LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation

De novo DNA methylation (DNAme) during mouse oogenesis occurs within transcribed regions enriched for H3K36me3. As many oocyte transcripts originate in long terminal repeats (LTRs), which are heterogeneous even between closely related mammals, we examined whether species-specific LTR-initiated trans...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature communications Ročník 9; číslo 1; s. 3331 - 14
Hlavní autori: Brind’Amour, Julie, Kobayashi, Hisato, Richard Albert, Julien, Shirane, Kenjiro, Sakashita, Akihiko, Kamio, Asuka, Bogutz, Aaron, Koike, Tasuku, Karimi, Mohammad M., Lefebvre, Louis, Kono, Tomohiro, Lorincz, Matthew C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 20.08.2018
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2041-1723, 2041-1723
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:De novo DNA methylation (DNAme) during mouse oogenesis occurs within transcribed regions enriched for H3K36me3. As many oocyte transcripts originate in long terminal repeats (LTRs), which are heterogeneous even between closely related mammals, we examined whether species-specific LTR-initiated transcription units (LITs) shape the oocyte methylome. Here we identify thousands of syntenic regions in mouse, rat, and human that show divergent DNAme associated with private LITs, many of which initiate in lineage-specific LTR retrotransposons. Furthermore, CpG island (CGI) promoters methylated in mouse and/or rat, but not human oocytes, are embedded within rodent-specific LITs and vice versa. Notably, at a subset of such CGI promoters, DNAme persists on the maternal genome in fertilized and parthenogenetic mouse blastocysts or in human placenta, indicative of species-specific epigenetic inheritance. Polymorphic LITs are also responsible for disparate DNAme at promoter CGIs in distantly related mouse strains, revealing that LITs also promote intra-species divergence in CGI DNAme. De novo DNA methylation during mouse oogenesis occurs within transcribed regions. Here the authors investigate the role of species-specific long terminal repeats (LTRs)-initiated transcription units in regulating the oocyte methylome, identifying syntenic regions in mouse, rat and human with divergent DNA methylation associated with private LITs.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-05841-x