New Python-based methods for data processing

Current pixel‐array detectors produce diffraction images at extreme data rates (of up to 2 TB h−1) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to gu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section D, Biological crystallography. Jg. 69; H. 7; S. 1274 - 1282
Hauptverfasser: Sauter, Nicholas K., Hattne, Johan, Grosse-Kunstleve, Ralf W., Echols, Nathaniel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.07.2013
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1399-0047, 0907-4449, 1399-0047
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Current pixel‐array detectors produce diffraction images at extreme data rates (of up to 2 TB h−1) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web‐serving tools that interact with the Python scripting language, it was possible to implement a high‐throughput Bragg‐spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron‐radiation beamlines. Similarly, Python interoperability enabled the production of a new data‐reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data‐reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi‐crystal specimens. In these challenging cases, accurate modeling of close‐lying Bragg spots could benefit from the high‐performance computing capabilities of graphics‐processing units.
AbstractList Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h(-1)) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units.
Current pixel‐array detectors produce diffraction images at extreme data rates (of up to 2 TB h−1) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web‐serving tools that interact with the Python scripting language, it was possible to implement a high‐throughput Bragg‐spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron‐radiation beamlines. Similarly, Python interoperability enabled the production of a new data‐reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data‐reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi‐crystal specimens. In these challenging cases, accurate modeling of close‐lying Bragg spots could benefit from the high‐performance computing capabilities of graphics‐processing units.
Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h −1 ) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer ( cctbx.spotfinder ) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package ( cctbx.xfel ) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units.
The Computational Crystallography Toolbox (cctbx) is a flexible software platform that has been used to develop high-throughput crystal-screening tools for both synchrotron sources and X-ray free-electron lasers. Plans for data-processing and visualization applications are discussed, and the benefits and limitations of using graphics-processing units are evaluated. Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h−1) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femto­second crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units.
Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h(-1)) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units.Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h(-1)) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units.
Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2TBh-1) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units. [PUBLICATION ABSTRACT]
Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2TBh-1) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units.
Author Hattne, Johan
Sauter, Nicholas K.
Grosse-Kunstleve, Ralf W.
Echols, Nathaniel
Author_xml – sequence: 1
  givenname: Nicholas K.
  surname: Sauter
  fullname: Sauter, Nicholas K.
  organization: Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
– sequence: 2
  givenname: Johan
  surname: Hattne
  fullname: Hattne, Johan
  organization: Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
– sequence: 3
  givenname: Ralf W.
  surname: Grosse-Kunstleve
  fullname: Grosse-Kunstleve, Ralf W.
  organization: Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
– sequence: 4
  givenname: Nathaniel
  surname: Echols
  fullname: Echols, Nathaniel
  organization: Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23793153$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1129466$$D View this record in Osti.gov
BookMark eNqFkUtv1DAUhSNURB_wA9igCDYsCNi-ThxvkIZCC9KoIPESK8uxbzouGXuwM5T593iUMipFohs_5O-c63vPYbHng8eieEjJc0qJePGRSCI455ICIaRt4E5xQEHKihAu9q6d94vDlC4ywxiIe8V-XiXQGg6KZ2d4WX7YjIvgq04ntOUS88Wmsg-xtHrU5SoGgyk5f36_uNvrIeGDq_2o-Hzy5tPx22r-_vTd8WxemYYTqGxPQddWWm6g7awQtq05Ix0iRawF9ih5V4MRVnPsgTakZ1oyln-qe0MlHBUvJ9_VuluiNejHqAe1im6p40YF7dTfL94t1Hn4qaBpZQ0kGzyeDEIanUrGjWgWJniPZlSUMsmbJkNPr6rE8GONaVRLlwwOg_YY1klRTkUrARi9HQVBWSMYsIw-uYFehHX0eVxbilAhZNtm6tH1Dnet_QkmA3QCTAwpRex3CCVqG776J_ysETc0uXE9urAdkhv-q2wn5aUbcHN7KTX79vrVrM5RZWk1SV0a8ddOquN31QgQtfp6dqrmMD9hX2qmJPwG30jOkQ
CitedBy_id crossref_primary_10_1107_S1399004714026145
crossref_primary_10_1107_S1399004715006902
crossref_primary_10_1002_crat_201900184
crossref_primary_10_1038_s43586_022_00141_7
crossref_primary_10_1073_pnas_1413456111
crossref_primary_10_1080_10426914_2014_984215
crossref_primary_10_1038_ncomms3911
crossref_primary_10_1107_S1600576714026466
crossref_primary_10_1107_S2052252516002980
crossref_primary_10_1107_S1600576724002450
crossref_primary_10_1088_1361_6463_aa7d32
crossref_primary_10_1146_annurev_biophys_060414_033813
crossref_primary_10_1073_pnas_1400240111
crossref_primary_10_1107_S2059798317017235
crossref_primary_10_1124_mol_117_110130
crossref_primary_10_1107_S160057751900763X
crossref_primary_10_1038_s41586_018_0681_2
crossref_primary_10_1007_s00521_022_07119_2
crossref_primary_10_1002_cpe_7944
crossref_primary_10_1038_nature20161
crossref_primary_10_3389_fhpcp_2024_1414569
crossref_primary_10_1107_S1600576715010432
crossref_primary_10_1126_sciadv_adp2665
crossref_primary_10_1080_08940886_2023_2245700
crossref_primary_10_1073_pnas_1705624114
crossref_primary_10_1107_S1600576717014340
crossref_primary_10_1107_S2052252518014641
crossref_primary_10_1107_S2052252521002177
crossref_primary_10_1016_j_sbi_2014_05_002
crossref_primary_10_1107_S2053273316018696
crossref_primary_10_1107_S2052252515022927
crossref_primary_10_1038_nature15368
crossref_primary_10_1146_annurev_biochem_013118_110744
crossref_primary_10_1107_S1399004715011803
crossref_primary_10_3390_cryst14090767
crossref_primary_10_1038_nmeth_2887
crossref_primary_10_1107_S205225251402702X
crossref_primary_10_3390_cryst12010103
crossref_primary_10_1107_S1600576716007469
crossref_primary_10_1107_S2053273320001916
crossref_primary_10_1107_S2059798318017795
crossref_primary_10_1063_1_4919407
crossref_primary_10_1107_S1600576716005720
crossref_primary_10_1002_cpe_8019
crossref_primary_10_1038_srep06026
crossref_primary_10_1107_S1600576716005926
crossref_primary_10_1038_s41598_021_00236_3
crossref_primary_10_1080_17460441_2019_1626822
crossref_primary_10_1107_S1600577520008735
crossref_primary_10_1021_jacs_3c12883
crossref_primary_10_1107_S2052252517014324
crossref_primary_10_1107_S205225252100467X
crossref_primary_10_1038_s41586_023_06987_5
crossref_primary_10_1107_S1600576719005363
crossref_primary_10_1038_s41467_017_01702_1
crossref_primary_10_1107_S1600577518004873
crossref_primary_10_1107_S2052252516018315
crossref_primary_10_1107_S1399004714013534
crossref_primary_10_1038_nature13453
crossref_primary_10_1038_nmeth_4195
crossref_primary_10_1107_S2052252514019290
crossref_primary_10_1107_S1600576716006981
crossref_primary_10_1107_S1399004715004514
crossref_primary_10_1107_S1600577520016173
crossref_primary_10_1107_S1600576714011996
crossref_primary_10_7554_eLife_05421
crossref_primary_10_1038_ncomms5371
crossref_primary_10_1002_cae_22753
crossref_primary_10_1107_S2052252517008193
crossref_primary_10_1038_ncomms7435
crossref_primary_10_1002_pro_4224
crossref_primary_10_1038_s41467_022_31746_x
crossref_primary_10_1107_S1399004715017927
crossref_primary_10_1107_S2052252520013007
crossref_primary_10_1134_S0006297924040138
crossref_primary_10_1038_s41467_020_14894_w
crossref_primary_10_1038_nature14975
crossref_primary_10_1038_nature19825
crossref_primary_10_1080_08940886_2015_1101323
crossref_primary_10_1063_1_4919903
Cites_doi 10.1107/S0907444909052925
10.1038/nmeth.1859
10.1145/293347.293348
10.1016/j.parco.2011.09.001
10.1016/S0168-9002(02)02044-2
10.1107/S0909049511029918
10.1107/S0907444911015617
10.1038/nature09750
10.1107/S0907444910028192
10.1107/S0909049509036681
10.1021/ct100506d
10.1016/j.ymeth.2011.06.010
10.1107/S0021889809045701
10.1103/PhysRevB.84.214111
10.1088/0022-3727/41/19/195505
10.1107/S0108767310050981
10.1107/S0907444905036693
10.1107/S0907444912048524
10.1107/S0907444908030564
10.1107/S0021889812002312
10.1107/S0021889897006730
10.1073/pnas.1204598109
10.1038/nmeth.1867
10.1107/S0021889801017824
10.1107/S0907444910019591
10.1107/S0907444910053916
10.1107/S0909049597000204
10.1107/S0021889805040677
10.1088/1367-2630/12/3/035024
10.1107/S0021889807057822
10.1107/S0909049502015170
10.1098/rsif.2009.0142.focus
10.1016/j.nima.2009.12.053
10.1107/S0907444909010282
10.1107/S0907444902016116
10.1107/S0021889810010782
10.1107/S0909049507004803
10.1073/pnas.0505207102
10.1107/S0021889808042726
10.1524/zkri.2012.1438
10.1038/nphoton.2011.297
10.1107/S0907444909025153
10.1107/S0907444910045749
10.1107/S0907444912038152
10.1107/S0021889804005874
10.1107/S0021889811009009
10.1107/S0907444904007048
10.1107/S0909049508004019
10.1107/S0021889809043234
10.1107/S0907444998001875
10.1364/OE.18.005713
10.1111/j.1467-8659.2007.01012.x
ContentType Journal Article
Copyright Sauter et al. 2013
Sauter et al. 2013
Sauter et al. 2013 2013
Copyright_xml – notice: Sauter et al. 2013
– notice: Sauter et al. 2013
– notice: Sauter et al. 2013 2013
CorporateAuthor SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7SP
7SR
7TK
7U5
8BQ
8FD
H8D
JG9
L7M
7X8
OTOTI
5PM
DOI 10.1107/S0907444913000863
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Aerospace Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

MEDLINE - Academic
Materials Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
DocumentTitleAlternate Data processing
EISSN 1399-0047
EndPage 1282
ExternalDocumentID PMC3689530
1129466
3001369881
23793153
10_1107_S0907444913000863
AYDBA5193
ark_67375_WNG_L3LF2V52_9
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM095887
– fundername: NIGMS NIH HHS
  grantid: R01 GM102520
– fundername: NIGMS NIH HHS
  grantid: 1P01GM063210
– fundername: NIGMS NIH HHS
  grantid: 1R01GM102520
– fundername: NIGMS NIH HHS
  grantid: P01 GM063210
– fundername: NIGMS NIH HHS
  grantid: 1R01GM095887
GroupedDBID ---
-ET
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAMMB
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADMGS
ADNMO
ADOZA
AEFGJ
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBC
EBS
EJD
EMB
F00
F01
F04
F5P
G-S
G.N
GODZA
GX1
H.T
H.X
HGLYW
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCJ
RNS
ROL
RX1
SJN
SUPJJ
TN5
TUS
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WYISQ
XG1
ZZTAW
~02
~IA
~WT
186
1Y6
31~
6TJ
8WZ
A6W
ABDBF
ABEML
ACUHS
AI.
AIQQE
BTSUX
CAG
COF
EAD
EAP
EBD
EMK
EMOBN
EST
ESX
FEDTE
HF~
HVGLF
MVM
NEJ
PALCI
RIWAO
RJQFR
SV3
VH1
ZCG
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7SP
7SR
7TK
7U5
8BQ
8FD
H8D
JG9
L7M
7X8
1OB
AAHHS
AAPBV
ABHUG
ABPTK
ACCFJ
ACXME
ADAWD
ADDAD
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AFVGU
AGJLS
AIWBW
AJBDE
HH5
OTOTI
UMP
WRC
5PM
ID FETCH-LOGICAL-c6403-df13a5d9d4c38bd77d85420bee1ee57efe94b53c7da4ef3160f2a922004afc193
IEDL.DBID DRFUL
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320712800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1399-0047
0907-4449
IngestDate Tue Nov 04 01:30:38 EST 2025
Fri May 19 01:41:27 EDT 2023
Wed Oct 01 12:04:31 EDT 2025
Thu Sep 04 18:06:15 EDT 2025
Fri Jul 25 12:07:30 EDT 2025
Mon Jul 21 06:02:21 EDT 2025
Sat Nov 29 02:45:53 EST 2025
Tue Nov 18 20:15:44 EST 2025
Sun Sep 21 06:22:17 EDT 2025
Sun Sep 21 06:23:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords multiprocessing
cctbx
reusable code
data processing
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6403-df13a5d9d4c38bd77d85420bee1ee57efe94b53c7da4ef3160f2a922004afc193
Notes istex:782600E8CDC63E7DF7B3798A13EE4E121CF04F38
ark:/67375/WNG-L3LF2V52-9
ArticleID:AYDBA5193
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC)
AC02-76SF00515
SLAC-REPRINT-2014-078
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3689530
PMID 23793153
PQID 1370177988
PQPubID 1036389
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3689530
osti_scitechconnect_1129466
proquest_miscellaneous_1417893321
proquest_miscellaneous_1371267232
proquest_journals_1370177988
pubmed_primary_23793153
crossref_primary_10_1107_S0907444913000863
crossref_citationtrail_10_1107_S0907444913000863
wiley_primary_10_1107_S0907444913000863_AYDBA5193
istex_primary_ark_67375_WNG_L3LF2V52_9
PublicationCentury 2000
PublicationDate July 2013
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: July 2013
PublicationDecade 2010
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: United States
– name: Chester
PublicationTitle Acta crystallographica. Section D, Biological crystallography.
PublicationTitleAlternate Acta Cryst. D
PublicationYear 2013
Publisher International Union of Crystallography
Wiley Subscription Services, Inc
Publisher_xml – name: International Union of Crystallography
– name: Wiley Subscription Services, Inc
References Yamada (ba5193_bb63) 2008; 15
Sørensen (ba5193_bb52) 2012; 227
Abrahams (ba5193_bb1) 2003; 21
Sierra (ba5193_bb49) 2012; 68
Johansson (ba5193_bb28) 2012; 9
Klöckner (ba5193_bb33) 2012; 38
Sauter (ba5193_bb46) 2010; 43
Winter (ba5193_bb62) 2011; 55
Yano (ba5193_bb64) 2005; 102
Diederichs (ba5193_bb17) 2009; 65
Kirian (ba5193_bb31) 2011; 67
Paithankar (ba5193_bb39) 2011; 67
White (ba5193_bb58) 2012; 45
ba5193_bb42
Arya (ba5193_bb4) 1998; 45
Tsai (ba5193_bb57) 2009; 65
Winn (ba5193_bb60) 2011; 67
Schnieders (ba5193_bb47) 2011; 7
Philipp (ba5193_bb40) 2010; 57
Sauter (ba5193_bb43) 2010; 1
Favre-Nicolin (ba5193_bb22) 2011; 44
Barty (ba5193_bb5) 2012; 6
Schreurs (ba5193_bb48) 2010; 43
Soltis (ba5193_bb50) 2008; 64
Cowtan (ba5193_bb15) 2003; 2
Nave (ba5193_bb37) 1998; 54
Adams (ba5193_bb2) 2010; 66
ba5193_bb14
Dolomanov (ba5193_bb18) 2009; 42
Sauter (ba5193_bb45) 2004; 37
ba5193_bb56
Owens (ba5193_bb38) 2007; 26
Winter (ba5193_bb61) 2010; 43
Evans (ba5193_bb21) 2006; 62
Lomb (ba5193_bb35) 2011; 84
Powell (ba5193_bb41) 2013; 69
Zhang (ba5193_bb65) 2006; 39
Aishima (ba5193_bb3) 2010; 66
Strüder (ba5193_bb54) 2010; 614
Szebenyi (ba5193_bb55) 1997; 4
DePonte (ba5193_bb16) 2008; 41
Bourhis (ba5193_bb8) 2007; 8
McPhillips (ba5193_bb36) 2002; 9
ba5193_bb6
Chapman (ba5193_bb12) 2011; 470
Hilgart (ba5193_bb25) 2011; 18
ba5193_bb26
Boutet (ba5193_bb9) 2010; 12
Grosse-Kunstleve (ba5193_bb24) 2002; 35
González (ba5193_bb23) 2008; 41
Bowler (ba5193_bb10) 2010; 66
Bourgeois (ba5193_bb7) 1998; 31
Incardona (ba5193_bb27) 2009; 16
Winn (ba5193_bb59) 2002; 58
Kern (ba5193_bb29) 2012; 109
Eikenberry (ba5193_bb20) 2003; 501
Kirian (ba5193_bb30) 2010; 18
Stepanov (ba5193_bb53) 2011; 67
Song (ba5193_bb51) 2007; 14
Koopmann (ba5193_bb34) 2012; 9
Echols (ba5193_bb19) 2012; 3
Cherezov (ba5193_bb13) 2009; 6
Sauter (ba5193_bb44) 2011; 2
Buts (ba5193_bb11) 2004; 60
ba5193_bb32
References_xml – volume: 66
  start-page: 213
  year: 2010
  ident: ba5193_bb2
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444909052925
– ident: ba5193_bb14
– volume: 9
  start-page: 259
  year: 2012
  ident: ba5193_bb34
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1859
– volume: 45
  start-page: 891
  year: 1998
  ident: ba5193_bb4
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/293347.293348
– volume: 38
  start-page: 157
  year: 2012
  ident: ba5193_bb33
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2011.09.001
– volume: 501
  start-page: 260
  year: 2003
  ident: ba5193_bb20
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/S0168-9002(02)02044-2
– volume: 18
  start-page: 717
  year: 2011
  ident: ba5193_bb25
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049511029918
– ident: ba5193_bb56
– volume: 67
  start-page: 608
  year: 2011
  ident: ba5193_bb39
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444911015617
– volume: 470
  start-page: 73
  year: 2011
  ident: ba5193_bb12
  publication-title: Nature (London)
  doi: 10.1038/nature09750
– volume: 66
  start-page: 1032
  year: 2010
  ident: ba5193_bb3
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444910028192
– volume: 16
  start-page: 872
  year: 2009
  ident: ba5193_bb27
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049509036681
– volume: 7
  start-page: 1141
  year: 2011
  ident: ba5193_bb47
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100506d
– volume: 8
  start-page: 74
  year: 2007
  ident: ba5193_bb8
  publication-title: IUCr Comput. Comm. Newsl.
– volume: 55
  start-page: 81
  year: 2011
  ident: ba5193_bb62
  publication-title: Methods
  doi: 10.1016/j.ymeth.2011.06.010
– volume: 57
  start-page: 3795
  year: 2010
  ident: ba5193_bb40
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 43
  start-page: 186
  year: 2010
  ident: ba5193_bb61
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889809045701
– volume: 84
  start-page: 214111
  year: 2011
  ident: ba5193_bb35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.214111
– volume: 41
  start-page: 195505
  year: 2008
  ident: ba5193_bb16
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/41/19/195505
– volume: 67
  start-page: 131
  year: 2011
  ident: ba5193_bb31
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767310050981
– volume: 62
  start-page: 72
  year: 2006
  ident: ba5193_bb21
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444905036693
– volume: 69
  start-page: 1195
  year: 2013
  ident: ba5193_bb41
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444912048524
– volume: 64
  start-page: 1210
  year: 2008
  ident: ba5193_bb50
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444908030564
– ident: ba5193_bb32
– volume: 45
  start-page: 335
  year: 2012
  ident: ba5193_bb58
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889812002312
– volume: 31
  start-page: 22
  year: 1998
  ident: ba5193_bb7
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889897006730
– volume: 109
  start-page: 9721
  year: 2012
  ident: ba5193_bb29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1204598109
– volume: 9
  start-page: 263
  year: 2012
  ident: ba5193_bb28
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1867
– volume: 35
  start-page: 126
  year: 2002
  ident: ba5193_bb24
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889801017824
– volume: 66
  start-page: 855
  year: 2010
  ident: ba5193_bb10
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444910019591
– volume: 67
  start-page: 176
  year: 2011
  ident: ba5193_bb53
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444910053916
– volume: 4
  start-page: 128
  year: 1997
  ident: ba5193_bb55
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049597000204
– volume: 2
  start-page: 4
  year: 2003
  ident: ba5193_bb15
  publication-title: IUCr Comput. Comm. Newsl.
– volume: 39
  start-page: 112
  year: 2006
  ident: ba5193_bb65
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889805040677
– volume: 12
  start-page: 035024
  year: 2010
  ident: ba5193_bb9
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/3/035024
– volume: 41
  start-page: 176
  year: 2008
  ident: ba5193_bb23
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889807057822
– volume: 9
  start-page: 401
  year: 2002
  ident: ba5193_bb36
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049502015170
– volume: 6
  start-page: S587
  year: 2009
  ident: ba5193_bb13
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2009.0142.focus
– volume: 614
  start-page: 483
  year: 2010
  ident: ba5193_bb54
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2009.12.053
– volume: 2
  start-page: 93
  year: 2011
  ident: ba5193_bb44
  publication-title: Comput. Crystallogr. Newsl.
– ident: ba5193_bb6
– volume: 1
  start-page: 18
  year: 2010
  ident: ba5193_bb43
  publication-title: Comput. Crystallogr. Newsl.
– ident: ba5193_bb42
– volume: 65
  start-page: 535
  year: 2009
  ident: ba5193_bb17
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444909010282
– volume: 58
  start-page: 1929
  year: 2002
  ident: ba5193_bb59
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444902016116
– volume: 43
  start-page: 611
  year: 2010
  ident: ba5193_bb46
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889810010782
– volume: 14
  start-page: 191
  year: 2007
  ident: ba5193_bb51
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049507004803
– volume: 102
  start-page: 12047
  year: 2005
  ident: ba5193_bb64
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0505207102
– volume: 42
  start-page: 339
  year: 2009
  ident: ba5193_bb18
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889808042726
– volume: 227
  start-page: 63
  year: 2012
  ident: ba5193_bb52
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.2012.1438
– ident: ba5193_bb26
– volume: 6
  start-page: 35
  year: 2012
  ident: ba5193_bb5
  publication-title: Nature Photonics
  doi: 10.1038/nphoton.2011.297
– volume: 65
  start-page: 980
  year: 2009
  ident: ba5193_bb57
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444909025153
– volume: 67
  start-page: 235
  year: 2011
  ident: ba5193_bb60
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444910045749
– volume: 68
  start-page: 1584
  year: 2012
  ident: ba5193_bb49
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444912038152
– volume: 37
  start-page: 399
  year: 2004
  ident: ba5193_bb45
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889804005874
– volume: 44
  start-page: 635
  year: 2011
  ident: ba5193_bb22
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889811009009
– volume: 60
  start-page: 983
  year: 2004
  ident: ba5193_bb11
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444904007048
– volume: 15
  start-page: 296
  year: 2008
  ident: ba5193_bb63
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049508004019
– volume: 43
  start-page: 70
  year: 2010
  ident: ba5193_bb48
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889809043234
– volume: 21
  start-page: 29
  year: 2003
  ident: ba5193_bb1
  publication-title: C/C++ Users J.
– volume: 3
  start-page: 14
  year: 2012
  ident: ba5193_bb19
  publication-title: Comput. Crystallogr. Newsl.
– volume: 54
  start-page: 848
  year: 1998
  ident: ba5193_bb37
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444998001875
– volume: 18
  start-page: 5713
  year: 2010
  ident: ba5193_bb30
  publication-title: Opt. Express
  doi: 10.1364/OE.18.005713
– volume: 26
  start-page: 80
  year: 2007
  ident: ba5193_bb38
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2007.01012.x
SSID ssj0002237
Score 2.397406
Snippet Current pixel‐array detectors produce diffraction images at extreme data rates (of up to 2 TB h−1) that make severe demands on computational resources. New...
Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h −1 ) that make severe demands on computational resources. New...
Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h(-1)) that make severe demands on computational resources. New...
Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2TBh-1) that make severe demands on computational resources. New...
The Computational Crystallography Toolbox (cctbx) is a flexible software platform that has been used to develop high-throughput crystal-screening tools for...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1274
SubjectTerms Algorithms
cctbx
Coherent light
Computation
Crystallography
Crystallography, X-Ray
Data Interpretation, Statistical
Data processing
Diffraction
Electronic Data Processing - methods
Electrons
Humans
Lasers
Methods
multiprocessing
Multiprocessing (computers)
Muramidase - chemistry
Research Papers
reusable code
Software
Software reviews
Spots
Synchrotrons - instrumentation
XFEL
Title New Python-based methods for data processing
URI https://api.istex.fr/ark:/67375/WNG-L3LF2V52-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS0907444913000863
https://www.ncbi.nlm.nih.gov/pubmed/23793153
https://www.proquest.com/docview/1370177988
https://www.proquest.com/docview/1371267232
https://www.proquest.com/docview/1417893321
https://www.osti.gov/biblio/1129466
https://pubmed.ncbi.nlm.nih.gov/PMC3689530
Volume 69
WOSCitedRecordID wos000320712800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1399-0047
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0002237
  issn: 1399-0047
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB61XSTgwGPLI7RUQUI9IAUc24nj47Jl4bBaVYjCcrISxxEVkK12t4je-An8Rn4JM0426mpRkRDnjKPEnsdnz_gbgKeIyW2R6jgSmcMNCmLkSKeZjSSC5ZInWV5K65tNqMkkm0718RYMV3dhGn6I7sCNLMP7azLwvGi7kLAmzUj7Oik1JWQQmItt6HHFKFfbO3o7Ohl3DhkjoO-xIujCPZOqTW7ia15svGQtPPVopr-js56huf0Jgm5WUl5GuD5EjW7_l5-7A7dahBoOGpW6C1uu7sPuoMbd-deL8DD0NaP-ML4P14erfnF9uHmJ2nAXnqP3DI8viJng14-fFCvLsOlWvQgRJ4dUmRqeNbcUcMA9OBm9ejd8E7W9GSKbSiaisopFnpQal1JkRalUmSWSs8K52LlEucppWSTCqjKXrhJxyiqea042mVcWUeN92KlntXsIYS40HUQ5BJelrITTFUudtJo7niHYqgJgqyUxtiUup_4ZX4zfwDBlNmYrgGfdkLOGteMq4UO_zp1kPv9M5W4qMR8mr81YjEf8fcKNDmCPFMEgNiGCXUuVSHZpCLHKNA1gf6UfpvUDCxML1EhFnHABPOke48JQWiav3ezcy8Q8VQhtr5CRsUJkKXgcwING5brPRe3WAgNXAGpNGTsBYhBff1KffvJM4iLNdCJYALFXxr_PlRl8PHo5INT_6B_G7MEN7ruJULXzPuws5-fuMVyz35ani_kBbKtpdtAa72-f9DxN
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VLlLhwGPLI7RAkFAPSIHEduL4uHRZigirCrXQnqys44iKNlvtbqv2xk_gN_JLmHGyUVeLioQ4Zxwl9jy-scffALxETG5GiYoCnlpMUBAjBypJTSAQLBcsTvNCGNdsQg6H6cGB2l2B_vwuTM0P0W64kWU4f00GThvStZWH9TkjJXZCKDqRQWTOb0CH6K8wBev0Pw_2s9YjYwh0TVY43bgPhWxON_E1b5ZeshCfOjTVF-itx2hvf8Kgy6WUVyGui1GDu__n7-7BnQaj-r1aqe7Diq26sN6rMD8_ufS3fFc16rbju7C2Pe8Y14XbV8gN1-E1-k9_95K4CX79-EnRsvDrftVTH5GyT7Wp_ml9TwEHPID9wbu97Z2g6c4QmESEPCjKiOdxoXAxeToqpCzSWLBwZG1kbSxtaZUYxdzIIhe25FESlixXjKwyLw3ixoewWo0r-xj8nCvairIILwtRcqvKMLHCKGZZinCr9CCcr4k2DXU5ddA41i6FCaVemi0PXrVDTmvejuuEt9xCt5L55DsVvMlYfx2-1xnPBuxLzLTyYIM0QSM6IYpdQ7VIZqYJs4ok8WBzriC68QRTHXGJTo9Y4Tx40T7GhaGDmbyy4zMnE7FEIri9RkZEErElZ5EHj2qdaz8X1VtxDF0eyAVtbAWIQ3zxSXX0zXGJ8yRVMQ89iJw2_n2udO-w_7ZHuP_JP4x5Dms7e58ynX0YftyAW8z1FqHa501YnU3O7FO4ac5nR9PJs8aGfwMk7j9V
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4aK-LywKXjEjYgSGgPSIHEduL4sawUEFVVIQbjyUptR0xAWrUdYm_8BH4jv4RznDRaVTQkxLOPrcQ-l8_28XcAHiMmN5NMJRHPHW5QECNHKstNJBAsW5bmhRXGF5uQo1F-dKTGW9BfvYWp-SHaAzeyDO-vycDdzJa1lcf1PSNt7IRQdCODyJxfgI5IlUBt7_TfDg6HrUfGEOiLrHB6cR8L2dxu4jDPNgZZi08dmurv6K2naG9_wqCbqZRnIa6PUYPr_-fvbsC1BqOGvVqpbsKWq7qw06twf_71NNwPfdaoP47vwuWDVcW4Llw9Q264A0_Rf4bjU-Im-PXjJ0VLG9b1qhchIuWQclPDWf1OATvcgsPBi3cHr6KmOkNkMhHzyJYJL1KrcDF5PrFS2jwVLJ44lziXSlc6JSYpN9IWwpU8yeKSFYqRVRalQdx4G7araeXuQlhwRUdRDuGlFSV3qowzJ4xijuUIt8oA4tWaaNNQl1MFjS_ab2FiqTdmK4AnbZdZzdtxnvC-X-hWsph_poQ3meoPo5d6yIcD9j5lWgWwS5qgEZ0Qxa6hXCSz1IRZRZYFsLdSEN14goVOuESnR6xwATxqm3Fh6GKmqNz0xMskLJMIbs-REYlEbMlZEsCdWufaz0X1VhxDVwByTRtbAeIQX2-pjj95LnGe5SrlcQCJ18a_z5Xufew_7xHuv_cPfR7CpXF_oIevR2924QrzpUUo9XkPtpfzE3cfLppvy-PF_EFjwr8BUCA-0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Python-based+methods+for+data+processing&rft.jtitle=Acta+crystallographica.+Section+D%2C+Biological+crystallography.&rft.au=Sauter%2C+Nicholas+K.&rft.au=Hattne%2C+Johan&rft.au=Grosse-Kunstleve%2C+Ralf+W.&rft.au=Echols%2C+Nathaniel&rft.date=2013-07-01&rft.pub=International+Union+of+Crystallography&rft.issn=1399-0047&rft.eissn=1399-0047&rft.volume=69&rft.issue=7&rft.spage=1274&rft.epage=1282&rft_id=info:doi/10.1107%2FS0907444913000863&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_L3LF2V52_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1399-0047&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1399-0047&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1399-0047&client=summon