Evaluation of methods for modeling transcription factor sequence specificity

The most comprehensive analysis to date of models of transcription-factor binding specificity reveals the best methods for predicting in vivo binding from in vitro data. Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specifi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature biotechnology Ročník 31; číslo 2; s. 126 - 134
Hlavní autoři: Weirauch, Matthew T, Cote, Atina, Norel, Raquel, Annala, Matti, Zhao, Yue, Riley, Todd R, Saez-Rodriguez, Julio, Cokelaer, Thomas, Vedenko, Anastasia, Talukder, Shaheynoor, Bussemaker, Harmen J, Morris, Quaid D, Bulyk, Martha L, Stolovitzky, Gustavo, Hughes, Timothy R
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.02.2013
Nature Publishing Group
Témata:
ISSN:1087-0156, 1546-1696, 1546-1696
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The most comprehensive analysis to date of models of transcription-factor binding specificity reveals the best methods for predicting in vivo binding from in vitro data. Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro –derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences.
AbstractList Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro-derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences.Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro-derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences.
The most comprehensive analysis to date of models of transcription-factor binding specificity reveals the best methods for predicting in vivo binding from in vitro data. Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro –derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences.
Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro-derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences.
Genomic analyses often involve scanning for potential transcription-factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein’s binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For 9 TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro–derived motifs performed similarly to motifs derived from in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices learned by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10%). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences.
Audience Academic
Author Cokelaer, Thomas
Stolovitzky, Gustavo
Morris, Quaid D
Weirauch, Matthew T
Talukder, Shaheynoor
Saez-Rodriguez, Julio
Norel, Raquel
Zhao, Yue
Hughes, Timothy R
Bussemaker, Harmen J
Riley, Todd R
Annala, Matti
Vedenko, Anastasia
Bulyk, Martha L
Cote, Atina
AuthorAffiliation 11 Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
6 Department of Biological Sciences, Columbia University, and Center for Computational Biology and Bioinformatics, Columbia University Medical Center, New York, NY
10 Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
8 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
9 Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
2 Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Rheumatology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
4 Department of Signal Processing, Tampere University of Technology, Tampere, Finland
1 Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Toronto, ON, Canada
3 IBM Computational Biology Center, Yorktown Heights, New York,
AuthorAffiliation_xml – name: 9 Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
– name: 4 Department of Signal Processing, Tampere University of Technology, Tampere, Finland
– name: 2 Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Rheumatology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
– name: 7 EMBL-EBI European Bioinformatics Institute, Cambridge, UK
– name: 6 Department of Biological Sciences, Columbia University, and Center for Computational Biology and Bioinformatics, Columbia University Medical Center, New York, NY
– name: 11 Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
– name: 3 IBM Computational Biology Center, Yorktown Heights, New York, NY, USA
– name: 5 Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
– name: 1 Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Toronto, ON, Canada
– name: 10 Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
– name: 8 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
Author_xml – sequence: 1
  givenname: Matthew T
  surname: Weirauch
  fullname: Weirauch, Matthew T
  organization: Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Rheumatology and Biomedical Informatics, Cincinnati Children's Hospital Medical Center
– sequence: 2
  givenname: Atina
  surname: Cote
  fullname: Cote, Atina
  organization: Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto
– sequence: 3
  givenname: Raquel
  surname: Norel
  fullname: Norel, Raquel
  organization: IBM Computational Biology Center, Yorktown Heights
– sequence: 4
  givenname: Matti
  surname: Annala
  fullname: Annala, Matti
  organization: Department of Signal Processing, Tampere University of Technology
– sequence: 5
  givenname: Yue
  surname: Zhao
  fullname: Zhao, Yue
  organization: Department of Genetics, University of Pennsylvania
– sequence: 6
  givenname: Todd R
  surname: Riley
  fullname: Riley, Todd R
  organization: Department of Biological Sciences, Columbia University, and Center for Computational Biology and Bioinformatics, Columbia University Medical Center
– sequence: 7
  givenname: Julio
  surname: Saez-Rodriguez
  fullname: Saez-Rodriguez, Julio
  organization: EMBL-EBI European Bioinformatics Institute
– sequence: 8
  givenname: Thomas
  surname: Cokelaer
  fullname: Cokelaer, Thomas
  organization: EMBL-EBI European Bioinformatics Institute
– sequence: 9
  givenname: Anastasia
  surname: Vedenko
  fullname: Vedenko, Anastasia
  organization: Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School
– sequence: 10
  givenname: Shaheynoor
  surname: Talukder
  fullname: Talukder, Shaheynoor
  organization: Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto
– sequence: 12
  givenname: Harmen J
  surname: Bussemaker
  fullname: Bussemaker, Harmen J
  organization: Department of Biological Sciences, Columbia University, and Center for Computational Biology and Bioinformatics, Columbia University Medical Center
– sequence: 13
  givenname: Quaid D
  surname: Morris
  fullname: Morris, Quaid D
  organization: Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto
– sequence: 14
  givenname: Martha L
  surname: Bulyk
  fullname: Bulyk, Martha L
  organization: Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School
– sequence: 15
  givenname: Gustavo
  surname: Stolovitzky
  fullname: Stolovitzky, Gustavo
  organization: IBM Computational Biology Center, Yorktown Heights
– sequence: 16
  givenname: Timothy R
  surname: Hughes
  fullname: Hughes, Timothy R
  email: t.hughes@utoronto.ca
  organization: Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23354101$$D View this record in MEDLINE/PubMed
BookMark eNqNkltr3DAQhU1JaS4t9BcUQ19aqLe6WJL9EgghbQMLgd5ehSyPvQq2tJXk0Pz7ajfbvYQ8BIElrG8OozPnNDuyzkKWvcVohhGtPtsmzkhZ8RfZCWYlLzCv-VE6o0oUCDN-nJ2GcIsQ4iXnr7JjQikrMcIn2fzqTg2TisbZ3HX5CHHh2pB3zueja2Ewts-jVzZob5ZrqlM6ptsAfyawGvKwBG06o028f5297NQQ4M1mP8t-fbn6efmtmN98vb68mBea0zoWTcNqTTlUNQPF20ZzTQXDTAjRCQYcQ4lazBjCHS5BAEGioSW0GBOhaqToWXb-oLucmhFaDTa1OMilN6Py99IpIw9vrFnI3t1JyiuBKpYEPmwEvEvPCFGOJmgYBmXBTUFiUmOOao7QM9AqOc5ITRL6_hF66yZvkxNrCjOCK7yjejWANLZzqUW9EpUXlKTuBCerDmdPUGm1MBqdpt-Z9P-g4ONBQWIi_I29mkKQ1z--P5-9-X3IftpjmykYCyF9gukXMTyUHODv9kezncn_xO381N6F4KHbIhjJVZhlCrNchXnnwRZNIVtHNXlhhqcKNu8KSdP24PcG8Jj9BwRVALY
CitedBy_id crossref_primary_10_1109_TCBB_2018_2864203
crossref_primary_10_1186_s13059_020_01996_3
crossref_primary_10_1186_s12864_020_07296_1
crossref_primary_10_1016_j_jbc_2025_108552
crossref_primary_10_1371_journal_pcbi_1004418
crossref_primary_10_1093_nar_gkac708
crossref_primary_10_7717_peerj_15597
crossref_primary_10_1093_nar_gkx276
crossref_primary_10_3389_fgene_2019_00729
crossref_primary_10_1186_1471_2164_15_925
crossref_primary_10_1093_nar_gkae215
crossref_primary_10_1109_TCBB_2019_2947461
crossref_primary_10_1186_s12864_024_10630_6
crossref_primary_10_1177_00220345211049984
crossref_primary_10_15252_msb_20167238
crossref_primary_10_1186_s13059_017_1287_y
crossref_primary_10_1074_jbc_RA117_000485
crossref_primary_10_1186_s13036_019_0181_4
crossref_primary_10_1016_j_ajhg_2025_03_019
crossref_primary_10_1038_srep33351
crossref_primary_10_1002_minf_201400025
crossref_primary_10_1007_s00500_020_05429_y
crossref_primary_10_1038_nmeth_4143
crossref_primary_10_1016_j_crmeth_2022_100384
crossref_primary_10_1371_journal_pcbi_1005403
crossref_primary_10_1093_nar_gkt574
crossref_primary_10_1093_nar_gkw048
crossref_primary_10_3389_fmolb_2021_673363
crossref_primary_10_1016_j_coisb_2017_04_002
crossref_primary_10_1093_nar_gkz672
crossref_primary_10_1186_s12859_024_05995_0
crossref_primary_10_1371_journal_pone_0092209
crossref_primary_10_1371_journal_pone_0185570
crossref_primary_10_1109_TCBB_2018_2819660
crossref_primary_10_1093_nargab_lqae090
crossref_primary_10_1109_TCBBIO_2025_3556876
crossref_primary_10_1109_TCBB_2019_2901789
crossref_primary_10_1093_hmg_ddz226
crossref_primary_10_12688_f1000research_135164_2
crossref_primary_10_12688_f1000research_135164_1
crossref_primary_10_1016_j_tig_2014_12_003
crossref_primary_10_1371_journal_pcbi_1003214
crossref_primary_10_1038_s41576_019_0122_6
crossref_primary_10_1109_TNNLS_2018_2790388
crossref_primary_10_1371_journal_pcbi_1005638
crossref_primary_10_1002_jcc_24764
crossref_primary_10_1186_1471_2164_14_796
crossref_primary_10_1038_s41588_018_0140_x
crossref_primary_10_1109_JPROC_2015_2494198
crossref_primary_10_1002_aps3_11376
crossref_primary_10_1016_j_str_2023_11_003
crossref_primary_10_1111_gbb_12269
crossref_primary_10_1093_nar_gkz1001
crossref_primary_10_1093_nar_gkt831
crossref_primary_10_1186_s12859_017_1769_7
crossref_primary_10_1073_pnas_1714376115
crossref_primary_10_1534_g3_117_300296
crossref_primary_10_1093_nar_gkv577
crossref_primary_10_1186_1756_8935_7_21
crossref_primary_10_1038_nmeth_3766
crossref_primary_10_1073_pnas_1503951112
crossref_primary_10_1186_1471_2164_16_S7_S12
crossref_primary_10_1093_bib_bbaf363
crossref_primary_10_1016_j_gde_2014_08_011
crossref_primary_10_1016_j_ygeno_2021_09_009
crossref_primary_10_1016_j_cels_2016_07_003
crossref_primary_10_1371_journal_pone_0160435
crossref_primary_10_1101_gad_348993_121
crossref_primary_10_1371_journal_pone_0085629
crossref_primary_10_1016_j_cels_2016_07_001
crossref_primary_10_1093_nar_gky1210
crossref_primary_10_1371_journal_pcbi_1006226
crossref_primary_10_1038_s41586_024_08219_w
crossref_primary_10_3389_fchem_2018_00666
crossref_primary_10_1016_j_jsb_2024_108129
crossref_primary_10_7554_eLife_32323
crossref_primary_10_1074_jbc_M115_691154
crossref_primary_10_7554_eLife_56517
crossref_primary_10_1016_j_ymeth_2017_03_003
crossref_primary_10_1534_genetics_114_170100
crossref_primary_10_7554_eLife_06967
crossref_primary_10_1016_j_cels_2020_11_012
crossref_primary_10_1038_s41586_021_03211_0
crossref_primary_10_1093_nar_gkw521
crossref_primary_10_1093_nar_gkt250
crossref_primary_10_1109_TCBB_2021_3133869
crossref_primary_10_1534_genetics_115_178384
crossref_primary_10_1371_journal_pgen_1006401
crossref_primary_10_1146_annurev_cellbio_100617_062719
crossref_primary_10_1093_nar_gkt1112
crossref_primary_10_1146_annurev_genom_083118_014845
crossref_primary_10_7554_eLife_105565
crossref_primary_10_1371_journal_pone_0101490
crossref_primary_10_1016_j_jbc_2023_104734
crossref_primary_10_1038_s41586_023_06661_w
crossref_primary_10_1109_ACCESS_2021_3082761
crossref_primary_10_1073_pnas_1410569111
crossref_primary_10_1186_1471_2105_14_S10_S2
crossref_primary_10_1016_j_cels_2018_02_009
crossref_primary_10_1186_1471_2164_15_80
crossref_primary_10_1016_j_bbagrm_2019_194443
crossref_primary_10_1109_JBHI_2021_3058518
crossref_primary_10_1093_nar_gku1254
crossref_primary_10_7554_eLife_06397
crossref_primary_10_1146_annurev_biodatasci_122120_110102
crossref_primary_10_1093_bib_bbab460
crossref_primary_10_1016_j_bbagrm_2016_09_006
crossref_primary_10_1371_journal_pgen_1007289
crossref_primary_10_1093_nar_gkv1176
crossref_primary_10_1098_rsif_2017_0387
crossref_primary_10_1002_ange_202310913
crossref_primary_10_1101_gr_226852_117
crossref_primary_10_1186_s12864_016_2729_8
crossref_primary_10_1089_cmb_2017_0230
crossref_primary_10_1002_anie_202310913
crossref_primary_10_1038_srep17021
crossref_primary_10_1111_mpp_12844
crossref_primary_10_1109_TCBB_2024_3411024
crossref_primary_10_1002_pmic_201700319
crossref_primary_10_1016_j_mod_2016_06_001
crossref_primary_10_1093_bib_bbad156
crossref_primary_10_1177_00220345211017510
crossref_primary_10_1016_j_str_2017_11_022
crossref_primary_10_1186_s13059_019_1738_8
crossref_primary_10_1093_nar_gkx314
crossref_primary_10_1016_j_funbio_2018_01_004
crossref_primary_10_1101_gr_224964_117
crossref_primary_10_1007_s11030_021_10225_3
crossref_primary_10_1186_1752_0509_8_S5_S5
crossref_primary_10_1016_j_compbiolchem_2023_107923
crossref_primary_10_1101_gr_260877_120
crossref_primary_10_1016_j_omtn_2021_02_014
crossref_primary_10_1038_s41598_024_82238_5
crossref_primary_10_1109_ACCESS_2020_3042903
crossref_primary_10_1016_j_cell_2014_08_009
crossref_primary_10_1038_s41598_017_03199_6
crossref_primary_10_1371_journal_pcbi_1003711
crossref_primary_10_1371_journal_pcbi_1009941
crossref_primary_10_1093_nar_gkx1145
crossref_primary_10_1002_biot_201800416
crossref_primary_10_1038_nbt_3343
crossref_primary_10_1016_j_isci_2025_112969
crossref_primary_10_1186_1471_2105_15_289
crossref_primary_10_12688_f1000research_7408_1
crossref_primary_10_1074_jbc_RA118_001785
crossref_primary_10_1093_nar_gku1045
crossref_primary_10_1016_j_cels_2017_06_015
crossref_primary_10_1093_nar_gkw446
crossref_primary_10_1038_s41587_022_01307_0
crossref_primary_10_1186_s13059_023_02985_y
crossref_primary_10_1073_pnas_2205796120
crossref_primary_10_12688_f1000research_7408_2
crossref_primary_10_1093_nar_gkx773
crossref_primary_10_1109_TCBB_2020_3025579
crossref_primary_10_1038_msb_2013_38
crossref_primary_10_1016_j_celrep_2018_03_064
crossref_primary_10_1038_s41576_021_00434_9
crossref_primary_10_1016_j_cell_2018_01_029
crossref_primary_10_1038_s41559_018_0651_y
crossref_primary_10_1038_s41598_018_33321_1
crossref_primary_10_1016_j_bbagrm_2021_194688
crossref_primary_10_1007_s12539_025_00704_8
crossref_primary_10_1093_nar_gkv807
crossref_primary_10_1016_j_jmb_2021_167071
crossref_primary_10_1371_journal_pone_0220207
crossref_primary_10_1126_science_aad2257
crossref_primary_10_15252_msb_20177902
crossref_primary_10_1073_pnas_1715888115
crossref_primary_10_1093_bib_bbab540
crossref_primary_10_1016_j_cub_2023_07_022
crossref_primary_10_1093_nar_gkt862
crossref_primary_10_1038_s41467_024_50710_5
crossref_primary_10_1109_TCBB_2016_2561930
crossref_primary_10_1371_journal_pcbi_1004271
crossref_primary_10_1038_nrg_2016_69
crossref_primary_10_1073_pnas_1422023112
crossref_primary_10_1093_nargab_lqac008
crossref_primary_10_1016_j_cels_2016_09_004
crossref_primary_10_1093_nar_gkx915
crossref_primary_10_1038_s41467_018_03977_4
crossref_primary_10_7554_eLife_02626
crossref_primary_10_1093_nar_gkz1087
crossref_primary_10_1186_s13059_022_02690_2
crossref_primary_10_1093_nar_gkaa291
crossref_primary_10_1038_nbt_3313
crossref_primary_10_1073_pnas_1811431115
crossref_primary_10_1093_molbev_msz004
crossref_primary_10_1093_nar_gkad320
crossref_primary_10_7554_eLife_105565_3
crossref_primary_10_1016_j_cels_2021_05_015
crossref_primary_10_1038_s41586_022_04506_6
crossref_primary_10_1093_nar_gkad207
crossref_primary_10_1371_journal_pcbi_1008925
crossref_primary_10_15252_msb_202110473
crossref_primary_10_1109_TCBB_2017_2691325
crossref_primary_10_3389_fcell_2023_1034604
crossref_primary_10_1016_j_cell_2015_02_008
crossref_primary_10_1038_s41588_019_0411_1
crossref_primary_10_1038_nbt_3300
crossref_primary_10_1097_BOR_0000000000000094
crossref_primary_10_3390_biom14010123
crossref_primary_10_3390_plants11192614
crossref_primary_10_1007_s40484_013_0012_4
crossref_primary_10_1038_s41583_025_00926_1
crossref_primary_10_3390_genes8090233
crossref_primary_10_1093_nar_gkt1087
crossref_primary_10_1016_j_tibs_2014_07_002
crossref_primary_10_1186_s12859_014_0446_3
crossref_primary_10_1007_s11760_024_03229_7
crossref_primary_10_4137_GRSB_S38462
crossref_primary_10_1186_s12859_018_2104_7
crossref_primary_10_1016_j_devcel_2023_07_007
crossref_primary_10_1186_s12859_022_04615_z
crossref_primary_10_3389_fgene_2016_00024
crossref_primary_10_1038_s41598_017_03554_7
crossref_primary_10_1093_bib_bbx026
crossref_primary_10_12688_f1000research_7118_2
crossref_primary_10_3109_10409238_2015_1051505
crossref_primary_10_1016_j_jtbi_2015_06_010
crossref_primary_10_12688_f1000research_7118_1
crossref_primary_10_1084_jem_20132121
crossref_primary_10_1186_s40169_015_0054_5
crossref_primary_10_1093_nar_gkv607
crossref_primary_10_1186_s12859_016_1298_9
crossref_primary_10_1186_1471_2164_16_S4_S3
crossref_primary_10_1016_j_cell_2021_02_001
crossref_primary_10_1109_TCBB_2020_3025007
crossref_primary_10_1016_j_sbi_2018_08_001
crossref_primary_10_1016_j_ymeth_2019_09_011
crossref_primary_10_1002_wdev_168
crossref_primary_10_1038_s41598_019_44966_x
crossref_primary_10_1093_nar_gkaf058
Cites_doi 10.1084/jem.183.3.743
10.1534/genetics.112.138685
10.1016/0076-6879(90)83015-2
10.1016/j.ygeno.2010.01.002
10.1016/j.cell.2011.10.053
10.1073/pnas.0509843102
10.1093/nar/gkr993
10.1111/j.1749-6632.2009.04497.x
10.1073/pnas.1004290107
10.1093/bioinformatics/btm224
10.1093/nar/10.9.2997
10.1073/pnas.0609908104
10.1093/bioinformatics/btn201
10.1093/bioinformatics/btl223
10.1016/j.cell.2011.11.013
10.1093/nar/gkr1055
10.1089/cmb.2005.12.894
10.1038/emboj.2010.106
10.1038/nature06496
10.1371/journal.pcbi.1000154
10.1371/journal.pcbi.1000590
10.1089/cmb.2007.0114
10.1093/nar/gkp802
10.1101/gr.849004
10.1016/0022-2836(87)90354-8
10.1101/gr.5113606
10.1371/journal.pcbi.1001070
10.1126/science.1162327
10.1038/nrg2845
10.1371/journal.pone.0009202
10.1093/bioinformatics/btr156
10.1093/nar/gkq1040
10.1126/science.1131007
10.1038/nbt1246
10.1016/j.cell.2008.05.024
10.1093/nar/18.20.6097
10.1093/nar/gkp985
10.1093/bioinformatics/btq488
10.1093/nar/gkq1303
10.1101/gr.090233.108
10.1093/bioinformatics/btr189
10.1073/pnas.0712188105
10.1371/journal.pone.0020059
10.1196/annals.1407.021
10.1101/gr.100552.109
10.1038/nbt1120
10.1038/nbt.1882
10.1093/nar/gkq1184
10.1371/journal.pone.0009722
10.1038/nbt.1675
10.1038/nbt.1893
10.1371/journal.pcbi.1000916
10.1101/gr.076117.108
10.1111/j.2517-6161.1996.tb02080.x
ContentType Journal Article
Contributor Laurila, Kirsti
Rudnicki, Witold R
Agius, Phaedra
Murugan, Anand
Posch, Stefan
Zhang, Zhizhuo
Sung, Wing-Kin
Chen, Yong-Syuan
Lähdesmäki, Harri
Chen, Chien-Yu
Chang, Cheng Wei
Shamir, Ron
Noble, William Stafford
Klein, Holger
Leslie, Christina
Myšicková, Alena
Grosse, Ivo
Kursa, Miron B
Schmid, Christoph D
Lei, Chengwei
Vingron, Martin
Kinney, Justin B
Ruan, Jianhua
Kiełbasa, Szymon M
Arvey, Aaron
Callan, Jr, Curtis G
Bucher, Philipp
Chu, Yu-Wei
Linhart, Chaim
Jagannathan, Vidhya
Orenstein, Yaron
Grau, Jan
Keilwagen, Jens
Nykter, Matti
Contributor_xml – sequence: 1
  givenname: Phaedra
  surname: Agius
  fullname: Agius, Phaedra
– sequence: 2
  givenname: Aaron
  surname: Arvey
  fullname: Arvey, Aaron
– sequence: 3
  givenname: Philipp
  surname: Bucher
  fullname: Bucher, Philipp
– sequence: 4
  givenname: Curtis G
  surname: Callan, Jr
  fullname: Callan, Jr, Curtis G
– sequence: 5
  givenname: Cheng Wei
  surname: Chang
  fullname: Chang, Cheng Wei
– sequence: 6
  givenname: Chien-Yu
  surname: Chen
  fullname: Chen, Chien-Yu
– sequence: 7
  givenname: Yong-Syuan
  surname: Chen
  fullname: Chen, Yong-Syuan
– sequence: 8
  givenname: Yu-Wei
  surname: Chu
  fullname: Chu, Yu-Wei
– sequence: 9
  givenname: Jan
  surname: Grau
  fullname: Grau, Jan
– sequence: 10
  givenname: Ivo
  surname: Grosse
  fullname: Grosse, Ivo
– sequence: 11
  givenname: Vidhya
  surname: Jagannathan
  fullname: Jagannathan, Vidhya
– sequence: 12
  givenname: Jens
  surname: Keilwagen
  fullname: Keilwagen, Jens
– sequence: 13
  givenname: Szymon M
  surname: Kiełbasa
  fullname: Kiełbasa, Szymon M
– sequence: 14
  givenname: Justin B
  surname: Kinney
  fullname: Kinney, Justin B
– sequence: 15
  givenname: Holger
  surname: Klein
  fullname: Klein, Holger
– sequence: 16
  givenname: Miron B
  surname: Kursa
  fullname: Kursa, Miron B
– sequence: 17
  givenname: Harri
  surname: Lähdesmäki
  fullname: Lähdesmäki, Harri
– sequence: 18
  givenname: Kirsti
  surname: Laurila
  fullname: Laurila, Kirsti
– sequence: 19
  givenname: Chengwei
  surname: Lei
  fullname: Lei, Chengwei
– sequence: 20
  givenname: Christina
  surname: Leslie
  fullname: Leslie, Christina
– sequence: 21
  givenname: Chaim
  surname: Linhart
  fullname: Linhart, Chaim
– sequence: 22
  givenname: Anand
  surname: Murugan
  fullname: Murugan, Anand
– sequence: 23
  givenname: Alena
  surname: Myšicková
  fullname: Myšicková, Alena
– sequence: 24
  givenname: William Stafford
  surname: Noble
  fullname: Noble, William Stafford
– sequence: 25
  givenname: Matti
  surname: Nykter
  fullname: Nykter, Matti
– sequence: 26
  givenname: Yaron
  surname: Orenstein
  fullname: Orenstein, Yaron
– sequence: 27
  givenname: Stefan
  surname: Posch
  fullname: Posch, Stefan
– sequence: 28
  givenname: Jianhua
  surname: Ruan
  fullname: Ruan, Jianhua
– sequence: 29
  givenname: Witold R
  surname: Rudnicki
  fullname: Rudnicki, Witold R
– sequence: 30
  givenname: Christoph D
  surname: Schmid
  fullname: Schmid, Christoph D
– sequence: 31
  givenname: Ron
  surname: Shamir
  fullname: Shamir, Ron
– sequence: 32
  givenname: Wing-Kin
  surname: Sung
  fullname: Sung, Wing-Kin
– sequence: 33
  givenname: Martin
  surname: Vingron
  fullname: Vingron, Martin
– sequence: 34
  givenname: Zhizhuo
  surname: Zhang
  fullname: Zhang, Zhizhuo
Copyright Springer Nature America, Inc. 2013
COPYRIGHT 2013 Nature Publishing Group
Copyright Nature Publishing Group Feb 2013
Copyright_xml – notice: Springer Nature America, Inc. 2013
– notice: COPYRIGHT 2013 Nature Publishing Group
– notice: Copyright Nature Publishing Group Feb 2013
CorporateAuthor DREAM5 Consortium
CorporateAuthor_xml – name: DREAM5 Consortium
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
N95
IOV
ISR
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
RC3
7X8
5PM
DOI 10.1038/nbt.2486
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale Business: Insights
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Science Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Engineering Research Database

MEDLINE

Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 134
ExternalDocumentID PMC3687085
2886526701
A320857625
23354101
10_1038_nbt_2486
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA121852
– fundername: CIHR
  grantid: MOP-77721
– fundername: NHGRI NIH HHS
  grantid: R01 HG003008
– fundername: NCI NIH HHS
  grantid: U54CA121852
– fundername: NIMHD NIH HHS
  grantid: G12 MD007591
– fundername: NHGRI NIH HHS
  grantid: R01HG003008
– fundername: NHGRI NIH HHS
  grantid: R01 HG003985
– fundername: National Human Genome Research Institute : NHGRI
  grantid: R01 HG003008 || HG
– fundername: National Human Genome Research Institute : NHGRI
  grantid: R01 HG003985 || HG
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
4.4
4R4
53G
5M7
5RE
5S5
70F
7X7
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAHBH
AAIKC
AAMNW
AARCD
ABDBF
ABDPE
ABEFU
ABFSG
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACSTC
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFFHD
AFFNX
AFHIU
AFKRA
AFRAH
AFSHS
AGAYW
AGSTI
AHBCP
AHMBA
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESTFP
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NFIDA
NNMJJ
NXXTH
O9-
ODYON
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XOL
Y6R
YZZ
ZGI
ZXP
~KM
AAYXX
CITATION
3V.
5BI
88A
AAEEF
AAYOK
AAYZH
AAZLF
ABAWZ
AGHTU
ALIPV
CGR
CUY
CVF
ECM
EIF
M0L
NPM
PKN
XI7
ZHY
7QO
7QP
7QR
7T7
7TK
7TM
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c639t-bb59c36e895ea6dbc6c37515777f75e61e40d15501f14e7e207b34ed1127a90a3
IEDL.DBID M7P
ISICitedReferencesCount 285
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315322100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1087-0156
1546-1696
IngestDate Tue Nov 04 02:02:49 EST 2025
Mon Oct 06 18:07:08 EDT 2025
Thu Oct 02 15:48:44 EDT 2025
Sat Oct 25 08:56:32 EDT 2025
Sat Nov 29 13:14:08 EST 2025
Sun Nov 23 09:03:28 EST 2025
Wed Nov 26 08:56:34 EST 2025
Wed Nov 26 10:04:27 EST 2025
Sat Nov 29 08:27:35 EST 2025
Wed Feb 19 02:05:42 EST 2025
Tue Nov 18 22:36:44 EST 2025
Sat Nov 29 06:43:22 EST 2025
Mon Nov 10 01:23:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c639t-bb59c36e895ea6dbc6c37515777f75e61e40d15501f14e7e207b34ed1127a90a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Feature-1
OpenAccessLink https://www.nature.com/articles/nbt.2486.pdf
PMID 23354101
PQID 1285152181
PQPubID 47191
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3687085
proquest_miscellaneous_1291609600
proquest_miscellaneous_1285465292
proquest_journals_1285152181
gale_infotracmisc_A320857625
gale_infotracacademiconefile_A320857625
gale_incontextgauss_ISR_A320857625
gale_incontextgauss_IOV_A320857625
gale_businessinsightsgauss_A320857625
pubmed_primary_23354101
crossref_primary_10_1038_nbt_2486
crossref_citationtrail_10_1038_nbt_2486
springer_journals_10_1038_nbt_2486
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2013
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Jolma (CR14) 2010; 20
Eddy (CR52) 2009; 23
Zhao, Stormo (CR24) 2011; 29
Rhee, Pugh (CR29) 2011; 147
John, Marais, Child, Light, Leonard (CR35) 1996; 183
Kinney, Murugan, Callan, Cox (CR45) 2010; 107
Fordyce (CR16) 2010; 28
Machanick, Bailey (CR33) 2011; 27
Jaeger (CR37) 2010; 95
Stolovitzky, Monroe, Califano (CR22) 2007; 1115
Zhao, Ruan, Pandey, Stormo (CR25) 2012; 191
Schutz, Delorenzi (CR43) 2008; 24
Chen (CR48) 2008; 105
Zhao, Granas, Stormo (CR12) 2009; 5
Chen, Hughes, Morris (CR27) 2007; 23
Segal, Raveh-Sadka, Schroeder, Unnerstall, Gaul (CR38) 2008; 451
Barrett (CR55) 2011; 39
Badis (CR7) 2009; 324
Siddharthan (CR4) 2010; 5
Zykovich, Korf, Segal (CR15) 2009; 37
Chen, Wu, Ji (CR53) 2011; 27
Crooks, Hon, Chandonia, Brenner (CR40) 2004; 14
Dreszer (CR56) 2012; 40
Maerkl, Quake (CR9) 2007; 315
Zhu (CR34) 2009; 19
Keilwagen (CR41) 2011; 7
Philippakis, Qureshi, Berger, Bulyk (CR49) 2008; 15
Foat, Morozov, Bussemaker (CR26) 2006; 22
Berger (CR19) 2006; 24
Wei (CR30) 2010; 29
Schneider, Stephens (CR39) 1990; 18
Kinney, Tkacik, Callan (CR44) 2007; 104
Slattery (CR13) 2011; 147
Meng, Brodsky, Wolfe (CR18) 2005; 23
Stolovitzky, Prill, Califano (CR23) 2009; 1158
Tibshirani (CR47) 1996; 58
Parkinson (CR54) 2011; 39
Nutiu (CR8) 2011; 29
Agius, Arvey, Chang, Noble, Leslie (CR10) 2010; 6
Lam, van Bakel, Cote, van der Ven, Hughes (CR50) 2011; 39
Annala, Laurila, Lähdesmäki, Nykter (CR11) 2011; 6
Finn (CR51) 2010; 38
de Boer, Hughes (CR31) 2012; 40
Zhao, Huang, Speed (CR5) 2005; 12
Stormo (CR3) 1990; 183
Sharon, Lubliner, Segal (CR6) 2008; 4
Berger (CR28) 2008; 133
Warren (CR17) 2006; 103
Stormo, Zhao (CR20) 2010; 11
Kulakovskiy, Boeva, Favorov, Makeev (CR32) 2010; 26
Bailey, Elkan (CR42) 1994; 2
Linhart, Halperin, Shamir (CR46) 2008; 18
Berg, von Hippel (CR2) 1987; 193
Stormo, Schneider, Gold, Ehrenfeucht (CR1) 1982; 10
Tanay (CR36) 2006; 16
Prill (CR21) 2010; 5
A Tanay (BFnbt2486_CR36) 2006; 16
G Stolovitzky (BFnbt2486_CR22) 2007; 1115
GH Wei (BFnbt2486_CR30) 2010; 29
H Parkinson (BFnbt2486_CR54) 2011; 39
BC Foat (BFnbt2486_CR26) 2006; 22
GD Stormo (BFnbt2486_CR1) 1982; 10
F Schutz (BFnbt2486_CR43) 2008; 24
GD Stormo (BFnbt2486_CR3) 1990; 183
P Machanick (BFnbt2486_CR33) 2011; 27
X Zhao (BFnbt2486_CR5) 2005; 12
X Meng (BFnbt2486_CR18) 2005; 23
L Chen (BFnbt2486_CR53) 2011; 27
PM Fordyce (BFnbt2486_CR16) 2010; 28
CL Warren (BFnbt2486_CR17) 2006; 103
R Nutiu (BFnbt2486_CR8) 2011; 29
CY Chen (BFnbt2486_CR48) 2008; 105
GE Crooks (BFnbt2486_CR40) 2004; 14
TR Dreszer (BFnbt2486_CR56) 2012; 40
T Barrett (BFnbt2486_CR55) 2011; 39
A Jolma (BFnbt2486_CR14) 2010; 20
GD Stormo (BFnbt2486_CR20) 2010; 11
IV Kulakovskiy (BFnbt2486_CR32) 2010; 26
J Keilwagen (BFnbt2486_CR41) 2011; 7
Y Zhao (BFnbt2486_CR24) 2011; 29
R Tibshirani (BFnbt2486_CR47) 1996; 58
M Annala (BFnbt2486_CR11) 2011; 6
C Zhu (BFnbt2486_CR34) 2009; 19
SR Eddy (BFnbt2486_CR52) 2009; 23
E Segal (BFnbt2486_CR38) 2008; 451
G Stolovitzky (BFnbt2486_CR23) 2009; 1158
TD Schneider (BFnbt2486_CR39) 1990; 18
C Linhart (BFnbt2486_CR46) 2008; 18
R Siddharthan (BFnbt2486_CR4) 2010; 5
M Slattery (BFnbt2486_CR13) 2011; 147
HS Rhee (BFnbt2486_CR29) 2011; 147
Y Zhao (BFnbt2486_CR12) 2009; 5
Y Zhao (BFnbt2486_CR25) 2012; 191
A Zykovich (BFnbt2486_CR15) 2009; 37
RJ Prill (BFnbt2486_CR21) 2010; 5
JB Kinney (BFnbt2486_CR45) 2010; 107
P Agius (BFnbt2486_CR10) 2010; 6
CG de Boer (BFnbt2486_CR31) 2012; 40
AA Philippakis (BFnbt2486_CR49) 2008; 15
E Sharon (BFnbt2486_CR6) 2008; 4
OG Berg (BFnbt2486_CR2) 1987; 193
JB Kinney (BFnbt2486_CR44) 2007; 104
G Badis (BFnbt2486_CR7) 2009; 324
RD Finn (BFnbt2486_CR51) 2010; 38
X Chen (BFnbt2486_CR27) 2007; 23
S John (BFnbt2486_CR35) 1996; 183
MF Berger (BFnbt2486_CR19) 2006; 24
TL Bailey (BFnbt2486_CR42) 1994; 2
SA Jaeger (BFnbt2486_CR37) 2010; 95
KN Lam (BFnbt2486_CR50) 2011; 39
MF Berger (BFnbt2486_CR28) 2008; 133
SJ Maerkl (BFnbt2486_CR9) 2007; 315
References_xml – volume: 183
  start-page: 743
  year: 1996
  end-page: 750
  ident: CR35
  article-title: Importance of low affinity Elf-1 sites in the regulation of lymphoid-specific inducible gene expression
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.183.3.743
– volume: 191
  start-page: 781
  year: 2012
  end-page: 790
  ident: CR25
  article-title: Improved models for transcription factor binding site identification using non-independent interactions
  publication-title: Genetics
  doi: 10.1534/genetics.112.138685
– volume: 183
  start-page: 211
  year: 1990
  end-page: 221
  ident: CR3
  article-title: Consensus patterns in DNA
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(90)83015-2
– volume: 95
  start-page: 185
  year: 2010
  end-page: 195
  ident: CR37
  article-title: Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2010.01.002
– volume: 147
  start-page: 1270
  year: 2011
  end-page: 1282
  ident: CR13
  article-title: Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.053
– volume: 103
  start-page: 867
  year: 2006
  end-page: 872
  ident: CR17
  article-title: Defining the sequence-recognition profile of DNA-binding molecules
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0509843102
– volume: 40
  start-page: D169
  year: 2012
  end-page: D179
  ident: CR31
  article-title: YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr993
– volume: 1158
  start-page: 159
  year: 2009
  end-page: 195
  ident: CR23
  article-title: Lessons from the DREAM2 Challenges
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.04497.x
– volume: 107
  start-page: 9158
  year: 2010
  end-page: 9163
  ident: CR45
  article-title: Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1004290107
– volume: 23
  start-page: i72
  year: 2007
  end-page: i79
  ident: CR27
  article-title: RankMotif.: a motif-search algorithm that accounts for relative ranks of K-mers in binding transcription factors
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm224
– volume: 10
  start-page: 2997
  year: 1982
  end-page: 3011
  ident: CR1
  article-title: Use of the 'Perceptron' algorithm to distinguish translational initiation sites in
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/10.9.2997
– volume: 104
  start-page: 501
  year: 2007
  end-page: 506
  ident: CR44
  article-title: Precise physical models of protein-DNA interaction from high-throughput data
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0609908104
– volume: 24
  start-page: 1399
  year: 2008
  end-page: 1400
  ident: CR43
  article-title: MAMOT: hidden Markov modeling tool
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn201
– volume: 22
  start-page: e141
  year: 2006
  end-page: e149
  ident: CR26
  article-title: Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl223
– volume: 147
  start-page: 1408
  year: 2011
  end-page: 1419
  ident: CR29
  article-title: Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.013
– volume: 40
  start-page: D918
  year: 2012
  end-page: D923
  ident: CR56
  article-title: The UCSC Genome Browser database: extensions and updates 2011
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1055
– volume: 12
  start-page: 894
  year: 2005
  end-page: 906
  ident: CR5
  article-title: Finding short DNA motifs using permuted Markov models
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2005.12.894
– volume: 29
  start-page: 2147
  year: 2010
  end-page: 2160
  ident: CR30
  article-title: Genome-wide analysis of ETS-family DNA-binding and
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.106
– volume: 451
  start-page: 535
  year: 2008
  end-page: 540
  ident: CR38
  article-title: Predicting expression patterns from regulatory sequence in segmentation
  publication-title: Nature
  doi: 10.1038/nature06496
– volume: 4
  start-page: e1000154
  year: 2008
  ident: CR6
  article-title: A feature-based approach to modeling protein-DNA interactions
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000154
– volume: 5
  start-page: e1000590
  year: 2009
  ident: CR12
  article-title: Inferring binding energies from selected binding sites
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000590
– volume: 15
  start-page: 655
  year: 2008
  end-page: 665
  ident: CR49
  article-title: Design of compact, universal DNA microarrays for protein binding microarray experiments
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2007.0114
– volume: 37
  start-page: e151
  year: 2009
  ident: CR15
  article-title: Bind-n-Seq: high-throughput analysis of protein-DNA interactions using massively parallel sequencing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp802
– volume: 14
  start-page: 1188
  year: 2004
  end-page: 1190
  ident: CR40
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Res.
  doi: 10.1101/gr.849004
– volume: 193
  start-page: 723
  year: 1987
  end-page: 743
  ident: CR2
  article-title: Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90354-8
– volume: 16
  start-page: 962
  year: 2006
  end-page: 972
  ident: CR36
  article-title: Extensive low-affinity transcriptional interactions in the yeast genome
  publication-title: Genome Res.
  doi: 10.1101/gr.5113606
– volume: 7
  start-page: e1001070
  year: 2011
  ident: CR41
  article-title: discovery of differentially abundant transcription factor binding sites including their positional preference
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1001070
– volume: 23
  start-page: 205
  year: 2009
  end-page: 211
  ident: CR52
  article-title: A new generation of homology search tools based on probabilistic inference
  publication-title: Genome Inform.
– volume: 324
  start-page: 1720
  year: 2009
  end-page: 1723
  ident: CR7
  article-title: Diversity and complexity in DNA recognition by transcription factors
  publication-title: Science
  doi: 10.1126/science.1162327
– volume: 11
  start-page: 751
  year: 2010
  end-page: 760
  ident: CR20
  article-title: Determining the specificity of protein-DNA interactions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2845
– volume: 5
  start-page: e9202
  year: 2010
  ident: CR21
  article-title: Towards a rigorous assessment of systems biology models: the DREAM3 challenges
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009202
– volume: 27
  start-page: 1447
  year: 2011
  end-page: 1448
  ident: CR53
  article-title: hmChIP: a database and web server for exploring publicly available human and mouse ChIP-seq and ChIP-chip data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr156
– volume: 39
  start-page: D1002
  year: 2011
  end-page: D1004
  ident: CR54
  article-title: ArrayExpress update–an archive of microarray and high-throughput sequencing-based functional genomics experiments
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1040
– volume: 315
  start-page: 233
  year: 2007
  end-page: 237
  ident: CR9
  article-title: A systems approach to measuring the binding energy landscapes of transcription factors
  publication-title: Science
  doi: 10.1126/science.1131007
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR47
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc., B
– volume: 24
  start-page: 1429
  year: 2006
  end-page: 1435
  ident: CR19
  article-title: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1246
– volume: 133
  start-page: 1266
  year: 2008
  end-page: 1276
  ident: CR28
  article-title: Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences
  publication-title: Cell
  doi: 10.1016/j.cell.2008.05.024
– volume: 18
  start-page: 6097
  year: 1990
  end-page: 6100
  ident: CR39
  article-title: Sequence logos: a new way to display consensus sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.20.6097
– volume: 38
  start-page: D211
  year: 2010
  end-page: D222
  ident: CR51
  article-title: The Pfam protein families database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp985
– volume: 26
  start-page: 2622
  year: 2010
  end-page: 2623
  ident: CR32
  article-title: Deep and wide digging for binding motifs in ChIP-Seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq488
– volume: 39
  start-page: 4680
  year: 2011
  end-page: 4690
  ident: CR50
  article-title: Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1303
– volume: 19
  start-page: 556
  year: 2009
  end-page: 566
  ident: CR34
  article-title: High-resolution DNA-binding specificity analysis of yeast transcription factors
  publication-title: Genome Res.
  doi: 10.1101/gr.090233.108
– volume: 27
  start-page: 1696
  year: 2011
  end-page: 1697
  ident: CR33
  article-title: MEME-ChIP: motif analysis of large DNA datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr189
– volume: 105
  start-page: 2527
  year: 2008
  end-page: 2532
  ident: CR48
  article-title: Discovering gapped binding sites of yeast transcription factors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0712188105
– volume: 6
  start-page: e20059
  year: 2011
  ident: CR11
  article-title: A linear model for transcription factor binding affinity prediction in protein binding microarrays
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020059
– volume: 1115
  start-page: 1
  year: 2007
  end-page: 22
  ident: CR22
  article-title: Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1196/annals.1407.021
– volume: 20
  start-page: 861
  year: 2010
  end-page: 873
  ident: CR14
  article-title: Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities
  publication-title: Genome Res.
  doi: 10.1101/gr.100552.109
– volume: 23
  start-page: 988
  year: 2005
  end-page: 994
  ident: CR18
  article-title: A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1120
– volume: 29
  start-page: 659
  year: 2011
  end-page: 664
  ident: CR8
  article-title: Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1882
– volume: 39
  start-page: D1005
  year: 2011
  end-page: D1010
  ident: CR55
  article-title: NCBI GEO: archive for functional genomics data sets–10 years on
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1184
– volume: 5
  start-page: e9722
  year: 2010
  ident: CR4
  article-title: Dinucleotide weight matrices for predicting transcription factor binding sites: generalizing the position weight matrix
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009722
– volume: 28
  start-page: 970
  year: 2010
  end-page: 975
  ident: CR16
  article-title: identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1675
– volume: 29
  start-page: 480
  year: 2011
  end-page: 483
  ident: CR24
  article-title: Quantitative analysis demonstrates most transcription factors require only simple models of specificity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1893
– volume: 6
  start-page: e1000916
  year: 2010
  ident: CR10
  article-title: High resolution models of transcription factor-DNA affinities improve and binding predictions
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000916
– volume: 18
  start-page: 1180
  year: 2008
  end-page: 1189
  ident: CR46
  article-title: Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets
  publication-title: Genome Res.
  doi: 10.1101/gr.076117.108
– volume: 2
  start-page: 28
  year: 1994
  end-page: 36
  ident: CR42
  article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers
  publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol.
– volume: 16
  start-page: 962
  year: 2006
  ident: BFnbt2486_CR36
  publication-title: Genome Res.
  doi: 10.1101/gr.5113606
– volume: 183
  start-page: 743
  year: 1996
  ident: BFnbt2486_CR35
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.183.3.743
– volume: 104
  start-page: 501
  year: 2007
  ident: BFnbt2486_CR44
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0609908104
– volume: 27
  start-page: 1696
  year: 2011
  ident: BFnbt2486_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr189
– volume: 29
  start-page: 480
  year: 2011
  ident: BFnbt2486_CR24
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1893
– volume: 19
  start-page: 556
  year: 2009
  ident: BFnbt2486_CR34
  publication-title: Genome Res.
  doi: 10.1101/gr.090233.108
– volume: 24
  start-page: 1399
  year: 2008
  ident: BFnbt2486_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn201
– volume: 5
  start-page: e9722
  year: 2010
  ident: BFnbt2486_CR4
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009722
– volume: 1115
  start-page: 1
  year: 2007
  ident: BFnbt2486_CR22
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1196/annals.1407.021
– volume: 24
  start-page: 1429
  year: 2006
  ident: BFnbt2486_CR19
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1246
– volume: 29
  start-page: 659
  year: 2011
  ident: BFnbt2486_CR8
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1882
– volume: 39
  start-page: 4680
  year: 2011
  ident: BFnbt2486_CR50
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1303
– volume: 95
  start-page: 185
  year: 2010
  ident: BFnbt2486_CR37
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2010.01.002
– volume: 23
  start-page: 205
  year: 2009
  ident: BFnbt2486_CR52
  publication-title: Genome Inform.
– volume: 15
  start-page: 655
  year: 2008
  ident: BFnbt2486_CR49
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2007.0114
– volume: 6
  start-page: e1000916
  year: 2010
  ident: BFnbt2486_CR10
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000916
– volume: 29
  start-page: 2147
  year: 2010
  ident: BFnbt2486_CR30
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.106
– volume: 451
  start-page: 535
  year: 2008
  ident: BFnbt2486_CR38
  publication-title: Nature
  doi: 10.1038/nature06496
– volume: 12
  start-page: 894
  year: 2005
  ident: BFnbt2486_CR5
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2005.12.894
– volume: 147
  start-page: 1270
  year: 2011
  ident: BFnbt2486_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.053
– volume: 315
  start-page: 233
  year: 2007
  ident: BFnbt2486_CR9
  publication-title: Science
  doi: 10.1126/science.1131007
– volume: 20
  start-page: 861
  year: 2010
  ident: BFnbt2486_CR14
  publication-title: Genome Res.
  doi: 10.1101/gr.100552.109
– volume: 191
  start-page: 781
  year: 2012
  ident: BFnbt2486_CR25
  publication-title: Genetics
  doi: 10.1534/genetics.112.138685
– volume: 105
  start-page: 2527
  year: 2008
  ident: BFnbt2486_CR48
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0712188105
– volume: 2
  start-page: 28
  year: 1994
  ident: BFnbt2486_CR42
  publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol.
– volume: 10
  start-page: 2997
  year: 1982
  ident: BFnbt2486_CR1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/10.9.2997
– volume: 147
  start-page: 1408
  year: 2011
  ident: BFnbt2486_CR29
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.013
– volume: 4
  start-page: e1000154
  year: 2008
  ident: BFnbt2486_CR6
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000154
– volume: 23
  start-page: 988
  year: 2005
  ident: BFnbt2486_CR18
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1120
– volume: 1158
  start-page: 159
  year: 2009
  ident: BFnbt2486_CR23
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.04497.x
– volume: 38
  start-page: D211
  year: 2010
  ident: BFnbt2486_CR51
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp985
– volume: 22
  start-page: e141
  year: 2006
  ident: BFnbt2486_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl223
– volume: 40
  start-page: D169
  year: 2012
  ident: BFnbt2486_CR31
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr993
– volume: 107
  start-page: 9158
  year: 2010
  ident: BFnbt2486_CR45
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1004290107
– volume: 183
  start-page: 211
  year: 1990
  ident: BFnbt2486_CR3
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(90)83015-2
– volume: 40
  start-page: D918
  year: 2012
  ident: BFnbt2486_CR56
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1055
– volume: 27
  start-page: 1447
  year: 2011
  ident: BFnbt2486_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr156
– volume: 26
  start-page: 2622
  year: 2010
  ident: BFnbt2486_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq488
– volume: 23
  start-page: i72
  year: 2007
  ident: BFnbt2486_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm224
– volume: 6
  start-page: e20059
  year: 2011
  ident: BFnbt2486_CR11
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020059
– volume: 193
  start-page: 723
  year: 1987
  ident: BFnbt2486_CR2
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90354-8
– volume: 37
  start-page: e151
  year: 2009
  ident: BFnbt2486_CR15
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp802
– volume: 28
  start-page: 970
  year: 2010
  ident: BFnbt2486_CR16
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1675
– volume: 18
  start-page: 6097
  year: 1990
  ident: BFnbt2486_CR39
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.20.6097
– volume: 5
  start-page: e9202
  year: 2010
  ident: BFnbt2486_CR21
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009202
– volume: 58
  start-page: 267
  year: 1996
  ident: BFnbt2486_CR47
  publication-title: J. R. Stat. Soc., B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 14
  start-page: 1188
  year: 2004
  ident: BFnbt2486_CR40
  publication-title: Genome Res.
  doi: 10.1101/gr.849004
– volume: 11
  start-page: 751
  year: 2010
  ident: BFnbt2486_CR20
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2845
– volume: 18
  start-page: 1180
  year: 2008
  ident: BFnbt2486_CR46
  publication-title: Genome Res.
  doi: 10.1101/gr.076117.108
– volume: 103
  start-page: 867
  year: 2006
  ident: BFnbt2486_CR17
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0509843102
– volume: 5
  start-page: e1000590
  year: 2009
  ident: BFnbt2486_CR12
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000590
– volume: 7
  start-page: e1001070
  year: 2011
  ident: BFnbt2486_CR41
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1001070
– volume: 39
  start-page: D1002
  year: 2011
  ident: BFnbt2486_CR54
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1040
– volume: 39
  start-page: D1005
  year: 2011
  ident: BFnbt2486_CR55
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1184
– volume: 133
  start-page: 1266
  year: 2008
  ident: BFnbt2486_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2008.05.024
– volume: 324
  start-page: 1720
  year: 2009
  ident: BFnbt2486_CR7
  publication-title: Science
  doi: 10.1126/science.1162327
SSID ssj0006466
Score 2.5559502
Snippet The most comprehensive analysis to date of models of transcription-factor binding specificity reveals the best methods for predicting in vivo binding from in...
Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins....
Genomic analyses often involve scanning for potential transcription-factor (TF) binding sites using models of the sequence specificity of DNA binding proteins....
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126
SubjectTerms 631/114
631/45/612/822
631/61/191
Agriculture
Algorithms
analysis
Animals
Binding sites
Bioinformatics
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Computational Biology
Deoxyribonucleic acid
DNA
DNA binding proteins
DNA sequencing
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
Genome
Genomics
Health aspects
Life Sciences
Mice
Nucleotide Motifs - genetics
Nucleotide sequencing
Physiological aspects
Position-Specific Scoring Matrices
Protein Array Analysis
Proteins
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Title Evaluation of methods for modeling transcription factor sequence specificity
URI https://link.springer.com/article/10.1038/nbt.2486
https://www.ncbi.nlm.nih.gov/pubmed/23354101
https://www.proquest.com/docview/1285152181
https://www.proquest.com/docview/1285465292
https://www.proquest.com/docview/1291609600
https://pubmed.ncbi.nlm.nih.gov/PMC3687085
Volume 31
WOSCitedRecordID wos000315322100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M7P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M2O
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB5sq6IP_rj6I1qPVZQ-xSbZJLt5kipXFOz1aFXuLSSbjRYkqU1O8L93ZrOJl0OK4MvCsd9BNrOZmd2d_T6Al57MtRdLRczH2g0xYrpJoX03zyNMT0JFawAjNiHmc7lcJgu74dbYssreJxpHXdSK9sgP0I9GFGuk_-bih0uqUXS6aiU0tmCHWBK4Kd1bDJ447s4qfU9SeWUU9-SzXB5Uefs6COkG9Vo42nTKa1Fps2Jy49jURKOju_87jntwx-ah7LCbOPfhmq4mcKNTpvw1gdtrPIUTuHlsT-B34eNsoAdndck6AeqGYerLjKgO4llL8a_3RqxT9GF9zTaju51Un4Tp_wP4fDT79O69axUZXIWZTEsWTBSPtUwincVFrmLFBQ5HCFGKSMe-Dr2CFj1-6Yda6MATOQ91gUmdyBIv4w9hu6or_RhYmWvE8UxlPAlVqGQWKaHQgQS81DKPHNjvDZMqS1dOqhnfU3NszmWKJkzJhA48H5AXHUXHXzCvyLapVfbEpqG9j-Zrtmqa9JAbpVJcCjrwwuCIGaOi0psO8OHkyz-Azk5HoH0LKmt8bpXZ6w44emLcGiH3Rkj8vtW4u59IqfUvTfpnFuHoh276J9XMVbpedZgwjoIkuAqDywNaxXoOPOqm-PAOA86jED22A2I0-QcAMZOPe6rzb4ahnMcYBiS9qP4zWXv0DdM8uXp8T-FWYBRIqIJoD7bby5V-BtfVz_a8uZzCllgK08op7LydzRen-Os4ODHtYmr8gWnPfgO8b2SX
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAgUOPJZXoIBBVD2lTeIkdg4IVdCqq26XCgrqLSSOA5VQUposqH-K38iM82CzQhWXHrjsxd9GtjPPeDwfwEtHptoJpaLOx9r20WPaUaZdO00DDE98RTmAIZsQ06k8OooOluBXdxeGyio7m2gMdVYq-ka-iXY0IF8j3dcn321ijaLT1Y5CoxGLPX32E1O26tX4Lb7fNc_b2T58s2u3rAK2Qm9c0ywixUMto0AnYZaqUHGBjxZC5CLQoat9J6PA3c1dXwvtOSLlvs4wMBFJ5CQcn3sJLmMY4UlTKnjQW_6wORt1HUnlnEHYNbvlcrNI6w3Ppxvbc-5v0QnMecHFCs2FY1rj_XZu_W_7dhtutnE222oU4w4s6WIEVxvmzbMR3JjrwziClf22wuAuTLb79ueszFlDsF0xDO2ZIQ1CPKvJv3fWljWMRayrSWd0d5XqrzC9uQcfL2SN92G5KAv9EFieasTxRCU88pWvZBIoodBAejzXMg0sWO8EIVZtO3ZiBfkWm7IALmMUmZhExoLnPfKkaUHyF8wayVLcMpfiT0Xfdqovyayq4i1umFgx1bXghcFR54-CSosawPjdp38AfXg_AK23oLzEeaukvc6Bq6eOYgPk6gCJ9ksNhzvBjVv7WcV_pBZX3w_TP6kmsNDlrMH4YeBF3nkYTH8oS3cseNCoVL-HHueBjx7JAjFQth5AndeHI8XxV9OBnYfo5iRtVKeWc1NfeDWPzl_fM7i2e7g_iSfj6d5juO4ZthWqllqF5fp0pp_AFfWjPq5Onxpbw-DzRSvpbyb1uek
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAhUceCyvQAGDqHoKm8RJ7BwQqmhXrFqWFS_1FhLHgUooKU0W1L_Gr2PGebBZoYpLD1z24m93bWee8Xg-gGeOTLUTSkWdj7Xto8e0o0y7dpoGGJ74inIAQzYhZjN5eBjN1-BXdxeGyio7m2gMdVYqekc-RjsakK-R7jhvyyLmu5OXx99tYpCik9aOTqMRkX19-hPTt-rFdBef9ZbnTfY-vHpttwwDtkLPXNOMIsVDLaNAJ2GWqlBxgX8jhMhFoENX-05GQbybu74W2nNEyn2dYZAikshJOP7uBbgoqGm5KRuc914gbM5JXUdSaWcQdo1vuRwXaf3c8-n29pIrXHUISx5xtVpz5cjWeMLJ9f95D2_AtTb-ZjuNwtyENV2M4HLDyHk6gqtL_RlHsPGmrTy4BQd7fVt0VuasId6uGIb8zJAJIZ7V5Pc7K8waJiPW1aozutNKdVmY9tyGj-eyxjuwXpSFvgcsTzXieKISHvnKVzIJlFBoOD2ea5kGFmx3QhGrtk07sYV8i025AJcxik9M4mPBkx553LQm-Qtmi-QqbhlN8aOidz7Vl2RRVfEONwytmAJb8NTgqCNIQXLRAKZvP_0D6P27AWi7BeUlzlsl7TUPXD11GhsgNwdItGtqONwJcdza1Sr-I8G4-n6Yvkm1goUuFw3GDwMv8s7CYFpE2btjwd1Gvfo99DgPfPRUFoiB4vUA6sg-HCmOvprO7DxE9ydpozoVXZr6yqO5f_b6HsMG6mZ8MJ3tP4ArniFhoSKqTVivTxb6IVxSP-qj6uSRMTsMPp-3jv4GuiPCpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+methods+for+modeling+transcription+factor+sequence+specificity&rft.jtitle=Nature+biotechnology&rft.au=Weirauch%2C+Matthew+T&rft.au=Cote%2C+Atina&rft.au=Norel%2C+Raquel&rft.au=Annala%2C+Matti&rft.date=2013-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.volume=31&rft.issue=2&rft.spage=126&rft_id=info:doi/10.1038%2Fnbt.2486&rft.externalDBID=N95&rft.externalDocID=A320857625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon