Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance
Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a tas...
Gespeichert in:
| Veröffentlicht in: | NeuroImage clinical Jg. 7; H. C; S. 688 - 698 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier Inc
01.01.2015
Elsevier |
| Schlagworte: | |
| ISSN: | 2213-1582, 2213-1582 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment.
•Patients with aMCI show increased fMRI activation in DG/CA3 relative to controls.•Low dose levetiracetam treatment decreases excess DG/CA3 activation in aMCI.•Low dose levetiracetam treatment normalizes decreased entorhinal activation in aMCI.•Low dose levetiracetam treatment improves task related memory performance in aMCI.•Targeting excess hippocampal activity has therapeutic potential in amnestic MCI. |
|---|---|
| AbstractList | Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment. Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment. •Patients with aMCI show increased fMRI activation in DG/CA3 relative to controls.•Low dose levetiracetam treatment decreases excess DG/CA3 activation in aMCI.•Low dose levetiracetam treatment normalizes decreased entorhinal activation in aMCI.•Low dose levetiracetam treatment improves task related memory performance in aMCI.•Targeting excess hippocampal activity has therapeutic potential in amnestic MCI. Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment. • Patients with aMCI show increased fMRI activation in DG/CA3 relative to controls. • Low dose levetiracetam treatment decreases excess DG/CA3 activation in aMCI. • Low dose levetiracetam treatment normalizes decreased entorhinal activation in aMCI. • Low dose levetiracetam treatment improves task related memory performance in aMCI. • Targeting excess hippocampal activity has therapeutic potential in amnestic MCI. AbstractStudies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment. Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment.Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment. |
| Author | Gallagher, Michela Speck, Caroline L. Albert, Marilyn S. Krauss, Gregory Bakker, Arnold |
| AuthorAffiliation | a Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA c Department of Psychological and Brain Sciences, Johns Hopkins School of Arts and Sciences, Baltimore, MD 21218, USA b Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA |
| AuthorAffiliation_xml | – name: a Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – name: c Department of Psychological and Brain Sciences, Johns Hopkins School of Arts and Sciences, Baltimore, MD 21218, USA – name: b Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA |
| Author_xml | – sequence: 1 givenname: Arnold surname: Bakker fullname: Bakker, Arnold email: abakker@jhu.edu organization: Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – sequence: 2 givenname: Marilyn S. surname: Albert fullname: Albert, Marilyn S. organization: Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – sequence: 3 givenname: Gregory surname: Krauss fullname: Krauss, Gregory organization: Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – sequence: 4 givenname: Caroline L. surname: Speck fullname: Speck, Caroline L. organization: Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA – sequence: 5 givenname: Michela surname: Gallagher fullname: Gallagher, Michela organization: Department of Psychological and Brain Sciences, Johns Hopkins School of Arts and Sciences, Baltimore, MD 21218, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25844322$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ksFu1DAQhiNUREvpC3BAPnLZYDuJnXBAQlWBlYqQCpwtxxlvvZvYwc4u2mfhZZmwW9Qi0ShSrHj-79fM_M-zEx88ZNlLRnNGmXizzr0zfc4pq3LKc0qbJ9kZ56xYsKrmJ_fOp9lFSmuKT02pFOJZdsqruiwLzs-yXzeQxuATkGDJdAtkgM7pnkwwjCHioQ8tEA_TzxA3xHmiBw9pcoYMru-ICSvvJrcD4oZRuziAn8gUZlLUI2znQucniDu8cAHlKQG-HWn3xH6-WRLtO_QcQtyTSacNGSHaEAftDbzInlrdJ7g4fs-z7x-uvl1-Wlx_-bi8fH-9MKKk00Iy0dnaalt0jZBNIwutmTBQCllSWtFWy9ZWjam4tBqMLaRoG1MbxktquW6K82x54HZBr9UY3aDjXgXt1J8fIa6UjthJD8q2wG1ZtFKWVak1bysjGgqNlcAbW1XIendgjdsWR2mwbZziA-jDG-9u1SrsVFlIWZcMAa-PgBh-bHHUanDJQN9rD2GbFBOScdaIevZ6dd_rr8nddrGgPhSYGFKKYJVxk573gNauV4yqOUtqreYsqTlLinKFWUIp_0d6R39UdGwecFs7B1GZ3mGV7jewh7QO2-hxkYqphAL1dY7onFBWYTi5LBDw9v8A3IZ7zP03uQv7Aw |
| CitedBy_id | crossref_primary_10_3390_ijms22115991 crossref_primary_10_1016_j_arr_2022_101726 crossref_primary_10_1371_journal_pbio_3001412 crossref_primary_10_1096_fj_202300837R crossref_primary_10_1016_j_neurobiolaging_2016_12_021 crossref_primary_10_1017_S1355617721000734 crossref_primary_10_1523_JNEUROSCI_1279_19_2019 crossref_primary_10_3389_fneur_2019_01203 crossref_primary_10_1002_ana_24794 crossref_primary_10_1016_j_gpb_2018_11_005 crossref_primary_10_1002_jnr_24863 crossref_primary_10_1097_WAD_0000000000000134 crossref_primary_10_3389_fnagi_2017_00071 crossref_primary_10_1111_epi_17355 crossref_primary_10_1038_s41573_023_00823_1 crossref_primary_10_1186_s13024_019_0325_5 crossref_primary_10_1186_s13195_020_00612_7 crossref_primary_10_1016_j_nicl_2021_102643 crossref_primary_10_1177_02698811221128963 crossref_primary_10_1016_j_yebeh_2021_108238 crossref_primary_10_1093_brain_awaa397 crossref_primary_10_1097_YIC_0000000000000405 crossref_primary_10_7759_cureus_30195 crossref_primary_10_1016_j_bcp_2018_09_027 crossref_primary_10_1016_j_nbd_2020_105226 crossref_primary_10_3389_fnbeh_2021_695416 crossref_primary_10_1016_j_neurobiolaging_2016_12_010 crossref_primary_10_1523_JNEUROSCI_1488_22_2023 crossref_primary_10_1007_s40263_023_01058_9 crossref_primary_10_1186_s40478_019_0723_5 crossref_primary_10_1016_j_neurobiolaging_2016_08_018 crossref_primary_10_3389_fnagi_2022_1085989 crossref_primary_10_1002_hipo_23316 crossref_primary_10_1016_j_nicl_2016_10_002 crossref_primary_10_1016_j_neuroscience_2019_11_018 crossref_primary_10_3389_fnmol_2017_00020 crossref_primary_10_1016_j_jns_2018_09_010 crossref_primary_10_1038_s41380_020_0727_3 crossref_primary_10_1007_s11682_023_00830_1 crossref_primary_10_3389_fnagi_2017_00418 crossref_primary_10_1093_cercor_bhac134 crossref_primary_10_1038_s41380_019_0483_4 crossref_primary_10_1038_s41582_024_00932_4 crossref_primary_10_1016_j_neuron_2018_01_039 crossref_primary_10_3389_fnins_2020_557416 crossref_primary_10_1016_j_isci_2025_113454 crossref_primary_10_1111_acel_13924 crossref_primary_10_1038_s41582_021_00505_9 crossref_primary_10_1002_epi4_12781 crossref_primary_10_1016_j_cub_2022_04_077 crossref_primary_10_1016_j_neubiorev_2020_12_022 crossref_primary_10_1002_alz_70498 crossref_primary_10_1111_epi_17426 crossref_primary_10_1186_s12967_023_04078_7 crossref_primary_10_1212_WNL_0000000000011774 crossref_primary_10_1523_JNEUROSCI_1174_16_2016 crossref_primary_10_3389_fnins_2020_525970 crossref_primary_10_1016_j_neurobiolaging_2020_02_019 crossref_primary_10_1523_JNEUROSCI_0528_20_2021 crossref_primary_10_1080_14656566_2016_1258060 crossref_primary_10_3233_JAD_220983 crossref_primary_10_1016_j_bmcl_2018_11_034 crossref_primary_10_3233_JAD_160742 crossref_primary_10_3389_fncel_2019_00063 crossref_primary_10_1016_j_brainresbull_2020_05_016 crossref_primary_10_1016_j_neurobiolaging_2022_11_017 crossref_primary_10_7554_eLife_22978 crossref_primary_10_1038_s41386_025_02077_4 crossref_primary_10_3389_fnins_2018_00796 crossref_primary_10_1016_j_schres_2023_08_018 crossref_primary_10_3233_JAD_230078 crossref_primary_10_1523_JNEUROSCI_2405_20_2020 crossref_primary_10_1124_jpet_124_002272 crossref_primary_10_1038_s41392_023_01484_7 crossref_primary_10_3233_JAD_230635 crossref_primary_10_1242_dmm_048926 crossref_primary_10_3389_fnins_2023_1336026 crossref_primary_10_1038_s41593_017_0065_1 crossref_primary_10_1080_14737175_2023_2278487 crossref_primary_10_1002_hipo_22474 crossref_primary_10_1016_j_nbd_2024_106473 crossref_primary_10_1016_S1474_4422_17_30044_3 crossref_primary_10_1016_j_cobeha_2020_01_011 crossref_primary_10_1523_JNEUROSCI_1408_24_2024 crossref_primary_10_1590_1516_4446_2017_2379 crossref_primary_10_3390_ijms21239318 crossref_primary_10_1007_s40265_023_01938_w crossref_primary_10_1073_pnas_1713308114 crossref_primary_10_1111_jnc_15248 crossref_primary_10_1016_j_semcdb_2022_03_013 crossref_primary_10_1038_s41583_023_00731_8 crossref_primary_10_3389_fneur_2022_836292 crossref_primary_10_1016_j_semcdb_2021_01_005 crossref_primary_10_3758_s13415_024_01246_0 crossref_primary_10_1007_s10495_016_1227_4 crossref_primary_10_3389_fnagi_2023_1081058 crossref_primary_10_1002_trc2_12446 crossref_primary_10_1016_j_schres_2017_06_027 crossref_primary_10_1002_trc2_12329 crossref_primary_10_1016_j_nicl_2019_101690 crossref_primary_10_1242_jcs_231258 crossref_primary_10_3390_ddc4020022 crossref_primary_10_1002_epi4_70091 crossref_primary_10_1038_s42003_025_07876_5 crossref_primary_10_1016_j_neuron_2017_11_028 crossref_primary_10_1523_JNEUROSCI_1397_18_2018 crossref_primary_10_3233_JAD_160994 crossref_primary_10_1186_s12888_024_05622_5 crossref_primary_10_1016_j_tics_2019_08_003 crossref_primary_10_1038_nrn_2016_141 crossref_primary_10_1186_s40814_023_01406_y crossref_primary_10_3389_fnagi_2022_913693 crossref_primary_10_1016_j_brainresbull_2020_04_009 crossref_primary_10_1016_j_cortex_2024_12_004 crossref_primary_10_3390_ph14101057 crossref_primary_10_3389_fnsys_2018_00072 crossref_primary_10_3233_JAD_200093 crossref_primary_10_3389_fnbeh_2019_00057 crossref_primary_10_3390_biomedicines12122891 crossref_primary_10_1038_s41573_020_0072_x crossref_primary_10_1016_j_nicl_2018_101617 crossref_primary_10_1038_s41386_023_01730_0 crossref_primary_10_1093_brain_awz154 crossref_primary_10_3389_fnhum_2019_00387 crossref_primary_10_1007_s13311_017_0541_z crossref_primary_10_1016_j_neuropsychologia_2020_107537 crossref_primary_10_1016_j_semcdb_2022_06_017 crossref_primary_10_1186_s13195_018_0347_1 crossref_primary_10_3233_JAD_210209 crossref_primary_10_1007_s00115_015_0041_5 crossref_primary_10_1523_JNEUROSCI_0531_17_2017 crossref_primary_10_3390_cells9102166 crossref_primary_10_3389_fnsys_2022_920713 crossref_primary_10_1016_j_neurobiolaging_2018_05_023 crossref_primary_10_1016_j_nbd_2021_105486 crossref_primary_10_3389_fnagi_2023_1274624 crossref_primary_10_3389_fnins_2020_00266 crossref_primary_10_1002_trc2_70004 crossref_primary_10_1016_j_neurobiolaging_2018_11_020 crossref_primary_10_1016_j_neurobiolaging_2019_04_016 crossref_primary_10_1177_0269881117704987 crossref_primary_10_1093_workar_waae014 crossref_primary_10_1186_s13024_019_0324_6 crossref_primary_10_1016_j_seizure_2019_06_016 crossref_primary_10_1016_j_nbd_2024_106641 crossref_primary_10_1016_j_arr_2022_101804 crossref_primary_10_1016_j_nicl_2016_12_002 crossref_primary_10_1186_s13024_020_0358_9 crossref_primary_10_3390_cells9010054 crossref_primary_10_3389_fncel_2021_782768 crossref_primary_10_1007_s41237_023_00193_3 crossref_primary_10_1016_j_neurobiolaging_2021_12_008 crossref_primary_10_1016_j_nbd_2018_08_006 crossref_primary_10_1016_j_neuropsychologia_2019_107251 crossref_primary_10_1016_j_bbr_2019_03_004 crossref_primary_10_1523_JNEUROSCI_1973_23_2024 crossref_primary_10_1002_hipo_22732 crossref_primary_10_1007_s00406_021_01310_7 crossref_primary_10_1016_j_arr_2021_101496 crossref_primary_10_3389_fnmol_2020_600084 crossref_primary_10_1002_hipo_22729 crossref_primary_10_1002_agm2_12017 crossref_primary_10_3233_JAD_200835 crossref_primary_10_3233_JAD_170031 crossref_primary_10_1016_j_neurobiolaging_2020_08_013 crossref_primary_10_1002_epi4_12386 crossref_primary_10_1371_journal_pone_0217882 crossref_primary_10_1016_j_bbr_2017_06_049 crossref_primary_10_1080_19012276_2017_1362989 crossref_primary_10_1186_s13195_022_01041_4 crossref_primary_10_1146_annurev_neuro_080317_061725 crossref_primary_10_3389_ftox_2022_836427 crossref_primary_10_1162_netn_a_00221 crossref_primary_10_1126_scitranslmed_abq1019 crossref_primary_10_1007_s11682_018_9869_1 crossref_primary_10_1111_ner_13305 crossref_primary_10_3389_fnbeh_2023_1080366 crossref_primary_10_1177_0269881116645269 crossref_primary_10_1007_s11571_023_10003_x crossref_primary_10_1016_j_nbd_2018_05_020 crossref_primary_10_1080_14728214_2020_1808621 crossref_primary_10_1016_j_neurobiolaging_2018_12_015 crossref_primary_10_1016_j_neurobiolaging_2022_07_007 crossref_primary_10_1038_s42003_019_0599_8 crossref_primary_10_1111_nyas_14371 crossref_primary_10_1016_j_tins_2015_10_003 crossref_primary_10_1016_j_neuron_2020_06_005 crossref_primary_10_3389_fnagi_2016_00260 crossref_primary_10_1038_nature20412 crossref_primary_10_1002_dad2_12043 crossref_primary_10_1016_j_pneurobio_2021_102076 crossref_primary_10_1371_journal_pone_0144113 crossref_primary_10_1016_j_arr_2023_101992 crossref_primary_10_1016_j_arr_2024_102468 crossref_primary_10_1016_j_jalz_2016_03_013 crossref_primary_10_1016_j_pneurobio_2024_102612 crossref_primary_10_1016_j_yebeh_2022_108609 crossref_primary_10_1080_14737175_2024_2325038 |
| Cites_doi | 10.1523/JNEUROSCI.1744-05.2005 10.1523/JNEUROSCI.3758-06.2007 10.1523/JNEUROSCI.20-17-06587.2000 10.1016/j.neuroimage.2010.03.040 10.1038/nn.3356 10.1212/WNL.43.11.2412-a 10.1002/cne.23367 10.1016/S0197-4580(02)00080-5 10.1126/science.1100265 10.1002/hipo.450040319 10.1101/lm.1971111 10.1016/j.neuroimage.2009.09.042 10.1038/npp.2009.207 10.1002/hipo.20808 10.1006/cbmr.1996.0014 10.1016/j.neurobiolaging.2014.03.031 10.1016/j.neuroimage.2008.12.037 10.1523/JNEUROSCI.4040-10.2010 10.1016/j.tins.2006.10.002 10.1016/j.neuroimage.2008.09.016 10.1111/j.1365-2796.2004.01388.x 10.1126/science.1152882 10.1037/0033-295X.110.4.611 10.1016/j.neuron.2013.11.017 10.1016/j.neuropsychologia.2012.12.014 10.1101/lm.1315109 10.1212/WNL.0b013e3181e3966e 10.1073/pnas.1421056111 10.1073/pnas.1101567108 10.1037/0033-295X.102.3.419 10.1016/j.neurobiolaging.2005.09.012 10.1093/cercor/bhq106 10.1016/j.neurobiolaging.2014.08.014 10.1016/j.neuroimage.2008.08.042 10.1136/jnnp.2007.124149 10.1002/hbm.20331 10.1016/j.neuron.2012.03.023 10.1212/WNL.24.11.1019 10.1016/j.tins.2011.06.006 10.1016/0022-3956(75)90026-6 10.1523/JNEUROSCI.4740-11.2011 10.1038/nature02739 10.1038/nature12415 10.1073/pnas.1121081109 10.1002/hipo.450040605 10.1101/lm.663507 10.1111/cns.12144 10.1016/j.neuropharm.2012.06.023 10.1016/j.tics.2013.03.005 |
| ContentType | Journal Article |
| Copyright | 2015 2015 The Authors. Published by Elsevier Inc. 2015 |
| Copyright_xml | – notice: 2015 – notice: 2015 The Authors. Published by Elsevier Inc. 2015 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1016/j.nicl.2015.02.009 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2213-1582 |
| EndPage | 698 |
| ExternalDocumentID | oai_doaj_org_article_fbe2f43b77454aa2b5c690e9f7e29f55 PMC4377841 25844322 10_1016_j_nicl_2015_02_009 1_s2_0_S2213158215000273 S2213158215000273 |
| Genre | Randomized Controlled Trial Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: P50 AG005146 – fundername: NIA NIH HHS grantid: RC2 AG036419 – fundername: NIA NIH HHS grantid: RC2AG036419 |
| GroupedDBID | .1- .FO 0R~ 1P~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL RPM SSZ Z5R AFCTW AAYXX CITATION AACTN CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c640t-716df8faf3d9679973aa16ce46740050ba7bf59c527faecf376b9c8c1240f2a93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 223 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373172600074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2213-1582 |
| IngestDate | Fri Oct 03 12:51:33 EDT 2025 Tue Sep 30 16:59:21 EDT 2025 Fri Sep 05 06:48:40 EDT 2025 Thu Apr 03 07:01:08 EDT 2025 Wed Nov 05 20:57:30 EST 2025 Tue Nov 18 21:57:25 EST 2025 Wed Jun 18 06:48:27 EDT 2025 Tue Aug 26 17:37:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | fMRI Dentate gyrus Mild cognitive impairment Entorhinal cortex Memory Levetiracetam |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c640t-716df8faf3d9679973aa16ce46740050ba7bf59c527faecf376b9c8c1240f2a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://doaj.org/article/fbe2f43b77454aa2b5c690e9f7e29f55 |
| PMID | 25844322 |
| PQID | 1671219685 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fbe2f43b77454aa2b5c690e9f7e29f55 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4377841 proquest_miscellaneous_1671219685 pubmed_primary_25844322 crossref_citationtrail_10_1016_j_nicl_2015_02_009 crossref_primary_10_1016_j_nicl_2015_02_009 elsevier_clinicalkeyesjournals_1_s2_0_S2213158215000273 elsevier_clinicalkey_doi_10_1016_j_nicl_2015_02_009 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-01-01 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | NeuroImage clinical |
| PublicationTitleAlternate | Neuroimage Clin |
| PublicationYear | 2015 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Wilson, Ikonen, McMahan, Gallagher, Eichenbaum, Tanila (ref49) 2003; 24 Leutgeb, Leutgeb, Treves, Moser, Moser (ref20) 2004; 305 Cox (ref9) 1996; 29 Kirwan, Stark (ref14) 2007; 14 Stranahan, Haberman, Gallagher (ref41) 2011; 21 Suberbielle, Sanchez, Kravitz, Wang, Ho, Eilertson, Devidze, Kreitzer, Mucke (ref42) 2013; 16 Wilson, Ikonen, Gallagher, Eichenbaum, Tanila (ref48) 2005; 25 Bakker, Krauss, Albert, Speck, Jones, Stark, Yassa, Bassett, Shelton, Gallagher (ref4) 2012; 74 Lee, Yoganarasimha, Rao, Knierim (ref19) 2004; 430 Yassa, Stark, Bakker, Albert, Gallagher, Stark (ref54) 2010; 51 Chin, Massaro, Palop, Thwin, Yu, Bien-Ly, Bender, Mucke (ref8) 2007; 27 Spiegel, Koh, Vogt, Rapp, Gallagher (ref38) 2013; 521 Benton (ref5) 1974 Kirwan, Jones, Miller, Stark (ref13) 2007; 28 Miller, Fenstermacher, Bates, Blacker, Sperling, Dickerson (ref24) 2008; 79 Poppenk, Evensmoen, Moscovitch, Nadel (ref31) 2013; 17 Yassa, Lacy, Stark, Albert, Gallagher, Stark (ref50) 2011; 21 Yushkevich, Avants, Pluta, Das, Minkoff, Mechanic-Hamilton, Glynn, Pickup, Liu, Gee, Grossman, Detre (ref55) 2009; 44 Koh, Rosenzweig-Lipson, Gallagher (ref17) 2013; 64 Petersen (ref30) 2004; 256 Treves, Rolls (ref45) 1994; 4 Insausti, Juottonen, Soininen, Insausti, Partanen, Vainio, Laakso, Pitkänen (ref12) 1998; 19 Stargardt, Swaab, Bossers (ref39) 2015; 36 Putcha, Brickhouse, O'Keefe, Sullivan, Rentz, Marshall, Dickerson, Sperling (ref32) 2011; 31 Folstein, Folstein, McHugh (ref11) 1975; 12 Berchtold, Sabbagh, Beach, Kim, Cribbs, Cotman (ref6) 2014; 35 Neunuebel, Knierim (ref26) 2014; 81 McClelland, McNaughton, O'Reilly (ref23) 1995; 102 Wechsler (ref46) 1987 Wilson, Gallagher, Eichenbaum, Tanila (ref47) 2006; 29 Andrews-Zwilling, Bien-Ly, Xu, Li, Bernardo, Yoon, Zwilling, Yan, Chen, Huang (ref2) 2010; 30 Rhinn, Fujita, Qiang, Cheng, Lee, Abeliovich (ref33) 2013; 500 Norman, O'Reilly (ref27) 2003; 110 Buschke, Fuld (ref7) 1974; 24 O'Reilly, McClelland (ref29) 1994; 4 Bakker, Kirwan, Miller, Stark (ref3) 2008; 319 Toner, Pirogovsky, Kirwan, Gilbert (ref44) 2009; 16 Yassa, Stark (ref52) 2009; 44 O'Brien, O'Keefe, LaViolette, DeLuca, Blacker, Dickerson, Sperling (ref28) 2010; 74 Malykhin, Lebel, Coupland, Wilman, Carter (ref22) 2010; 49 Morris (ref25) 1993; 43 Stark, Yassa, Lacy, Stark (ref40) 2013; 51 Talairach, Tournoux (ref43) 1988 Yassa, Stark (ref53) 2011; 34 Lyseng-Williamson (ref21) 2011; 71 Alme, Miao, Jezek, Treves, Moser, Moser (ref1) 2014; 111 Shi, Wang, Tian, Xu, Gao, Zhao, Jiang, Xie, Zhang (ref36) 2013; 19 Sanchez, Zhu, Verret, Vossel, Orr, Cirrito, Devidze, Ho, Yu, Palop, Mucke (ref34) 2012; 109 Duvernoy (ref10) 2005 Lacy, Yassa, Stark, Muftuler, Stark (ref18) 2011; 18 Scheff, Price, Schmitt, Mufson (ref35) 2006; 27 Klein, Andersson, Ardekani, Ashburner, Avants, Chiang, Christensen, Collins, Gee, Hellier, Song, Jenkinson, Lepage, Rueckert, Thompson, Vercauteren, Woods, Mann, Parsey (ref15) 2009; 46 Yassa, Mattfeld, Stark, Stark (ref51) 2011; 108 Koh, Haberman, Foti, McCown, Gallagher (ref16) 2010; 35 Smith, Adams, Gallagher, Morrison, Rapp (ref37) 2000; 20 Petersen (10.1016/j.nicl.2015.02.009_ref30) 2004; 256 Bakker (10.1016/j.nicl.2015.02.009_ref3) 2008; 319 Shi (10.1016/j.nicl.2015.02.009_ref36) 2013; 19 Rhinn (10.1016/j.nicl.2015.02.009_ref33) 2013; 500 Kirwan (10.1016/j.nicl.2015.02.009_ref14) 2007; 14 Koh (10.1016/j.nicl.2015.02.009_ref16) 2010; 35 Neunuebel (10.1016/j.nicl.2015.02.009_ref26) 2014; 81 Talairach (10.1016/j.nicl.2015.02.009_ref43) 1988 Klein (10.1016/j.nicl.2015.02.009_ref15) 2009; 46 Spiegel (10.1016/j.nicl.2015.02.009_ref38) 2013; 521 Malykhin (10.1016/j.nicl.2015.02.009_ref22) 2010; 49 Yassa (10.1016/j.nicl.2015.02.009_ref54) 2010; 51 Lee (10.1016/j.nicl.2015.02.009_ref19) 2004; 430 Duvernoy (10.1016/j.nicl.2015.02.009_ref10) 2005 Sanchez (10.1016/j.nicl.2015.02.009_ref34) 2012; 109 Andrews-Zwilling (10.1016/j.nicl.2015.02.009_ref2) 2010; 30 Stark (10.1016/j.nicl.2015.02.009_ref40) 2013; 51 Norman (10.1016/j.nicl.2015.02.009_ref27) 2003; 110 Stargardt (10.1016/j.nicl.2015.02.009_ref39) 2015; 36 Yassa (10.1016/j.nicl.2015.02.009_ref53) 2011; 34 McClelland (10.1016/j.nicl.2015.02.009_ref23) 1995; 102 Toner (10.1016/j.nicl.2015.02.009_ref44) 2009; 16 Stranahan (10.1016/j.nicl.2015.02.009_ref41) 2011; 21 Insausti (10.1016/j.nicl.2015.02.009_ref12) 1998; 19 Smith (10.1016/j.nicl.2015.02.009_ref37) 2000; 20 Buschke (10.1016/j.nicl.2015.02.009_ref7) 1974; 24 Morris (10.1016/j.nicl.2015.02.009_ref25) 1993; 43 Suberbielle (10.1016/j.nicl.2015.02.009_ref42) 2013; 16 Yassa (10.1016/j.nicl.2015.02.009_ref50) 2011; 21 Benton (10.1016/j.nicl.2015.02.009_ref5) 1974 Scheff (10.1016/j.nicl.2015.02.009_ref35) 2006; 27 Wilson (10.1016/j.nicl.2015.02.009_ref47) 2006; 29 Wilson (10.1016/j.nicl.2015.02.009_ref48) 2005; 25 O'Reilly (10.1016/j.nicl.2015.02.009_ref29) 1994; 4 Chin (10.1016/j.nicl.2015.02.009_ref8) 2007; 27 Putcha (10.1016/j.nicl.2015.02.009_ref32) 2011; 31 Wechsler (10.1016/j.nicl.2015.02.009_ref46) 1987 Kirwan (10.1016/j.nicl.2015.02.009_ref13) 2007; 28 Yushkevich (10.1016/j.nicl.2015.02.009_ref55) 2009; 44 Treves (10.1016/j.nicl.2015.02.009_ref45) 1994; 4 Wilson (10.1016/j.nicl.2015.02.009_ref49) 2003; 24 O'Brien (10.1016/j.nicl.2015.02.009_ref28) 2010; 74 Poppenk (10.1016/j.nicl.2015.02.009_ref31) 2013; 17 Lyseng-Williamson (10.1016/j.nicl.2015.02.009_ref21) 2011; 71 Bakker (10.1016/j.nicl.2015.02.009_ref4) 2012; 74 Lacy (10.1016/j.nicl.2015.02.009_ref18) 2011; 18 Miller (10.1016/j.nicl.2015.02.009_ref24) 2008; 79 Alme (10.1016/j.nicl.2015.02.009_ref1) 2014; 111 Berchtold (10.1016/j.nicl.2015.02.009_ref6) 2014; 35 Leutgeb (10.1016/j.nicl.2015.02.009_ref20) 2004; 305 Yassa (10.1016/j.nicl.2015.02.009_ref52) 2009; 44 Yassa (10.1016/j.nicl.2015.02.009_ref51) 2011; 108 Koh (10.1016/j.nicl.2015.02.009_ref17) 2013; 64 Cox (10.1016/j.nicl.2015.02.009_ref9) 1996; 29 Folstein (10.1016/j.nicl.2015.02.009_ref11) 1975; 12 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 18840532 - Neuroimage. 2009 Jan 15;44(2):385-98 19195496 - Neuroimage. 2009 Jul 1;46(3):786-802 20865732 - Hippocampus. 2011 Sep;21(9):968-79 17848502 - Learn Mem. 2007 Sep;14(9):625-33 15324362 - J Intern Med. 2004 Sep;256(3):183-94 10964964 - J Neurosci. 2000 Sep 1;20(17):6587-93 15272123 - Science. 2004 Aug 27;305(5688):1295-8 24786631 - Neurobiol Aging. 2014 Sep;35(9):1961-72 21164173 - Learn Mem. 2011 Jan;18(1):15-8 23597720 - Trends Cogn Sci. 2013 May;17(5):230-40 22869752 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2895-903 18356518 - Science. 2008 Mar 21;319(5870):1640-2 7842058 - Hippocampus. 1994 Jun;4(3):374-91 22578498 - Neuron. 2012 May 10;74(3):467-74 20032967 - Neuropsychopharmacology. 2010 Mar;35(4):1016-25 17360894 - J Neurosci. 2007 Mar 14;27(11):2727-33 22732440 - Neuropharmacology. 2013 Jan;64:145-52 23883936 - Nature. 2013 Aug 1;500(7460):45-50 24462102 - Neuron. 2014 Jan 22;81(2):416-27 23749483 - J Comp Neurol. 2013 Oct 15;521(15):3508-23 16289476 - Neurobiol Aging. 2006 Oct;27(10):1372-84 9576651 - AJNR Am J Neuroradiol. 1998 Apr;19(4):659-71 19403797 - Learn Mem. 2009 May;16(5):338-42 7704110 - Hippocampus. 1994 Dec;4(6):661-82 23889921 - CNS Neurosci Ther. 2013 Nov;19(11):871-81 7624455 - Psychol Rev. 1995 Jul;102(3):419-57 20943911 - J Neurosci. 2010 Oct 13;30(41):13707-17 20463288 - Neurology. 2010 Jun 15;74(24):1969-76 25444609 - Neurobiol Aging. 2015 Jan;36(1):1-11 21395360 - Drugs. 2011 Mar 5;71(4):489-514 20338246 - Neuroimage. 2010 Jul 1;51(3):1242-52 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 23313292 - Neuropsychologia. 2013 Oct;51(12):2442-9 20538740 - Cereb Cortex. 2011 Feb;21(2):392-400 21555581 - Proc Natl Acad Sci U S A. 2011 May 24;108(21):8873-8 15229614 - Nature. 2004 Jul 22;430(6998):456-9 8232972 - Neurology. 1993 Nov;43(11):2412-4 12498963 - Neurobiol Aging. 2003 Mar-Apr;24(2):297-305 4473151 - Neurology. 1974 Nov;24(11):1019-25 25489089 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18428-35 17846109 - J Neurol Neurosurg Psychiatry. 2008 Jun;79(6):630-5 23525040 - Nat Neurosci. 2013 May;16(5):613-21 14599236 - Psychol Rev. 2003 Oct;110(4):611-46 21788086 - Trends Neurosci. 2011 Oct;34(10):515-25 17133381 - Hum Brain Mapp. 2007 Oct;28(10):959-66 19786104 - Neuroimage. 2010 Jan 15;49(2):1224-30 17046075 - Trends Neurosci. 2006 Dec;29(12):662-70 16033897 - J Neurosci. 2005 Jul 20;25(29):6877-86 18929669 - Neuroimage. 2009 Jan 15;44(2):319-27 22131428 - J Neurosci. 2011 Nov 30;31(48):17680-8 |
| References_xml | – volume: 4 start-page: 661 year: 1994 end-page: 682 ident: ref29 article-title: Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off publication-title: Hippocampus – volume: 4 start-page: 374 year: 1994 end-page: 391 ident: ref45 article-title: Computational analysis of the role of the hippocampus in memory publication-title: Hippocampus – volume: 43 start-page: 2412 year: 1993 end-page: 2414 ident: ref25 article-title: The Clinical Dementia Rating (CDR): current version and scoring rules publication-title: Neurology – volume: 430 start-page: 456 year: 2004 end-page: 459 ident: ref19 article-title: Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 publication-title: Nature – volume: 108 start-page: 8873 year: 2011 end-page: 8878 ident: ref51 article-title: Age-related memory deficits linked to circuit-specific disruptions in the hippocampus publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 1987 ident: ref46 publication-title: WMS-R: Wechsler Memory Scale —Revised Manual – year: 1974 ident: ref5 publication-title: The Revised Visual Retention Test – volume: 111 start-page: 18428 year: 2014 end-page: 18435 ident: ref1 article-title: Place cells in the hippocampus: eleven maps for eleven rooms publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 27 start-page: 1372 year: 2006 end-page: 1384 ident: ref35 article-title: Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment publication-title: Neurobiol. Aging – volume: 28 start-page: 959 year: 2007 end-page: 966 ident: ref13 article-title: High-resolution fMRI investigation of the medial temporal lobe publication-title: Hum. Brain Mapp. – volume: 79 start-page: 630 year: 2008 end-page: 635 ident: ref24 article-title: Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline publication-title: J. Neurol. Neurosurg. Psychiatr. – volume: 18 start-page: 15 year: 2011 end-page: 18 ident: ref18 article-title: Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed using high-resolution fMRI and variable mnemonic similarity publication-title: Learn. Mem. – volume: 35 start-page: 1961 year: 2014 end-page: 1972 ident: ref6 article-title: Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease publication-title: Neurobiol. Aging – volume: 64 start-page: 145 year: 2013 end-page: 152 ident: ref17 article-title: Selective GABA(A) α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment publication-title: Neuropharmacology – volume: 27 start-page: 2727 year: 2007 end-page: 2733 ident: ref8 article-title: Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer's disease publication-title: J. Neurosci. – volume: 46 start-page: 786 year: 2009 end-page: 802 ident: ref15 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: Neuroimage – volume: 110 start-page: 611 year: 2003 end-page: 646 ident: ref27 article-title: Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach publication-title: Psychol. Rev. – volume: 29 start-page: 662 year: 2006 end-page: 670 ident: ref47 article-title: Neurocognitive aging: prior memories hinder new hippocampal encoding publication-title: Trends Neurosci. – volume: 521 start-page: 3508 year: 2013 end-page: 3523 ident: ref38 article-title: Hilar interneuron vulnerability distinguishes aged rats with memory impairment publication-title: J. Comp. Neurol. – volume: 500 start-page: 45 year: 2013 end-page: 50 ident: ref33 article-title: Integrative genomics identifies APOE ε4 effectors in Alzheimer's disease publication-title: Nature – volume: 51 start-page: 1242 year: 2010 end-page: 1252 ident: ref54 article-title: High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment publication-title: Neuroimage – volume: 44 start-page: 319 year: 2009 end-page: 327 ident: ref52 article-title: A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe publication-title: Neuroimage – volume: 319 start-page: 1640 year: 2008 end-page: 1642 ident: ref3 article-title: Pattern separation in the human hippocampal CA3 and dentate gyrus publication-title: Science – volume: 49 start-page: 1224 year: 2010 end-page: 1230 ident: ref22 article-title: In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging publication-title: Neuroimage – volume: 74 start-page: 1969 year: 2010 end-page: 1976 ident: ref28 article-title: Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline publication-title: Neurology – volume: 256 start-page: 183 year: 2004 end-page: 194 ident: ref30 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J. Intern. Med. – volume: 35 start-page: 1016 year: 2010 end-page: 1025 ident: ref16 article-title: Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment publication-title: Neuropsychopharmacology – volume: 19 start-page: 871 year: 2013 end-page: 881 ident: ref36 article-title: Anti-epileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice publication-title: C.N.S. Neurosci. Ther. – volume: 24 start-page: 1019 year: 1974 end-page: 1025 ident: ref7 article-title: Evaluating storage, retention, and retrieval in disordered memory and learning publication-title: Neurology – volume: 25 start-page: 6877 year: 2005 end-page: 6886 ident: ref48 article-title: Age-associated alterations of hippocampal place cells are subregion specific publication-title: J. Neurosci. – volume: 102 start-page: 419 year: 1995 end-page: 457 ident: ref23 article-title: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory publication-title: Psychol. Rev. – volume: 109 start-page: E2895 year: 2012 end-page: E2903 ident: ref34 article-title: Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 17 start-page: 230 year: 2013 end-page: 240 ident: ref31 article-title: Long-axis specialization of the human hippocampus publication-title: Trends Cogn. Sci. – volume: 14 start-page: 625 year: 2007 end-page: 633 ident: ref14 article-title: Overcoming interference: an fMRI investigation of pattern separation in the medial temporal lobe publication-title: Learn. Mem. – volume: 20 start-page: 6587 year: 2000 end-page: 6593 ident: ref37 article-title: Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats publication-title: J. Neurosci. – volume: 21 start-page: 968 year: 2011 end-page: 979 ident: ref50 article-title: Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults publication-title: Hippocampus – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: ref9 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. – volume: 34 start-page: 515 year: 2011 end-page: 525 ident: ref53 article-title: Pattern separation in the hippocampus publication-title: Trends Neurosci. – volume: 21 start-page: 392 year: 2011 end-page: 400 ident: ref41 article-title: Cognitive decline is associated with reduced reelin expression in the entorhinal cortex of aged rats publication-title: Cereb. Cortex – volume: 74 start-page: 467 year: 2012 end-page: 474 ident: ref4 article-title: Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment publication-title: Neuron – volume: 71 start-page: 489 year: 2011 end-page: 514 ident: ref21 article-title: Levetiracetam: a review of its use in epilepsy publication-title: Drugs – volume: 36 start-page: 1 year: 2015 end-page: 11 ident: ref39 article-title: The storm before the quiet: neuronal hyperactivity and Aβ in the presymptomatic stages of Alzheimer's disease publication-title: Neurobiol. Aging – volume: 305 start-page: 1295 year: 2004 end-page: 1298 ident: ref20 article-title: Distinct ensemble codes in hippocampal areas CA3 and CA1 publication-title: Science – volume: 16 start-page: 338 year: 2009 end-page: 342 ident: ref44 article-title: Visual object pattern separation deficits in nondemented older adults publication-title: Learn. Mem. – year: 2005 ident: ref10 publication-title: The Human Hippocampus: Functional Anatomy, Vascularization, and Serial Sections with MRI – volume: 16 start-page: 613 year: 2013 end-page: 621 ident: ref42 article-title: Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β publication-title: Nat. Neurosci. – volume: 30 start-page: 13707 year: 2010 end-page: 13717 ident: ref2 article-title: Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice publication-title: J. Neurosci. – volume: 12 start-page: 189 year: 1975 end-page: 198 ident: ref11 article-title: “ publication-title: J. Psychiatr. Res. – volume: 44 start-page: 385 year: 2009 end-page: 398 ident: ref55 article-title: A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T publication-title: Neuroimage – volume: 19 start-page: 659 year: 1998 end-page: 671 ident: ref12 article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices publication-title: A.J.N.R. Am. J. Neuroradiol. – volume: 31 start-page: 17680 year: 2011 end-page: 17688 ident: ref32 article-title: Hippocampal hyperactivation associated with cortical thinning in Alzheimer's disease signature regions in non-demented elderly adults publication-title: J. Neurosci. – year: 1988 ident: ref43 publication-title: Co-planar Stereotaxic Atlas of the Human Brain: 3 Dimensional Proportional System: An Approach to Cerebral Imaging – volume: 51 start-page: 2442 year: 2013 end-page: 2449 ident: ref40 article-title: A task to assess behavioral pattern separation (BPS) in humans: data from healthy aging and mild cognitive impairment publication-title: Neuropsychologia – volume: 24 start-page: 297 year: 2003 end-page: 305 ident: ref49 article-title: Place cell rigidity correlates with impaired spatial learning in aged rats publication-title: Neurobiol. Aging – volume: 81 start-page: 416 year: 2014 end-page: 427 ident: ref26 article-title: CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation publication-title: Neuron – volume: 25 start-page: 6877 issue: 29 year: 2005 ident: 10.1016/j.nicl.2015.02.009_ref48 article-title: Age-associated alterations of hippocampal place cells are subregion specific publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1744-05.2005 – volume: 27 start-page: 2727 issue: 11 year: 2007 ident: 10.1016/j.nicl.2015.02.009_ref8 article-title: Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3758-06.2007 – volume: 20 start-page: 6587 issue: 17 year: 2000 ident: 10.1016/j.nicl.2015.02.009_ref37 article-title: Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-17-06587.2000 – volume: 51 start-page: 1242 issue: 3 year: 2010 ident: 10.1016/j.nicl.2015.02.009_ref54 article-title: High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.040 – volume: 16 start-page: 613 issue: 5 year: 2013 ident: 10.1016/j.nicl.2015.02.009_ref42 article-title: Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β publication-title: Nat. Neurosci. doi: 10.1038/nn.3356 – volume: 43 start-page: 2412 issue: 11 year: 1993 ident: 10.1016/j.nicl.2015.02.009_ref25 article-title: The Clinical Dementia Rating (CDR): current version and scoring rules publication-title: Neurology doi: 10.1212/WNL.43.11.2412-a – volume: 521 start-page: 3508 issue: 15 year: 2013 ident: 10.1016/j.nicl.2015.02.009_ref38 article-title: Hilar interneuron vulnerability distinguishes aged rats with memory impairment publication-title: J. Comp. Neurol. doi: 10.1002/cne.23367 – volume: 24 start-page: 297 issue: 2 year: 2003 ident: 10.1016/j.nicl.2015.02.009_ref49 article-title: Place cell rigidity correlates with impaired spatial learning in aged rats publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(02)00080-5 – volume: 305 start-page: 1295 issue: 5688 year: 2004 ident: 10.1016/j.nicl.2015.02.009_ref20 article-title: Distinct ensemble codes in hippocampal areas CA3 and CA1 publication-title: Science doi: 10.1126/science.1100265 – volume: 4 start-page: 374 issue: 3 year: 1994 ident: 10.1016/j.nicl.2015.02.009_ref45 article-title: Computational analysis of the role of the hippocampus in memory publication-title: Hippocampus doi: 10.1002/hipo.450040319 – volume: 18 start-page: 15 issue: 1 year: 2011 ident: 10.1016/j.nicl.2015.02.009_ref18 article-title: Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed using high-resolution fMRI and variable mnemonic similarity publication-title: Learn. Mem. doi: 10.1101/lm.1971111 – volume: 49 start-page: 1224 issue: 2 year: 2010 ident: 10.1016/j.nicl.2015.02.009_ref22 article-title: In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.042 – volume: 35 start-page: 1016 issue: 4 year: 2010 ident: 10.1016/j.nicl.2015.02.009_ref16 article-title: Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment publication-title: Neuropsychopharmacology doi: 10.1038/npp.2009.207 – volume: 21 start-page: 968 year: 2011 ident: 10.1016/j.nicl.2015.02.009_ref50 article-title: Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults publication-title: Hippocampus doi: 10.1002/hipo.20808 – volume: 29 start-page: 162 issue: 3 year: 1996 ident: 10.1016/j.nicl.2015.02.009_ref9 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 35 start-page: 1961 issue: 9 year: 2014 ident: 10.1016/j.nicl.2015.02.009_ref6 article-title: Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.03.031 – volume: 46 start-page: 786 issue: 3 year: 2009 ident: 10.1016/j.nicl.2015.02.009_ref15 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.037 – volume: 30 start-page: 13707 issue: 41 year: 2010 ident: 10.1016/j.nicl.2015.02.009_ref2 article-title: Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4040-10.2010 – volume: 29 start-page: 662 issue: 12 year: 2006 ident: 10.1016/j.nicl.2015.02.009_ref47 article-title: Neurocognitive aging: prior memories hinder new hippocampal encoding publication-title: Trends Neurosci. doi: 10.1016/j.tins.2006.10.002 – volume: 44 start-page: 319 issue: 2 year: 2009 ident: 10.1016/j.nicl.2015.02.009_ref52 article-title: A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.016 – volume: 256 start-page: 183 issue: 3 year: 2004 ident: 10.1016/j.nicl.2015.02.009_ref30 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J. Intern. Med. doi: 10.1111/j.1365-2796.2004.01388.x – volume: 319 start-page: 1640 issue: 5870 year: 2008 ident: 10.1016/j.nicl.2015.02.009_ref3 article-title: Pattern separation in the human hippocampal CA3 and dentate gyrus publication-title: Science doi: 10.1126/science.1152882 – volume: 110 start-page: 611 issue: 4 year: 2003 ident: 10.1016/j.nicl.2015.02.009_ref27 article-title: Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach publication-title: Psychol. Rev. doi: 10.1037/0033-295X.110.4.611 – year: 1974 ident: 10.1016/j.nicl.2015.02.009_ref5 – volume: 81 start-page: 416 issue: 2 year: 2014 ident: 10.1016/j.nicl.2015.02.009_ref26 article-title: CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation publication-title: Neuron doi: 10.1016/j.neuron.2013.11.017 – year: 1988 ident: 10.1016/j.nicl.2015.02.009_ref43 – year: 1987 ident: 10.1016/j.nicl.2015.02.009_ref46 – volume: 51 start-page: 2442 issue: 12 year: 2013 ident: 10.1016/j.nicl.2015.02.009_ref40 article-title: A task to assess behavioral pattern separation (BPS) in humans: data from healthy aging and mild cognitive impairment publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2012.12.014 – year: 2005 ident: 10.1016/j.nicl.2015.02.009_ref10 – volume: 16 start-page: 338 issue: 5 year: 2009 ident: 10.1016/j.nicl.2015.02.009_ref44 article-title: Visual object pattern separation deficits in nondemented older adults publication-title: Learn. Mem. doi: 10.1101/lm.1315109 – volume: 74 start-page: 1969 issue: 24 year: 2010 ident: 10.1016/j.nicl.2015.02.009_ref28 article-title: Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline publication-title: Neurology doi: 10.1212/WNL.0b013e3181e3966e – volume: 111 start-page: 18428 issue: 52 year: 2014 ident: 10.1016/j.nicl.2015.02.009_ref1 article-title: Place cells in the hippocampus: eleven maps for eleven rooms publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1421056111 – volume: 108 start-page: 8873 issue: 21 year: 2011 ident: 10.1016/j.nicl.2015.02.009_ref51 article-title: Age-related memory deficits linked to circuit-specific disruptions in the hippocampus publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1101567108 – volume: 102 start-page: 419 issue: 3 year: 1995 ident: 10.1016/j.nicl.2015.02.009_ref23 article-title: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory publication-title: Psychol. Rev. doi: 10.1037/0033-295X.102.3.419 – volume: 19 start-page: 659 issue: 4 year: 1998 ident: 10.1016/j.nicl.2015.02.009_ref12 article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices publication-title: A.J.N.R. Am. J. Neuroradiol. – volume: 27 start-page: 1372 issue: 10 year: 2006 ident: 10.1016/j.nicl.2015.02.009_ref35 article-title: Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2005.09.012 – volume: 21 start-page: 392 issue: 2 year: 2011 ident: 10.1016/j.nicl.2015.02.009_ref41 article-title: Cognitive decline is associated with reduced reelin expression in the entorhinal cortex of aged rats publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq106 – volume: 36 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.nicl.2015.02.009_ref39 article-title: The storm before the quiet: neuronal hyperactivity and Aβ in the presymptomatic stages of Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.08.014 – volume: 44 start-page: 385 issue: 2 year: 2009 ident: 10.1016/j.nicl.2015.02.009_ref55 article-title: A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.08.042 – volume: 79 start-page: 630 issue: 6 year: 2008 ident: 10.1016/j.nicl.2015.02.009_ref24 article-title: Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline publication-title: J. Neurol. Neurosurg. Psychiatr. doi: 10.1136/jnnp.2007.124149 – volume: 28 start-page: 959 issue: 10 year: 2007 ident: 10.1016/j.nicl.2015.02.009_ref13 article-title: High-resolution fMRI investigation of the medial temporal lobe publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20331 – volume: 74 start-page: 467 issue: 3 year: 2012 ident: 10.1016/j.nicl.2015.02.009_ref4 article-title: Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment publication-title: Neuron doi: 10.1016/j.neuron.2012.03.023 – volume: 24 start-page: 1019 issue: 11 year: 1974 ident: 10.1016/j.nicl.2015.02.009_ref7 article-title: Evaluating storage, retention, and retrieval in disordered memory and learning publication-title: Neurology doi: 10.1212/WNL.24.11.1019 – volume: 34 start-page: 515 year: 2011 ident: 10.1016/j.nicl.2015.02.009_ref53 article-title: Pattern separation in the hippocampus publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.06.006 – volume: 12 start-page: 189 issue: 3 year: 1975 ident: 10.1016/j.nicl.2015.02.009_ref11 article-title: “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(75)90026-6 – volume: 31 start-page: 17680 issue: 48 year: 2011 ident: 10.1016/j.nicl.2015.02.009_ref32 article-title: Hippocampal hyperactivation associated with cortical thinning in Alzheimer's disease signature regions in non-demented elderly adults publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4740-11.2011 – volume: 430 start-page: 456 issue: 6998 year: 2004 ident: 10.1016/j.nicl.2015.02.009_ref19 article-title: Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 publication-title: Nature doi: 10.1038/nature02739 – volume: 500 start-page: 45 issue: 7460 year: 2013 ident: 10.1016/j.nicl.2015.02.009_ref33 article-title: Integrative genomics identifies APOE ε4 effectors in Alzheimer's disease publication-title: Nature doi: 10.1038/nature12415 – volume: 71 start-page: 489 issue: 4 year: 2011 ident: 10.1016/j.nicl.2015.02.009_ref21 article-title: Levetiracetam: a review of its use in epilepsy publication-title: Drugs – volume: 109 start-page: E2895 year: 2012 ident: 10.1016/j.nicl.2015.02.009_ref34 article-title: Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1121081109 – volume: 4 start-page: 661 issue: 6 year: 1994 ident: 10.1016/j.nicl.2015.02.009_ref29 article-title: Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off publication-title: Hippocampus doi: 10.1002/hipo.450040605 – volume: 14 start-page: 625 issue: 9 year: 2007 ident: 10.1016/j.nicl.2015.02.009_ref14 article-title: Overcoming interference: an fMRI investigation of pattern separation in the medial temporal lobe publication-title: Learn. Mem. doi: 10.1101/lm.663507 – volume: 19 start-page: 871 issue: 11 year: 2013 ident: 10.1016/j.nicl.2015.02.009_ref36 article-title: Anti-epileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice publication-title: C.N.S. Neurosci. Ther. doi: 10.1111/cns.12144 – volume: 64 start-page: 145 year: 2013 ident: 10.1016/j.nicl.2015.02.009_ref17 article-title: Selective GABA(A) α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2012.06.023 – volume: 17 start-page: 230 issue: 5 year: 2013 ident: 10.1016/j.nicl.2015.02.009_ref31 article-title: Long-axis specialization of the human hippocampus publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2013.03.005 – reference: 21164173 - Learn Mem. 2011 Jan;18(1):15-8 – reference: 14599236 - Psychol Rev. 2003 Oct;110(4):611-46 – reference: 25489089 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18428-35 – reference: 17360894 - J Neurosci. 2007 Mar 14;27(11):2727-33 – reference: 8232972 - Neurology. 1993 Nov;43(11):2412-4 – reference: 17848502 - Learn Mem. 2007 Sep;14(9):625-33 – reference: 17133381 - Hum Brain Mapp. 2007 Oct;28(10):959-66 – reference: 23883936 - Nature. 2013 Aug 1;500(7460):45-50 – reference: 4473151 - Neurology. 1974 Nov;24(11):1019-25 – reference: 25444609 - Neurobiol Aging. 2015 Jan;36(1):1-11 – reference: 15324362 - J Intern Med. 2004 Sep;256(3):183-94 – reference: 7624455 - Psychol Rev. 1995 Jul;102(3):419-57 – reference: 7704110 - Hippocampus. 1994 Dec;4(6):661-82 – reference: 24786631 - Neurobiol Aging. 2014 Sep;35(9):1961-72 – reference: 20865732 - Hippocampus. 2011 Sep;21(9):968-79 – reference: 20538740 - Cereb Cortex. 2011 Feb;21(2):392-400 – reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 – reference: 17846109 - J Neurol Neurosurg Psychiatry. 2008 Jun;79(6):630-5 – reference: 23525040 - Nat Neurosci. 2013 May;16(5):613-21 – reference: 23597720 - Trends Cogn Sci. 2013 May;17(5):230-40 – reference: 7842058 - Hippocampus. 1994 Jun;4(3):374-91 – reference: 16033897 - J Neurosci. 2005 Jul 20;25(29):6877-86 – reference: 10964964 - J Neurosci. 2000 Sep 1;20(17):6587-93 – reference: 22131428 - J Neurosci. 2011 Nov 30;31(48):17680-8 – reference: 19403797 - Learn Mem. 2009 May;16(5):338-42 – reference: 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 – reference: 17046075 - Trends Neurosci. 2006 Dec;29(12):662-70 – reference: 23889921 - CNS Neurosci Ther. 2013 Nov;19(11):871-81 – reference: 15272123 - Science. 2004 Aug 27;305(5688):1295-8 – reference: 22732440 - Neuropharmacology. 2013 Jan;64:145-52 – reference: 20463288 - Neurology. 2010 Jun 15;74(24):1969-76 – reference: 18929669 - Neuroimage. 2009 Jan 15;44(2):319-27 – reference: 20338246 - Neuroimage. 2010 Jul 1;51(3):1242-52 – reference: 18356518 - Science. 2008 Mar 21;319(5870):1640-2 – reference: 21788086 - Trends Neurosci. 2011 Oct;34(10):515-25 – reference: 21555581 - Proc Natl Acad Sci U S A. 2011 May 24;108(21):8873-8 – reference: 16289476 - Neurobiol Aging. 2006 Oct;27(10):1372-84 – reference: 22869752 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2895-903 – reference: 20032967 - Neuropsychopharmacology. 2010 Mar;35(4):1016-25 – reference: 20943911 - J Neurosci. 2010 Oct 13;30(41):13707-17 – reference: 21395360 - Drugs. 2011 Mar 5;71(4):489-514 – reference: 19786104 - Neuroimage. 2010 Jan 15;49(2):1224-30 – reference: 22578498 - Neuron. 2012 May 10;74(3):467-74 – reference: 9576651 - AJNR Am J Neuroradiol. 1998 Apr;19(4):659-71 – reference: 23749483 - J Comp Neurol. 2013 Oct 15;521(15):3508-23 – reference: 23313292 - Neuropsychologia. 2013 Oct;51(12):2442-9 – reference: 12498963 - Neurobiol Aging. 2003 Mar-Apr;24(2):297-305 – reference: 18840532 - Neuroimage. 2009 Jan 15;44(2):385-98 – reference: 24462102 - Neuron. 2014 Jan 22;81(2):416-27 – reference: 15229614 - Nature. 2004 Jul 22;430(6998):456-9 – reference: 19195496 - Neuroimage. 2009 Jul 1;46(3):786-802 |
| SSID | ssj0000800766 |
| Score | 2.469945 |
| Snippet | Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic... AbstractStudies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 688 |
| SubjectTerms | Aged Anticonvulsants - therapeutic use Cognitive Dysfunction - drug therapy Cognitive Dysfunction - physiopathology Cross-Over Studies Dentate gyrus Dentate Gyrus - drug effects Dentate Gyrus - physiopathology Entorhinal cortex Female fMRI Humans Image Processing, Computer-Assisted Levetiracetam Magnetic Resonance Imaging Male Memory Memory - drug effects Memory - physiology Middle Aged Mild cognitive impairment Neuropsychological Tests Piracetam - analogs & derivatives Piracetam - therapeutic use Radiology Regular Temporal Lobe - drug effects Temporal Lobe - physiopathology |
| Title | Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2213158215000273 https://www.clinicalkey.es/playcontent/1-s2.0-S2213158215000273 https://www.ncbi.nlm.nih.gov/pubmed/25844322 https://www.proquest.com/docview/1671219685 https://pubmed.ncbi.nlm.nih.gov/PMC4377841 https://doaj.org/article/fbe2f43b77454aa2b5c690e9f7e29f55 |
| Volume | 7 |
| WOSCitedRecordID | wos000373172600074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogL4s3yqAaJG4pInIfjI6BWcNgKFZD2Zvkp0u4m1SZF6qV_pH-WcZwsCaBy4bKHrB3HnsnMOP7mG0JeJ6XTpuRxlJlYelLtNCq54RF3qUKH5VycmL7YBDs6Klcr_nlS6stjwgI9cFi4t05Z6jLsyPBGUlKVa9zQWe6YpdzlPXspRj2TzdTJEAex_qCS0iSNkrykQ8ZMAHd51lmP68oDYSefeaWevH_mnP4MPn_HUE6c0uE9cneIJuFdmMV9csPWD8jt5XBe_pBcHQcIrIXGAYZ6EBJFYCCkWoPHWkAdoOBQ1SA3tafd0LCp1gZ22CLwyZTV1n9JhK6BSdIWVBPQJMj-CNkaUBfglsefQNYGx9w02wvoZHsKZ7_yFB6Rb4cHXz98jIZyDJEusriLcGdlXOmkSw0vGOcslTIptPX1SjyNjJJMuZzrnDInrXZouhTXpcYIInZU8vQx2aub2j4loFzGtIlTalScJS5Wmlme6lwWGS8xJFqQZBSH0ANXuS-ZsRYjKO1EeBEKL0IRU4EiXJA3uz5nganj2tbvvZR3LT3Ldn8BdU8Muif-pXsLko46IsZEVjS9eKPq2qHZ33rZdrAerUhEiy3FF6-7XnWTPPAOLcirUREFWgF_tCNr25xjj4Il6HuKEp_pSVDM3dQoLmiGdhvHnansbO7zf-rqe880nqXMn0s_-x-L9Zzc8YsQPl-9IHvd9ty-JLf0j65qt_vkJluV-_1LjL_Ly4OfVCVO1w |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+the+medial+temporal+lobe+network+in+amnestic+mild+cognitive+impairment+to+therapeutic+intervention+assessed+by+fMRI+and+memory+task+performance&rft.jtitle=NeuroImage+clinical&rft.au=Bakker%2C+Arnold&rft.au=Albert%2C+Marilyn+S.&rft.au=Krauss%2C+Gregory&rft.au=Speck%2C+Caroline+L.&rft.date=2015-01-01&rft.pub=Elsevier&rft.eissn=2213-1582&rft.volume=7&rft.spage=688&rft.epage=698&rft_id=info:doi/10.1016%2Fj.nicl.2015.02.009&rft_id=info%3Apmid%2F25844322&rft.externalDocID=PMC4377841 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158214X00045%2Fcov150h.gif |