O-WCNN: an optimized integration of spatial and spectral feature map for arrhythmia classification

The regular monitoring and accurate diagnosis of arrhythmia are critically important, leading to a reduction in mortality rate due to cardiovascular diseases (CVD) such as heart stroke or cardiac arrest. This paper proposes a novel convolutional neural network (CNN) model for arrhythmia classificati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex & intelligent systems Ročník 9; číslo 3; s. 2685 - 2698
Hlavní autoři: Jangra, Manisha, Dhull, Sanjeev Kumar, Singh, Krishna Kant, Singh, Akansha, Cheng, Xiaochun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2023
Springer Nature B.V
Springer
Témata:
ISSN:2199-4536, 2198-6053, 2198-6053
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The regular monitoring and accurate diagnosis of arrhythmia are critically important, leading to a reduction in mortality rate due to cardiovascular diseases (CVD) such as heart stroke or cardiac arrest. This paper proposes a novel convolutional neural network (CNN) model for arrhythmia classification. The proposed model offers the following improvements compared with traditional CNN models. Firstly, the multi-channel model can concatenate spectral and spatial feature maps. Secondly, the structural unit is composed of a depthwise separable convolution layer followed by activation and batch normalization layers. The structural unit offers effective utilization of network parameters. Also, the optimization of hyperparameters is done using Hyperopt library, based on Sequential Model-Based Global Optimization algorithm (SMBO). These improvements make the network more efficient and accurate for arrhythmia classification. The proposed model is evaluated using tenfold cross-validation following both subject-oriented inter-patient and class-oriented intra-patient evaluation protocols. Our model achieved 99.48% and 99.46% accuracy in VEB (ventricular ectopic beat) and SVEB (supraventricular ectopic beat) class classification, respectively. The model is compared with state-of-the-art models and has shown significant performance improvement.
AbstractList The regular monitoring and accurate diagnosis of arrhythmia are critically important, leading to a reduction in mortality rate due to cardiovascular diseases (CVD) such as heart stroke or cardiac arrest. This paper proposes a novel convolutional neural network (CNN) model for arrhythmia classification. The proposed model offers the following improvements compared with traditional CNN models. Firstly, the multi-channel model can concatenate spectral and spatial feature maps. Secondly, the structural unit is composed of a depthwise separable convolution layer followed by activation and batch normalization layers. The structural unit offers effective utilization of network parameters. Also, the optimization of hyperparameters is done using Hyperopt library, based on Sequential Model-Based Global Optimization algorithm (SMBO). These improvements make the network more efficient and accurate for arrhythmia classification. The proposed model is evaluated using tenfold cross-validation following both subject-oriented inter-patient and class-oriented intra-patient evaluation protocols. Our model achieved 99.48% and 99.46% accuracy in VEB (ventricular ectopic beat) and SVEB (supraventricular ectopic beat) class classification, respectively. The model is compared with state-of-the-art models and has shown significant performance improvement.
Abstract The regular monitoring and accurate diagnosis of arrhythmia are critically important, leading to a reduction in mortality rate due to cardiovascular diseases (CVD) such as heart stroke or cardiac arrest. This paper proposes a novel convolutional neural network (CNN) model for arrhythmia classification. The proposed model offers the following improvements compared with traditional CNN models. Firstly, the multi-channel model can concatenate spectral and spatial feature maps. Secondly, the structural unit is composed of a depthwise separable convolution layer followed by activation and batch normalization layers. The structural unit offers effective utilization of network parameters. Also, the optimization of hyperparameters is done using Hyperopt library, based on Sequential Model-Based Global Optimization algorithm (SMBO). These improvements make the network more efficient and accurate for arrhythmia classification. The proposed model is evaluated using tenfold cross-validation following both subject-oriented inter-patient and class-oriented intra-patient evaluation protocols. Our model achieved 99.48% and 99.46% accuracy in VEB (ventricular ectopic beat) and SVEB (supraventricular ectopic beat) class classification, respectively. The model is compared with state-of-the-art models and has shown significant performance improvement.
The regular monitoring and accurate diagnosis of arrhythmia are critically important, leading to a reduction in mortality rate due to cardiovascular diseases (CVD) such as heart stroke or cardiac arrest. This paper proposes a novel convolutional neural network (CNN) model for arrhythmia classification. The proposed model offers the following improvements compared with traditional CNN models. Firstly, the multi-channel model can concatenate spectral and spatial feature maps. Secondly, the structural unit is composed of a depthwise separable convolution layer followed by activation and batch normalization layers. The structural unit offers effective utilization of network parameters. Also, the optimization of hyperparameters is done using Hyperopt library, based on Sequential Model-Based Global Optimization algorithm (SMBO). These improvements make the network more efficient and accurate for arrhythmia classification. The proposed model is evaluated using tenfold cross-validation following both subject-oriented inter-patient and class-oriented intra-patient evaluation protocols. Our model achieved 99.48% and 99.46% accuracy in VEB (ventricular ectopic beat) and SVEB (supraventricular ectopic beat) class classification, respectively. The model is compared with state-of-the-art models and has shown significant performance improvement.The regular monitoring and accurate diagnosis of arrhythmia are critically important, leading to a reduction in mortality rate due to cardiovascular diseases (CVD) such as heart stroke or cardiac arrest. This paper proposes a novel convolutional neural network (CNN) model for arrhythmia classification. The proposed model offers the following improvements compared with traditional CNN models. Firstly, the multi-channel model can concatenate spectral and spatial feature maps. Secondly, the structural unit is composed of a depthwise separable convolution layer followed by activation and batch normalization layers. The structural unit offers effective utilization of network parameters. Also, the optimization of hyperparameters is done using Hyperopt library, based on Sequential Model-Based Global Optimization algorithm (SMBO). These improvements make the network more efficient and accurate for arrhythmia classification. The proposed model is evaluated using tenfold cross-validation following both subject-oriented inter-patient and class-oriented intra-patient evaluation protocols. Our model achieved 99.48% and 99.46% accuracy in VEB (ventricular ectopic beat) and SVEB (supraventricular ectopic beat) class classification, respectively. The model is compared with state-of-the-art models and has shown significant performance improvement.
Author Singh, Akansha
Jangra, Manisha
Singh, Krishna Kant
Dhull, Sanjeev Kumar
Cheng, Xiaochun
Author_xml – sequence: 1
  givenname: Manisha
  surname: Jangra
  fullname: Jangra, Manisha
  organization: Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology
– sequence: 2
  givenname: Sanjeev Kumar
  surname: Dhull
  fullname: Dhull, Sanjeev Kumar
  organization: Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology
– sequence: 3
  givenname: Krishna Kant
  orcidid: 0000-0002-6510-6768
  surname: Singh
  fullname: Singh, Krishna Kant
  email: krishnaiitr2011@gmail.com
  organization: Faculty of Engineering and Technology, Jain (Deemed-to-be University)
– sequence: 4
  givenname: Akansha
  surname: Singh
  fullname: Singh, Akansha
  organization: Department of Computer Science Engineering, ASET, Amity University Uttar Pradesh
– sequence: 5
  givenname: Xiaochun
  surname: Cheng
  fullname: Cheng, Xiaochun
  organization: Department of Computer Science, Middlesex University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34777963$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVARLUv_AAcUiQuXwPgrjjkgoRUflar2AuJoOf7Y9SqJg51FKr8eb7YU2kNPHo_fvHnjec_RyRhHh9BLDG8xgHiXGQgmaiC4BqAC1-wJOiNYtnUDnJ4ssawZp80pOs95BwBYiJYCeYZOKRNCyIaeoe66_rG-unpf6bGK0xyG8NvZKoyz2yQ9h1iyvspTCXVfMLbEzsypXLzT8z65atBT5WOqdErbm3k7BF2ZXuccfDALwwv01Os-u_Pbc4W-f_70bf21vrz-crH-eFmbhuG55rbrRNOCEZbIxnHjHGjcWE4pI4x2HLxmwlrbMSmoZkbwpiO68dILLImnK3Rx5LVR79SUwqDTjYo6qCUR00bpNAfTOyVNodFWgtAd80Cl6TBpPSfEeOFxU7g-HLmmfTc4a9x4mPke6f2XMWzVJv5SLQgORe4KvbklSPHn3uVZDSEb1_d6dHGfFeGybEC27NDr9QPoLu7TWL5KkZZwzhjHUFCv_ld0J-XvKguAHAEmxZyT83cQDOpgGXW0jCqWUYtl1EFm-6DIhHnZWpkq9I-X0mNpLn3GjUv_ZD9S9QfritX1
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109342
crossref_primary_10_1016_j_ymeth_2025_01_015
crossref_primary_10_1016_j_procs_2025_04_639
crossref_primary_10_1080_10255842_2025_2456487
crossref_primary_10_1088_2632_2153_ade6c3
crossref_primary_10_3390_a18040221
crossref_primary_10_1007_s11042_023_15439_1
crossref_primary_10_1016_j_bspc_2024_106382
crossref_primary_10_1016_j_compbiomed_2024_108235
crossref_primary_10_1007_s11042_023_14336_x
crossref_primary_10_1007_s00500_023_08579_x
crossref_primary_10_1016_j_compbiomed_2025_109924
crossref_primary_10_4018_IJMCMC_370404
crossref_primary_10_1088_1361_6579_ad5cc0
crossref_primary_10_1007_s40031_024_01038_7
crossref_primary_10_7717_peerj_cs_3132
Cites_doi 10.1016/j.compbiomed.2018.03.016
10.1016/j.bspc.2013.01.005
10.1109/TITB.2008.923147
10.1161/CIRCULATIONAHA.120.046941
10.1109/IITSI.2010.85
10.1016/j.knosys.2013.02.007
10.1155/2013/261917
10.1007/978-3-030-58669-0_12
10.1088/0967-3334/26/5/R01
10.1016/j.compbiomed.2020.103866
10.1002/acs.2762
10.1109/ACCESS.2018.2833841
10.1109/ICSCCW.2009.5379457
10.1016/j.measurement.2011.10.025
10.1016/j.compbiomed.2017.08.022
10.3233/JIFS-191135
10.1201/9781315364094-33
10.1109/CVPR.2017.195
10.1016/j.cmpb.2020.105479
10.1109/TBMEL.1962.4322946
10.1109/ACCESS.2018.2807700
10.1109/ACCESS.2019.2890865
10.1214/aoms/1177729392
10.1109/ACCESS.2020.2964749
10.1109/ICASSP40776.2020.9054749
10.1109/LSENS.2020.3006756
10.32604/cmes.2020.010798
10.3233/IFS-141192
10.1016/j.eswa.2012.04.072
10.1016/j.media.2017.01.004
10.1186/1475-925X-13-90
10.1109/TBME.2004.827359
10.1049/iet-spr.2017.0296
10.1007/s00138-020-01128-8
10.1109/ACCESS.2020.2987930
10.1109/JBHI.2018.2858789
10.1016/j.measurement.2016.07.043
10.1109/ACCESS.2020.2998788
10.1214/aoms/1177729586
10.1007/978-3-030-21642-9_8.4
10.1109/51.932724
10.1109/TBME.2015.2468589
10.1016/j.asoc.2012.07.007
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021.
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021.
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1007/s40747-021-00371-4
DatabaseName Springer Nature Link
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed


Publicly Available Content Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 2698
ExternalDocumentID oai_doaj_org_article_9cddbad907ab4f039cb128f522cf7f16
PMC8075024
34777963
10_1007_s40747_021_00371_4
Genre Journal Article
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c641t-5dbb7680c7d296e5cee0a16d5334243b50fa47dddb4973a4c756b2a6f9f7192f3
IEDL.DBID C24
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000644279400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2199-4536
2198-6053
IngestDate Fri Oct 03 12:36:40 EDT 2025
Tue Nov 04 02:04:53 EST 2025
Fri Sep 05 10:47:00 EDT 2025
Wed Oct 08 14:30:32 EDT 2025
Thu Apr 03 07:04:42 EDT 2025
Sat Nov 29 05:48:56 EST 2025
Tue Nov 18 22:40:12 EST 2025
Fri Feb 21 02:43:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
ECG
CNN
Wavelet transform
Depthwise separable convolution
Arrhythmia
Language English
License The Author(s) 2021.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-5dbb7680c7d296e5cee0a16d5334243b50fa47dddb4973a4c756b2a6f9f7192f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6510-6768
OpenAccessLink https://link.springer.com/10.1007/s40747-021-00371-4
PMID 34777963
PQID 2825544510
PQPubID 2044308
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_9cddbad907ab4f039cb128f522cf7f16
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8075024
proquest_miscellaneous_2597799846
proquest_journals_2825544510
pubmed_primary_34777963
crossref_primary_10_1007_s40747_021_00371_4
crossref_citationtrail_10_1007_s40747_021_00371_4
springer_journals_10_1007_s40747_021_00371_4
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationTitleAlternate Complex Intell Systems
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References GaoZRobust estimation of carotid artery wall motion using the elasticity-based state-space approachMed Image Anal20173712110.1016/j.media.2017.01.004
MartisRJAcharyaURLimCMSuriJSCharacterization of ECG beats from cardiac arrhythmia using discrete cosine transform in PCA frameworkKnowl-Based Syst201345768210.1016/j.knosys.2013.02.007
El-KhafifSHEl-BrawanyMAArtificial neural network-based automated ECG signal classifierInt Scholar Res Notices201320131610.1155/2013/261917
GeronAHands-on machine learning with Scikit-Learn & TensorFlow2018O'Reilly Media Inc.ISBN:978-93-5213-521-9
World Health Organization (2020) Cardiovascular Disease. [Online]. Available via link http://www.who.int/cardiovascular_diseases/en/index.html
El-Bouny L, Khalil M, Adib A (2020) ECG heartbeat classification based on multi-scale wavelet convolutional neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 3212–3216
GaoZAutomatic segmentation of coronary tree in CT angiography imagesInt J Adapt Control Signal Process20193312391247399555510.1002/acs.27621432.92051
XiaYXieYA novel wearable electrocardiogram classification system using convolutional neural networks and active learningIEEE Access201977989800110.1109/ACCESS.2019.2890865
AndreottiFCarrOPimentelMAFMahdiAVosMDComparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECGComputCardiol20174414
NejadHCKhayatOAzadbakhBMohammadiMUsing feed forward neural network for electrocardiogram signal analysis in chaotic domainJ Intell Fuzzy Syst20142752289229610.3233/IFS-141192
ZhaiXTinCAutomated ECG classification using dual heartbeat coupling based on convolutional neural networkIEEE Access20186274652747210.1109/ACCESS.2018.2833841
FanXYaoQCaiYMiaoFSunFLiYMultiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordingsIEEE J Biomed Health Inform201822674475310.1109/JBHI.2018.2858789
Guangying Y, and Yue C (2010) The study of electrocardiograph based on radial basis function neural network. In: Proceedings of Third International Symposium on Intelligent Information Technology and Security Informatics IEEE, 2010, pp 143–145
ChenAMulti-information fusion neural networks for arrhythmia automatic detectionComput Methods Programs Biomed202019310547910.1016/j.cmpb.2020.105479
XuSSMakMWCheungCCTowards end-to-end ECG classification with raw signal extraction and deep neural networksIEEE J Biomed Health Inform2018148111
RobbinsHMonroSA stochastic approximation methodAnn Math Stat19512234004074266810.1214/aoms/11777295860054.05901
LuLYanJde SilvaCWFeature selection for ECG signal processing using improved genetic algorithm and empirical mode decompositionMeasurement20169437238110.1016/j.measurement.2016.07.043
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large- scale image recognition In: Proceedings of International Conference on Learning Representations. pp 1–14
Shaker AM, Tantawi M, Shedeed HA, Tolba MF (2021) Deep convolutional neural networks for ECG heartbeat classification using two-stage hierarchical method. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020. AISI 2020. Advances in Intelligent Systems and Computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_12
OsowskiSHoaiLTAnalysis of features for efficient ECG signal classification using neuro-fuzzy networkProc IEEE Int Joint Conf Neural Networks2004324432448
BanerjeeSGuptaRMitraMDelineation of ECG characteristic features using multi-resolution wavelet analysis methodMeasurement201245347448710.1016/j.measurement.2011.10.025
Jangra M, Singh KK and Dhull SK (2017) Recent trends in arrhythmia beat detection: a review. In: Communication and Computing System. Proceedings of the International Conference on Communication and Computing Systems, ICCCS 2016, pp 177–184. https://doi.org/10.1201/9781315364094-33.
MartisRJAcharyaURMinLCECG beat classification using PCA, LDA, ICA and Discrete Wavelet TransformBiomed Signal Process Control20138543744810.1016/j.bspc.2013.01.005
BergstraJKomerBEliasmithCYaminsDCoxDDHyperopt: a Python library for model selection and hyperparameter optimizationComputSciDiscov20158124
ANSI/AAMI EC57 (1998) Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms (AAMI Recommended Practice/American National Standard), Order Code: EC57–293. http://www.aami.org
XuXLiuHECG heartbeat classification using convolutional neural networksIEEE Access202088614861910.1109/ACCESS.2020.2964749
LeiteJPRRMorenoRLHeartbeat classification with low computational cost using Hjorth parametersIET Signal Proc201812443143810.1049/iet-spr.2017.0296
Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp 1800–1807. https://doi.org/10.1109/CVPR.2017.195
SteinbergCAAbrahamSCaceresCAPattern recognition in the clinical electrocardiogramIRE Trans Biomed Electron196291233010.1109/TBMEL.1962.4322946
AcharyaUROhSLHagiwaraYTanJHAdamMGertychASanTRA deep convolutional neural network model to classify heartbeatsComputBiol Med20178938939610.1016/j.compbiomed.2017.08.022
RomdhaneTFElectrocardiogram heartbeat classification based on a deep convolutional neural network and focal lossComputBiol Med202012310386610.1016/j.compbiomed.2020.103866
JangraMDhullSKSinghKKECG arrhythmia classification using modified visual geometry group network (mVGGNet)J Intell Fuzzy Syst20203833151316510.3233/JIFS-191135
Bergstra J, Bardenet R, Bengio Y, Kegl B (2011) Algorithms for hyper-parameter optimization. In: Proceedings of Conference on Advances in Neural Information Processing Systems. pp 1–9. https://github.com/maxpumperla/hyperas
YildirimÖA novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classificationComputBiol Med20189618920210.1016/j.compbiomed.2018.03.016
Roy S, Kiral-Kornek I, Harrer S (2019) Chrononet: a deep recurrent neural network for abnormal EEG identification, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11526 LNAI, pp 47–56. https://doi.org/10.1007/978-3-030-21642-9_8.4
ZhangYDA five-layer deep convolutional neural network with stochastic pooling for chest CT-based COVID-19 diagnosisMach Vis Appl202110.1007/s00138-020-01128-8Springer Berlin Heidelberg
ClerkinKJCOVID-19 and cardiovascular diseaseAHA Circ202010.1161/CIRCULATIONAHA.120.046941
DoganBKorürekMA New ECG beat clustering method based on kernelized fuzzy C- mean and hybrid ant colony optimization for continuous domainsAppl Soft Comput201212113442345110.1016/j.asoc.2012.07.007
GangulyBAutomated detection and classification of arrhythmia from ecg signals using feature induced long short-term memory networkIEEE SensLett2020235810.1109/LSENS.2020.3006756
MelganiFBaziYClassification of electrocardiogram signals with support vector machine and particle swarm optimizationIEEE Trans InfTechnol Biomed200812566767710.1109/TITB.2008.923147
HuangHA new hierarchical method for inter-patient heartbeat classification using random projections and RR intervalsBiomed Eng Online201413112610.1186/1475-925X-13-90
MartisRJAcharyaURMandanaKMRayAKChakrabortyCApplication of principal component analysis to ECG signals for automated diagnosis of cardiac healthExpert SystAppl20123914117921180010.1016/j.eswa.2012.04.072
Emanet N (2009) ECG beat classification by using discrete wavelet transform and random forest algorithm. In: Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 2009 pp 1–4
KiranyazSInceTGabboujMReal-time patient-specific ECG classification by 1-D convolutional neural networksIEEE Trans Biomed Eng201663366467510.1109/TBME.2015.2468589
XiaYZhangHXuLGaoZZhangHLiuHLiSAn automatic cardiac arrhythmia classification system with wearable electrocardiogramIEEE Access20186165291653810.1109/ACCESS.2018.2807700
MahmudTFattahSASaquibMDeepArrNet: an efficient deep CNN architecture for automatic arrhythmia detection and classification from denoised ECG beatsIEEE Access2020810478810480010.1109/ACCESS.2020.2998788
MoodyGBMarkRGThe impact of the MIT- BIH arrhythmia databaseIEEE Eng Med Biol2001203455010.1109/51.932724
YangFZhangXZhuYPDNet: a convolutional neural network has potential to be deployed on small intelligent devices for arrhythmia diagnosisComput Model EngSci2020125136538210.32604/cmes.2020.010798
KieferJWolfowitzJStochastic estimation of the maximum of a regression functionAnn Math Stat19522334624665024310.1214/aoms/11777293920049.36601
Jun TJ, Nguyen HM, Kang D, Kim D, Kim D, and Kim YH (2018) ECG arrhythmia classification using a 2-D convolutional neural network. Computer Vision and Pattern Recognition. pp 1–22.
AddisonPSWavelet transforms and the ECG: a reviewPhysiolMeasur200510.1088/0967-3334/26/5/R01
ChazalPDO'DwyerMReillyRBAutomatic classification of heartbeats using ECG morphology and heartbeat interval featuresIEEE Trans Biomed Eng20045171196120610.1109/TBME.2004.827359
QiaoFA fast and accurate recognition of ECG signals based on ELM-LRF and BLSTM algorithmIEEE Access20208711897119810.1109/ACCESS.2020.2987930
A Geron (371_CR42) 2018
SS Xu (371_CR39) 2018; 14
PD Chazal (371_CR46) 2004; 51
371_CR34
371_CR32
JPRR Leite (371_CR16) 2018; 12
HC Nejad (371_CR4) 2014; 27
KJ Clerkin (371_CR2) 2020
TF Romdhane (371_CR49) 2020; 123
371_CR41
RJ Martis (371_CR12) 2012; 39
F Melgani (371_CR19) 2008; 12
X Fan (371_CR23) 2018; 22
UR Acharya (371_CR21) 2017; 89
Y Xia (371_CR27) 2018; 6
H Robbins (371_CR43) 1951; 22
X Zhai (371_CR31) 2018; 6
371_CR3
371_CR1
F Qiao (371_CR51) 2020; 8
Z Gao (371_CR6) 2017; 37
371_CR47
CA Steinberg (371_CR8) 1962; 9
T Mahmud (371_CR25) 2020; 8
371_CR48
Ö Yildirim (371_CR26) 2018; 96
B Dogan (371_CR18) 2012; 12
H Huang (371_CR7) 2014; 13
F Yang (371_CR35) 2020; 125
X Xu (371_CR52) 2020; 8
371_CR13
371_CR10
M Jangra (371_CR36) 2020; 38
RJ Martis (371_CR14) 2013; 45
Z Gao (371_CR5) 2019; 33
S Osowski (371_CR17) 2004; 3
S Banerjee (371_CR38) 2012; 45
RJ Martis (371_CR9) 2013; 8
F Andreotti (371_CR28) 2017; 44
371_CR29
YD Zhang (371_CR33) 2021
L Lu (371_CR15) 2016; 94
GB Moody (371_CR45) 2001; 20
371_CR24
B Ganguly (371_CR53) 2020; 2
SH El-Khafif (371_CR11) 2013; 2013
371_CR30
PS Addison (371_CR40) 2005
S Kiranyaz (371_CR20) 2016; 63
Y Xia (371_CR22) 2019; 7
A Chen (371_CR50) 2020; 193
J Bergstra (371_CR37) 2015; 8
J Kiefer (371_CR44) 1952; 23
References_xml – reference: MoodyGBMarkRGThe impact of the MIT- BIH arrhythmia databaseIEEE Eng Med Biol2001203455010.1109/51.932724
– reference: YangFZhangXZhuYPDNet: a convolutional neural network has potential to be deployed on small intelligent devices for arrhythmia diagnosisComput Model EngSci2020125136538210.32604/cmes.2020.010798
– reference: SteinbergCAAbrahamSCaceresCAPattern recognition in the clinical electrocardiogramIRE Trans Biomed Electron196291233010.1109/TBMEL.1962.4322946
– reference: Shaker AM, Tantawi M, Shedeed HA, Tolba MF (2021) Deep convolutional neural networks for ECG heartbeat classification using two-stage hierarchical method. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020. AISI 2020. Advances in Intelligent Systems and Computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_12
– reference: MahmudTFattahSASaquibMDeepArrNet: an efficient deep CNN architecture for automatic arrhythmia detection and classification from denoised ECG beatsIEEE Access2020810478810480010.1109/ACCESS.2020.2998788
– reference: BanerjeeSGuptaRMitraMDelineation of ECG characteristic features using multi-resolution wavelet analysis methodMeasurement201245347448710.1016/j.measurement.2011.10.025
– reference: ZhaiXTinCAutomated ECG classification using dual heartbeat coupling based on convolutional neural networkIEEE Access20186274652747210.1109/ACCESS.2018.2833841
– reference: AndreottiFCarrOPimentelMAFMahdiAVosMDComparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECGComputCardiol20174414
– reference: AddisonPSWavelet transforms and the ECG: a reviewPhysiolMeasur200510.1088/0967-3334/26/5/R01
– reference: Bergstra J, Bardenet R, Bengio Y, Kegl B (2011) Algorithms for hyper-parameter optimization. In: Proceedings of Conference on Advances in Neural Information Processing Systems. pp 1–9. https://github.com/maxpumperla/hyperas
– reference: KieferJWolfowitzJStochastic estimation of the maximum of a regression functionAnn Math Stat19522334624665024310.1214/aoms/11777293920049.36601
– reference: GangulyBAutomated detection and classification of arrhythmia from ecg signals using feature induced long short-term memory networkIEEE SensLett2020235810.1109/LSENS.2020.3006756
– reference: ChenAMulti-information fusion neural networks for arrhythmia automatic detectionComput Methods Programs Biomed202019310547910.1016/j.cmpb.2020.105479
– reference: MelganiFBaziYClassification of electrocardiogram signals with support vector machine and particle swarm optimizationIEEE Trans InfTechnol Biomed200812566767710.1109/TITB.2008.923147
– reference: MartisRJAcharyaURMinLCECG beat classification using PCA, LDA, ICA and Discrete Wavelet TransformBiomed Signal Process Control20138543744810.1016/j.bspc.2013.01.005
– reference: KiranyazSInceTGabboujMReal-time patient-specific ECG classification by 1-D convolutional neural networksIEEE Trans Biomed Eng201663366467510.1109/TBME.2015.2468589
– reference: FanXYaoQCaiYMiaoFSunFLiYMultiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordingsIEEE J Biomed Health Inform201822674475310.1109/JBHI.2018.2858789
– reference: BergstraJKomerBEliasmithCYaminsDCoxDDHyperopt: a Python library for model selection and hyperparameter optimizationComputSciDiscov20158124
– reference: AcharyaUROhSLHagiwaraYTanJHAdamMGertychASanTRA deep convolutional neural network model to classify heartbeatsComputBiol Med20178938939610.1016/j.compbiomed.2017.08.022
– reference: XuSSMakMWCheungCCTowards end-to-end ECG classification with raw signal extraction and deep neural networksIEEE J Biomed Health Inform2018148111
– reference: DoganBKorürekMA New ECG beat clustering method based on kernelized fuzzy C- mean and hybrid ant colony optimization for continuous domainsAppl Soft Comput201212113442345110.1016/j.asoc.2012.07.007
– reference: XuXLiuHECG heartbeat classification using convolutional neural networksIEEE Access202088614861910.1109/ACCESS.2020.2964749
– reference: HuangHA new hierarchical method for inter-patient heartbeat classification using random projections and RR intervalsBiomed Eng Online201413112610.1186/1475-925X-13-90
– reference: NejadHCKhayatOAzadbakhBMohammadiMUsing feed forward neural network for electrocardiogram signal analysis in chaotic domainJ Intell Fuzzy Syst20142752289229610.3233/IFS-141192
– reference: World Health Organization (2020) Cardiovascular Disease. [Online]. Available via link http://www.who.int/cardiovascular_diseases/en/index.html
– reference: GaoZAutomatic segmentation of coronary tree in CT angiography imagesInt J Adapt Control Signal Process20193312391247399555510.1002/acs.27621432.92051
– reference: RobbinsHMonroSA stochastic approximation methodAnn Math Stat19512234004074266810.1214/aoms/11777295860054.05901
– reference: XiaYZhangHXuLGaoZZhangHLiuHLiSAn automatic cardiac arrhythmia classification system with wearable electrocardiogramIEEE Access20186165291653810.1109/ACCESS.2018.2807700
– reference: ANSI/AAMI EC57 (1998) Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms (AAMI Recommended Practice/American National Standard), Order Code: EC57–293. http://www.aami.org
– reference: ClerkinKJCOVID-19 and cardiovascular diseaseAHA Circ202010.1161/CIRCULATIONAHA.120.046941
– reference: GaoZRobust estimation of carotid artery wall motion using the elasticity-based state-space approachMed Image Anal20173712110.1016/j.media.2017.01.004
– reference: LeiteJPRRMorenoRLHeartbeat classification with low computational cost using Hjorth parametersIET Signal Proc201812443143810.1049/iet-spr.2017.0296
– reference: XiaYXieYA novel wearable electrocardiogram classification system using convolutional neural networks and active learningIEEE Access201977989800110.1109/ACCESS.2019.2890865
– reference: MartisRJAcharyaURMandanaKMRayAKChakrabortyCApplication of principal component analysis to ECG signals for automated diagnosis of cardiac healthExpert SystAppl20123914117921180010.1016/j.eswa.2012.04.072
– reference: El-KhafifSHEl-BrawanyMAArtificial neural network-based automated ECG signal classifierInt Scholar Res Notices201320131610.1155/2013/261917
– reference: Jun TJ, Nguyen HM, Kang D, Kim D, Kim D, and Kim YH (2018) ECG arrhythmia classification using a 2-D convolutional neural network. Computer Vision and Pattern Recognition. pp 1–22.
– reference: RomdhaneTFElectrocardiogram heartbeat classification based on a deep convolutional neural network and focal lossComputBiol Med202012310386610.1016/j.compbiomed.2020.103866
– reference: ChazalPDO'DwyerMReillyRBAutomatic classification of heartbeats using ECG morphology and heartbeat interval featuresIEEE Trans Biomed Eng20045171196120610.1109/TBME.2004.827359
– reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large- scale image recognition In: Proceedings of International Conference on Learning Representations. pp 1–14
– reference: Roy S, Kiral-Kornek I, Harrer S (2019) Chrononet: a deep recurrent neural network for abnormal EEG identification, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11526 LNAI, pp 47–56. https://doi.org/10.1007/978-3-030-21642-9_8.4
– reference: MartisRJAcharyaURLimCMSuriJSCharacterization of ECG beats from cardiac arrhythmia using discrete cosine transform in PCA frameworkKnowl-Based Syst201345768210.1016/j.knosys.2013.02.007
– reference: LuLYanJde SilvaCWFeature selection for ECG signal processing using improved genetic algorithm and empirical mode decompositionMeasurement20169437238110.1016/j.measurement.2016.07.043
– reference: JangraMDhullSKSinghKKECG arrhythmia classification using modified visual geometry group network (mVGGNet)J Intell Fuzzy Syst20203833151316510.3233/JIFS-191135
– reference: OsowskiSHoaiLTAnalysis of features for efficient ECG signal classification using neuro-fuzzy networkProc IEEE Int Joint Conf Neural Networks2004324432448
– reference: ZhangYDA five-layer deep convolutional neural network with stochastic pooling for chest CT-based COVID-19 diagnosisMach Vis Appl202110.1007/s00138-020-01128-8Springer Berlin Heidelberg
– reference: Guangying Y, and Yue C (2010) The study of electrocardiograph based on radial basis function neural network. In: Proceedings of Third International Symposium on Intelligent Information Technology and Security Informatics IEEE, 2010, pp 143–145
– reference: QiaoFA fast and accurate recognition of ECG signals based on ELM-LRF and BLSTM algorithmIEEE Access20208711897119810.1109/ACCESS.2020.2987930
– reference: Emanet N (2009) ECG beat classification by using discrete wavelet transform and random forest algorithm. In: Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 2009 pp 1–4
– reference: Jangra M, Singh KK and Dhull SK (2017) Recent trends in arrhythmia beat detection: a review. In: Communication and Computing System. Proceedings of the International Conference on Communication and Computing Systems, ICCCS 2016, pp 177–184. https://doi.org/10.1201/9781315364094-33.
– reference: El-Bouny L, Khalil M, Adib A (2020) ECG heartbeat classification based on multi-scale wavelet convolutional neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 3212–3216
– reference: GeronAHands-on machine learning with Scikit-Learn & TensorFlow2018O'Reilly Media Inc.ISBN:978-93-5213-521-9
– reference: Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp 1800–1807. https://doi.org/10.1109/CVPR.2017.195
– reference: YildirimÖA novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classificationComputBiol Med20189618920210.1016/j.compbiomed.2018.03.016
– volume: 96
  start-page: 189
  year: 2018
  ident: 371_CR26
  publication-title: ComputBiol Med
  doi: 10.1016/j.compbiomed.2018.03.016
– volume: 3
  start-page: 2443
  year: 2004
  ident: 371_CR17
  publication-title: Proc IEEE Int Joint Conf Neural Networks
– volume: 8
  start-page: 437
  issue: 5
  year: 2013
  ident: 371_CR9
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.01.005
– volume: 12
  start-page: 667
  issue: 5
  year: 2008
  ident: 371_CR19
  publication-title: IEEE Trans InfTechnol Biomed
  doi: 10.1109/TITB.2008.923147
– year: 2020
  ident: 371_CR2
  publication-title: AHA Circ
  doi: 10.1161/CIRCULATIONAHA.120.046941
– volume: 8
  start-page: 1
  year: 2015
  ident: 371_CR37
  publication-title: ComputSciDiscov
– ident: 371_CR13
  doi: 10.1109/IITSI.2010.85
– volume: 45
  start-page: 76
  year: 2013
  ident: 371_CR14
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.02.007
– volume: 2013
  start-page: 1
  year: 2013
  ident: 371_CR11
  publication-title: Int Scholar Res Notices
  doi: 10.1155/2013/261917
– ident: 371_CR29
  doi: 10.1007/978-3-030-58669-0_12
– year: 2005
  ident: 371_CR40
  publication-title: PhysiolMeasur
  doi: 10.1088/0967-3334/26/5/R01
– volume: 14
  start-page: 1
  issue: 8
  year: 2018
  ident: 371_CR39
  publication-title: IEEE J Biomed Health Inform
– volume: 123
  start-page: 103866
  year: 2020
  ident: 371_CR49
  publication-title: ComputBiol Med
  doi: 10.1016/j.compbiomed.2020.103866
– volume: 33
  start-page: 1239
  year: 2019
  ident: 371_CR5
  publication-title: Int J Adapt Control Signal Process
  doi: 10.1002/acs.2762
– volume: 6
  start-page: 27465
  year: 2018
  ident: 371_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2833841
– ident: 371_CR10
  doi: 10.1109/ICSCCW.2009.5379457
– ident: 371_CR47
– volume: 45
  start-page: 474
  issue: 3
  year: 2012
  ident: 371_CR38
  publication-title: Measurement
  doi: 10.1016/j.measurement.2011.10.025
– volume: 89
  start-page: 389
  year: 2017
  ident: 371_CR21
  publication-title: ComputBiol Med
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 38
  start-page: 3151
  issue: 3
  year: 2020
  ident: 371_CR36
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-191135
– ident: 371_CR3
  doi: 10.1201/9781315364094-33
– ident: 371_CR34
  doi: 10.1109/CVPR.2017.195
– volume: 193
  start-page: 105479
  year: 2020
  ident: 371_CR50
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105479
– volume: 9
  start-page: 23
  issue: 1
  year: 1962
  ident: 371_CR8
  publication-title: IRE Trans Biomed Electron
  doi: 10.1109/TBMEL.1962.4322946
– volume: 6
  start-page: 16529
  year: 2018
  ident: 371_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807700
– volume: 7
  start-page: 7989
  year: 2019
  ident: 371_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2890865
– volume: 23
  start-page: 462
  issue: 3
  year: 1952
  ident: 371_CR44
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729392
– volume: 8
  start-page: 8614
  year: 2020
  ident: 371_CR52
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964749
– ident: 371_CR48
– ident: 371_CR24
  doi: 10.1109/ICASSP40776.2020.9054749
– volume: 2
  start-page: 5
  issue: 3
  year: 2020
  ident: 371_CR53
  publication-title: IEEE SensLett
  doi: 10.1109/LSENS.2020.3006756
– volume: 125
  start-page: 365
  issue: 1
  year: 2020
  ident: 371_CR35
  publication-title: Comput Model EngSci
  doi: 10.32604/cmes.2020.010798
– volume: 44
  start-page: 1
  year: 2017
  ident: 371_CR28
  publication-title: ComputCardiol
– volume: 27
  start-page: 2289
  issue: 5
  year: 2014
  ident: 371_CR4
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/IFS-141192
– volume: 39
  start-page: 11792
  issue: 14
  year: 2012
  ident: 371_CR12
  publication-title: Expert SystAppl
  doi: 10.1016/j.eswa.2012.04.072
– volume: 37
  start-page: 1
  year: 2017
  ident: 371_CR6
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.01.004
– volume-title: Hands-on machine learning with Scikit-Learn & TensorFlow
  year: 2018
  ident: 371_CR42
– volume: 13
  start-page: 1
  issue: 1
  year: 2014
  ident: 371_CR7
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-13-90
– volume: 51
  start-page: 1196
  issue: 7
  year: 2004
  ident: 371_CR46
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.827359
– ident: 371_CR41
– volume: 12
  start-page: 431
  issue: 4
  year: 2018
  ident: 371_CR16
  publication-title: IET Signal Proc
  doi: 10.1049/iet-spr.2017.0296
– year: 2021
  ident: 371_CR33
  publication-title: Mach Vis Appl
  doi: 10.1007/s00138-020-01128-8
– volume: 8
  start-page: 71189
  year: 2020
  ident: 371_CR51
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2987930
– volume: 22
  start-page: 744
  issue: 6
  year: 2018
  ident: 371_CR23
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2858789
– volume: 94
  start-page: 372
  year: 2016
  ident: 371_CR15
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.043
– volume: 8
  start-page: 104788
  year: 2020
  ident: 371_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2998788
– ident: 371_CR30
– volume: 22
  start-page: 400
  issue: 3
  year: 1951
  ident: 371_CR43
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729586
– ident: 371_CR32
  doi: 10.1007/978-3-030-21642-9_8.4
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 371_CR45
  publication-title: IEEE Eng Med Biol
  doi: 10.1109/51.932724
– ident: 371_CR1
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  ident: 371_CR20
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2468589
– volume: 12
  start-page: 3442
  issue: 11
  year: 2012
  ident: 371_CR18
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.07.007
SSID ssj0001778302
ssib044733412
ssib045327741
Score 2.3610592
Snippet The regular monitoring and accurate diagnosis of arrhythmia are critically important, leading to a reduction in mortality rate due to cardiovascular diseases...
Abstract The regular monitoring and accurate diagnosis of arrhythmia are critically important, leading to a reduction in mortality rate due to cardiovascular...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2685
SubjectTerms Algorithms
Arrhythmia
Artificial neural networks
Cardiac arrhythmia
Classification
CNN
Complexity
Computational Intelligence
Data Structures and Information Theory
Deep learning
Depthwise separable convolution
ECG
Engineering
Feature maps
Global optimization
Original
Original Article
Wavelet transform
SummonAdditionalLinks – databaseName: DOAJ : Directory of Open Access Journals [open access]
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiDfpAxmJG1g49sSOudGKigsLBxC9RX7E2pXYbLW7RYJf37HzaJfnhWvsOM7MOP4mnvmGkOdcO1srWzEhvWIAnrO6jo6V3sgKXJWyfXKxCT2b1Wdn5uO1Ul8pJqynB-4F98r4EJwN6MNZB5FL4x1-UiPCBh91LDPZNqKea84UWhKAlhKuNm6opNBjjZn890XrRHyVKs-VxjDIZ5j7U14dJFp5lqIXMqUdg51dK5P7_w6R_hpY-dPpat60Tu-SOwPapG_6t7xHbrTdfXL7_UTVunlA3Af25WQ2e01tR1f4_VgufrSBjiwSqDW6inST4q5xINsFmnMz8bE0tpkUlC7tOUXoS-16Pf--nS8XlvqEyVMQUh7hIfl8-vbTyTs2FF5gXkG5ZVVwDt0Q7nUQRrUVbqTcliqktF0B0lU8WtABFQNGSwteV8oJq6KJGhFjlI_IXrfq2ieE1rLlhnuhHNQgvKqFRYxV1zKEkqNqC1KOgm38wEqeimN8bSY-5ayMBpXRZGU0UJAX0z3nPSfHX3sfJ31NPROfdr6AVtYMVtb8y8oKcjhquxkW-aZJab-Z4I0X5NnUjMsznbnYrl1dYJ_E74cuLeAQj3vjmGYiQWObkgXRO2azM9Xdlm4xzxTgiUIa0VVBXo4GdjWtP4ti_3-I4oDcEgj0-nC5Q7K3XV-0R-Sm_7ZdbNZP8zK8BKxYL-g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgywEOvB8pBRmJG1g48cSOuSBateJCqBCI3iI_4u5KbLIkWyT49djeJKvl0QvX2LEmmbH92TPzDULPqdCq4ConGTOcABhKisJpkhrJctB5yPaJxSZEWRZnZ_J0uHDrh7DKcU2MC7VtTbgjfxVyLCObFn2z-kZC1ajgXR1KaFxFe4GpDGZo7_C4PP04WhSAYAy2GzjkLBNjrZl4CyNEIMAKFehSKQlEX-b-lF8HgV6ehCiGSG1HYGf3iiT_f0OmfwZY_uZljZvXya3__ezb6OYAW_HbjZ3dQVfq5i668X7ifO3vIf2BfDkqy9dYNbj1C9Fy8bO2eKSj8OrHrcN9COD2A6nG4pjk6eXGro7sonipVthjaKy6bv5jPV8uFDYB3IdopjjCffT55PjT0TsyVHAghkO6JrnV2p9nqBE2k7zO_Y5MVcptyP_NgOmcOgXCWqtBCqbAiJzrTHEnnfDQ07EHaNa0Tf0I4YLVVFKTcQ0FZIYXmfJgrSiYtSk11iYoHTVTmYHePFTZ-FpNxMxRm5XXZhW1WUGCXkzvrDbkHpf2PgwKn3oGYu74oO3Oq2GeV9KLopWVVCgNjjJptEcAzqNc44RLeYIORj1Xw2rRV1slJ-jZ1OzneXDeqKZuL3yfQBToz8bgh3i4sa5JEgbCt3GWILFjdzui7rY0i3nkEg9c1B6mJejlaKFbsf79K_Yv_4rH6HrmseAmou4AzdbdRf0EXTPf14u-ezrM0V-Yvj4K
  priority: 102
  providerName: ProQuest
Title O-WCNN: an optimized integration of spatial and spectral feature map for arrhythmia classification
URI https://link.springer.com/article/10.1007/s40747-021-00371-4
https://www.ncbi.nlm.nih.gov/pubmed/34777963
https://www.proquest.com/docview/2825544510
https://www.proquest.com/docview/2597799846
https://pubmed.ncbi.nlm.nih.gov/PMC8075024
https://doaj.org/article/9cddbad907ab4f039cb128f522cf7f16
Volume 9
WOSCitedRecordID wos000644279400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044733412
  issn: 2199-4536
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: P5Z
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: PIMPY
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: C24
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYxoEd-IZljMpI3MCSEzv-4MaqTXBYqRCIwiXyR0wr0XRqOyT463l2k4wCQ4JLpMSO9WI_-_2c997PCD2l0holTEkK5gTh3FGiVLAkd5qV3JYx2ycdNiFHIzWZ6HGbFLbqot07l2RaqftkNx653kkMKUg8c4TvoL0yVzrq9fCSc5xzyRhvjXb60yJlJLmKp8zlWhOe_JWHVze7ZaESkf-f0OfvQZS_eFKTgTq99X-fdhvdbAEpfrnRoDvoWt3cRfs_0RTC3VnP7bq6h-wb8mE4Gr3ApsELWHDms--1xx3tBAwzXgS8ioHa0KxpPE7JnCA7DnViEcVzc44BK2OzXE6_rafzmcEugvgYtZRauI_en568G74i7UkNxAmer0nprYV9C3XSF1rUJVheanLhY55vwZktaTBceu8t15IZ7mQpbGFE0EECxAzsAdptFk19gLBiNdXUFcJyxQsnVGEAlCnFvM-p8z5DeTc6lWtpzONpGl-qnoA59WYFvVml3qx4hp7175xvSDz-Wvs4DnpfMxJwpweL5eeqnc-VBlGs8ZpKY3mgTDsLlj4AmnVBhlxk6KhTmapdFVZVzBNOjHA0Q0_6YpjP0UljmnpxAXUiISDsgTk08XCjYb0kjEsoEyxDckv3tkTdLmlm08QZHjmnAY5l6HmngZdiXd0Vh_9W_RG6UQAG3ETSHaHd9fKifoyuu6_r2Wo5QDtyogZo7_hkNH47SHN2kH6BwHVcfoKS8euz8ccf5y05PA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAIeuF8yBhgJnsDCsZ04RkIIBtOmbWUPQ5t4Cb7EtBJNStuBxo_iN3LsNqnKZW974LV2jxzn8_Hn-JzvIPSYSqOLXGeEcZsTISwlReENSa3imTBZyPaJxSZkr1ccHan9FfSzzYUJYZWtT4yO2jU2fCN_HnIso5oWfTX6SkLVqHC72pbQmMFipzr5Dke2ycvtt_B-nzC2-e5gY4vMqwoQm4t0SjJnDHBsaqVjKq8y2CWoTnMXclKZ4CajXgvpnDNCSa6FlVlumM698hLokOdg9xw6LwQclmD97GcfW_wKIcHGgi6IjDPZVraJ33ykDHJbod5dqhQR8eZ0rcvmE0HMnoSYiSikR8TSXhlLCvyNB_8ZzvnbnW7cKjev_m-TfA1dmZNy_Hq2iq6jlaq-gS7vdYq2k5vIvCeHG73eC6xr3ICbHQ5-VA63YhsAbtx4PAnh6WBI1w7HFFaYJ-yrqJ2Kh3qE4YSA9XjcP5n2hwONbTi6hFitaOEW-nAmD3kbrdZNXd1FuOAVVdSy3IhCMJsXTAMVLQruXEqtcwlKWySUdi7eHmqIfCk72emInhLQU0b0lCJBT7v_jGbSJaf2fhMA1vUMsuPxh2b8uZx7sVLBUIx2ikpthKdcWQP8xgOHt176NE_Qeourcu4LJ-UCVAl61DWDFwtXU7qummPoE2QQ4eQvwMSdGZq7kXAhoS3nCZJLOF8a6nJLPehHpfSgtA0kNEHP2hWxGNa_p2Lt9Kd4iC5uHeztlrvbvZ176BID1juLHVxHq9PxcXUfXbDfpoPJ-EH0Dhh9OuuV8guZIJoO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMctGAjBgZ8DMgYYiRtYc2LHjrlBoQIBYQcQu1n-EdNKNK3SDgn-ep7dNFuBISGOiV3LcZ7jr_ve-xihx1RaUwlTkoI5QTh3lFRVsCR3ipXcljHbJx02Ieu6OjpSh6ey-FO0-8Yluc5piJSmdnWw8OFgSHzjkftOYnhBYs4Rfh5diB6puP0anfDHOZeM8X4BT_-6SBmBV_HEuVwpwpPvcu_sZrdWqwT1_5MS_T2g8hevalqsxtf-_zGvo6u9UMXP15Z1A51r2pvoyil8IVy9H5ivy1vIfiCfR3X9DJsWz-FDNJv-aDze4Cjg9eN5wMsYwA3NmtbjlOQJz4FDk-iieGYWGDQ0Nl03-b6azKYGuyjuYzRTamEXfRq_-jh6TfoTHIgTPF-R0lsL-xnqpC-UaEpYkanJhY_5vwVntqTBcOm9t1xJZriTpbCFEUEFCdIzsNtop523zV2EK9ZQRV0hLK944URVGBBrVcW8z6nzPkP55k1p1-PN4ykbX_UAZk6jqWE0dRpNzTP0ZPjNYg33-GvtF9EAhpoRzJ1uzLsvup_nWkFXrPGKSmN5oEw5CwoggMp1QYZcZGh_Yz66_1osdcwfTqQ4mqFHQzHM8-i8MW0zP4Y6ERQIe2MOTdxZW9vQE8YllAmWIbllh1td3S5pp5PEEo8sapBpGXq6scaTbp09FHv_Vv0hunT4cqzfvanf3kOXC5CJ62C7fbSz6o6b--ii-7aaLrsHafL-BIw-Ptw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=O-WCNN%3A+an+optimized+integration+of+spatial+and+spectral+feature+map+for+arrhythmia+classification&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Jangra%2C+Manisha&rft.au=Dhull%2C+Sanjeev+Kumar&rft.au=Singh%2C+Krishna+Kant&rft.au=Singh%2C+Akansha&rft.date=2023-06-01&rft.issn=2198-6053&rft.eissn=2198-6053&rft.volume=9&rft.issue=3&rft.spage=2685&rft_id=info:doi/10.1007%2Fs40747-021-00371-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon