Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance

Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a tas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage clinical Jg. 7; H. C; S. 688 - 698
Hauptverfasser: Bakker, Arnold, Albert, Marilyn S., Krauss, Gregory, Speck, Caroline L., Gallagher, Michela
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Inc 01.01.2015
Elsevier
Schlagworte:
ISSN:2213-1582, 2213-1582
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment. •Patients with aMCI show increased fMRI activation in DG/CA3 relative to controls.•Low dose levetiracetam treatment decreases excess DG/CA3 activation in aMCI.•Low dose levetiracetam treatment normalizes decreased entorhinal activation in aMCI.•Low dose levetiracetam treatment improves task related memory performance in aMCI.•Targeting excess hippocampal activity has therapeutic potential in amnestic MCI.
AbstractList Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment.
Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment. •Patients with aMCI show increased fMRI activation in DG/CA3 relative to controls.•Low dose levetiracetam treatment decreases excess DG/CA3 activation in aMCI.•Low dose levetiracetam treatment normalizes decreased entorhinal activation in aMCI.•Low dose levetiracetam treatment improves task related memory performance in aMCI.•Targeting excess hippocampal activity has therapeutic potential in amnestic MCI.
Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment. • Patients with aMCI show increased fMRI activation in DG/CA3 relative to controls. • Low dose levetiracetam treatment decreases excess DG/CA3 activation in aMCI. • Low dose levetiracetam treatment normalizes decreased entorhinal activation in aMCI. • Low dose levetiracetam treatment improves task related memory performance in aMCI. • Targeting excess hippocampal activity has therapeutic potential in amnestic MCI.
AbstractStudies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment.
Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment.Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI). Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3) during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism detected by fMRI in individuals with aMCI and therapeutic intervention using fMRI to detect target engagement in response to treatment.
Author Gallagher, Michela
Speck, Caroline L.
Albert, Marilyn S.
Krauss, Gregory
Bakker, Arnold
AuthorAffiliation a Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
c Department of Psychological and Brain Sciences, Johns Hopkins School of Arts and Sciences, Baltimore, MD 21218, USA
b Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
AuthorAffiliation_xml – name: a Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
– name: c Department of Psychological and Brain Sciences, Johns Hopkins School of Arts and Sciences, Baltimore, MD 21218, USA
– name: b Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
Author_xml – sequence: 1
  givenname: Arnold
  surname: Bakker
  fullname: Bakker, Arnold
  email: abakker@jhu.edu
  organization: Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
– sequence: 2
  givenname: Marilyn S.
  surname: Albert
  fullname: Albert, Marilyn S.
  organization: Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
– sequence: 3
  givenname: Gregory
  surname: Krauss
  fullname: Krauss, Gregory
  organization: Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
– sequence: 4
  givenname: Caroline L.
  surname: Speck
  fullname: Speck, Caroline L.
  organization: Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
– sequence: 5
  givenname: Michela
  surname: Gallagher
  fullname: Gallagher, Michela
  organization: Department of Psychological and Brain Sciences, Johns Hopkins School of Arts and Sciences, Baltimore, MD 21218, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25844322$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhiNUREvpC3BAPnLZYDuJnXBAQlWBlYqQCpwtxxlvvZvYwc4u2mfhZZmwW9Qi0ShSrHj-79fM_M-zEx88ZNlLRnNGmXizzr0zfc4pq3LKc0qbJ9kZ56xYsKrmJ_fOp9lFSmuKT02pFOJZdsqruiwLzs-yXzeQxuATkGDJdAtkgM7pnkwwjCHioQ8tEA_TzxA3xHmiBw9pcoYMru-ICSvvJrcD4oZRuziAn8gUZlLUI2znQucniDu8cAHlKQG-HWn3xH6-WRLtO_QcQtyTSacNGSHaEAftDbzInlrdJ7g4fs-z7x-uvl1-Wlx_-bi8fH-9MKKk00Iy0dnaalt0jZBNIwutmTBQCllSWtFWy9ZWjam4tBqMLaRoG1MbxktquW6K82x54HZBr9UY3aDjXgXt1J8fIa6UjthJD8q2wG1ZtFKWVak1bysjGgqNlcAbW1XIendgjdsWR2mwbZziA-jDG-9u1SrsVFlIWZcMAa-PgBh-bHHUanDJQN9rD2GbFBOScdaIevZ6dd_rr8nddrGgPhSYGFKKYJVxk573gNauV4yqOUtqreYsqTlLinKFWUIp_0d6R39UdGwecFs7B1GZ3mGV7jewh7QO2-hxkYqphAL1dY7onFBWYTi5LBDw9v8A3IZ7zP03uQv7Aw
CitedBy_id crossref_primary_10_3390_ijms22115991
crossref_primary_10_1016_j_arr_2022_101726
crossref_primary_10_1371_journal_pbio_3001412
crossref_primary_10_1096_fj_202300837R
crossref_primary_10_1016_j_neurobiolaging_2016_12_021
crossref_primary_10_1017_S1355617721000734
crossref_primary_10_1523_JNEUROSCI_1279_19_2019
crossref_primary_10_3389_fneur_2019_01203
crossref_primary_10_1002_ana_24794
crossref_primary_10_1016_j_gpb_2018_11_005
crossref_primary_10_1002_jnr_24863
crossref_primary_10_1097_WAD_0000000000000134
crossref_primary_10_3389_fnagi_2017_00071
crossref_primary_10_1111_epi_17355
crossref_primary_10_1038_s41573_023_00823_1
crossref_primary_10_1186_s13024_019_0325_5
crossref_primary_10_1186_s13195_020_00612_7
crossref_primary_10_1016_j_nicl_2021_102643
crossref_primary_10_1177_02698811221128963
crossref_primary_10_1016_j_yebeh_2021_108238
crossref_primary_10_1093_brain_awaa397
crossref_primary_10_1097_YIC_0000000000000405
crossref_primary_10_7759_cureus_30195
crossref_primary_10_1016_j_bcp_2018_09_027
crossref_primary_10_1016_j_nbd_2020_105226
crossref_primary_10_3389_fnbeh_2021_695416
crossref_primary_10_1016_j_neurobiolaging_2016_12_010
crossref_primary_10_1523_JNEUROSCI_1488_22_2023
crossref_primary_10_1007_s40263_023_01058_9
crossref_primary_10_1186_s40478_019_0723_5
crossref_primary_10_1016_j_neurobiolaging_2016_08_018
crossref_primary_10_3389_fnagi_2022_1085989
crossref_primary_10_1002_hipo_23316
crossref_primary_10_1016_j_nicl_2016_10_002
crossref_primary_10_1016_j_neuroscience_2019_11_018
crossref_primary_10_3389_fnmol_2017_00020
crossref_primary_10_1016_j_jns_2018_09_010
crossref_primary_10_1038_s41380_020_0727_3
crossref_primary_10_1007_s11682_023_00830_1
crossref_primary_10_3389_fnagi_2017_00418
crossref_primary_10_1093_cercor_bhac134
crossref_primary_10_1038_s41380_019_0483_4
crossref_primary_10_1038_s41582_024_00932_4
crossref_primary_10_1016_j_neuron_2018_01_039
crossref_primary_10_3389_fnins_2020_557416
crossref_primary_10_1016_j_isci_2025_113454
crossref_primary_10_1111_acel_13924
crossref_primary_10_1038_s41582_021_00505_9
crossref_primary_10_1002_epi4_12781
crossref_primary_10_1016_j_cub_2022_04_077
crossref_primary_10_1016_j_neubiorev_2020_12_022
crossref_primary_10_1002_alz_70498
crossref_primary_10_1111_epi_17426
crossref_primary_10_1186_s12967_023_04078_7
crossref_primary_10_1212_WNL_0000000000011774
crossref_primary_10_1523_JNEUROSCI_1174_16_2016
crossref_primary_10_3389_fnins_2020_525970
crossref_primary_10_1016_j_neurobiolaging_2020_02_019
crossref_primary_10_1523_JNEUROSCI_0528_20_2021
crossref_primary_10_1080_14656566_2016_1258060
crossref_primary_10_3233_JAD_220983
crossref_primary_10_1016_j_bmcl_2018_11_034
crossref_primary_10_3233_JAD_160742
crossref_primary_10_3389_fncel_2019_00063
crossref_primary_10_1016_j_brainresbull_2020_05_016
crossref_primary_10_1016_j_neurobiolaging_2022_11_017
crossref_primary_10_7554_eLife_22978
crossref_primary_10_1038_s41386_025_02077_4
crossref_primary_10_3389_fnins_2018_00796
crossref_primary_10_1016_j_schres_2023_08_018
crossref_primary_10_3233_JAD_230078
crossref_primary_10_1523_JNEUROSCI_2405_20_2020
crossref_primary_10_1124_jpet_124_002272
crossref_primary_10_1038_s41392_023_01484_7
crossref_primary_10_3233_JAD_230635
crossref_primary_10_1242_dmm_048926
crossref_primary_10_3389_fnins_2023_1336026
crossref_primary_10_1038_s41593_017_0065_1
crossref_primary_10_1080_14737175_2023_2278487
crossref_primary_10_1002_hipo_22474
crossref_primary_10_1016_j_nbd_2024_106473
crossref_primary_10_1016_S1474_4422_17_30044_3
crossref_primary_10_1016_j_cobeha_2020_01_011
crossref_primary_10_1523_JNEUROSCI_1408_24_2024
crossref_primary_10_1590_1516_4446_2017_2379
crossref_primary_10_3390_ijms21239318
crossref_primary_10_1007_s40265_023_01938_w
crossref_primary_10_1073_pnas_1713308114
crossref_primary_10_1111_jnc_15248
crossref_primary_10_1016_j_semcdb_2022_03_013
crossref_primary_10_1038_s41583_023_00731_8
crossref_primary_10_3389_fneur_2022_836292
crossref_primary_10_1016_j_semcdb_2021_01_005
crossref_primary_10_3758_s13415_024_01246_0
crossref_primary_10_1007_s10495_016_1227_4
crossref_primary_10_3389_fnagi_2023_1081058
crossref_primary_10_1002_trc2_12446
crossref_primary_10_1016_j_schres_2017_06_027
crossref_primary_10_1002_trc2_12329
crossref_primary_10_1016_j_nicl_2019_101690
crossref_primary_10_1242_jcs_231258
crossref_primary_10_3390_ddc4020022
crossref_primary_10_1002_epi4_70091
crossref_primary_10_1038_s42003_025_07876_5
crossref_primary_10_1016_j_neuron_2017_11_028
crossref_primary_10_1523_JNEUROSCI_1397_18_2018
crossref_primary_10_3233_JAD_160994
crossref_primary_10_1186_s12888_024_05622_5
crossref_primary_10_1016_j_tics_2019_08_003
crossref_primary_10_1038_nrn_2016_141
crossref_primary_10_1186_s40814_023_01406_y
crossref_primary_10_3389_fnagi_2022_913693
crossref_primary_10_1016_j_brainresbull_2020_04_009
crossref_primary_10_1016_j_cortex_2024_12_004
crossref_primary_10_3390_ph14101057
crossref_primary_10_3389_fnsys_2018_00072
crossref_primary_10_3233_JAD_200093
crossref_primary_10_3389_fnbeh_2019_00057
crossref_primary_10_3390_biomedicines12122891
crossref_primary_10_1038_s41573_020_0072_x
crossref_primary_10_1016_j_nicl_2018_101617
crossref_primary_10_1038_s41386_023_01730_0
crossref_primary_10_1093_brain_awz154
crossref_primary_10_3389_fnhum_2019_00387
crossref_primary_10_1007_s13311_017_0541_z
crossref_primary_10_1016_j_neuropsychologia_2020_107537
crossref_primary_10_1016_j_semcdb_2022_06_017
crossref_primary_10_1186_s13195_018_0347_1
crossref_primary_10_3233_JAD_210209
crossref_primary_10_1007_s00115_015_0041_5
crossref_primary_10_1523_JNEUROSCI_0531_17_2017
crossref_primary_10_3390_cells9102166
crossref_primary_10_3389_fnsys_2022_920713
crossref_primary_10_1016_j_neurobiolaging_2018_05_023
crossref_primary_10_1016_j_nbd_2021_105486
crossref_primary_10_3389_fnagi_2023_1274624
crossref_primary_10_3389_fnins_2020_00266
crossref_primary_10_1002_trc2_70004
crossref_primary_10_1016_j_neurobiolaging_2018_11_020
crossref_primary_10_1016_j_neurobiolaging_2019_04_016
crossref_primary_10_1177_0269881117704987
crossref_primary_10_1093_workar_waae014
crossref_primary_10_1186_s13024_019_0324_6
crossref_primary_10_1016_j_seizure_2019_06_016
crossref_primary_10_1016_j_nbd_2024_106641
crossref_primary_10_1016_j_arr_2022_101804
crossref_primary_10_1016_j_nicl_2016_12_002
crossref_primary_10_1186_s13024_020_0358_9
crossref_primary_10_3390_cells9010054
crossref_primary_10_3389_fncel_2021_782768
crossref_primary_10_1007_s41237_023_00193_3
crossref_primary_10_1016_j_neurobiolaging_2021_12_008
crossref_primary_10_1016_j_nbd_2018_08_006
crossref_primary_10_1016_j_neuropsychologia_2019_107251
crossref_primary_10_1016_j_bbr_2019_03_004
crossref_primary_10_1523_JNEUROSCI_1973_23_2024
crossref_primary_10_1002_hipo_22732
crossref_primary_10_1007_s00406_021_01310_7
crossref_primary_10_1016_j_arr_2021_101496
crossref_primary_10_3389_fnmol_2020_600084
crossref_primary_10_1002_hipo_22729
crossref_primary_10_1002_agm2_12017
crossref_primary_10_3233_JAD_200835
crossref_primary_10_3233_JAD_170031
crossref_primary_10_1016_j_neurobiolaging_2020_08_013
crossref_primary_10_1002_epi4_12386
crossref_primary_10_1371_journal_pone_0217882
crossref_primary_10_1016_j_bbr_2017_06_049
crossref_primary_10_1080_19012276_2017_1362989
crossref_primary_10_1186_s13195_022_01041_4
crossref_primary_10_1146_annurev_neuro_080317_061725
crossref_primary_10_3389_ftox_2022_836427
crossref_primary_10_1162_netn_a_00221
crossref_primary_10_1126_scitranslmed_abq1019
crossref_primary_10_1007_s11682_018_9869_1
crossref_primary_10_1111_ner_13305
crossref_primary_10_3389_fnbeh_2023_1080366
crossref_primary_10_1177_0269881116645269
crossref_primary_10_1007_s11571_023_10003_x
crossref_primary_10_1016_j_nbd_2018_05_020
crossref_primary_10_1080_14728214_2020_1808621
crossref_primary_10_1016_j_neurobiolaging_2018_12_015
crossref_primary_10_1016_j_neurobiolaging_2022_07_007
crossref_primary_10_1038_s42003_019_0599_8
crossref_primary_10_1111_nyas_14371
crossref_primary_10_1016_j_tins_2015_10_003
crossref_primary_10_1016_j_neuron_2020_06_005
crossref_primary_10_3389_fnagi_2016_00260
crossref_primary_10_1038_nature20412
crossref_primary_10_1002_dad2_12043
crossref_primary_10_1016_j_pneurobio_2021_102076
crossref_primary_10_1371_journal_pone_0144113
crossref_primary_10_1016_j_arr_2023_101992
crossref_primary_10_1016_j_arr_2024_102468
crossref_primary_10_1016_j_jalz_2016_03_013
crossref_primary_10_1016_j_pneurobio_2024_102612
crossref_primary_10_1016_j_yebeh_2022_108609
crossref_primary_10_1080_14737175_2024_2325038
Cites_doi 10.1523/JNEUROSCI.1744-05.2005
10.1523/JNEUROSCI.3758-06.2007
10.1523/JNEUROSCI.20-17-06587.2000
10.1016/j.neuroimage.2010.03.040
10.1038/nn.3356
10.1212/WNL.43.11.2412-a
10.1002/cne.23367
10.1016/S0197-4580(02)00080-5
10.1126/science.1100265
10.1002/hipo.450040319
10.1101/lm.1971111
10.1016/j.neuroimage.2009.09.042
10.1038/npp.2009.207
10.1002/hipo.20808
10.1006/cbmr.1996.0014
10.1016/j.neurobiolaging.2014.03.031
10.1016/j.neuroimage.2008.12.037
10.1523/JNEUROSCI.4040-10.2010
10.1016/j.tins.2006.10.002
10.1016/j.neuroimage.2008.09.016
10.1111/j.1365-2796.2004.01388.x
10.1126/science.1152882
10.1037/0033-295X.110.4.611
10.1016/j.neuron.2013.11.017
10.1016/j.neuropsychologia.2012.12.014
10.1101/lm.1315109
10.1212/WNL.0b013e3181e3966e
10.1073/pnas.1421056111
10.1073/pnas.1101567108
10.1037/0033-295X.102.3.419
10.1016/j.neurobiolaging.2005.09.012
10.1093/cercor/bhq106
10.1016/j.neurobiolaging.2014.08.014
10.1016/j.neuroimage.2008.08.042
10.1136/jnnp.2007.124149
10.1002/hbm.20331
10.1016/j.neuron.2012.03.023
10.1212/WNL.24.11.1019
10.1016/j.tins.2011.06.006
10.1016/0022-3956(75)90026-6
10.1523/JNEUROSCI.4740-11.2011
10.1038/nature02739
10.1038/nature12415
10.1073/pnas.1121081109
10.1002/hipo.450040605
10.1101/lm.663507
10.1111/cns.12144
10.1016/j.neuropharm.2012.06.023
10.1016/j.tics.2013.03.005
ContentType Journal Article
Copyright 2015
2015 The Authors. Published by Elsevier Inc. 2015
Copyright_xml – notice: 2015
– notice: 2015 The Authors. Published by Elsevier Inc. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.nicl.2015.02.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE




MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 698
ExternalDocumentID oai_doaj_org_article_fbe2f43b77454aa2b5c690e9f7e29f55
PMC4377841
25844322
10_1016_j_nicl_2015_02_009
1_s2_0_S2213158215000273
S2213158215000273
Genre Randomized Controlled Trial
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P50 AG005146
– fundername: NIA NIH HHS
  grantid: RC2 AG036419
– fundername: NIA NIH HHS
  grantid: RC2AG036419
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
AFCTW
AAYXX
CITATION
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c640t-716df8faf3d9679973aa16ce46740050ba7bf59c527faecf376b9c8c1240f2a93
IEDL.DBID DOA
ISICitedReferencesCount 223
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373172600074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2213-1582
IngestDate Fri Oct 03 12:51:33 EDT 2025
Tue Sep 30 16:59:21 EDT 2025
Fri Sep 05 06:48:40 EDT 2025
Thu Apr 03 07:01:08 EDT 2025
Wed Nov 05 20:57:30 EST 2025
Tue Nov 18 21:57:25 EST 2025
Wed Jun 18 06:48:27 EDT 2025
Tue Aug 26 17:37:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords fMRI
Dentate gyrus
Mild cognitive impairment
Entorhinal cortex
Memory
Levetiracetam
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-716df8faf3d9679973aa16ce46740050ba7bf59c527faecf376b9c8c1240f2a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://doaj.org/article/fbe2f43b77454aa2b5c690e9f7e29f55
PMID 25844322
PQID 1671219685
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_fbe2f43b77454aa2b5c690e9f7e29f55
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4377841
proquest_miscellaneous_1671219685
pubmed_primary_25844322
crossref_citationtrail_10_1016_j_nicl_2015_02_009
crossref_primary_10_1016_j_nicl_2015_02_009
elsevier_clinicalkeyesjournals_1_s2_0_S2213158215000273
elsevier_clinicalkey_doi_10_1016_j_nicl_2015_02_009
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2015
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Wilson, Ikonen, McMahan, Gallagher, Eichenbaum, Tanila (ref49) 2003; 24
Leutgeb, Leutgeb, Treves, Moser, Moser (ref20) 2004; 305
Cox (ref9) 1996; 29
Kirwan, Stark (ref14) 2007; 14
Stranahan, Haberman, Gallagher (ref41) 2011; 21
Suberbielle, Sanchez, Kravitz, Wang, Ho, Eilertson, Devidze, Kreitzer, Mucke (ref42) 2013; 16
Wilson, Ikonen, Gallagher, Eichenbaum, Tanila (ref48) 2005; 25
Bakker, Krauss, Albert, Speck, Jones, Stark, Yassa, Bassett, Shelton, Gallagher (ref4) 2012; 74
Lee, Yoganarasimha, Rao, Knierim (ref19) 2004; 430
Yassa, Stark, Bakker, Albert, Gallagher, Stark (ref54) 2010; 51
Chin, Massaro, Palop, Thwin, Yu, Bien-Ly, Bender, Mucke (ref8) 2007; 27
Spiegel, Koh, Vogt, Rapp, Gallagher (ref38) 2013; 521
Benton (ref5) 1974
Kirwan, Jones, Miller, Stark (ref13) 2007; 28
Miller, Fenstermacher, Bates, Blacker, Sperling, Dickerson (ref24) 2008; 79
Poppenk, Evensmoen, Moscovitch, Nadel (ref31) 2013; 17
Yassa, Lacy, Stark, Albert, Gallagher, Stark (ref50) 2011; 21
Yushkevich, Avants, Pluta, Das, Minkoff, Mechanic-Hamilton, Glynn, Pickup, Liu, Gee, Grossman, Detre (ref55) 2009; 44
Koh, Rosenzweig-Lipson, Gallagher (ref17) 2013; 64
Petersen (ref30) 2004; 256
Treves, Rolls (ref45) 1994; 4
Insausti, Juottonen, Soininen, Insausti, Partanen, Vainio, Laakso, Pitkänen (ref12) 1998; 19
Stargardt, Swaab, Bossers (ref39) 2015; 36
Putcha, Brickhouse, O'Keefe, Sullivan, Rentz, Marshall, Dickerson, Sperling (ref32) 2011; 31
Folstein, Folstein, McHugh (ref11) 1975; 12
Berchtold, Sabbagh, Beach, Kim, Cribbs, Cotman (ref6) 2014; 35
Neunuebel, Knierim (ref26) 2014; 81
McClelland, McNaughton, O'Reilly (ref23) 1995; 102
Wechsler (ref46) 1987
Wilson, Gallagher, Eichenbaum, Tanila (ref47) 2006; 29
Andrews-Zwilling, Bien-Ly, Xu, Li, Bernardo, Yoon, Zwilling, Yan, Chen, Huang (ref2) 2010; 30
Rhinn, Fujita, Qiang, Cheng, Lee, Abeliovich (ref33) 2013; 500
Norman, O'Reilly (ref27) 2003; 110
Buschke, Fuld (ref7) 1974; 24
O'Reilly, McClelland (ref29) 1994; 4
Bakker, Kirwan, Miller, Stark (ref3) 2008; 319
Toner, Pirogovsky, Kirwan, Gilbert (ref44) 2009; 16
Yassa, Stark (ref52) 2009; 44
O'Brien, O'Keefe, LaViolette, DeLuca, Blacker, Dickerson, Sperling (ref28) 2010; 74
Malykhin, Lebel, Coupland, Wilman, Carter (ref22) 2010; 49
Morris (ref25) 1993; 43
Stark, Yassa, Lacy, Stark (ref40) 2013; 51
Talairach, Tournoux (ref43) 1988
Yassa, Stark (ref53) 2011; 34
Lyseng-Williamson (ref21) 2011; 71
Alme, Miao, Jezek, Treves, Moser, Moser (ref1) 2014; 111
Shi, Wang, Tian, Xu, Gao, Zhao, Jiang, Xie, Zhang (ref36) 2013; 19
Sanchez, Zhu, Verret, Vossel, Orr, Cirrito, Devidze, Ho, Yu, Palop, Mucke (ref34) 2012; 109
Duvernoy (ref10) 2005
Lacy, Yassa, Stark, Muftuler, Stark (ref18) 2011; 18
Scheff, Price, Schmitt, Mufson (ref35) 2006; 27
Klein, Andersson, Ardekani, Ashburner, Avants, Chiang, Christensen, Collins, Gee, Hellier, Song, Jenkinson, Lepage, Rueckert, Thompson, Vercauteren, Woods, Mann, Parsey (ref15) 2009; 46
Yassa, Mattfeld, Stark, Stark (ref51) 2011; 108
Koh, Haberman, Foti, McCown, Gallagher (ref16) 2010; 35
Smith, Adams, Gallagher, Morrison, Rapp (ref37) 2000; 20
Petersen (10.1016/j.nicl.2015.02.009_ref30) 2004; 256
Bakker (10.1016/j.nicl.2015.02.009_ref3) 2008; 319
Shi (10.1016/j.nicl.2015.02.009_ref36) 2013; 19
Rhinn (10.1016/j.nicl.2015.02.009_ref33) 2013; 500
Kirwan (10.1016/j.nicl.2015.02.009_ref14) 2007; 14
Koh (10.1016/j.nicl.2015.02.009_ref16) 2010; 35
Neunuebel (10.1016/j.nicl.2015.02.009_ref26) 2014; 81
Talairach (10.1016/j.nicl.2015.02.009_ref43) 1988
Klein (10.1016/j.nicl.2015.02.009_ref15) 2009; 46
Spiegel (10.1016/j.nicl.2015.02.009_ref38) 2013; 521
Malykhin (10.1016/j.nicl.2015.02.009_ref22) 2010; 49
Yassa (10.1016/j.nicl.2015.02.009_ref54) 2010; 51
Lee (10.1016/j.nicl.2015.02.009_ref19) 2004; 430
Duvernoy (10.1016/j.nicl.2015.02.009_ref10) 2005
Sanchez (10.1016/j.nicl.2015.02.009_ref34) 2012; 109
Andrews-Zwilling (10.1016/j.nicl.2015.02.009_ref2) 2010; 30
Stark (10.1016/j.nicl.2015.02.009_ref40) 2013; 51
Norman (10.1016/j.nicl.2015.02.009_ref27) 2003; 110
Stargardt (10.1016/j.nicl.2015.02.009_ref39) 2015; 36
Yassa (10.1016/j.nicl.2015.02.009_ref53) 2011; 34
McClelland (10.1016/j.nicl.2015.02.009_ref23) 1995; 102
Toner (10.1016/j.nicl.2015.02.009_ref44) 2009; 16
Stranahan (10.1016/j.nicl.2015.02.009_ref41) 2011; 21
Insausti (10.1016/j.nicl.2015.02.009_ref12) 1998; 19
Smith (10.1016/j.nicl.2015.02.009_ref37) 2000; 20
Buschke (10.1016/j.nicl.2015.02.009_ref7) 1974; 24
Morris (10.1016/j.nicl.2015.02.009_ref25) 1993; 43
Suberbielle (10.1016/j.nicl.2015.02.009_ref42) 2013; 16
Yassa (10.1016/j.nicl.2015.02.009_ref50) 2011; 21
Benton (10.1016/j.nicl.2015.02.009_ref5) 1974
Scheff (10.1016/j.nicl.2015.02.009_ref35) 2006; 27
Wilson (10.1016/j.nicl.2015.02.009_ref47) 2006; 29
Wilson (10.1016/j.nicl.2015.02.009_ref48) 2005; 25
O'Reilly (10.1016/j.nicl.2015.02.009_ref29) 1994; 4
Chin (10.1016/j.nicl.2015.02.009_ref8) 2007; 27
Putcha (10.1016/j.nicl.2015.02.009_ref32) 2011; 31
Wechsler (10.1016/j.nicl.2015.02.009_ref46) 1987
Kirwan (10.1016/j.nicl.2015.02.009_ref13) 2007; 28
Yushkevich (10.1016/j.nicl.2015.02.009_ref55) 2009; 44
Treves (10.1016/j.nicl.2015.02.009_ref45) 1994; 4
Wilson (10.1016/j.nicl.2015.02.009_ref49) 2003; 24
O'Brien (10.1016/j.nicl.2015.02.009_ref28) 2010; 74
Poppenk (10.1016/j.nicl.2015.02.009_ref31) 2013; 17
Lyseng-Williamson (10.1016/j.nicl.2015.02.009_ref21) 2011; 71
Bakker (10.1016/j.nicl.2015.02.009_ref4) 2012; 74
Lacy (10.1016/j.nicl.2015.02.009_ref18) 2011; 18
Miller (10.1016/j.nicl.2015.02.009_ref24) 2008; 79
Alme (10.1016/j.nicl.2015.02.009_ref1) 2014; 111
Berchtold (10.1016/j.nicl.2015.02.009_ref6) 2014; 35
Leutgeb (10.1016/j.nicl.2015.02.009_ref20) 2004; 305
Yassa (10.1016/j.nicl.2015.02.009_ref52) 2009; 44
Yassa (10.1016/j.nicl.2015.02.009_ref51) 2011; 108
Koh (10.1016/j.nicl.2015.02.009_ref17) 2013; 64
Cox (10.1016/j.nicl.2015.02.009_ref9) 1996; 29
Folstein (10.1016/j.nicl.2015.02.009_ref11) 1975; 12
8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73
18840532 - Neuroimage. 2009 Jan 15;44(2):385-98
19195496 - Neuroimage. 2009 Jul 1;46(3):786-802
20865732 - Hippocampus. 2011 Sep;21(9):968-79
17848502 - Learn Mem. 2007 Sep;14(9):625-33
15324362 - J Intern Med. 2004 Sep;256(3):183-94
10964964 - J Neurosci. 2000 Sep 1;20(17):6587-93
15272123 - Science. 2004 Aug 27;305(5688):1295-8
24786631 - Neurobiol Aging. 2014 Sep;35(9):1961-72
21164173 - Learn Mem. 2011 Jan;18(1):15-8
23597720 - Trends Cogn Sci. 2013 May;17(5):230-40
22869752 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2895-903
18356518 - Science. 2008 Mar 21;319(5870):1640-2
7842058 - Hippocampus. 1994 Jun;4(3):374-91
22578498 - Neuron. 2012 May 10;74(3):467-74
20032967 - Neuropsychopharmacology. 2010 Mar;35(4):1016-25
17360894 - J Neurosci. 2007 Mar 14;27(11):2727-33
22732440 - Neuropharmacology. 2013 Jan;64:145-52
23883936 - Nature. 2013 Aug 1;500(7460):45-50
24462102 - Neuron. 2014 Jan 22;81(2):416-27
23749483 - J Comp Neurol. 2013 Oct 15;521(15):3508-23
16289476 - Neurobiol Aging. 2006 Oct;27(10):1372-84
9576651 - AJNR Am J Neuroradiol. 1998 Apr;19(4):659-71
19403797 - Learn Mem. 2009 May;16(5):338-42
7704110 - Hippocampus. 1994 Dec;4(6):661-82
23889921 - CNS Neurosci Ther. 2013 Nov;19(11):871-81
7624455 - Psychol Rev. 1995 Jul;102(3):419-57
20943911 - J Neurosci. 2010 Oct 13;30(41):13707-17
20463288 - Neurology. 2010 Jun 15;74(24):1969-76
25444609 - Neurobiol Aging. 2015 Jan;36(1):1-11
21395360 - Drugs. 2011 Mar 5;71(4):489-514
20338246 - Neuroimage. 2010 Jul 1;51(3):1242-52
1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98
23313292 - Neuropsychologia. 2013 Oct;51(12):2442-9
20538740 - Cereb Cortex. 2011 Feb;21(2):392-400
21555581 - Proc Natl Acad Sci U S A. 2011 May 24;108(21):8873-8
15229614 - Nature. 2004 Jul 22;430(6998):456-9
8232972 - Neurology. 1993 Nov;43(11):2412-4
12498963 - Neurobiol Aging. 2003 Mar-Apr;24(2):297-305
4473151 - Neurology. 1974 Nov;24(11):1019-25
25489089 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18428-35
17846109 - J Neurol Neurosurg Psychiatry. 2008 Jun;79(6):630-5
23525040 - Nat Neurosci. 2013 May;16(5):613-21
14599236 - Psychol Rev. 2003 Oct;110(4):611-46
21788086 - Trends Neurosci. 2011 Oct;34(10):515-25
17133381 - Hum Brain Mapp. 2007 Oct;28(10):959-66
19786104 - Neuroimage. 2010 Jan 15;49(2):1224-30
17046075 - Trends Neurosci. 2006 Dec;29(12):662-70
16033897 - J Neurosci. 2005 Jul 20;25(29):6877-86
18929669 - Neuroimage. 2009 Jan 15;44(2):319-27
22131428 - J Neurosci. 2011 Nov 30;31(48):17680-8
References_xml – volume: 4
  start-page: 661
  year: 1994
  end-page: 682
  ident: ref29
  article-title: Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off
  publication-title: Hippocampus
– volume: 4
  start-page: 374
  year: 1994
  end-page: 391
  ident: ref45
  article-title: Computational analysis of the role of the hippocampus in memory
  publication-title: Hippocampus
– volume: 43
  start-page: 2412
  year: 1993
  end-page: 2414
  ident: ref25
  article-title: The Clinical Dementia Rating (CDR): current version and scoring rules
  publication-title: Neurology
– volume: 430
  start-page: 456
  year: 2004
  end-page: 459
  ident: ref19
  article-title: Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3
  publication-title: Nature
– volume: 108
  start-page: 8873
  year: 2011
  end-page: 8878
  ident: ref51
  article-title: Age-related memory deficits linked to circuit-specific disruptions in the hippocampus
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 1987
  ident: ref46
  publication-title: WMS-R: Wechsler Memory Scale —Revised Manual
– year: 1974
  ident: ref5
  publication-title: The Revised Visual Retention Test
– volume: 111
  start-page: 18428
  year: 2014
  end-page: 18435
  ident: ref1
  article-title: Place cells in the hippocampus: eleven maps for eleven rooms
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 27
  start-page: 1372
  year: 2006
  end-page: 1384
  ident: ref35
  article-title: Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment
  publication-title: Neurobiol. Aging
– volume: 28
  start-page: 959
  year: 2007
  end-page: 966
  ident: ref13
  article-title: High-resolution fMRI investigation of the medial temporal lobe
  publication-title: Hum. Brain Mapp.
– volume: 79
  start-page: 630
  year: 2008
  end-page: 635
  ident: ref24
  article-title: Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline
  publication-title: J. Neurol. Neurosurg. Psychiatr.
– volume: 18
  start-page: 15
  year: 2011
  end-page: 18
  ident: ref18
  article-title: Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed using high-resolution fMRI and variable mnemonic similarity
  publication-title: Learn. Mem.
– volume: 35
  start-page: 1961
  year: 2014
  end-page: 1972
  ident: ref6
  article-title: Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 64
  start-page: 145
  year: 2013
  end-page: 152
  ident: ref17
  article-title: Selective GABA(A) α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment
  publication-title: Neuropharmacology
– volume: 27
  start-page: 2727
  year: 2007
  end-page: 2733
  ident: ref8
  article-title: Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer's disease
  publication-title: J. Neurosci.
– volume: 46
  start-page: 786
  year: 2009
  end-page: 802
  ident: ref15
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: Neuroimage
– volume: 110
  start-page: 611
  year: 2003
  end-page: 646
  ident: ref27
  article-title: Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach
  publication-title: Psychol. Rev.
– volume: 29
  start-page: 662
  year: 2006
  end-page: 670
  ident: ref47
  article-title: Neurocognitive aging: prior memories hinder new hippocampal encoding
  publication-title: Trends Neurosci.
– volume: 521
  start-page: 3508
  year: 2013
  end-page: 3523
  ident: ref38
  article-title: Hilar interneuron vulnerability distinguishes aged rats with memory impairment
  publication-title: J. Comp. Neurol.
– volume: 500
  start-page: 45
  year: 2013
  end-page: 50
  ident: ref33
  article-title: Integrative genomics identifies APOE ε4 effectors in Alzheimer's disease
  publication-title: Nature
– volume: 51
  start-page: 1242
  year: 2010
  end-page: 1252
  ident: ref54
  article-title: High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment
  publication-title: Neuroimage
– volume: 44
  start-page: 319
  year: 2009
  end-page: 327
  ident: ref52
  article-title: A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe
  publication-title: Neuroimage
– volume: 319
  start-page: 1640
  year: 2008
  end-page: 1642
  ident: ref3
  article-title: Pattern separation in the human hippocampal CA3 and dentate gyrus
  publication-title: Science
– volume: 49
  start-page: 1224
  year: 2010
  end-page: 1230
  ident: ref22
  article-title: In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging
  publication-title: Neuroimage
– volume: 74
  start-page: 1969
  year: 2010
  end-page: 1976
  ident: ref28
  article-title: Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline
  publication-title: Neurology
– volume: 256
  start-page: 183
  year: 2004
  end-page: 194
  ident: ref30
  article-title: Mild cognitive impairment as a diagnostic entity
  publication-title: J. Intern. Med.
– volume: 35
  start-page: 1016
  year: 2010
  end-page: 1025
  ident: ref16
  article-title: Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment
  publication-title: Neuropsychopharmacology
– volume: 19
  start-page: 871
  year: 2013
  end-page: 881
  ident: ref36
  article-title: Anti-epileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice
  publication-title: C.N.S. Neurosci. Ther.
– volume: 24
  start-page: 1019
  year: 1974
  end-page: 1025
  ident: ref7
  article-title: Evaluating storage, retention, and retrieval in disordered memory and learning
  publication-title: Neurology
– volume: 25
  start-page: 6877
  year: 2005
  end-page: 6886
  ident: ref48
  article-title: Age-associated alterations of hippocampal place cells are subregion specific
  publication-title: J. Neurosci.
– volume: 102
  start-page: 419
  year: 1995
  end-page: 457
  ident: ref23
  article-title: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory
  publication-title: Psychol. Rev.
– volume: 109
  start-page: E2895
  year: 2012
  end-page: E2903
  ident: ref34
  article-title: Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 17
  start-page: 230
  year: 2013
  end-page: 240
  ident: ref31
  article-title: Long-axis specialization of the human hippocampus
  publication-title: Trends Cogn. Sci.
– volume: 14
  start-page: 625
  year: 2007
  end-page: 633
  ident: ref14
  article-title: Overcoming interference: an fMRI investigation of pattern separation in the medial temporal lobe
  publication-title: Learn. Mem.
– volume: 20
  start-page: 6587
  year: 2000
  end-page: 6593
  ident: ref37
  article-title: Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats
  publication-title: J. Neurosci.
– volume: 21
  start-page: 968
  year: 2011
  end-page: 979
  ident: ref50
  article-title: Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults
  publication-title: Hippocampus
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  ident: ref9
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
– volume: 34
  start-page: 515
  year: 2011
  end-page: 525
  ident: ref53
  article-title: Pattern separation in the hippocampus
  publication-title: Trends Neurosci.
– volume: 21
  start-page: 392
  year: 2011
  end-page: 400
  ident: ref41
  article-title: Cognitive decline is associated with reduced reelin expression in the entorhinal cortex of aged rats
  publication-title: Cereb. Cortex
– volume: 74
  start-page: 467
  year: 2012
  end-page: 474
  ident: ref4
  article-title: Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment
  publication-title: Neuron
– volume: 71
  start-page: 489
  year: 2011
  end-page: 514
  ident: ref21
  article-title: Levetiracetam: a review of its use in epilepsy
  publication-title: Drugs
– volume: 36
  start-page: 1
  year: 2015
  end-page: 11
  ident: ref39
  article-title: The storm before the quiet: neuronal hyperactivity and Aβ in the presymptomatic stages of Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 305
  start-page: 1295
  year: 2004
  end-page: 1298
  ident: ref20
  article-title: Distinct ensemble codes in hippocampal areas CA3 and CA1
  publication-title: Science
– volume: 16
  start-page: 338
  year: 2009
  end-page: 342
  ident: ref44
  article-title: Visual object pattern separation deficits in nondemented older adults
  publication-title: Learn. Mem.
– year: 2005
  ident: ref10
  publication-title: The Human Hippocampus: Functional Anatomy, Vascularization, and Serial Sections with MRI
– volume: 16
  start-page: 613
  year: 2013
  end-page: 621
  ident: ref42
  article-title: Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β
  publication-title: Nat. Neurosci.
– volume: 30
  start-page: 13707
  year: 2010
  end-page: 13717
  ident: ref2
  article-title: Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice
  publication-title: J. Neurosci.
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  ident: ref11
  article-title:
  publication-title: J. Psychiatr. Res.
– volume: 44
  start-page: 385
  year: 2009
  end-page: 398
  ident: ref55
  article-title: A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T
  publication-title: Neuroimage
– volume: 19
  start-page: 659
  year: 1998
  end-page: 671
  ident: ref12
  article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 31
  start-page: 17680
  year: 2011
  end-page: 17688
  ident: ref32
  article-title: Hippocampal hyperactivation associated with cortical thinning in Alzheimer's disease signature regions in non-demented elderly adults
  publication-title: J. Neurosci.
– year: 1988
  ident: ref43
  publication-title: Co-planar Stereotaxic Atlas of the Human Brain: 3 Dimensional Proportional System: An Approach to Cerebral Imaging
– volume: 51
  start-page: 2442
  year: 2013
  end-page: 2449
  ident: ref40
  article-title: A task to assess behavioral pattern separation (BPS) in humans: data from healthy aging and mild cognitive impairment
  publication-title: Neuropsychologia
– volume: 24
  start-page: 297
  year: 2003
  end-page: 305
  ident: ref49
  article-title: Place cell rigidity correlates with impaired spatial learning in aged rats
  publication-title: Neurobiol. Aging
– volume: 81
  start-page: 416
  year: 2014
  end-page: 427
  ident: ref26
  article-title: CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation
  publication-title: Neuron
– volume: 25
  start-page: 6877
  issue: 29
  year: 2005
  ident: 10.1016/j.nicl.2015.02.009_ref48
  article-title: Age-associated alterations of hippocampal place cells are subregion specific
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1744-05.2005
– volume: 27
  start-page: 2727
  issue: 11
  year: 2007
  ident: 10.1016/j.nicl.2015.02.009_ref8
  article-title: Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3758-06.2007
– volume: 20
  start-page: 6587
  issue: 17
  year: 2000
  ident: 10.1016/j.nicl.2015.02.009_ref37
  article-title: Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-17-06587.2000
– volume: 51
  start-page: 1242
  issue: 3
  year: 2010
  ident: 10.1016/j.nicl.2015.02.009_ref54
  article-title: High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.040
– volume: 16
  start-page: 613
  issue: 5
  year: 2013
  ident: 10.1016/j.nicl.2015.02.009_ref42
  article-title: Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3356
– volume: 43
  start-page: 2412
  issue: 11
  year: 1993
  ident: 10.1016/j.nicl.2015.02.009_ref25
  article-title: The Clinical Dementia Rating (CDR): current version and scoring rules
  publication-title: Neurology
  doi: 10.1212/WNL.43.11.2412-a
– volume: 521
  start-page: 3508
  issue: 15
  year: 2013
  ident: 10.1016/j.nicl.2015.02.009_ref38
  article-title: Hilar interneuron vulnerability distinguishes aged rats with memory impairment
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23367
– volume: 24
  start-page: 297
  issue: 2
  year: 2003
  ident: 10.1016/j.nicl.2015.02.009_ref49
  article-title: Place cell rigidity correlates with impaired spatial learning in aged rats
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(02)00080-5
– volume: 305
  start-page: 1295
  issue: 5688
  year: 2004
  ident: 10.1016/j.nicl.2015.02.009_ref20
  article-title: Distinct ensemble codes in hippocampal areas CA3 and CA1
  publication-title: Science
  doi: 10.1126/science.1100265
– volume: 4
  start-page: 374
  issue: 3
  year: 1994
  ident: 10.1016/j.nicl.2015.02.009_ref45
  article-title: Computational analysis of the role of the hippocampus in memory
  publication-title: Hippocampus
  doi: 10.1002/hipo.450040319
– volume: 18
  start-page: 15
  issue: 1
  year: 2011
  ident: 10.1016/j.nicl.2015.02.009_ref18
  article-title: Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed using high-resolution fMRI and variable mnemonic similarity
  publication-title: Learn. Mem.
  doi: 10.1101/lm.1971111
– volume: 49
  start-page: 1224
  issue: 2
  year: 2010
  ident: 10.1016/j.nicl.2015.02.009_ref22
  article-title: In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.042
– volume: 35
  start-page: 1016
  issue: 4
  year: 2010
  ident: 10.1016/j.nicl.2015.02.009_ref16
  article-title: Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2009.207
– volume: 21
  start-page: 968
  year: 2011
  ident: 10.1016/j.nicl.2015.02.009_ref50
  article-title: Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults
  publication-title: Hippocampus
  doi: 10.1002/hipo.20808
– volume: 29
  start-page: 162
  issue: 3
  year: 1996
  ident: 10.1016/j.nicl.2015.02.009_ref9
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1996.0014
– volume: 35
  start-page: 1961
  issue: 9
  year: 2014
  ident: 10.1016/j.nicl.2015.02.009_ref6
  article-title: Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.03.031
– volume: 46
  start-page: 786
  issue: 3
  year: 2009
  ident: 10.1016/j.nicl.2015.02.009_ref15
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.037
– volume: 30
  start-page: 13707
  issue: 41
  year: 2010
  ident: 10.1016/j.nicl.2015.02.009_ref2
  article-title: Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4040-10.2010
– volume: 29
  start-page: 662
  issue: 12
  year: 2006
  ident: 10.1016/j.nicl.2015.02.009_ref47
  article-title: Neurocognitive aging: prior memories hinder new hippocampal encoding
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2006.10.002
– volume: 44
  start-page: 319
  issue: 2
  year: 2009
  ident: 10.1016/j.nicl.2015.02.009_ref52
  article-title: A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.016
– volume: 256
  start-page: 183
  issue: 3
  year: 2004
  ident: 10.1016/j.nicl.2015.02.009_ref30
  article-title: Mild cognitive impairment as a diagnostic entity
  publication-title: J. Intern. Med.
  doi: 10.1111/j.1365-2796.2004.01388.x
– volume: 319
  start-page: 1640
  issue: 5870
  year: 2008
  ident: 10.1016/j.nicl.2015.02.009_ref3
  article-title: Pattern separation in the human hippocampal CA3 and dentate gyrus
  publication-title: Science
  doi: 10.1126/science.1152882
– volume: 110
  start-page: 611
  issue: 4
  year: 2003
  ident: 10.1016/j.nicl.2015.02.009_ref27
  article-title: Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.110.4.611
– year: 1974
  ident: 10.1016/j.nicl.2015.02.009_ref5
– volume: 81
  start-page: 416
  issue: 2
  year: 2014
  ident: 10.1016/j.nicl.2015.02.009_ref26
  article-title: CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.11.017
– year: 1988
  ident: 10.1016/j.nicl.2015.02.009_ref43
– year: 1987
  ident: 10.1016/j.nicl.2015.02.009_ref46
– volume: 51
  start-page: 2442
  issue: 12
  year: 2013
  ident: 10.1016/j.nicl.2015.02.009_ref40
  article-title: A task to assess behavioral pattern separation (BPS) in humans: data from healthy aging and mild cognitive impairment
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2012.12.014
– year: 2005
  ident: 10.1016/j.nicl.2015.02.009_ref10
– volume: 16
  start-page: 338
  issue: 5
  year: 2009
  ident: 10.1016/j.nicl.2015.02.009_ref44
  article-title: Visual object pattern separation deficits in nondemented older adults
  publication-title: Learn. Mem.
  doi: 10.1101/lm.1315109
– volume: 74
  start-page: 1969
  issue: 24
  year: 2010
  ident: 10.1016/j.nicl.2015.02.009_ref28
  article-title: Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e3966e
– volume: 111
  start-page: 18428
  issue: 52
  year: 2014
  ident: 10.1016/j.nicl.2015.02.009_ref1
  article-title: Place cells in the hippocampus: eleven maps for eleven rooms
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1421056111
– volume: 108
  start-page: 8873
  issue: 21
  year: 2011
  ident: 10.1016/j.nicl.2015.02.009_ref51
  article-title: Age-related memory deficits linked to circuit-specific disruptions in the hippocampus
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1101567108
– volume: 102
  start-page: 419
  issue: 3
  year: 1995
  ident: 10.1016/j.nicl.2015.02.009_ref23
  article-title: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.102.3.419
– volume: 19
  start-page: 659
  issue: 4
  year: 1998
  ident: 10.1016/j.nicl.2015.02.009_ref12
  article-title: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 27
  start-page: 1372
  issue: 10
  year: 2006
  ident: 10.1016/j.nicl.2015.02.009_ref35
  article-title: Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2005.09.012
– volume: 21
  start-page: 392
  issue: 2
  year: 2011
  ident: 10.1016/j.nicl.2015.02.009_ref41
  article-title: Cognitive decline is associated with reduced reelin expression in the entorhinal cortex of aged rats
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq106
– volume: 36
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.nicl.2015.02.009_ref39
  article-title: The storm before the quiet: neuronal hyperactivity and Aβ in the presymptomatic stages of Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.08.014
– volume: 44
  start-page: 385
  issue: 2
  year: 2009
  ident: 10.1016/j.nicl.2015.02.009_ref55
  article-title: A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.08.042
– volume: 79
  start-page: 630
  issue: 6
  year: 2008
  ident: 10.1016/j.nicl.2015.02.009_ref24
  article-title: Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline
  publication-title: J. Neurol. Neurosurg. Psychiatr.
  doi: 10.1136/jnnp.2007.124149
– volume: 28
  start-page: 959
  issue: 10
  year: 2007
  ident: 10.1016/j.nicl.2015.02.009_ref13
  article-title: High-resolution fMRI investigation of the medial temporal lobe
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20331
– volume: 74
  start-page: 467
  issue: 3
  year: 2012
  ident: 10.1016/j.nicl.2015.02.009_ref4
  article-title: Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.023
– volume: 24
  start-page: 1019
  issue: 11
  year: 1974
  ident: 10.1016/j.nicl.2015.02.009_ref7
  article-title: Evaluating storage, retention, and retrieval in disordered memory and learning
  publication-title: Neurology
  doi: 10.1212/WNL.24.11.1019
– volume: 34
  start-page: 515
  year: 2011
  ident: 10.1016/j.nicl.2015.02.009_ref53
  article-title: Pattern separation in the hippocampus
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.06.006
– volume: 12
  start-page: 189
  issue: 3
  year: 1975
  ident: 10.1016/j.nicl.2015.02.009_ref11
  article-title: “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/0022-3956(75)90026-6
– volume: 31
  start-page: 17680
  issue: 48
  year: 2011
  ident: 10.1016/j.nicl.2015.02.009_ref32
  article-title: Hippocampal hyperactivation associated with cortical thinning in Alzheimer's disease signature regions in non-demented elderly adults
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4740-11.2011
– volume: 430
  start-page: 456
  issue: 6998
  year: 2004
  ident: 10.1016/j.nicl.2015.02.009_ref19
  article-title: Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3
  publication-title: Nature
  doi: 10.1038/nature02739
– volume: 500
  start-page: 45
  issue: 7460
  year: 2013
  ident: 10.1016/j.nicl.2015.02.009_ref33
  article-title: Integrative genomics identifies APOE ε4 effectors in Alzheimer's disease
  publication-title: Nature
  doi: 10.1038/nature12415
– volume: 71
  start-page: 489
  issue: 4
  year: 2011
  ident: 10.1016/j.nicl.2015.02.009_ref21
  article-title: Levetiracetam: a review of its use in epilepsy
  publication-title: Drugs
– volume: 109
  start-page: E2895
  year: 2012
  ident: 10.1016/j.nicl.2015.02.009_ref34
  article-title: Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1121081109
– volume: 4
  start-page: 661
  issue: 6
  year: 1994
  ident: 10.1016/j.nicl.2015.02.009_ref29
  article-title: Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off
  publication-title: Hippocampus
  doi: 10.1002/hipo.450040605
– volume: 14
  start-page: 625
  issue: 9
  year: 2007
  ident: 10.1016/j.nicl.2015.02.009_ref14
  article-title: Overcoming interference: an fMRI investigation of pattern separation in the medial temporal lobe
  publication-title: Learn. Mem.
  doi: 10.1101/lm.663507
– volume: 19
  start-page: 871
  issue: 11
  year: 2013
  ident: 10.1016/j.nicl.2015.02.009_ref36
  article-title: Anti-epileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice
  publication-title: C.N.S. Neurosci. Ther.
  doi: 10.1111/cns.12144
– volume: 64
  start-page: 145
  year: 2013
  ident: 10.1016/j.nicl.2015.02.009_ref17
  article-title: Selective GABA(A) α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2012.06.023
– volume: 17
  start-page: 230
  issue: 5
  year: 2013
  ident: 10.1016/j.nicl.2015.02.009_ref31
  article-title: Long-axis specialization of the human hippocampus
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2013.03.005
– reference: 21164173 - Learn Mem. 2011 Jan;18(1):15-8
– reference: 14599236 - Psychol Rev. 2003 Oct;110(4):611-46
– reference: 25489089 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18428-35
– reference: 17360894 - J Neurosci. 2007 Mar 14;27(11):2727-33
– reference: 8232972 - Neurology. 1993 Nov;43(11):2412-4
– reference: 17848502 - Learn Mem. 2007 Sep;14(9):625-33
– reference: 17133381 - Hum Brain Mapp. 2007 Oct;28(10):959-66
– reference: 23883936 - Nature. 2013 Aug 1;500(7460):45-50
– reference: 4473151 - Neurology. 1974 Nov;24(11):1019-25
– reference: 25444609 - Neurobiol Aging. 2015 Jan;36(1):1-11
– reference: 15324362 - J Intern Med. 2004 Sep;256(3):183-94
– reference: 7624455 - Psychol Rev. 1995 Jul;102(3):419-57
– reference: 7704110 - Hippocampus. 1994 Dec;4(6):661-82
– reference: 24786631 - Neurobiol Aging. 2014 Sep;35(9):1961-72
– reference: 20865732 - Hippocampus. 2011 Sep;21(9):968-79
– reference: 20538740 - Cereb Cortex. 2011 Feb;21(2):392-400
– reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73
– reference: 17846109 - J Neurol Neurosurg Psychiatry. 2008 Jun;79(6):630-5
– reference: 23525040 - Nat Neurosci. 2013 May;16(5):613-21
– reference: 23597720 - Trends Cogn Sci. 2013 May;17(5):230-40
– reference: 7842058 - Hippocampus. 1994 Jun;4(3):374-91
– reference: 16033897 - J Neurosci. 2005 Jul 20;25(29):6877-86
– reference: 10964964 - J Neurosci. 2000 Sep 1;20(17):6587-93
– reference: 22131428 - J Neurosci. 2011 Nov 30;31(48):17680-8
– reference: 19403797 - Learn Mem. 2009 May;16(5):338-42
– reference: 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98
– reference: 17046075 - Trends Neurosci. 2006 Dec;29(12):662-70
– reference: 23889921 - CNS Neurosci Ther. 2013 Nov;19(11):871-81
– reference: 15272123 - Science. 2004 Aug 27;305(5688):1295-8
– reference: 22732440 - Neuropharmacology. 2013 Jan;64:145-52
– reference: 20463288 - Neurology. 2010 Jun 15;74(24):1969-76
– reference: 18929669 - Neuroimage. 2009 Jan 15;44(2):319-27
– reference: 20338246 - Neuroimage. 2010 Jul 1;51(3):1242-52
– reference: 18356518 - Science. 2008 Mar 21;319(5870):1640-2
– reference: 21788086 - Trends Neurosci. 2011 Oct;34(10):515-25
– reference: 21555581 - Proc Natl Acad Sci U S A. 2011 May 24;108(21):8873-8
– reference: 16289476 - Neurobiol Aging. 2006 Oct;27(10):1372-84
– reference: 22869752 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2895-903
– reference: 20032967 - Neuropsychopharmacology. 2010 Mar;35(4):1016-25
– reference: 20943911 - J Neurosci. 2010 Oct 13;30(41):13707-17
– reference: 21395360 - Drugs. 2011 Mar 5;71(4):489-514
– reference: 19786104 - Neuroimage. 2010 Jan 15;49(2):1224-30
– reference: 22578498 - Neuron. 2012 May 10;74(3):467-74
– reference: 9576651 - AJNR Am J Neuroradiol. 1998 Apr;19(4):659-71
– reference: 23749483 - J Comp Neurol. 2013 Oct 15;521(15):3508-23
– reference: 23313292 - Neuropsychologia. 2013 Oct;51(12):2442-9
– reference: 12498963 - Neurobiol Aging. 2003 Mar-Apr;24(2):297-305
– reference: 18840532 - Neuroimage. 2009 Jan 15;44(2):385-98
– reference: 24462102 - Neuron. 2014 Jan 22;81(2):416-27
– reference: 15229614 - Nature. 2004 Jul 22;430(6998):456-9
– reference: 19195496 - Neuroimage. 2009 Jul 1;46(3):786-802
SSID ssj0000800766
Score 2.469945
Snippet Studies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional magnetic...
AbstractStudies of individuals with amnestic mild cognitive impairment (aMCI) have detected hyperactivity in the hippocampus during task-related functional...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 688
SubjectTerms Aged
Anticonvulsants - therapeutic use
Cognitive Dysfunction - drug therapy
Cognitive Dysfunction - physiopathology
Cross-Over Studies
Dentate gyrus
Dentate Gyrus - drug effects
Dentate Gyrus - physiopathology
Entorhinal cortex
Female
fMRI
Humans
Image Processing, Computer-Assisted
Levetiracetam
Magnetic Resonance Imaging
Male
Memory
Memory - drug effects
Memory - physiology
Middle Aged
Mild cognitive impairment
Neuropsychological Tests
Piracetam - analogs & derivatives
Piracetam - therapeutic use
Radiology
Regular
Temporal Lobe - drug effects
Temporal Lobe - physiopathology
Title Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158215000273
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158215000273
https://www.ncbi.nlm.nih.gov/pubmed/25844322
https://www.proquest.com/docview/1671219685
https://pubmed.ncbi.nlm.nih.gov/PMC4377841
https://doaj.org/article/fbe2f43b77454aa2b5c690e9f7e29f55
Volume 7
WOSCitedRecordID wos000373172600074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogL4s3yqAaJG4pInIfjI6BWcNgKFZD2Zvkp0u4m1SZF6qV_pH-WcZwsCaBy4bKHrB3HnsnMOP7mG0JeJ6XTpuRxlJlYelLtNCq54RF3qUKH5VycmL7YBDs6Klcr_nlS6stjwgI9cFi4t05Z6jLsyPBGUlKVa9zQWe6YpdzlPXspRj2TzdTJEAex_qCS0iSNkrykQ8ZMAHd51lmP68oDYSefeaWevH_mnP4MPn_HUE6c0uE9cneIJuFdmMV9csPWD8jt5XBe_pBcHQcIrIXGAYZ6EBJFYCCkWoPHWkAdoOBQ1SA3tafd0LCp1gZ22CLwyZTV1n9JhK6BSdIWVBPQJMj-CNkaUBfglsefQNYGx9w02wvoZHsKZ7_yFB6Rb4cHXz98jIZyDJEusriLcGdlXOmkSw0vGOcslTIptPX1SjyNjJJMuZzrnDInrXZouhTXpcYIInZU8vQx2aub2j4loFzGtIlTalScJS5Wmlme6lwWGS8xJFqQZBSH0ANXuS-ZsRYjKO1EeBEKL0IRU4EiXJA3uz5nganj2tbvvZR3LT3Ldn8BdU8Muif-pXsLko46IsZEVjS9eKPq2qHZ33rZdrAerUhEiy3FF6-7XnWTPPAOLcirUREFWgF_tCNr25xjj4Il6HuKEp_pSVDM3dQoLmiGdhvHnansbO7zf-rqe880nqXMn0s_-x-L9Zzc8YsQPl-9IHvd9ty-JLf0j65qt_vkJluV-_1LjL_Ly4OfVCVO1w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+the+medial+temporal+lobe+network+in+amnestic+mild+cognitive+impairment+to+therapeutic+intervention+assessed+by+fMRI+and+memory+task+performance&rft.jtitle=NeuroImage+clinical&rft.au=Bakker%2C+Arnold&rft.au=Albert%2C+Marilyn+S.&rft.au=Krauss%2C+Gregory&rft.au=Speck%2C+Caroline+L.&rft.date=2015-01-01&rft.pub=Elsevier&rft.eissn=2213-1582&rft.volume=7&rft.spage=688&rft.epage=698&rft_id=info:doi/10.1016%2Fj.nicl.2015.02.009&rft_id=info%3Apmid%2F25844322&rft.externalDocID=PMC4377841
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158214X00045%2Fcov150h.gif