTvWoatbO_p8ZgTMObwMRLyOuOKMxhDlZ3yRHACcTnGlBuDijhNLDD7l5sVXcaNQps2Ogpp_AxL9bdOBIj7Go_XyEN2DIl2Os8IQ9bKV_Pm3NYMViChMiB_A8YM-ypZ98iVrmsQGUIGPm23wVnn_Vnxj_-N_Ln5Pruh231ZWfy-Qm5kcd9xFmebZKN5WLln5Kr9mQ5axbP4uHwE3jKZmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+representation+learning+model+based+on+variational+inference+and+graph+autoencoder+for+predicting+lncRNA-disease+associations&rft.jtitle=BMC+bioinformatics&rft.au=Shi%2C+Zhuangwei&rft.au=Zhang%2C+Han&rft.au=Jin%2C+Chen&rft.au=Quan%2C+Xiongwen&rft.date=2021-03-21&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-021-04073-z&rft.externalDocID=A656407028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon