Vanillic acid and methoxyhydroquinone production from guaiacyl units and related aromatic compounds using Aspergillus niger cell factories

Background The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial cell factories Jg. 20; H. 1; S. 151 - 14
Hauptverfasser: Lubbers, Ronnie J. M., Dilokpimol, Adiphol, Nousiainen, Paula A., Cioc, Răzvan C., Visser, Jaap, Bruijnincx, Pieter C. A., de Vries, Ronald P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 03.08.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1475-2859, 1475-2859
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. Results Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase ( vdhA ), vanillic acid hydroxylase ( vhyA ), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase ( mhdA ) and 4-oxo-monomethyl adipate esterase ( omeA ). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. Conclusions This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.
AbstractList Background The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. Results Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. Conclusions This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.
Background The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. Results Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. Conclusions This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories. Keywords: 4-Hydroxy-6-methoxy-6-oxohexa-2,4-dienoic acid, 4-Oxo-monomethyl adipate, Coniferyl alcohol, Ferulic acid, Fungal cell factory, Lignin, Vanillin, Veratic acid
The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.
The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved.BACKGROUNDThe aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved.Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds.RESULTSUsing whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds.This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.CONCLUSIONSThis study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.
Abstract Background The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. Results Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. Conclusions This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.
The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.
Background The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. Results Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase ( vdhA ), vanillic acid hydroxylase ( vhyA ), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase ( mhdA ) and 4-oxo-monomethyl adipate esterase ( omeA ). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. Conclusions This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.
ArticleNumber 151
Audience Academic
Author Lubbers, Ronnie J. M.
Nousiainen, Paula A.
Visser, Jaap
de Vries, Ronald P.
Dilokpimol, Adiphol
Bruijnincx, Pieter C. A.
Cioc, Răzvan C.
Author_xml – sequence: 1
  givenname: Ronnie J. M.
  surname: Lubbers
  fullname: Lubbers, Ronnie J. M.
  organization: Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University
– sequence: 2
  givenname: Adiphol
  surname: Dilokpimol
  fullname: Dilokpimol, Adiphol
  organization: Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University
– sequence: 3
  givenname: Paula A.
  surname: Nousiainen
  fullname: Nousiainen, Paula A.
  organization: Department of Chemistry, University of Helsinki
– sequence: 4
  givenname: Răzvan C.
  surname: Cioc
  fullname: Cioc, Răzvan C.
  organization: Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University
– sequence: 5
  givenname: Jaap
  surname: Visser
  fullname: Visser, Jaap
  organization: Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University
– sequence: 6
  givenname: Pieter C. A.
  surname: Bruijnincx
  fullname: Bruijnincx, Pieter C. A.
  organization: Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University
– sequence: 7
  givenname: Ronald P.
  orcidid: 0000-0002-4363-1123
  surname: de Vries
  fullname: de Vries, Ronald P.
  email: r.devries@wi.knaw.nl
  organization: Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34344380$$D View this record in MEDLINE/PubMed
BookMark eNp9kstq3DAUhk1JaS7tC3RRDN20C6eyJcvypjCEXgYChd624liSPRpsaSrZZeYV-tQ9nkmTTCixwDbS9_9HOvrPkxPnnUmSlzm5zHPB38W8qCnLSJFnJOeMZtsnyVnOqjIrRFmf3Ps_Tc5jXBOSV6Kiz5JTyihjVJCz5M9PcLbvrUpBWZ2C0-lgxpXf7lY7Hfyvyc5F003welKj9S5tgx_SbgILatenk7Nj3MuC6WE0aIHrMKKh8sPGT07HdIrWdekibkzosNgUU2c7E1Jl-j5tQY0-WBOfJ09b6KN5cfO9SH58_PD96nN2_eXT8mpxnSnO8jGjlBBGiKatKATjVVtVddlURQUEtNG6hao2YGpRa0pq4BQoN0XdcIYC1TB6kSwPvtrDWm6CHSDspAcr9xM-dBICHqA3krS6UQJf-DBiWAO8VmBII4QpG92i1_uD12ZqBqOVcWOA_sj0eMXZlez8byko5YzMm3lzYzA328RRDjbOfQFn_BRlUZaCCEFYjejrB-jaT8Fhq5DiBadFwcs7qgM8gHWtx7pqNpULXpUFI4LmSF3-h8KhzWAV3nhrcf5I8PZIgMxotmMHU4xy-e3rMfvqflNuu_EvdQgUB0AFH2Mw7S2SEzlHWx6iLTHach9tuUWReCBSdoQ5krh12z8upQdpxDoOk3fXuUdUfwG9YxDY
CitedBy_id crossref_primary_10_1002_jctb_7640
crossref_primary_10_1016_j_jep_2024_119217
crossref_primary_10_1016_j_cdc_2023_101007
crossref_primary_10_1016_j_ibiod_2025_105997
crossref_primary_10_1007_s00449_025_03136_2
crossref_primary_10_1016_j_fgb_2025_103985
crossref_primary_10_1016_j_scenv_2024_100179
crossref_primary_10_1186_s13068_025_02688_5
crossref_primary_10_3390_microorganisms10030515
crossref_primary_10_3389_ffunb_2022_978845
crossref_primary_10_1002_cbdv_202301345
crossref_primary_10_3390_plants14131922
crossref_primary_10_1016_j_bcab_2025_103526
crossref_primary_10_1016_j_lwt_2023_115258
crossref_primary_10_1111_1751_7915_14371
crossref_primary_10_1016_j_ijbiomac_2024_130359
crossref_primary_10_1038_s41598_024_65561_9
crossref_primary_10_1016_j_biotechadv_2025_108624
crossref_primary_10_3390_polym14122401
crossref_primary_10_1016_j_ijbiomac_2024_137134
crossref_primary_10_1186_s40694_024_00188_z
crossref_primary_10_1080_07388551_2024_2423152
crossref_primary_10_1002_chem_202304172
crossref_primary_10_1016_j_celrep_2024_115002
crossref_primary_10_3390_plants13243494
crossref_primary_10_1016_j_jcs_2023_103656
crossref_primary_10_1038_s41559_025_02785_6
crossref_primary_10_3390_biom13050717
crossref_primary_10_3390_microorganisms13081718
Cites_doi 10.1128/JB.187.6.2030-2037.2005
10.1016/S0021-9673(00)81390-4
10.1128/jb.173.8.2425-2434.1991
10.1016/j.nbt.2017.02.007
10.1006/eesa.1995.1081
10.1007/BF00521266
10.1128/AEM.02701-20
10.1016/S0031-9422(00)89328-0
10.1016/j.molp.2014.11.008
10.1002/jsfa.9303
10.1016/j.eurpolymj.2015.03.048
10.1016/0168-1656(96)01552-0
10.1007/s11274-004-0871-y
10.1074/jbc.270.36.21199
10.1021/ma7027215
10.1007/s13399-019-00418-0
10.1021/acssuschemeng.9b04918
10.1016/0168-1656(94)90003-5
10.1016/j.biotechadv.2019.05.002
10.1016/j.biortech.2006.03.028
10.1007/s00253-015-7197-6
10.1016/j.abb.2021.108820
10.1016/0076-6879(88)61030-5
10.1007/BF00446876
10.1039/c2gc35645g
10.1007/BF01201877
10.1007/s12010-012-0066-1
10.1002/(SICI)1097-0010(19990301)79:3<487::AID-JSFA273>3.0.CO;2-8
10.1007/BF00405911
10.3389/ffunb.2021.681631
10.1016/j.jbiotec.2006.12.021
10.1128/am.26.2.173-175.1973
10.1128/aem.55.9.2391-2398.1989
10.1128/jb.179.8.2595-2607.1997
10.1016/j.compositesb.2020.107925
10.1099/00221287-145-9-2393
10.1128/mBio.00391-21
10.1007/s10482-004-3194-y
10.1021/jo991332t
10.1128/AEM.01561-20
10.1271/bbb.70267
10.1111/j.1365-2672.2004.02275.x
10.1016/S0168-1605(03)00059-X
10.1007/BF00170072
10.1093/nar/gkh379
10.1016/j.biortech.2010.01.086
10.1099/mic.0.048215-0
10.1007/BF00408025
10.1007/BF00406669
10.1111/jam.14505
10.1080/03601230600964159
10.1007/s00253-021-11311-0
10.1038/srep08044
10.1021/acssuschemeng.0c00159
10.1038/s41598-017-12362-y
10.1039/C6RA27283E
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7T7
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12934-021-01643-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1475-2859
EndPage 14
ExternalDocumentID oai_doaj_org_article_0fdbc8fdbbbb40e4ba69cae0b88e5bdf
PMC8336404
A675240831
34344380
10_1186_s12934_021_01643_x
Genre Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GrantInformation_xml – fundername: Horizon 2020
  grantid: 720918
  funderid: http://dx.doi.org/10.13039/501100007601
– fundername: Horizon 2020
  grantid: 720918
– fundername: ;
  grantid: 720918
GroupedDBID ---
0R~
123
29M
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESTFP
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SCM
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c641t-3300400d3f828467f7795b727a0adeddfa79eae989d309a63a36e29b64f82cb43
IEDL.DBID DOA
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683469100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1475-2859
IngestDate Fri Oct 03 12:52:37 EDT 2025
Tue Nov 04 02:01:08 EST 2025
Mon Sep 08 11:33:22 EDT 2025
Sat Oct 18 23:46:17 EDT 2025
Sat Nov 29 13:01:43 EST 2025
Sat Nov 29 10:26:28 EST 2025
Wed Nov 26 09:51:54 EST 2025
Mon Jul 21 05:24:49 EDT 2025
Tue Nov 18 22:14:39 EST 2025
Sat Nov 29 03:47:36 EST 2025
Sat Sep 06 07:29:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lignin
Coniferyl alcohol
4-Hydroxy-6-methoxy-6-oxohexa-2,4-dienoic acid
Fungal cell factory
Vanillin
Veratic acid
4-Oxo-monomethyl adipate
Ferulic acid
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-3300400d3f828467f7795b727a0adeddfa79eae989d309a63a36e29b64f82cb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4363-1123
OpenAccessLink https://doaj.org/article/0fdbc8fdbbbb40e4ba69cae0b88e5bdf
PMID 34344380
PQID 2562632265
PQPubID 42699
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_0fdbc8fdbbbb40e4ba69cae0b88e5bdf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8336404
proquest_miscellaneous_2558088049
proquest_journals_2562632265
gale_infotracmisc_A675240831
gale_infotracacademiconefile_A675240831
gale_incontextgauss_ISR_A675240831
pubmed_primary_34344380
crossref_primary_10_1186_s12934_021_01643_x
crossref_citationtrail_10_1186_s12934_021_01643_x
springer_journals_10_1186_s12934_021_01643_x
PublicationCentury 2000
PublicationDate 2021-08-03
PublicationDateYYYYMMDD 2021-08-03
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microbial cell factories
PublicationTitleAbbrev Microb Cell Fact
PublicationTitleAlternate Microb Cell Fact
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References NJ Gallage (1643_CR18) 2015; 8
E de Jong (1643_CR27) 1990; 34
I Baqueiro-Peña (1643_CR24) 2010; 101
JA Busswell (1643_CR22) 1988; 161
B Falconnier (1643_CR36) 1994; 37
A Nishida (1643_CR34) 1978; 17
RJM Lubbers (1643_CR25) 2020; 128
P Guiraud (1643_CR31) 1995; 32
RJM Lubbers (1643_CR54) 2021; 87
AW Bassett (1643_CR8) 2020; 8
H Priefert (1643_CR28) 1997; 179
DS Kim (1643_CR43) 2008; 41
E Masai (1643_CR41) 2007; 71
DJ Fitzgerald (1643_CR12) 2003; 86
V Meyer (1643_CR57) 2007; 128
KT Chow (1643_CR14) 1999; 145
A Dilokpimol (1643_CR53) 2017; 37
WI Ali (1643_CR3) 2021; 25
AI Galadima (1643_CR2) 2020; 10
JM Fernandez-Canon (1643_CR44) 1995; 270
JR van der Meer (1643_CR50) 1991; 173
Y Yajima (1643_CR23) 1979; 321
O Milstein (1643_CR45) 1983; 135
RP de Vries (1643_CR51) 2005; 87
M Fache (1643_CR7) 2015; 68
RJM Lubbers (1643_CR30) 2021; 12
M Stanke (1643_CR55) 2004; 32
DJ Fitzgerald (1643_CR13) 2004; 97
M Arentshorst (1643_CR37) 2021; 2
L Lesage-Meessen (1643_CR20) 1999; 79
TK Kirk (1643_CR33) 1973; 26
G Banerjee (1643_CR1) 2019; 99
Z Holesova (1643_CR49) 2011; 157
CJ Bos (1643_CR56) 1988; 14
P Guiraud (1643_CR15) 1992; 8
EM Spence (1643_CR48) 2020; 86
P Ander (1643_CR46) 1980; 125
VM Travkin (1643_CR47) 2006; 41
JE Kowalczyk (1643_CR52) 2017; 7
B Kaur (1643_CR9) 2013; 169
F Chu (1643_CR6) 2020; 190
JA Busswell (1643_CR21) 1981; 215
L Lesage-Meessen (1643_CR10) 1996; 50
L Zheng (1643_CR19) 2007; 98
AS Amarasekara (1643_CR4) 2012; 14
M Rahouti (1643_CR35) 1989; 55
T Abe (1643_CR16) 2005; 187
RJM Lubbers (1643_CR39) 2019; 7
RJM Lubbers (1643_CR26) 2021; 105
EMT El-Mansi (1643_CR17) 2004; 20
AH Westphal (1643_CR38) 2021; 702
JK Gupta (1643_CR32) 1981; 128
RJM Lubbers (1643_CR11) 2019; 37
W Ding (1643_CR40) 2015; 5
A Oku (1643_CR29) 2000; 65
N Graf (1643_CR42) 2016; 100
S Nikafshar (1643_CR5) 2017; 7
References_xml – volume: 187
  start-page: 2030
  year: 2005
  ident: 1643_CR16
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.6.2030-2037.2005
– volume: 215
  start-page: 99
  year: 1981
  ident: 1643_CR21
  publication-title: J Chromatogr
  doi: 10.1016/S0021-9673(00)81390-4
– volume: 173
  start-page: 2425
  year: 1991
  ident: 1643_CR50
  publication-title: J Bacteriol
  doi: 10.1128/jb.173.8.2425-2434.1991
– volume: 37
  start-page: 200
  year: 2017
  ident: 1643_CR53
  publication-title: N Biotechnol
  doi: 10.1016/j.nbt.2017.02.007
– volume: 32
  start-page: 29
  year: 1995
  ident: 1643_CR31
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1006/eesa.1995.1081
– volume: 14
  start-page: 437
  year: 1988
  ident: 1643_CR56
  publication-title: Curr Genet
  doi: 10.1007/BF00521266
– volume: 87
  start-page: e02701-20
  year: 2021
  ident: 1643_CR54
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02701-20
– volume: 17
  start-page: 417
  year: 1978
  ident: 1643_CR34
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)89328-0
– volume: 8
  start-page: 40
  year: 2015
  ident: 1643_CR18
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2014.11.008
– volume: 99
  start-page: 499
  year: 2019
  ident: 1643_CR1
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.9303
– volume: 68
  start-page: 526
  year: 2015
  ident: 1643_CR7
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2015.03.048
– volume: 50
  start-page: 107
  year: 1996
  ident: 1643_CR10
  publication-title: J Biotechnol
  doi: 10.1016/0168-1656(96)01552-0
– volume: 20
  start-page: 827
  year: 2004
  ident: 1643_CR17
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-004-0871-y
– volume: 270
  start-page: 21199
  year: 1995
  ident: 1643_CR44
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.36.21199
– volume: 41
  start-page: 2126
  year: 2008
  ident: 1643_CR43
  publication-title: Macromolecules
  doi: 10.1021/ma7027215
– volume: 10
  start-page: 589
  year: 2020
  ident: 1643_CR2
  publication-title: Biomass Convers Biorefin
  doi: 10.1007/s13399-019-00418-0
– volume: 7
  start-page: 19081
  year: 2019
  ident: 1643_CR39
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.9b04918
– volume: 37
  start-page: 123
  year: 1994
  ident: 1643_CR36
  publication-title: J Biotechnol
  doi: 10.1016/0168-1656(94)90003-5
– volume: 37
  start-page: 107396
  year: 2019
  ident: 1643_CR11
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2019.05.002
– volume: 98
  start-page: 1115
  year: 2007
  ident: 1643_CR19
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2006.03.028
– volume: 100
  start-page: 3511
  year: 2016
  ident: 1643_CR42
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-015-7197-6
– volume: 702
  start-page: 108820
  year: 2021
  ident: 1643_CR38
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2021.108820
– volume: 161
  start-page: 274
  year: 1988
  ident: 1643_CR22
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(88)61030-5
– volume: 125
  start-page: 189
  year: 1980
  ident: 1643_CR46
  publication-title: Arch Microbiol
  doi: 10.1007/BF00446876
– volume: 14
  start-page: 2395
  year: 2012
  ident: 1643_CR4
  publication-title: Green Chem
  doi: 10.1039/c2gc35645g
– volume: 8
  start-page: 270
  year: 1992
  ident: 1643_CR15
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/BF01201877
– volume: 169
  start-page: 1353
  year: 2013
  ident: 1643_CR9
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/s12010-012-0066-1
– volume: 79
  start-page: 487
  year: 1999
  ident: 1643_CR20
  publication-title: J Sci Food Agric
  doi: 10.1002/(SICI)1097-0010(19990301)79:3<487::AID-JSFA273>3.0.CO;2-8
– volume: 128
  start-page: 349
  year: 1981
  ident: 1643_CR32
  publication-title: Arch Microbiol
  doi: 10.1007/BF00405911
– volume: 2
  start-page: 1
  year: 2021
  ident: 1643_CR37
  publication-title: Front Fungal Biol
  doi: 10.3389/ffunb.2021.681631
– volume: 128
  start-page: 770
  year: 2007
  ident: 1643_CR57
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2006.12.021
– volume: 26
  start-page: 173
  year: 1973
  ident: 1643_CR33
  publication-title: Appl Microbiol
  doi: 10.1128/am.26.2.173-175.1973
– volume: 55
  start-page: 2391
  year: 1989
  ident: 1643_CR35
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.55.9.2391-2398.1989
– volume: 179
  start-page: 2595
  year: 1997
  ident: 1643_CR28
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.8.2595-2607.1997
– volume: 190
  start-page: 107925
  year: 2020
  ident: 1643_CR6
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2020.107925
– volume: 145
  start-page: 2393
  year: 1999
  ident: 1643_CR14
  publication-title: Microbiology
  doi: 10.1099/00221287-145-9-2393
– volume: 12
  start-page: e00391-21
  year: 2021
  ident: 1643_CR30
  publication-title: MBio
  doi: 10.1128/mBio.00391-21
– volume: 87
  start-page: 195
  year: 2005
  ident: 1643_CR51
  publication-title: Antonie van Leeuwenhoek Int J Gen Mol Microbiol
  doi: 10.1007/s10482-004-3194-y
– volume: 65
  start-page: 1899
  year: 2000
  ident: 1643_CR29
  publication-title: J Org Chem
  doi: 10.1021/jo991332t
– volume: 86
  start-page: 1
  year: 2020
  ident: 1643_CR48
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01561-20
– volume: 71
  start-page: 2487
  year: 2007
  ident: 1643_CR41
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.70267
– volume: 97
  start-page: 104
  year: 2004
  ident: 1643_CR13
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2004.02275.x
– volume: 86
  start-page: 113
  year: 2003
  ident: 1643_CR12
  publication-title: Int J Food Microbiol
  doi: 10.1016/S0168-1605(03)00059-X
– volume: 34
  start-page: 420
  year: 1990
  ident: 1643_CR27
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/BF00170072
– volume: 32
  start-page: 309
  year: 2004
  ident: 1643_CR55
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh379
– volume: 101
  start-page: 4721
  year: 2010
  ident: 1643_CR24
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.01.086
– volume: 25
  start-page: 5272
  year: 2021
  ident: 1643_CR3
  publication-title: Ann Rom Soc Cell Biol
– volume: 157
  start-page: 2152
  year: 2011
  ident: 1643_CR49
  publication-title: Microbiology
  doi: 10.1099/mic.0.048215-0
– volume: 135
  start-page: 147
  year: 1983
  ident: 1643_CR45
  publication-title: Arch Microbiol
  doi: 10.1007/BF00408025
– volume: 321
  start-page: 319
  year: 1979
  ident: 1643_CR23
  publication-title: Arch Microbiol
  doi: 10.1007/BF00406669
– volume: 128
  start-page: 735
  year: 2020
  ident: 1643_CR25
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.14505
– volume: 41
  start-page: 1361
  year: 2006
  ident: 1643_CR47
  publication-title: J Environ Sci Health Part B Pestic Food Contam Agric Wastes
  doi: 10.1080/03601230600964159
– volume: 105
  start-page: 4199
  year: 2021
  ident: 1643_CR26
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-021-11311-0
– volume: 5
  start-page: 8044
  year: 2015
  ident: 1643_CR40
  publication-title: Sci Rep
  doi: 10.1038/srep08044
– volume: 8
  start-page: 5626
  year: 2020
  ident: 1643_CR8
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.0c00159
– volume: 7
  start-page: 1
  year: 2017
  ident: 1643_CR52
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12362-y
– volume: 7
  start-page: 8694
  year: 2017
  ident: 1643_CR5
  publication-title: RSC Adv
  doi: 10.1039/C6RA27283E
SSID ssj0017873
Score 2.4821234
Snippet Background The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries....
The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most...
Background The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries....
Abstract Background The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 151
SubjectTerms 4-Hydroxy-6-methoxy-6-oxohexa-2,4-dienoic acid
4-Oxo-monomethyl adipate
Alcohol
Applied Microbiology
Aromatic compounds
Aspergillus
Aspergillus niger
Aspergillus niger - enzymology
Aspergillus niger - genetics
Aspergillus niger - metabolism
Bacteria
Benzaldehydes - metabolism
Biodegradation
Biotechnology
Carbon
Chemical properties
Chemical synthesis
Chemistry
Chemistry and Materials Science
Coniferyl alcohol
Degradation
Dehydrogenases
Deletion
Deletion mutant
Dioxygenase
Enzymatic activity
Enzymes
Enzymology
Esterase
Factories
Ferulic acid
Fungal cell factory
Fungi
Genes
Genetic Engineering
Genomes
Hydroquinones - chemistry
Hydroquinones - metabolism
Hydroxylase
Industrial engineering
Lignin
Lignin - metabolism
Manufacturing engineering
Metabolic Networks and Pathways - genetics
Metabolic pathways
Metabolism
Metabolites
Microbial Genetics and Genomics
Microbiology
Microorganisms
Mixed Function Oxygenases
Pharmaceutical industry
Production processes
Transcriptomes
Vanillic acid
Vanillic Acid - analysis
Vanillic Acid - metabolism
Vanillin
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIADb2igIIOQOEDUZMfrxCe0ICq4VBUv9WY5trONVGWXzaba_Qv8amac7LYpohf2kMN6nHjs8YzHHn_D2GuPLrK1IGNfoqcj0kLFhcxsDCWkqfEChO-STWSHh_nxsTrqN9yaPqxyoxODonYzS3vk-2iaCVp8JMfv579iyhpFp6t9Co3r7AahJEAI3TvaniKgMMLmokwu9xuybSKmoAQCloJ4NTBGAbP_b818wTRdDpu8dHYaTNLB3f9l5h670y9G-aSTnvvsmq8fsNsXIAofst8_TU1bMpYbWzluasdD0unV-mTt6KNVPas9n3fAsTjInC6s8GlrKmPXp7xFldGEauHWjMdXYDnBxHKKZqekTg2n4PspnxBo-RQ_1ja8rpBfTqcKvMsIhA79I_bj4NP3j5_jPn9DbKVIlzFAUBEOSnTrUCGXWabGBS6YTGKcd640mfLGq1w5SJSRYED6kSqkwAq2EPCY7RAPu4wnDtdVqRhD6Qp06ZRBveMp3yRYlUOZRizdDKS2Pbg55dg41cHJyaXuBl_j4Osw-HoVsbfbOvMO2uNK6g8kH1tKguUOf8wWU93Pcp1g82yOD_yJxIvCSGWNTwps7bhwZcRekXRpAt6oKbJnatqm0V--fdUT9NwIbg6Qlzc9UTlDHqzpL0pgTxBW14Byb0CJmsEOizfSp3vN1Ohz0YvYy20x1aRou9rPWqIZ52h90HmM2JNO5rd8A05fylIQsWwwGwYdMyypq5OAW54DSJGIiL3bzJvzZv27459ezcUzdmsUZjTdFN1jO8tF65-zm_ZsWTWLF0Ef_AHSNWsr
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQQAIe-BhfgYEMQuIBoiU914kfy8QELxPaYNqb5dhOF2lKp6ZB67_AX82dk5RlfEjQhz7U59bn3IevvvsdY689hsjWgox9iZGOSAsVFzKzMZSQpsYLEL5rNpEdHOQnJ-pzXxTWDNnuw5VksNRBrXO525BnEjGlFBAsFMR4cryO7i4ndTw8Ot7cHaAIwlAe89t5IxcUkPp_tceXHNLVZMkrN6bBEe3f_T8W7rE7_cGTzzpJuc-u-Xqb3dwb-r1ts9uXoAkfsO_Hpqa_Yiw3tnLc1I6HZtMX69O1o9VX9aL2_LwDjMWHy6lQhc9bUxm7PuMtmoomTAvVMh6_AscJHpZTFjs1c2o4Jd3P-YzAyuf4Y23D6wq54XSbwLtOQBjIP2Rf9z982fsY930bYitFuooBgmlwUGI4h4a4zDI1LfCgZBLjvHOlyZQ3XuXKQaKMBAPST1QhBU6whYBHbIt4eMJ44vA8lYoplK7AUE4ZtDee-kyCVTmUacTS4VFq24OaU2-NMx2Cm1zqbs817rkOe64vIvZ2M-e8g_T4K_V7kpANJcFxhw8Wy7nutVsnuDyb4xu-ROJFYaSyxicFrnZauDJir0i-NAFu1JTRMzdt0-hPR4d6hhEbwcwB8vKmJyoXyIM1fYEE7gRhdI0od0aUKCh2PDyIse4tUqPxaEvQ_BM5jdjLzTDNpCy72i9aopnm6HUwaIzY407qN3wDqi11J4hYNtKH0caMR-rqNOCV5wBSJCJi7wat-LmsP2_8038jf8ZuTYJiUcXoDttaLVv_nN2w31ZVs3wRLMQPjwJl2w
  priority: 102
  providerName: Springer Nature
Title Vanillic acid and methoxyhydroquinone production from guaiacyl units and related aromatic compounds using Aspergillus niger cell factories
URI https://link.springer.com/article/10.1186/s12934-021-01643-x
https://www.ncbi.nlm.nih.gov/pubmed/34344380
https://www.proquest.com/docview/2562632265
https://www.proquest.com/docview/2558088049
https://pubmed.ncbi.nlm.nih.gov/PMC8336404
https://doaj.org/article/0fdbc8fdbbbb40e4ba69cae0b88e5bdf
Volume 20
WOSCitedRecordID wos000683469100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1475-2859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017873
  issn: 1475-2859
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-2859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017873
  issn: 1475-2859
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-2859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017873
  issn: 1475-2859
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1475-2859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017873
  issn: 1475-2859
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1475-2859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017873
  issn: 1475-2859
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1475-2859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017873
  issn: 1475-2859
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1475-2859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017873
  issn: 1475-2859
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1475-2859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017873
  issn: 1475-2859
  databaseCode: RSV
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdg8AAPiL8jMCqDkHiAaEntOvZjhzaxB6qqg2k8WY7tdJGmbFoa1H4FPjV3TlqaIeCFPkRqfE5s3_nOF59_R8hbDy6ytUzEvgBPh6e5inOR2ZgVLE2N54z7NtlENpnIszM13Ur1hTFhLTxwO3D7SeFyK-ECP554nhuhrPFJLqUf5a5A7QurnrUz1e0fgBiy9REZKfZrtGo8xnAEhJRi8bJnhgJa_-86ecso3QyYvLFrGozR0UPyoFtF0nHb-kfklq8ek_tb2IJPyI9TU-G3FEuNLR01laMhW_Rydb5y-OoSHH9Pr1rEV-AOxZMmdN6Y0tjVBW1grtehWjju4uERUI74rhTD0DEbU00xan5Ox4g2PoeXNTWtSmguxe0A2qbyAU_8Kfl6dPjl46e4S7wQW8HTRcxYmNuOFeCPgSYtskyNcljpmMQ471xhMuWNV1I5ligjmGHCD1UuOFSwOWfPyA724TmhiYMFUcpHDDgIvpgyoDA8JopkVklWpBFJ13zQtkMlx-QYFzp4J1LolncaeKcD7_QyIu83da5aTI6_Uh8gezeUiKcdboCU6U7K9L-kLCJvUDg0ImZUGJIzN01d6-OTmR6Dy4U4cQz68q4jKi6hD9Z0JxxgJBBkq0e516OEKW37xWsZ1J1KqTWsTRFbfyhGEXm9KcaaGCZX-csGaUYSzAZ4fRHZbUV2028G8w7TC0Qk6wlzb2D6JVV5HgDHJWOCJzwiH9Zi_6tZfx74F_9j4F-Se8MwbfEg6B7ZWVw3_hW5a78vyvp6QG5nZ1m4ygG5c3A4mc4GQREMMIZ3Cvemx5-n3-Df7OT0Jw6rZ60
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQceD8MBRYE4kCt2t6NHweEwqNq1BJV0KLetuvddWqpckIcQ_IX-DH8RmbWdloX0VsP5JBDdtb2TGZndrwz3xDy0kCIrBQLXZNBpMP9NHHTMFIuy5jvS8MZN3WziWg4jA8Okt0V8ruthcG0ytYmWkOtxwrfkW-Aa0Zo8SDsvZt8d7FrFJ6uti00arXYNoufELKVbwcf4f99FQSbn_Y-bLlNVwFXhdyfuYxZxdUsg2ADzEQWRUkvBTcuPamN1pmMEiNNEieaeYkMmWShCZI05DBBpZzBdS-Ry7CNCGKbKri7PLUA5WdtYU4cbpToS7mLSRAIZMXcecf52R4Bf3uCU67wbJrmmbNa6wI3b_5vwrtFbjSbbdqvV8dtsmKKO-T6KQjGu-TXN1ngKydFpco1lYWmtqn2fHG00MhkXowLQyc1MC4oMcWCHDqqZC7V4phWYBJLO81WBRm4BIwjDC7FbH1sWlVSLC4Y0T6Cso_gZlVJixzkS_HUhNYdj3JT3iP7FyKM-2QVeXhIqKdh3-jzHst0CiFrIsGuGuynyVQSs8x3iN8qjlANeDv2EDkWNoiLQ1ErmwBlE1bZxNwhb5ZzJjV0ybnU71Efl5QIO25_GE9HorFiwoPHUzF8wYd7hqcyTJQ0XgpP20t15pAXqM0CgUUKzFwayaosxeDrF9GHyBTh9Bjw8rohysbAg5JNIQhIArHIOpRrHUqwfKo73Gq7aCxvKU5U3SHPl8M4E7MJCzOukKYXg3eF4NghD-o1tuSbgXnCLgwOiTqrryOY7kiRH1lc9pixkHvcIevtOj15rH8L_tH5XDwjV7f2Pu-IncFw-zG5FlhrglWxa2R1Nq3ME3JF_Zjl5fSptUWUHF70-v0DeILHaw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQQMAe-BgfCwwwCIkHiJbUrhM_lkHFBKomBtPeLMd2ukhTWjUNWv8F_mrunKQ040NC9KEP9bn1Xe7Ovvrud4S8dBAiG8NE6HKIdHicyTATiQlZzuJYO864a5pNJJNJenoqjzaq-H22e3cl2dQ0IEpTudyf27wx8VTsV7hL8RDTCxAiioVwirzKsWkQxuvHJ-t7BFBH1pXK_HZebzvyqP2_-uaNzely4uSl21O_KY1v_z87d8it9kBKR40G3SVXXLlDbhx0feB2yPYGZOE98v1El_gXjaHaFJbq0lLfhPpidbayyElRzkpH5w2QLDx0igUsdFrrQpvVOa3BhVR-mq-icfAVMI6wsRSz27HJU0UxGX9KRwhiPoUfqytaFsAZxVsG2nQIggD_Pvk6fv_l4EPY9nMIjeDxMmTMuwzLcgjzwEHnSSKHGRygdKStszbXiXTayVRaFkktmGbCDWQmOEwwGWcPyBbysEtoZOGcFfMhy20GIZ7U4Icc9p9kRqYsjwMSd49VmRbsHHtunCsf9KRCNTJXIHPlZa4uAvJ6PWfeQH38lfotasuaEmG6_QezxVS1Vq8iWJ5J4Q1ePHI800Ia7aIMVjvMbB6QF6hrCoE4Ssz0meq6qtTh8Wc1gkgO4ecY8PKqJcpnwIPRbeEESAKxu3qUez1KUBTTH-5UWrWeqlJw5EXI_oEYBuT5ehhnYvZd6WY10gxT2I0gmAzIw8YC1nwzMGfsWhCQpGcbPcH0R8rizOOYp4wJHvGAvOks5Oey_iz4R_9G_oxcP3o3Vp8OJx8fk5sDb2NYVLpHtpaL2j0h18y3ZVEtnnrH8QNSonGj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vanillic+acid+and+methoxyhydroquinone+production+from+guaiacyl+units+and+related+aromatic+compounds+using+Aspergillus+niger+cell+factories&rft.jtitle=Microbial+cell+factories&rft.au=Ronnie+J.+M.+Lubbers&rft.au=Adiphol+Dilokpimol&rft.au=Paula+A.+Nousiainen&rft.au=R%C4%83zvan+C.+Cioc&rft.date=2021-08-03&rft.pub=BMC&rft.eissn=1475-2859&rft.volume=20&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1186%2Fs12934-021-01643-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0fdbc8fdbbbb40e4ba69cae0b88e5bdf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon