Evaluation of methods for modeling transcription factor sequence specificity
The most comprehensive analysis to date of models of transcription-factor binding specificity reveals the best methods for predicting in vivo binding from in vitro data. Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specifi...
Uloženo v:
| Vydáno v: | Nature biotechnology Ročník 31; číslo 2; s. 126 - 134 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Nature Publishing Group US
01.02.2013
Nature Publishing Group |
| Témata: | |
| ISSN: | 1087-0156, 1546-1696, 1546-1696 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The most comprehensive analysis to date of models of transcription-factor binding specificity reveals the best methods for predicting
in vivo
binding from
in vitro
data.
Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to
in vitro
protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on
in vivo
data, and found that the best
in vitro
–derived motifs performed similarly to motifs derived from the
in vivo
data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences. |
|---|---|
| AbstractList | Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro-derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences.Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro-derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences. The most comprehensive analysis to date of models of transcription-factor binding specificity reveals the best methods for predicting in vivo binding from in vitro data. Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro –derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences. Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro-derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences. Genomic analyses often involve scanning for potential transcription-factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein’s binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For 9 TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro–derived motifs performed similarly to motifs derived from in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices learned by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10%). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences. |
| Audience | Academic |
| Author | Cokelaer, Thomas Stolovitzky, Gustavo Morris, Quaid D Weirauch, Matthew T Talukder, Shaheynoor Saez-Rodriguez, Julio Norel, Raquel Zhao, Yue Hughes, Timothy R Bussemaker, Harmen J Riley, Todd R Annala, Matti Vedenko, Anastasia Bulyk, Martha L Cote, Atina |
| AuthorAffiliation | 11 Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada 6 Department of Biological Sciences, Columbia University, and Center for Computational Biology and Bioinformatics, Columbia University Medical Center, New York, NY 10 Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA 8 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA 9 Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA 2 Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Rheumatology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA 4 Department of Signal Processing, Tampere University of Technology, Tampere, Finland 1 Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Toronto, ON, Canada 3 IBM Computational Biology Center, Yorktown Heights, New York, |
| AuthorAffiliation_xml | – name: 9 Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA – name: 4 Department of Signal Processing, Tampere University of Technology, Tampere, Finland – name: 2 Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Rheumatology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA – name: 7 EMBL-EBI European Bioinformatics Institute, Cambridge, UK – name: 6 Department of Biological Sciences, Columbia University, and Center for Computational Biology and Bioinformatics, Columbia University Medical Center, New York, NY – name: 11 Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada – name: 3 IBM Computational Biology Center, Yorktown Heights, New York, NY, USA – name: 5 Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA – name: 1 Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Toronto, ON, Canada – name: 10 Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA – name: 8 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA |
| Author_xml | – sequence: 1 givenname: Matthew T surname: Weirauch fullname: Weirauch, Matthew T organization: Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Rheumatology and Biomedical Informatics, Cincinnati Children's Hospital Medical Center – sequence: 2 givenname: Atina surname: Cote fullname: Cote, Atina organization: Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto – sequence: 3 givenname: Raquel surname: Norel fullname: Norel, Raquel organization: IBM Computational Biology Center, Yorktown Heights – sequence: 4 givenname: Matti surname: Annala fullname: Annala, Matti organization: Department of Signal Processing, Tampere University of Technology – sequence: 5 givenname: Yue surname: Zhao fullname: Zhao, Yue organization: Department of Genetics, University of Pennsylvania – sequence: 6 givenname: Todd R surname: Riley fullname: Riley, Todd R organization: Department of Biological Sciences, Columbia University, and Center for Computational Biology and Bioinformatics, Columbia University Medical Center – sequence: 7 givenname: Julio surname: Saez-Rodriguez fullname: Saez-Rodriguez, Julio organization: EMBL-EBI European Bioinformatics Institute – sequence: 8 givenname: Thomas surname: Cokelaer fullname: Cokelaer, Thomas organization: EMBL-EBI European Bioinformatics Institute – sequence: 9 givenname: Anastasia surname: Vedenko fullname: Vedenko, Anastasia organization: Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School – sequence: 10 givenname: Shaheynoor surname: Talukder fullname: Talukder, Shaheynoor organization: Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto – sequence: 12 givenname: Harmen J surname: Bussemaker fullname: Bussemaker, Harmen J organization: Department of Biological Sciences, Columbia University, and Center for Computational Biology and Bioinformatics, Columbia University Medical Center – sequence: 13 givenname: Quaid D surname: Morris fullname: Morris, Quaid D organization: Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto – sequence: 14 givenname: Martha L surname: Bulyk fullname: Bulyk, Martha L organization: Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School – sequence: 15 givenname: Gustavo surname: Stolovitzky fullname: Stolovitzky, Gustavo organization: IBM Computational Biology Center, Yorktown Heights – sequence: 16 givenname: Timothy R surname: Hughes fullname: Hughes, Timothy R email: t.hughes@utoronto.ca organization: Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23354101$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkltr3DAQhU1JaS4t9BcUQ19aqLe6WJL9EgghbQMLgd5ehSyPvQq2tJXk0Pz7ajfbvYQ8BIElrG8OozPnNDuyzkKWvcVohhGtPtsmzkhZ8RfZCWYlLzCv-VE6o0oUCDN-nJ2GcIsQ4iXnr7JjQikrMcIn2fzqTg2TisbZ3HX5CHHh2pB3zueja2Ewts-jVzZob5ZrqlM6ptsAfyawGvKwBG06o028f5297NQQ4M1mP8t-fbn6efmtmN98vb68mBea0zoWTcNqTTlUNQPF20ZzTQXDTAjRCQYcQ4lazBjCHS5BAEGioSW0GBOhaqToWXb-oLucmhFaDTa1OMilN6Py99IpIw9vrFnI3t1JyiuBKpYEPmwEvEvPCFGOJmgYBmXBTUFiUmOOao7QM9AqOc5ITRL6_hF66yZvkxNrCjOCK7yjejWANLZzqUW9EpUXlKTuBCerDmdPUGm1MBqdpt-Z9P-g4ONBQWIi_I29mkKQ1z--P5-9-X3IftpjmykYCyF9gukXMTyUHODv9kezncn_xO381N6F4KHbIhjJVZhlCrNchXnnwRZNIVtHNXlhhqcKNu8KSdP24PcG8Jj9BwRVALY |
| CitedBy_id | crossref_primary_10_1109_TCBB_2018_2864203 crossref_primary_10_1186_s13059_020_01996_3 crossref_primary_10_1186_s12864_020_07296_1 crossref_primary_10_1016_j_jbc_2025_108552 crossref_primary_10_1371_journal_pcbi_1004418 crossref_primary_10_1093_nar_gkac708 crossref_primary_10_7717_peerj_15597 crossref_primary_10_1093_nar_gkx276 crossref_primary_10_3389_fgene_2019_00729 crossref_primary_10_1186_1471_2164_15_925 crossref_primary_10_1093_nar_gkae215 crossref_primary_10_1109_TCBB_2019_2947461 crossref_primary_10_1186_s12864_024_10630_6 crossref_primary_10_1177_00220345211049984 crossref_primary_10_15252_msb_20167238 crossref_primary_10_1186_s13059_017_1287_y crossref_primary_10_1074_jbc_RA117_000485 crossref_primary_10_1186_s13036_019_0181_4 crossref_primary_10_1016_j_ajhg_2025_03_019 crossref_primary_10_1038_srep33351 crossref_primary_10_1002_minf_201400025 crossref_primary_10_1007_s00500_020_05429_y crossref_primary_10_1038_nmeth_4143 crossref_primary_10_1016_j_crmeth_2022_100384 crossref_primary_10_1371_journal_pcbi_1005403 crossref_primary_10_1093_nar_gkt574 crossref_primary_10_1093_nar_gkw048 crossref_primary_10_3389_fmolb_2021_673363 crossref_primary_10_1016_j_coisb_2017_04_002 crossref_primary_10_1093_nar_gkz672 crossref_primary_10_1186_s12859_024_05995_0 crossref_primary_10_1371_journal_pone_0092209 crossref_primary_10_1371_journal_pone_0185570 crossref_primary_10_1109_TCBB_2018_2819660 crossref_primary_10_1093_nargab_lqae090 crossref_primary_10_1109_TCBBIO_2025_3556876 crossref_primary_10_1109_TCBB_2019_2901789 crossref_primary_10_1093_hmg_ddz226 crossref_primary_10_12688_f1000research_135164_2 crossref_primary_10_12688_f1000research_135164_1 crossref_primary_10_1016_j_tig_2014_12_003 crossref_primary_10_1371_journal_pcbi_1003214 crossref_primary_10_1038_s41576_019_0122_6 crossref_primary_10_1109_TNNLS_2018_2790388 crossref_primary_10_1371_journal_pcbi_1005638 crossref_primary_10_1002_jcc_24764 crossref_primary_10_1186_1471_2164_14_796 crossref_primary_10_1038_s41588_018_0140_x crossref_primary_10_1109_JPROC_2015_2494198 crossref_primary_10_1002_aps3_11376 crossref_primary_10_1016_j_str_2023_11_003 crossref_primary_10_1111_gbb_12269 crossref_primary_10_1093_nar_gkz1001 crossref_primary_10_1093_nar_gkt831 crossref_primary_10_1186_s12859_017_1769_7 crossref_primary_10_1073_pnas_1714376115 crossref_primary_10_1534_g3_117_300296 crossref_primary_10_1093_nar_gkv577 crossref_primary_10_1186_1756_8935_7_21 crossref_primary_10_1038_nmeth_3766 crossref_primary_10_1073_pnas_1503951112 crossref_primary_10_1186_1471_2164_16_S7_S12 crossref_primary_10_1093_bib_bbaf363 crossref_primary_10_1016_j_gde_2014_08_011 crossref_primary_10_1016_j_ygeno_2021_09_009 crossref_primary_10_1016_j_cels_2016_07_003 crossref_primary_10_1371_journal_pone_0160435 crossref_primary_10_1101_gad_348993_121 crossref_primary_10_1371_journal_pone_0085629 crossref_primary_10_1016_j_cels_2016_07_001 crossref_primary_10_1093_nar_gky1210 crossref_primary_10_1371_journal_pcbi_1006226 crossref_primary_10_1038_s41586_024_08219_w crossref_primary_10_3389_fchem_2018_00666 crossref_primary_10_1016_j_jsb_2024_108129 crossref_primary_10_7554_eLife_32323 crossref_primary_10_1074_jbc_M115_691154 crossref_primary_10_7554_eLife_56517 crossref_primary_10_1016_j_ymeth_2017_03_003 crossref_primary_10_1534_genetics_114_170100 crossref_primary_10_7554_eLife_06967 crossref_primary_10_1016_j_cels_2020_11_012 crossref_primary_10_1038_s41586_021_03211_0 crossref_primary_10_1093_nar_gkw521 crossref_primary_10_1093_nar_gkt250 crossref_primary_10_1109_TCBB_2021_3133869 crossref_primary_10_1534_genetics_115_178384 crossref_primary_10_1371_journal_pgen_1006401 crossref_primary_10_1146_annurev_cellbio_100617_062719 crossref_primary_10_1093_nar_gkt1112 crossref_primary_10_1146_annurev_genom_083118_014845 crossref_primary_10_7554_eLife_105565 crossref_primary_10_1371_journal_pone_0101490 crossref_primary_10_1016_j_jbc_2023_104734 crossref_primary_10_1038_s41586_023_06661_w crossref_primary_10_1109_ACCESS_2021_3082761 crossref_primary_10_1073_pnas_1410569111 crossref_primary_10_1186_1471_2105_14_S10_S2 crossref_primary_10_1016_j_cels_2018_02_009 crossref_primary_10_1186_1471_2164_15_80 crossref_primary_10_1016_j_bbagrm_2019_194443 crossref_primary_10_1109_JBHI_2021_3058518 crossref_primary_10_1093_nar_gku1254 crossref_primary_10_7554_eLife_06397 crossref_primary_10_1146_annurev_biodatasci_122120_110102 crossref_primary_10_1093_bib_bbab460 crossref_primary_10_1016_j_bbagrm_2016_09_006 crossref_primary_10_1371_journal_pgen_1007289 crossref_primary_10_1093_nar_gkv1176 crossref_primary_10_1098_rsif_2017_0387 crossref_primary_10_1002_ange_202310913 crossref_primary_10_1101_gr_226852_117 crossref_primary_10_1186_s12864_016_2729_8 crossref_primary_10_1089_cmb_2017_0230 crossref_primary_10_1002_anie_202310913 crossref_primary_10_1038_srep17021 crossref_primary_10_1111_mpp_12844 crossref_primary_10_1109_TCBB_2024_3411024 crossref_primary_10_1002_pmic_201700319 crossref_primary_10_1016_j_mod_2016_06_001 crossref_primary_10_1093_bib_bbad156 crossref_primary_10_1177_00220345211017510 crossref_primary_10_1016_j_str_2017_11_022 crossref_primary_10_1186_s13059_019_1738_8 crossref_primary_10_1093_nar_gkx314 crossref_primary_10_1016_j_funbio_2018_01_004 crossref_primary_10_1101_gr_224964_117 crossref_primary_10_1007_s11030_021_10225_3 crossref_primary_10_1186_1752_0509_8_S5_S5 crossref_primary_10_1016_j_compbiolchem_2023_107923 crossref_primary_10_1101_gr_260877_120 crossref_primary_10_1016_j_omtn_2021_02_014 crossref_primary_10_1038_s41598_024_82238_5 crossref_primary_10_1109_ACCESS_2020_3042903 crossref_primary_10_1016_j_cell_2014_08_009 crossref_primary_10_1038_s41598_017_03199_6 crossref_primary_10_1371_journal_pcbi_1003711 crossref_primary_10_1371_journal_pcbi_1009941 crossref_primary_10_1093_nar_gkx1145 crossref_primary_10_1002_biot_201800416 crossref_primary_10_1038_nbt_3343 crossref_primary_10_1016_j_isci_2025_112969 crossref_primary_10_1186_1471_2105_15_289 crossref_primary_10_12688_f1000research_7408_1 crossref_primary_10_1074_jbc_RA118_001785 crossref_primary_10_1093_nar_gku1045 crossref_primary_10_1016_j_cels_2017_06_015 crossref_primary_10_1093_nar_gkw446 crossref_primary_10_1038_s41587_022_01307_0 crossref_primary_10_1186_s13059_023_02985_y crossref_primary_10_1073_pnas_2205796120 crossref_primary_10_12688_f1000research_7408_2 crossref_primary_10_1093_nar_gkx773 crossref_primary_10_1109_TCBB_2020_3025579 crossref_primary_10_1038_msb_2013_38 crossref_primary_10_1016_j_celrep_2018_03_064 crossref_primary_10_1038_s41576_021_00434_9 crossref_primary_10_1016_j_cell_2018_01_029 crossref_primary_10_1038_s41559_018_0651_y crossref_primary_10_1038_s41598_018_33321_1 crossref_primary_10_1016_j_bbagrm_2021_194688 crossref_primary_10_1007_s12539_025_00704_8 crossref_primary_10_1093_nar_gkv807 crossref_primary_10_1016_j_jmb_2021_167071 crossref_primary_10_1371_journal_pone_0220207 crossref_primary_10_1126_science_aad2257 crossref_primary_10_15252_msb_20177902 crossref_primary_10_1073_pnas_1715888115 crossref_primary_10_1093_bib_bbab540 crossref_primary_10_1016_j_cub_2023_07_022 crossref_primary_10_1093_nar_gkt862 crossref_primary_10_1038_s41467_024_50710_5 crossref_primary_10_1109_TCBB_2016_2561930 crossref_primary_10_1371_journal_pcbi_1004271 crossref_primary_10_1038_nrg_2016_69 crossref_primary_10_1073_pnas_1422023112 crossref_primary_10_1093_nargab_lqac008 crossref_primary_10_1016_j_cels_2016_09_004 crossref_primary_10_1093_nar_gkx915 crossref_primary_10_1038_s41467_018_03977_4 crossref_primary_10_7554_eLife_02626 crossref_primary_10_1093_nar_gkz1087 crossref_primary_10_1186_s13059_022_02690_2 crossref_primary_10_1093_nar_gkaa291 crossref_primary_10_1038_nbt_3313 crossref_primary_10_1073_pnas_1811431115 crossref_primary_10_1093_molbev_msz004 crossref_primary_10_1093_nar_gkad320 crossref_primary_10_7554_eLife_105565_3 crossref_primary_10_1016_j_cels_2021_05_015 crossref_primary_10_1038_s41586_022_04506_6 crossref_primary_10_1093_nar_gkad207 crossref_primary_10_1371_journal_pcbi_1008925 crossref_primary_10_15252_msb_202110473 crossref_primary_10_1109_TCBB_2017_2691325 crossref_primary_10_3389_fcell_2023_1034604 crossref_primary_10_1016_j_cell_2015_02_008 crossref_primary_10_1038_s41588_019_0411_1 crossref_primary_10_1038_nbt_3300 crossref_primary_10_1097_BOR_0000000000000094 crossref_primary_10_3390_biom14010123 crossref_primary_10_3390_plants11192614 crossref_primary_10_1007_s40484_013_0012_4 crossref_primary_10_1038_s41583_025_00926_1 crossref_primary_10_3390_genes8090233 crossref_primary_10_1093_nar_gkt1087 crossref_primary_10_1016_j_tibs_2014_07_002 crossref_primary_10_1186_s12859_014_0446_3 crossref_primary_10_1007_s11760_024_03229_7 crossref_primary_10_4137_GRSB_S38462 crossref_primary_10_1186_s12859_018_2104_7 crossref_primary_10_1016_j_devcel_2023_07_007 crossref_primary_10_1186_s12859_022_04615_z crossref_primary_10_3389_fgene_2016_00024 crossref_primary_10_1038_s41598_017_03554_7 crossref_primary_10_1093_bib_bbx026 crossref_primary_10_12688_f1000research_7118_2 crossref_primary_10_3109_10409238_2015_1051505 crossref_primary_10_1016_j_jtbi_2015_06_010 crossref_primary_10_12688_f1000research_7118_1 crossref_primary_10_1084_jem_20132121 crossref_primary_10_1186_s40169_015_0054_5 crossref_primary_10_1093_nar_gkv607 crossref_primary_10_1186_s12859_016_1298_9 crossref_primary_10_1186_1471_2164_16_S4_S3 crossref_primary_10_1016_j_cell_2021_02_001 crossref_primary_10_1109_TCBB_2020_3025007 crossref_primary_10_1016_j_sbi_2018_08_001 crossref_primary_10_1016_j_ymeth_2019_09_011 crossref_primary_10_1002_wdev_168 crossref_primary_10_1038_s41598_019_44966_x crossref_primary_10_1093_nar_gkaf058 |
| Cites_doi | 10.1084/jem.183.3.743 10.1534/genetics.112.138685 10.1016/0076-6879(90)83015-2 10.1016/j.ygeno.2010.01.002 10.1016/j.cell.2011.10.053 10.1073/pnas.0509843102 10.1093/nar/gkr993 10.1111/j.1749-6632.2009.04497.x 10.1073/pnas.1004290107 10.1093/bioinformatics/btm224 10.1093/nar/10.9.2997 10.1073/pnas.0609908104 10.1093/bioinformatics/btn201 10.1093/bioinformatics/btl223 10.1016/j.cell.2011.11.013 10.1093/nar/gkr1055 10.1089/cmb.2005.12.894 10.1038/emboj.2010.106 10.1038/nature06496 10.1371/journal.pcbi.1000154 10.1371/journal.pcbi.1000590 10.1089/cmb.2007.0114 10.1093/nar/gkp802 10.1101/gr.849004 10.1016/0022-2836(87)90354-8 10.1101/gr.5113606 10.1371/journal.pcbi.1001070 10.1126/science.1162327 10.1038/nrg2845 10.1371/journal.pone.0009202 10.1093/bioinformatics/btr156 10.1093/nar/gkq1040 10.1126/science.1131007 10.1038/nbt1246 10.1016/j.cell.2008.05.024 10.1093/nar/18.20.6097 10.1093/nar/gkp985 10.1093/bioinformatics/btq488 10.1093/nar/gkq1303 10.1101/gr.090233.108 10.1093/bioinformatics/btr189 10.1073/pnas.0712188105 10.1371/journal.pone.0020059 10.1196/annals.1407.021 10.1101/gr.100552.109 10.1038/nbt1120 10.1038/nbt.1882 10.1093/nar/gkq1184 10.1371/journal.pone.0009722 10.1038/nbt.1675 10.1038/nbt.1893 10.1371/journal.pcbi.1000916 10.1101/gr.076117.108 10.1111/j.2517-6161.1996.tb02080.x |
| ContentType | Journal Article |
| Contributor | Laurila, Kirsti Rudnicki, Witold R Agius, Phaedra Murugan, Anand Posch, Stefan Zhang, Zhizhuo Sung, Wing-Kin Chen, Yong-Syuan Lähdesmäki, Harri Chen, Chien-Yu Chang, Cheng Wei Shamir, Ron Noble, William Stafford Klein, Holger Leslie, Christina Myšicková, Alena Grosse, Ivo Kursa, Miron B Schmid, Christoph D Lei, Chengwei Vingron, Martin Kinney, Justin B Ruan, Jianhua Kiełbasa, Szymon M Arvey, Aaron Callan, Jr, Curtis G Bucher, Philipp Chu, Yu-Wei Linhart, Chaim Jagannathan, Vidhya Orenstein, Yaron Grau, Jan Keilwagen, Jens Nykter, Matti |
| Contributor_xml | – sequence: 1 givenname: Phaedra surname: Agius fullname: Agius, Phaedra – sequence: 2 givenname: Aaron surname: Arvey fullname: Arvey, Aaron – sequence: 3 givenname: Philipp surname: Bucher fullname: Bucher, Philipp – sequence: 4 givenname: Curtis G surname: Callan, Jr fullname: Callan, Jr, Curtis G – sequence: 5 givenname: Cheng Wei surname: Chang fullname: Chang, Cheng Wei – sequence: 6 givenname: Chien-Yu surname: Chen fullname: Chen, Chien-Yu – sequence: 7 givenname: Yong-Syuan surname: Chen fullname: Chen, Yong-Syuan – sequence: 8 givenname: Yu-Wei surname: Chu fullname: Chu, Yu-Wei – sequence: 9 givenname: Jan surname: Grau fullname: Grau, Jan – sequence: 10 givenname: Ivo surname: Grosse fullname: Grosse, Ivo – sequence: 11 givenname: Vidhya surname: Jagannathan fullname: Jagannathan, Vidhya – sequence: 12 givenname: Jens surname: Keilwagen fullname: Keilwagen, Jens – sequence: 13 givenname: Szymon M surname: Kiełbasa fullname: Kiełbasa, Szymon M – sequence: 14 givenname: Justin B surname: Kinney fullname: Kinney, Justin B – sequence: 15 givenname: Holger surname: Klein fullname: Klein, Holger – sequence: 16 givenname: Miron B surname: Kursa fullname: Kursa, Miron B – sequence: 17 givenname: Harri surname: Lähdesmäki fullname: Lähdesmäki, Harri – sequence: 18 givenname: Kirsti surname: Laurila fullname: Laurila, Kirsti – sequence: 19 givenname: Chengwei surname: Lei fullname: Lei, Chengwei – sequence: 20 givenname: Christina surname: Leslie fullname: Leslie, Christina – sequence: 21 givenname: Chaim surname: Linhart fullname: Linhart, Chaim – sequence: 22 givenname: Anand surname: Murugan fullname: Murugan, Anand – sequence: 23 givenname: Alena surname: Myšicková fullname: Myšicková, Alena – sequence: 24 givenname: William Stafford surname: Noble fullname: Noble, William Stafford – sequence: 25 givenname: Matti surname: Nykter fullname: Nykter, Matti – sequence: 26 givenname: Yaron surname: Orenstein fullname: Orenstein, Yaron – sequence: 27 givenname: Stefan surname: Posch fullname: Posch, Stefan – sequence: 28 givenname: Jianhua surname: Ruan fullname: Ruan, Jianhua – sequence: 29 givenname: Witold R surname: Rudnicki fullname: Rudnicki, Witold R – sequence: 30 givenname: Christoph D surname: Schmid fullname: Schmid, Christoph D – sequence: 31 givenname: Ron surname: Shamir fullname: Shamir, Ron – sequence: 32 givenname: Wing-Kin surname: Sung fullname: Sung, Wing-Kin – sequence: 33 givenname: Martin surname: Vingron fullname: Vingron, Martin – sequence: 34 givenname: Zhizhuo surname: Zhang fullname: Zhang, Zhizhuo |
| Copyright | Springer Nature America, Inc. 2013 COPYRIGHT 2013 Nature Publishing Group Copyright Nature Publishing Group Feb 2013 |
| Copyright_xml | – notice: Springer Nature America, Inc. 2013 – notice: COPYRIGHT 2013 Nature Publishing Group – notice: Copyright Nature Publishing Group Feb 2013 |
| CorporateAuthor | DREAM5 Consortium |
| CorporateAuthor_xml | – name: DREAM5 Consortium |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM N95 IOV ISR 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U RC3 7X8 5PM |
| DOI | 10.1038/nbt.2486 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale Business: Insights Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Research Library Science Database Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Agriculture Biology |
| EISSN | 1546-1696 |
| EndPage | 134 |
| ExternalDocumentID | PMC3687085 2886526701 A320857625 23354101 10_1038_nbt_2486 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Evaluation Study Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA121852 – fundername: CIHR grantid: MOP-77721 – fundername: NHGRI NIH HHS grantid: R01 HG003008 – fundername: NCI NIH HHS grantid: U54CA121852 – fundername: NIMHD NIH HHS grantid: G12 MD007591 – fundername: NHGRI NIH HHS grantid: R01HG003008 – fundername: NHGRI NIH HHS grantid: R01 HG003985 – fundername: National Human Genome Research Institute : NHGRI grantid: R01 HG003008 || HG – fundername: National Human Genome Research Institute : NHGRI grantid: R01 HG003985 || HG |
| GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 4.4 4R4 53G 5M7 5RE 5S5 70F 7X7 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAHBH AAIKC AAMNW AARCD ABDBF ABDPE ABEFU ABFSG ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACSTC ACUHS ADBBV ADFRT AENEX AEUYN AEZWR AFANA AFBBN AFFHD AFFNX AFHIU AFKRA AFRAH AFSHS AGAYW AGSTI AHBCP AHMBA AHOSX AHSBF AHWEU AIBTJ AIXLP ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESTFP ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NFIDA NNMJJ NXXTH O9- ODYON P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XOL Y6R YZZ ZGI ZXP ~KM AAYXX CITATION 3V. 5BI 88A AAEEF AAYOK AAYZH AAZLF ABAWZ AGHTU ALIPV CGR CUY CVF ECM EIF M0L NPM PKN XI7 ZHY 7QO 7QP 7QR 7T7 7TK 7TM 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c639t-bb59c36e895ea6dbc6c37515777f75e61e40d15501f14e7e207b34ed1127a90a3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 285 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315322100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1087-0156 1546-1696 |
| IngestDate | Tue Nov 04 02:02:49 EST 2025 Mon Oct 06 18:07:08 EDT 2025 Thu Oct 02 15:48:44 EDT 2025 Sat Oct 25 08:56:32 EDT 2025 Sat Nov 29 13:14:08 EST 2025 Sun Nov 23 09:03:28 EST 2025 Wed Nov 26 08:56:34 EST 2025 Wed Nov 26 10:04:27 EST 2025 Sat Nov 29 08:27:35 EST 2025 Wed Feb 19 02:05:42 EST 2025 Tue Nov 18 22:36:44 EST 2025 Sat Nov 29 06:43:22 EST 2025 Mon Nov 10 01:23:35 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c639t-bb59c36e895ea6dbc6c37515777f75e61e40d15501f14e7e207b34ed1127a90a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Feature-1 |
| OpenAccessLink | https://www.nature.com/articles/nbt.2486.pdf |
| PMID | 23354101 |
| PQID | 1285152181 |
| PQPubID | 47191 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3687085 proquest_miscellaneous_1291609600 proquest_miscellaneous_1285465292 proquest_journals_1285152181 gale_infotracmisc_A320857625 gale_infotracacademiconefile_A320857625 gale_incontextgauss_ISR_A320857625 gale_incontextgauss_IOV_A320857625 gale_businessinsightsgauss_A320857625 pubmed_primary_23354101 crossref_primary_10_1038_nbt_2486 crossref_citationtrail_10_1038_nbt_2486 springer_journals_10_1038_nbt_2486 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-02-01 |
| PublicationDateYYYYMMDD | 2013-02-01 |
| PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | The Science and Business of Biotechnology |
| PublicationTitle | Nature biotechnology |
| PublicationTitleAbbrev | Nat Biotechnol |
| PublicationTitleAlternate | Nat Biotechnol |
| PublicationYear | 2013 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Jolma (CR14) 2010; 20 Eddy (CR52) 2009; 23 Zhao, Stormo (CR24) 2011; 29 Rhee, Pugh (CR29) 2011; 147 John, Marais, Child, Light, Leonard (CR35) 1996; 183 Kinney, Murugan, Callan, Cox (CR45) 2010; 107 Fordyce (CR16) 2010; 28 Machanick, Bailey (CR33) 2011; 27 Jaeger (CR37) 2010; 95 Stolovitzky, Monroe, Califano (CR22) 2007; 1115 Zhao, Ruan, Pandey, Stormo (CR25) 2012; 191 Schutz, Delorenzi (CR43) 2008; 24 Chen (CR48) 2008; 105 Zhao, Granas, Stormo (CR12) 2009; 5 Chen, Hughes, Morris (CR27) 2007; 23 Segal, Raveh-Sadka, Schroeder, Unnerstall, Gaul (CR38) 2008; 451 Barrett (CR55) 2011; 39 Badis (CR7) 2009; 324 Siddharthan (CR4) 2010; 5 Zykovich, Korf, Segal (CR15) 2009; 37 Chen, Wu, Ji (CR53) 2011; 27 Crooks, Hon, Chandonia, Brenner (CR40) 2004; 14 Dreszer (CR56) 2012; 40 Maerkl, Quake (CR9) 2007; 315 Zhu (CR34) 2009; 19 Keilwagen (CR41) 2011; 7 Philippakis, Qureshi, Berger, Bulyk (CR49) 2008; 15 Foat, Morozov, Bussemaker (CR26) 2006; 22 Berger (CR19) 2006; 24 Wei (CR30) 2010; 29 Schneider, Stephens (CR39) 1990; 18 Kinney, Tkacik, Callan (CR44) 2007; 104 Slattery (CR13) 2011; 147 Meng, Brodsky, Wolfe (CR18) 2005; 23 Stolovitzky, Prill, Califano (CR23) 2009; 1158 Tibshirani (CR47) 1996; 58 Parkinson (CR54) 2011; 39 Nutiu (CR8) 2011; 29 Agius, Arvey, Chang, Noble, Leslie (CR10) 2010; 6 Lam, van Bakel, Cote, van der Ven, Hughes (CR50) 2011; 39 Annala, Laurila, Lähdesmäki, Nykter (CR11) 2011; 6 Finn (CR51) 2010; 38 de Boer, Hughes (CR31) 2012; 40 Zhao, Huang, Speed (CR5) 2005; 12 Stormo (CR3) 1990; 183 Sharon, Lubliner, Segal (CR6) 2008; 4 Berger (CR28) 2008; 133 Warren (CR17) 2006; 103 Stormo, Zhao (CR20) 2010; 11 Kulakovskiy, Boeva, Favorov, Makeev (CR32) 2010; 26 Bailey, Elkan (CR42) 1994; 2 Linhart, Halperin, Shamir (CR46) 2008; 18 Berg, von Hippel (CR2) 1987; 193 Stormo, Schneider, Gold, Ehrenfeucht (CR1) 1982; 10 Tanay (CR36) 2006; 16 Prill (CR21) 2010; 5 A Tanay (BFnbt2486_CR36) 2006; 16 G Stolovitzky (BFnbt2486_CR22) 2007; 1115 GH Wei (BFnbt2486_CR30) 2010; 29 H Parkinson (BFnbt2486_CR54) 2011; 39 BC Foat (BFnbt2486_CR26) 2006; 22 GD Stormo (BFnbt2486_CR1) 1982; 10 F Schutz (BFnbt2486_CR43) 2008; 24 GD Stormo (BFnbt2486_CR3) 1990; 183 P Machanick (BFnbt2486_CR33) 2011; 27 X Zhao (BFnbt2486_CR5) 2005; 12 X Meng (BFnbt2486_CR18) 2005; 23 L Chen (BFnbt2486_CR53) 2011; 27 PM Fordyce (BFnbt2486_CR16) 2010; 28 CL Warren (BFnbt2486_CR17) 2006; 103 R Nutiu (BFnbt2486_CR8) 2011; 29 CY Chen (BFnbt2486_CR48) 2008; 105 GE Crooks (BFnbt2486_CR40) 2004; 14 TR Dreszer (BFnbt2486_CR56) 2012; 40 T Barrett (BFnbt2486_CR55) 2011; 39 A Jolma (BFnbt2486_CR14) 2010; 20 GD Stormo (BFnbt2486_CR20) 2010; 11 IV Kulakovskiy (BFnbt2486_CR32) 2010; 26 J Keilwagen (BFnbt2486_CR41) 2011; 7 Y Zhao (BFnbt2486_CR24) 2011; 29 R Tibshirani (BFnbt2486_CR47) 1996; 58 M Annala (BFnbt2486_CR11) 2011; 6 C Zhu (BFnbt2486_CR34) 2009; 19 SR Eddy (BFnbt2486_CR52) 2009; 23 E Segal (BFnbt2486_CR38) 2008; 451 G Stolovitzky (BFnbt2486_CR23) 2009; 1158 TD Schneider (BFnbt2486_CR39) 1990; 18 C Linhart (BFnbt2486_CR46) 2008; 18 R Siddharthan (BFnbt2486_CR4) 2010; 5 M Slattery (BFnbt2486_CR13) 2011; 147 HS Rhee (BFnbt2486_CR29) 2011; 147 Y Zhao (BFnbt2486_CR12) 2009; 5 Y Zhao (BFnbt2486_CR25) 2012; 191 A Zykovich (BFnbt2486_CR15) 2009; 37 RJ Prill (BFnbt2486_CR21) 2010; 5 JB Kinney (BFnbt2486_CR45) 2010; 107 P Agius (BFnbt2486_CR10) 2010; 6 CG de Boer (BFnbt2486_CR31) 2012; 40 AA Philippakis (BFnbt2486_CR49) 2008; 15 E Sharon (BFnbt2486_CR6) 2008; 4 OG Berg (BFnbt2486_CR2) 1987; 193 JB Kinney (BFnbt2486_CR44) 2007; 104 G Badis (BFnbt2486_CR7) 2009; 324 RD Finn (BFnbt2486_CR51) 2010; 38 X Chen (BFnbt2486_CR27) 2007; 23 S John (BFnbt2486_CR35) 1996; 183 MF Berger (BFnbt2486_CR19) 2006; 24 TL Bailey (BFnbt2486_CR42) 1994; 2 SA Jaeger (BFnbt2486_CR37) 2010; 95 KN Lam (BFnbt2486_CR50) 2011; 39 MF Berger (BFnbt2486_CR28) 2008; 133 SJ Maerkl (BFnbt2486_CR9) 2007; 315 |
| References_xml | – volume: 183 start-page: 743 year: 1996 end-page: 750 ident: CR35 article-title: Importance of low affinity Elf-1 sites in the regulation of lymphoid-specific inducible gene expression publication-title: J. Exp. Med. doi: 10.1084/jem.183.3.743 – volume: 191 start-page: 781 year: 2012 end-page: 790 ident: CR25 article-title: Improved models for transcription factor binding site identification using non-independent interactions publication-title: Genetics doi: 10.1534/genetics.112.138685 – volume: 183 start-page: 211 year: 1990 end-page: 221 ident: CR3 article-title: Consensus patterns in DNA publication-title: Methods Enzymol. doi: 10.1016/0076-6879(90)83015-2 – volume: 95 start-page: 185 year: 2010 end-page: 195 ident: CR37 article-title: Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites publication-title: Genomics doi: 10.1016/j.ygeno.2010.01.002 – volume: 147 start-page: 1270 year: 2011 end-page: 1282 ident: CR13 article-title: Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins publication-title: Cell doi: 10.1016/j.cell.2011.10.053 – volume: 103 start-page: 867 year: 2006 end-page: 872 ident: CR17 article-title: Defining the sequence-recognition profile of DNA-binding molecules publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0509843102 – volume: 40 start-page: D169 year: 2012 end-page: D179 ident: CR31 article-title: YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr993 – volume: 1158 start-page: 159 year: 2009 end-page: 195 ident: CR23 article-title: Lessons from the DREAM2 Challenges publication-title: Ann. NY Acad. Sci. doi: 10.1111/j.1749-6632.2009.04497.x – volume: 107 start-page: 9158 year: 2010 end-page: 9163 ident: CR45 article-title: Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1004290107 – volume: 23 start-page: i72 year: 2007 end-page: i79 ident: CR27 article-title: RankMotif.: a motif-search algorithm that accounts for relative ranks of K-mers in binding transcription factors publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm224 – volume: 10 start-page: 2997 year: 1982 end-page: 3011 ident: CR1 article-title: Use of the 'Perceptron' algorithm to distinguish translational initiation sites in publication-title: Nucleic Acids Res. doi: 10.1093/nar/10.9.2997 – volume: 104 start-page: 501 year: 2007 end-page: 506 ident: CR44 article-title: Precise physical models of protein-DNA interaction from high-throughput data publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0609908104 – volume: 24 start-page: 1399 year: 2008 end-page: 1400 ident: CR43 article-title: MAMOT: hidden Markov modeling tool publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn201 – volume: 22 start-page: e141 year: 2006 end-page: e149 ident: CR26 article-title: Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl223 – volume: 147 start-page: 1408 year: 2011 end-page: 1419 ident: CR29 article-title: Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution publication-title: Cell doi: 10.1016/j.cell.2011.11.013 – volume: 40 start-page: D918 year: 2012 end-page: D923 ident: CR56 article-title: The UCSC Genome Browser database: extensions and updates 2011 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1055 – volume: 12 start-page: 894 year: 2005 end-page: 906 ident: CR5 article-title: Finding short DNA motifs using permuted Markov models publication-title: J. Comput. Biol. doi: 10.1089/cmb.2005.12.894 – volume: 29 start-page: 2147 year: 2010 end-page: 2160 ident: CR30 article-title: Genome-wide analysis of ETS-family DNA-binding and publication-title: EMBO J. doi: 10.1038/emboj.2010.106 – volume: 451 start-page: 535 year: 2008 end-page: 540 ident: CR38 article-title: Predicting expression patterns from regulatory sequence in segmentation publication-title: Nature doi: 10.1038/nature06496 – volume: 4 start-page: e1000154 year: 2008 ident: CR6 article-title: A feature-based approach to modeling protein-DNA interactions publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1000154 – volume: 5 start-page: e1000590 year: 2009 ident: CR12 article-title: Inferring binding energies from selected binding sites publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1000590 – volume: 15 start-page: 655 year: 2008 end-page: 665 ident: CR49 article-title: Design of compact, universal DNA microarrays for protein binding microarray experiments publication-title: J. Comput. Biol. doi: 10.1089/cmb.2007.0114 – volume: 37 start-page: e151 year: 2009 ident: CR15 article-title: Bind-n-Seq: high-throughput analysis of protein-DNA interactions using massively parallel sequencing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp802 – volume: 14 start-page: 1188 year: 2004 end-page: 1190 ident: CR40 article-title: WebLogo: a sequence logo generator publication-title: Genome Res. doi: 10.1101/gr.849004 – volume: 193 start-page: 723 year: 1987 end-page: 743 ident: CR2 article-title: Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(87)90354-8 – volume: 16 start-page: 962 year: 2006 end-page: 972 ident: CR36 article-title: Extensive low-affinity transcriptional interactions in the yeast genome publication-title: Genome Res. doi: 10.1101/gr.5113606 – volume: 7 start-page: e1001070 year: 2011 ident: CR41 article-title: discovery of differentially abundant transcription factor binding sites including their positional preference publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1001070 – volume: 23 start-page: 205 year: 2009 end-page: 211 ident: CR52 article-title: A new generation of homology search tools based on probabilistic inference publication-title: Genome Inform. – volume: 324 start-page: 1720 year: 2009 end-page: 1723 ident: CR7 article-title: Diversity and complexity in DNA recognition by transcription factors publication-title: Science doi: 10.1126/science.1162327 – volume: 11 start-page: 751 year: 2010 end-page: 760 ident: CR20 article-title: Determining the specificity of protein-DNA interactions publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2845 – volume: 5 start-page: e9202 year: 2010 ident: CR21 article-title: Towards a rigorous assessment of systems biology models: the DREAM3 challenges publication-title: PLoS ONE doi: 10.1371/journal.pone.0009202 – volume: 27 start-page: 1447 year: 2011 end-page: 1448 ident: CR53 article-title: hmChIP: a database and web server for exploring publicly available human and mouse ChIP-seq and ChIP-chip data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr156 – volume: 39 start-page: D1002 year: 2011 end-page: D1004 ident: CR54 article-title: ArrayExpress update–an archive of microarray and high-throughput sequencing-based functional genomics experiments publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1040 – volume: 315 start-page: 233 year: 2007 end-page: 237 ident: CR9 article-title: A systems approach to measuring the binding energy landscapes of transcription factors publication-title: Science doi: 10.1126/science.1131007 – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: CR47 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc., B – volume: 24 start-page: 1429 year: 2006 end-page: 1435 ident: CR19 article-title: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities publication-title: Nat. Biotechnol. doi: 10.1038/nbt1246 – volume: 133 start-page: 1266 year: 2008 end-page: 1276 ident: CR28 article-title: Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences publication-title: Cell doi: 10.1016/j.cell.2008.05.024 – volume: 18 start-page: 6097 year: 1990 end-page: 6100 ident: CR39 article-title: Sequence logos: a new way to display consensus sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.20.6097 – volume: 38 start-page: D211 year: 2010 end-page: D222 ident: CR51 article-title: The Pfam protein families database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp985 – volume: 26 start-page: 2622 year: 2010 end-page: 2623 ident: CR32 article-title: Deep and wide digging for binding motifs in ChIP-Seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq488 – volume: 39 start-page: 4680 year: 2011 end-page: 4690 ident: CR50 article-title: Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1303 – volume: 19 start-page: 556 year: 2009 end-page: 566 ident: CR34 article-title: High-resolution DNA-binding specificity analysis of yeast transcription factors publication-title: Genome Res. doi: 10.1101/gr.090233.108 – volume: 27 start-page: 1696 year: 2011 end-page: 1697 ident: CR33 article-title: MEME-ChIP: motif analysis of large DNA datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr189 – volume: 105 start-page: 2527 year: 2008 end-page: 2532 ident: CR48 article-title: Discovering gapped binding sites of yeast transcription factors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0712188105 – volume: 6 start-page: e20059 year: 2011 ident: CR11 article-title: A linear model for transcription factor binding affinity prediction in protein binding microarrays publication-title: PLoS ONE doi: 10.1371/journal.pone.0020059 – volume: 1115 start-page: 1 year: 2007 end-page: 22 ident: CR22 article-title: Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference publication-title: Ann. NY Acad. Sci. doi: 10.1196/annals.1407.021 – volume: 20 start-page: 861 year: 2010 end-page: 873 ident: CR14 article-title: Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities publication-title: Genome Res. doi: 10.1101/gr.100552.109 – volume: 23 start-page: 988 year: 2005 end-page: 994 ident: CR18 article-title: A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors publication-title: Nat. Biotechnol. doi: 10.1038/nbt1120 – volume: 29 start-page: 659 year: 2011 end-page: 664 ident: CR8 article-title: Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1882 – volume: 39 start-page: D1005 year: 2011 end-page: D1010 ident: CR55 article-title: NCBI GEO: archive for functional genomics data sets–10 years on publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1184 – volume: 5 start-page: e9722 year: 2010 ident: CR4 article-title: Dinucleotide weight matrices for predicting transcription factor binding sites: generalizing the position weight matrix publication-title: PLoS ONE doi: 10.1371/journal.pone.0009722 – volume: 28 start-page: 970 year: 2010 end-page: 975 ident: CR16 article-title: identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1675 – volume: 29 start-page: 480 year: 2011 end-page: 483 ident: CR24 article-title: Quantitative analysis demonstrates most transcription factors require only simple models of specificity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1893 – volume: 6 start-page: e1000916 year: 2010 ident: CR10 article-title: High resolution models of transcription factor-DNA affinities improve and binding predictions publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000916 – volume: 18 start-page: 1180 year: 2008 end-page: 1189 ident: CR46 article-title: Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets publication-title: Genome Res. doi: 10.1101/gr.076117.108 – volume: 2 start-page: 28 year: 1994 end-page: 36 ident: CR42 article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol. – volume: 16 start-page: 962 year: 2006 ident: BFnbt2486_CR36 publication-title: Genome Res. doi: 10.1101/gr.5113606 – volume: 183 start-page: 743 year: 1996 ident: BFnbt2486_CR35 publication-title: J. Exp. Med. doi: 10.1084/jem.183.3.743 – volume: 104 start-page: 501 year: 2007 ident: BFnbt2486_CR44 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0609908104 – volume: 27 start-page: 1696 year: 2011 ident: BFnbt2486_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr189 – volume: 29 start-page: 480 year: 2011 ident: BFnbt2486_CR24 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1893 – volume: 19 start-page: 556 year: 2009 ident: BFnbt2486_CR34 publication-title: Genome Res. doi: 10.1101/gr.090233.108 – volume: 24 start-page: 1399 year: 2008 ident: BFnbt2486_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn201 – volume: 5 start-page: e9722 year: 2010 ident: BFnbt2486_CR4 publication-title: PLoS ONE doi: 10.1371/journal.pone.0009722 – volume: 1115 start-page: 1 year: 2007 ident: BFnbt2486_CR22 publication-title: Ann. NY Acad. Sci. doi: 10.1196/annals.1407.021 – volume: 24 start-page: 1429 year: 2006 ident: BFnbt2486_CR19 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1246 – volume: 29 start-page: 659 year: 2011 ident: BFnbt2486_CR8 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1882 – volume: 39 start-page: 4680 year: 2011 ident: BFnbt2486_CR50 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1303 – volume: 95 start-page: 185 year: 2010 ident: BFnbt2486_CR37 publication-title: Genomics doi: 10.1016/j.ygeno.2010.01.002 – volume: 23 start-page: 205 year: 2009 ident: BFnbt2486_CR52 publication-title: Genome Inform. – volume: 15 start-page: 655 year: 2008 ident: BFnbt2486_CR49 publication-title: J. Comput. Biol. doi: 10.1089/cmb.2007.0114 – volume: 6 start-page: e1000916 year: 2010 ident: BFnbt2486_CR10 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000916 – volume: 29 start-page: 2147 year: 2010 ident: BFnbt2486_CR30 publication-title: EMBO J. doi: 10.1038/emboj.2010.106 – volume: 451 start-page: 535 year: 2008 ident: BFnbt2486_CR38 publication-title: Nature doi: 10.1038/nature06496 – volume: 12 start-page: 894 year: 2005 ident: BFnbt2486_CR5 publication-title: J. Comput. Biol. doi: 10.1089/cmb.2005.12.894 – volume: 147 start-page: 1270 year: 2011 ident: BFnbt2486_CR13 publication-title: Cell doi: 10.1016/j.cell.2011.10.053 – volume: 315 start-page: 233 year: 2007 ident: BFnbt2486_CR9 publication-title: Science doi: 10.1126/science.1131007 – volume: 20 start-page: 861 year: 2010 ident: BFnbt2486_CR14 publication-title: Genome Res. doi: 10.1101/gr.100552.109 – volume: 191 start-page: 781 year: 2012 ident: BFnbt2486_CR25 publication-title: Genetics doi: 10.1534/genetics.112.138685 – volume: 105 start-page: 2527 year: 2008 ident: BFnbt2486_CR48 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0712188105 – volume: 2 start-page: 28 year: 1994 ident: BFnbt2486_CR42 publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol. – volume: 10 start-page: 2997 year: 1982 ident: BFnbt2486_CR1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/10.9.2997 – volume: 147 start-page: 1408 year: 2011 ident: BFnbt2486_CR29 publication-title: Cell doi: 10.1016/j.cell.2011.11.013 – volume: 4 start-page: e1000154 year: 2008 ident: BFnbt2486_CR6 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1000154 – volume: 23 start-page: 988 year: 2005 ident: BFnbt2486_CR18 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1120 – volume: 1158 start-page: 159 year: 2009 ident: BFnbt2486_CR23 publication-title: Ann. NY Acad. Sci. doi: 10.1111/j.1749-6632.2009.04497.x – volume: 38 start-page: D211 year: 2010 ident: BFnbt2486_CR51 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp985 – volume: 22 start-page: e141 year: 2006 ident: BFnbt2486_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl223 – volume: 40 start-page: D169 year: 2012 ident: BFnbt2486_CR31 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr993 – volume: 107 start-page: 9158 year: 2010 ident: BFnbt2486_CR45 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1004290107 – volume: 183 start-page: 211 year: 1990 ident: BFnbt2486_CR3 publication-title: Methods Enzymol. doi: 10.1016/0076-6879(90)83015-2 – volume: 40 start-page: D918 year: 2012 ident: BFnbt2486_CR56 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1055 – volume: 27 start-page: 1447 year: 2011 ident: BFnbt2486_CR53 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr156 – volume: 26 start-page: 2622 year: 2010 ident: BFnbt2486_CR32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq488 – volume: 23 start-page: i72 year: 2007 ident: BFnbt2486_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm224 – volume: 6 start-page: e20059 year: 2011 ident: BFnbt2486_CR11 publication-title: PLoS ONE doi: 10.1371/journal.pone.0020059 – volume: 193 start-page: 723 year: 1987 ident: BFnbt2486_CR2 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(87)90354-8 – volume: 37 start-page: e151 year: 2009 ident: BFnbt2486_CR15 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp802 – volume: 28 start-page: 970 year: 2010 ident: BFnbt2486_CR16 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1675 – volume: 18 start-page: 6097 year: 1990 ident: BFnbt2486_CR39 publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.20.6097 – volume: 5 start-page: e9202 year: 2010 ident: BFnbt2486_CR21 publication-title: PLoS ONE doi: 10.1371/journal.pone.0009202 – volume: 58 start-page: 267 year: 1996 ident: BFnbt2486_CR47 publication-title: J. R. Stat. Soc., B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 14 start-page: 1188 year: 2004 ident: BFnbt2486_CR40 publication-title: Genome Res. doi: 10.1101/gr.849004 – volume: 11 start-page: 751 year: 2010 ident: BFnbt2486_CR20 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2845 – volume: 18 start-page: 1180 year: 2008 ident: BFnbt2486_CR46 publication-title: Genome Res. doi: 10.1101/gr.076117.108 – volume: 103 start-page: 867 year: 2006 ident: BFnbt2486_CR17 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0509843102 – volume: 5 start-page: e1000590 year: 2009 ident: BFnbt2486_CR12 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1000590 – volume: 7 start-page: e1001070 year: 2011 ident: BFnbt2486_CR41 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1001070 – volume: 39 start-page: D1002 year: 2011 ident: BFnbt2486_CR54 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1040 – volume: 39 start-page: D1005 year: 2011 ident: BFnbt2486_CR55 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1184 – volume: 133 start-page: 1266 year: 2008 ident: BFnbt2486_CR28 publication-title: Cell doi: 10.1016/j.cell.2008.05.024 – volume: 324 start-page: 1720 year: 2009 ident: BFnbt2486_CR7 publication-title: Science doi: 10.1126/science.1162327 |
| SSID | ssj0006466 |
| Score | 2.5559502 |
| Snippet | The most comprehensive analysis to date of models of transcription-factor binding specificity reveals the best methods for predicting
in vivo
binding from
in... Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins.... Genomic analyses often involve scanning for potential transcription-factor (TF) binding sites using models of the sequence specificity of DNA binding proteins.... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 126 |
| SubjectTerms | 631/114 631/45/612/822 631/61/191 Agriculture Algorithms analysis Animals Binding sites Bioinformatics Biomedical Engineering/Biotechnology Biomedicine Biotechnology Computational Biology Deoxyribonucleic acid DNA DNA binding proteins DNA sequencing DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics Genome Genomics Health aspects Life Sciences Mice Nucleotide Motifs - genetics Nucleotide sequencing Physiological aspects Position-Specific Scoring Matrices Protein Array Analysis Proteins Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
| Title | Evaluation of methods for modeling transcription factor sequence specificity |
| URI | https://link.springer.com/article/10.1038/nbt.2486 https://www.ncbi.nlm.nih.gov/pubmed/23354101 https://www.proquest.com/docview/1285152181 https://www.proquest.com/docview/1285465292 https://www.proquest.com/docview/1291609600 https://pubmed.ncbi.nlm.nih.gov/PMC3687085 |
| Volume | 31 |
| WOSCitedRecordID | wos000315322100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1546-1696 dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: M7P dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1546-1696 dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1546-1696 dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-1696 dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1546-1696 dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: M2O dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1546-1696 dateEnd: 20181231 omitProxy: false ssIdentifier: ssj0006466 issn: 1087-0156 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB5sq6IP_rj6I1qPVZQ-xSbZJLt5kipXFOz1aFXuLSSbjRYkqU1O8L93ZrOJl0OK4MvCsd9BNrOZmd2d_T6Al57MtRdLRczH2g0xYrpJoX03zyNMT0JFawAjNiHmc7lcJgu74dbYssreJxpHXdSK9sgP0I9GFGuk_-bih0uqUXS6aiU0tmCHWBK4Kd1bDJ447s4qfU9SeWUU9-SzXB5Uefs6COkG9Vo42nTKa1Fps2Jy49jURKOju_87jntwx-ah7LCbOPfhmq4mcKNTpvw1gdtrPIUTuHlsT-B34eNsoAdndck6AeqGYerLjKgO4llL8a_3RqxT9GF9zTaju51Un4Tp_wP4fDT79O69axUZXIWZTEsWTBSPtUwincVFrmLFBQ5HCFGKSMe-Dr2CFj1-6Yda6MATOQ91gUmdyBIv4w9hu6or_RhYmWvE8UxlPAlVqGQWKaHQgQS81DKPHNjvDZMqS1dOqhnfU3NszmWKJkzJhA48H5AXHUXHXzCvyLapVfbEpqG9j-Zrtmqa9JAbpVJcCjrwwuCIGaOi0psO8OHkyz-Azk5HoH0LKmt8bpXZ6w44emLcGiH3Rkj8vtW4u59IqfUvTfpnFuHoh276J9XMVbpedZgwjoIkuAqDywNaxXoOPOqm-PAOA86jED22A2I0-QcAMZOPe6rzb4ahnMcYBiS9qP4zWXv0DdM8uXp8T-FWYBRIqIJoD7bby5V-BtfVz_a8uZzCllgK08op7LydzRen-Os4ODHtYmr8gWnPfgO8b2SX |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAgUOPJZXoIBBVD2lTeIkdg4IVdCqq26XCgrqLSSOA5VQUposqH-K38iM82CzQhWXHrjsxd9GtjPPeDwfwEtHptoJpaLOx9r20WPaUaZdO00DDE98RTmAIZsQ06k8OooOluBXdxeGyio7m2gMdVYq-ka-iXY0IF8j3dcn321ijaLT1Y5CoxGLPX32E1O26tX4Lb7fNc_b2T58s2u3rAK2Qm9c0ywixUMto0AnYZaqUHGBjxZC5CLQoat9J6PA3c1dXwvtOSLlvs4wMBFJ5CQcn3sJLmMY4UlTKnjQW_6wORt1HUnlnEHYNbvlcrNI6w3Ppxvbc-5v0QnMecHFCs2FY1rj_XZu_W_7dhtutnE222oU4w4s6WIEVxvmzbMR3JjrwziClf22wuAuTLb79ueszFlDsF0xDO2ZIQ1CPKvJv3fWljWMRayrSWd0d5XqrzC9uQcfL2SN92G5KAv9EFieasTxRCU88pWvZBIoodBAejzXMg0sWO8EIVZtO3ZiBfkWm7IALmMUmZhExoLnPfKkaUHyF8wayVLcMpfiT0Xfdqovyayq4i1umFgx1bXghcFR54-CSosawPjdp38AfXg_AK23oLzEeaukvc6Bq6eOYgPk6gCJ9ksNhzvBjVv7WcV_pBZX3w_TP6kmsNDlrMH4YeBF3nkYTH8oS3cseNCoVL-HHueBjx7JAjFQth5AndeHI8XxV9OBnYfo5iRtVKeWc1NfeDWPzl_fM7i2e7g_iSfj6d5juO4ZthWqllqF5fp0pp_AFfWjPq5Onxpbw-DzRSvpbyb1uek |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAhUceCyvQAGDqHoKm8RJ7BwQqmhXrFqWFS_1FhLHgUooKU0W1L_Gr2PGebBZoYpLD1z24m93bWee8Xg-gGeOTLUTSkWdj7Xto8e0o0y7dpoGGJ74inIAQzYhZjN5eBjN1-BXdxeGyio7m2gMdVYqekc-RjsakK-R7jhvyyLmu5OXx99tYpCik9aOTqMRkX19-hPTt-rFdBef9ZbnTfY-vHpttwwDtkLPXNOMIsVDLaNAJ2GWqlBxgX8jhMhFoENX-05GQbybu74W2nNEyn2dYZAikshJOP7uBbgoqGm5KRuc914gbM5JXUdSaWcQdo1vuRwXaf3c8-n29pIrXHUISx5xtVpz5cjWeMLJ9f95D2_AtTb-ZjuNwtyENV2M4HLDyHk6gqtL_RlHsPGmrTy4BQd7fVt0VuasId6uGIb8zJAJIZ7V5Pc7K8waJiPW1aozutNKdVmY9tyGj-eyxjuwXpSFvgcsTzXieKISHvnKVzIJlFBoOD2ea5kGFmx3QhGrtk07sYV8i025AJcxik9M4mPBkx553LQm-Qtmi-QqbhlN8aOidz7Vl2RRVfEONwytmAJb8NTgqCNIQXLRAKZvP_0D6P27AWi7BeUlzlsl7TUPXD11GhsgNwdItGtqONwJcdza1Sr-I8G4-n6Yvkm1goUuFw3GDwMv8s7CYFpE2btjwd1Gvfo99DgPfPRUFoiB4vUA6sg-HCmOvprO7DxE9ydpozoVXZr6yqO5f_b6HsMG6mZ8MJ3tP4ArniFhoSKqTVivTxb6IVxSP-qj6uSRMTsMPp-3jv4GuiPCpg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+methods+for+modeling+transcription+factor+sequence+specificity&rft.jtitle=Nature+biotechnology&rft.au=Weirauch%2C+Matthew+T&rft.au=Cote%2C+Atina&rft.au=Norel%2C+Raquel&rft.au=Annala%2C+Matti&rft.date=2013-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.volume=31&rft.issue=2&rft.spage=126&rft_id=info:doi/10.1038%2Fnbt.2486&rft.externalDBID=N95&rft.externalDocID=A320857625 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |