Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation
The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the...
Gespeichert in:
| Veröffentlicht in: | Computers in biology and medicine Jg. 69; S. 166 - 180 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article Verlag |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Ltd
01.02.2016
Elsevier Limited Elsevier |
| Schlagworte: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier–Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery.
•Unsteady flow in the human large airways during a rapid inhalation is proposed.•The finest mesh contained 350 million elements.•Thanks to the high fidelity simulations, turbulence and transitional regime are observed. |
|---|---|
| AbstractList | The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier–Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery.
•Unsteady flow in the human large airways during a rapid inhalation is proposed.•The finest mesh contained 350 million elements.•Thanks to the high fidelity simulations, turbulence and transitional regime are observed. The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier-Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery. The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier–Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery. We acknowledge PRACE for awarding us access to resource FERMI based in Italy at Bologna hosted by Cineca. This work was financially supported by the PRACE project Pra04 693 (2011050693 to the Fourth PRACE regular call). The second author gratefully acknowledges support from project ‘MatComPhys’ under the European Research Executive Agency FP7-PEOPLE-2011- IEF framework. The third author was supported by the Engineering and Physical Sciences Research Council [grant number EP/ M506345/1]. Peer Reviewed Abstract The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier–Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery. The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier-Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery.The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier-Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery. |
| Author | Calmet, Hadrien Vázquez, Mariano Gambaruto, Alberto M. Bates, Alister J. Houzeaux, Guillaume Doorly, Denis J. |
| Author_xml | – sequence: 1 givenname: Hadrien surname: Calmet fullname: Calmet, Hadrien email: hadrien.calmet@bsc.es organization: Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Edificio Nexus II – Planta 3 C/ JORDI GIRONA, 29 08034 Barcelona, Spain – sequence: 2 givenname: Alberto M. orcidid: 0000-0002-3291-2827 surname: Gambaruto fullname: Gambaruto, Alberto M. organization: Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Edificio Nexus II – Planta 3 C/ JORDI GIRONA, 29 08034 Barcelona, Spain – sequence: 3 givenname: Alister J. surname: Bates fullname: Bates, Alister J. organization: Imperial College London, Department of Aeronautics, Exhibition Road, London SW7 2AZ, UK – sequence: 4 givenname: Mariano surname: Vázquez fullname: Vázquez, Mariano organization: Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Edificio Nexus II – Planta 3 C/ JORDI GIRONA, 29 08034 Barcelona, Spain – sequence: 5 givenname: Guillaume surname: Houzeaux fullname: Houzeaux, Guillaume organization: Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Edificio Nexus II – Planta 3 C/ JORDI GIRONA, 29 08034 Barcelona, Spain – sequence: 6 givenname: Denis J. surname: Doorly fullname: Doorly, Denis J. organization: Imperial College London, Department of Aeronautics, Exhibition Road, London SW7 2AZ, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26773939$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUs2O0zAYjNAitrvwCsgSFy4p_kli57ICuiwgVeIAnC3H_tK6JHaxE6Bvv07bVaVKSD1Ylq2Z8eeZucmunHeQZYjgOcGkereZa99vG-t7MHOKSTkndI4xe5bNiOB1jktWXGUzjAnOC0HL6-wmxg3GuMAMv8iuacU5q1k9y_4tVVhBHrXqAC0e7lG0_dipwXoXkW_RsAY0BOWina5Uh5QzaBhDM3bgBhRgZXtArQ97ZDeJofXYK4eUDX_VLiIzButWKKitNci6tTqov8yet6qL8Oq432Y_Hz79WHzJl98-f118WOa6YvWQK14bQduGG640aCFYVQjTCGEYL7UguMItLsqW19yQmuhGiRbTRplSEW2gYbcZOejqOGoZQEPQapBe2dNhWhRzKmlVloIlztsDZxv87xHiIHsbNXSdcuDHKAmvRMlpiuISaEkIo3hSfXMG3fgxJE8PKFbQophQr4-osUnpym2wvQo7-RRZAtwdPxR8jAFaqe2wtzTlZDtJsJw6Ijfy1BE5dUQSKvF-DnEm8PTGBdSPByqkxP5YCDJqC06DscnMQRpvLxG5OxPRnXU2NfAX7CCeTJExEeT3qcVTiUmZ2EJMnr__v8BlMzwCWZAH_g |
| CODEN | CBMDAW |
| CitedBy_id | crossref_primary_10_1016_j_resp_2017_06_005 crossref_primary_10_1016_j_jbiomech_2020_110200 crossref_primary_10_1016_j_jaerosci_2017_10_008 crossref_primary_10_1016_j_actbio_2021_04_030 crossref_primary_10_3390_atmos11020137 crossref_primary_10_1016_j_compfluid_2017_08_003 crossref_primary_10_1016_j_compbiomed_2020_104099 crossref_primary_10_1016_j_jbiomech_2019_109434 crossref_primary_10_1016_j_mehy_2025_111757 crossref_primary_10_1038_s41598_020_80241_0 crossref_primary_10_1016_j_heliyon_2022_e10039 crossref_primary_10_1016_j_ijpharm_2023_123098 crossref_primary_10_1016_j_jaerosci_2022_106040 crossref_primary_10_1016_j_compbiomed_2018_06_029 crossref_primary_10_1371_journal_pone_0221330 crossref_primary_10_1016_j_clinbiomech_2017_10_006 crossref_primary_10_1080_10255842_2020_1833865 crossref_primary_10_3390_math11010219 crossref_primary_10_1007_s00348_025_03971_9 crossref_primary_10_1007_s11869_025_01742_3 crossref_primary_10_1080_10618562_2019_1617856 crossref_primary_10_1007_s10494_017_9876_0 crossref_primary_10_1002_cnm_3144 crossref_primary_10_1016_j_compbiomed_2018_05_016 crossref_primary_10_1137_17M1138868 crossref_primary_10_1164_rccm_202208_1574IM crossref_primary_10_1007_s10494_018_9894_6 crossref_primary_10_1007_s00607_021_00976_0 crossref_primary_10_1016_j_jbiomech_2018_10_028 crossref_primary_10_1016_j_jaerosci_2018_05_008 crossref_primary_10_1080_10255842_2020_1819256 crossref_primary_10_1097_SCS_0000000000009487 crossref_primary_10_1063_5_0072148 crossref_primary_10_1016_j_future_2020_06_033 crossref_primary_10_1016_j_compfluid_2018_01_040 crossref_primary_10_1016_j_jaerosci_2018_11_001 crossref_primary_10_1016_j_clinbiomech_2017_10_018 crossref_primary_10_1007_s10494_020_00160_y crossref_primary_10_1016_j_clinbiomech_2022_105790 crossref_primary_10_1002_cnm_3112 crossref_primary_10_1016_j_compbiomed_2017_05_006 crossref_primary_10_1152_japplphysiol_00741_2024 crossref_primary_10_1007_s10489_021_02808_2 crossref_primary_10_1016_j_ijengsci_2024_104090 crossref_primary_10_1016_j_compbiomed_2024_108566 crossref_primary_10_1115_1_4069664 crossref_primary_10_1016_j_jbiomech_2020_109715 crossref_primary_10_1007_s42452_025_06617_x crossref_primary_10_3390_bioengineering11030239 crossref_primary_10_1017_flo_2024_3 crossref_primary_10_1016_j_compbiomed_2025_110449 crossref_primary_10_1016_j_clinbiomech_2017_10_011 crossref_primary_10_1016_j_compbiomed_2018_09_010 crossref_primary_10_1098_rsos_191752 crossref_primary_10_1186_s12938_019_0722_6 crossref_primary_10_3389_fphys_2018_00388 crossref_primary_10_1016_j_cmpb_2023_107818 crossref_primary_10_1080_10618562_2016_1227070 crossref_primary_10_1016_j_compbiomed_2020_103816 crossref_primary_10_1016_j_compfluid_2018_03_016 crossref_primary_10_1002_cnm_3649 crossref_primary_10_1016_j_ijpharm_2022_122118 crossref_primary_10_1016_j_cma_2016_08_010 crossref_primary_10_1007_s10439_023_03419_3 crossref_primary_10_1016_j_ejps_2021_105959 crossref_primary_10_1088_1742_6596_2899_1_012009 crossref_primary_10_1007_s11517_021_02446_3 crossref_primary_10_1016_j_euromechflu_2024_01_003 crossref_primary_10_1016_j_resp_2016_09_002 crossref_primary_10_32604_cmes_2023_022716 crossref_primary_10_1088_1757_899X_1080_1_012039 crossref_primary_10_1007_s11517_022_02715_9 crossref_primary_10_1007_s10494_020_00156_8 crossref_primary_10_1016_j_resp_2019_04_012 crossref_primary_10_3390_fluids10070168 crossref_primary_10_1007_s00707_022_03377_2 crossref_primary_10_1007_s10439_019_02410_1 crossref_primary_10_1371_journal_pone_0256460 crossref_primary_10_1016_j_jcp_2025_114245 crossref_primary_10_1016_j_ijheatfluidflow_2020_108573 crossref_primary_10_1177_1094342019842919 |
| Cites_doi | 10.1016/j.compbiomed.2013.09.003 10.1146/annurev.fluid.34.082901.144919 10.1016/j.resp.2007.02.006 10.1063/1.3247170 10.1098/rsif.2014.0880 10.1098/rsif.2009.0306 10.1016/j.cma.2014.10.041 10.1002/alr.20021 10.1017/S0022112094001370 10.1016/0021-9290(74)90028-1 10.1109/ICCV.1995.466848 10.1017/S0022112007005848 10.1002/cnm.1630040603 10.1002/nme.2932 10.1146/annurev.fl.23.010191.003125 10.1016/j.jaerosci.2013.09.004 10.1002/nme.2986 10.1016/j.resp.2008.07.027 10.1115/1.3148202 10.1093/chemse/bjj008 10.1108/09615530310456796 10.1098/rsta.2008.0083 10.1016/j.compfluid.2011.01.017 10.1016/j.jaerosci.2008.06.002 10.1016/j.compfluid.2012.04.017 10.1016/j.jcp.2010.03.029 10.1007/s10494-007-9113-3 10.1016/j.jaerosci.2007.03.003 10.1152/japplphysiol.01049.2005 |
| ContentType | Journal Article Publication |
| Contributor | Barcelona Supercomputing Center |
| Contributor_xml | – sequence: 1 fullname: Barcelona Supercomputing Center |
| Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Feb 2016 Attribution-NonCommercial-NoDerivs 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Feb 2016 – notice: Attribution-NonCommercial-NoDerivs 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7QO XX2 |
| DOI | 10.1016/j.compbiomed.2015.12.003 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database ProQuest research library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Recercat |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE Engineering Research Database Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 180 |
| ExternalDocumentID | oai_recercat_cat_2072_265583 3953820121 26773939 10_1016_j_compbiomed_2015_12_003 S0010482515003881 1_s2_0_S0010482515003881 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ T5K UKHRP WOW Z5R ~G- ~HD .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW SV3 TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR 9DU AAYXX AFFHD AGQPQ AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7QO XX2 |
| ID | FETCH-LOGICAL-c639t-a79d82fb7d7acec883648db88d375c81060f045f797d191cba8f02bad5a1cdeb3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371188400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Fri Nov 07 13:45:19 EST 2025 Tue Oct 07 09:40:01 EDT 2025 Sun Nov 09 10:31:18 EST 2025 Sat Nov 29 14:31:49 EST 2025 Thu Apr 03 07:11:11 EDT 2025 Sat Nov 29 05:31:11 EST 2025 Tue Nov 18 22:16:23 EST 2025 Fri Feb 23 02:24:56 EST 2024 Sun Feb 23 10:19:13 EST 2025 Tue Oct 14 19:33:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CFD Airways Respiratory airflow Turbulence Inspiratory flow |
| Language | English |
| License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c639t-a79d82fb7d7acec883648db88d375c81060f045f797d191cba8f02bad5a1cdeb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3291-2827 |
| OpenAccessLink | https://recercat.cat/handle/2072/265583 |
| PMID | 26773939 |
| PQID | 1765342443 |
| PQPubID | 1226355 |
| PageCount | 15 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_265583 proquest_miscellaneous_1768572101 proquest_miscellaneous_1765113203 proquest_journals_1765342443 pubmed_primary_26773939 crossref_citationtrail_10_1016_j_compbiomed_2015_12_003 crossref_primary_10_1016_j_compbiomed_2015_12_003 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2015_12_003 elsevier_clinicalkeyesjournals_1_s2_0_S0010482515003881 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2015_12_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-02-01 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited – name: Elsevier |
| References | G. Karypis, Metis: serial graph partitioning and fill-reducing matrix ordering, Available at Rennie, Gouder, Taylor, Tolley, Schroter, Doorly (bib30) 2011; 1 Jayaraju, Brouns, Verbanck, Lacor (bib32) 2007; 38 Jayaraju, Brouns, Lacor, Belkassem, Verbanck (bib6) 2008; 39 Gambaruto, Taylor, Doorly (bib31) 2009; 59 Soto, Löhner, Camelli (bib27) 2003; 13 Saddoughi, Veeravalli (bib35) 1994; 268 G. Taubin, Curve and surface smoothing without shrinkage, in: Proceedings of the Fifth International Conference on Computer Vision, IEEE, MIT, Cambridge, MA, USA, 1995, pp. 852–857. Alya System, Large scale computational mechanics Pope (bib34) 2000 Saksono, Nithiarasu, Sazonov, Yeo (bib9) 2011; 87 Zhao, Dalton, Yang, Scherer (bib1) 2006; 31 Elad, Naftali, Rosenfeld, Wolf (bib11) 2006; 100 Houzeaux, Principe (bib24) 2008; 22 A.J. Bates, D.J. Doorly, R. Cetto, H. Calmet, A.M. Gambaruto, N.S. Tolley, G. Houzeaux, R.C. Schroter, Dynamics of airflow in a short inhalation, J. R. Soc. Interface (2015) Choi, Tawhai, Hoffman, Lin (bib12) 2009; 21 Piomelli, Balaras (bib20) 2002; 34 Colomés, Badia, Codina, Principe (bib23) 2015; 285 Lintermann, Meinke, Schröder (bib4) 2013; 43 2000. Lin, Tawhai, McLennan, Hoffman (bib10) 2007; 157 Houzeaux, de la Cruz, Owen, Vázquez (bib21) 2013; 80 Houzeaux, Aubry, Vázquez (bib25) 2011; 44 Tu, Inthavong, Ahmadi (bib37) 2012 Craven, Paterson, Settles, Lawson (bib14) 2009; 131 ANSYS Meshing User׳s Guide Taylor, Doorly, Schroter (bib5) 2010; 7 Ball, Uddin, Pollard (bib7) 2008; 81 Varghese, Frankel, Fischer (bib13) 2007; 582 . Bang, William (bib36) 1974; 7 1995–2015. Lohner, Mut, Cebral, Aubry, Houzeaux (bib26) 2011; 87 Doorly, Taylor, Schroter (bib3) 2008; 163 Doorly, Taylor, Gambaruto, Schroter, Tolley (bib2) 2008; 366 Robinson (bib19) 1991; 23 Ghahramani, Abouali, Emdad, Ahmadi (bib8) 2014; 67 Field (bib17) 1988; 4 M. Folk, A. Cheng, K. Yates, Hdf5: a file format and i/o library for high performance computing applications, in: Proceedings of Supercomputing, vol. 99, 1999, pp. 5–33. Gambaruto, Doorly, Yamaguchi (bib33) 2010; 229 Colomés (10.1016/j.compbiomed.2015.12.003_bib23) 2015; 285 Varghese (10.1016/j.compbiomed.2015.12.003_bib13) 2007; 582 Lin (10.1016/j.compbiomed.2015.12.003_bib10) 2007; 157 Pope (10.1016/j.compbiomed.2015.12.003_bib34) 2000 Tu (10.1016/j.compbiomed.2015.12.003_bib37) 2012 Zhao (10.1016/j.compbiomed.2015.12.003_bib1) 2006; 31 Saksono (10.1016/j.compbiomed.2015.12.003_bib9) 2011; 87 Elad (10.1016/j.compbiomed.2015.12.003_bib11) 2006; 100 Doorly (10.1016/j.compbiomed.2015.12.003_bib3) 2008; 163 Bang (10.1016/j.compbiomed.2015.12.003_bib36) 1974; 7 Gambaruto (10.1016/j.compbiomed.2015.12.003_bib33) 2010; 229 10.1016/j.compbiomed.2015.12.003_bib28 Taylor (10.1016/j.compbiomed.2015.12.003_bib5) 2010; 7 10.1016/j.compbiomed.2015.12.003_bib29 Jayaraju (10.1016/j.compbiomed.2015.12.003_bib32) 2007; 38 Doorly (10.1016/j.compbiomed.2015.12.003_bib2) 2008; 366 10.1016/j.compbiomed.2015.12.003_bib22 Ghahramani (10.1016/j.compbiomed.2015.12.003_bib8) 2014; 67 Lohner (10.1016/j.compbiomed.2015.12.003_bib26) 2011; 87 Robinson (10.1016/j.compbiomed.2015.12.003_bib19) 1991; 23 Rennie (10.1016/j.compbiomed.2015.12.003_bib30) 2011; 1 Ball (10.1016/j.compbiomed.2015.12.003_bib7) 2008; 81 Gambaruto (10.1016/j.compbiomed.2015.12.003_bib31) 2009; 59 Lintermann (10.1016/j.compbiomed.2015.12.003_bib4) 2013; 43 Craven (10.1016/j.compbiomed.2015.12.003_bib14) 2009; 131 Houzeaux (10.1016/j.compbiomed.2015.12.003_bib24) 2008; 22 Piomelli (10.1016/j.compbiomed.2015.12.003_bib20) 2002; 34 Jayaraju (10.1016/j.compbiomed.2015.12.003_bib6) 2008; 39 Saddoughi (10.1016/j.compbiomed.2015.12.003_bib35) 1994; 268 Field (10.1016/j.compbiomed.2015.12.003_bib17) 1988; 4 Houzeaux (10.1016/j.compbiomed.2015.12.003_bib25) 2011; 44 10.1016/j.compbiomed.2015.12.003_bib16 Choi (10.1016/j.compbiomed.2015.12.003_bib12) 2009; 21 10.1016/j.compbiomed.2015.12.003_bib18 Houzeaux (10.1016/j.compbiomed.2015.12.003_bib21) 2013; 80 Soto (10.1016/j.compbiomed.2015.12.003_bib27) 2003; 13 10.1016/j.compbiomed.2015.12.003_bib15 |
| References_xml | – volume: 87 start-page: 2 year: 2011 end-page: 14 ident: bib26 article-title: Deflated preconditioned conjugate gradient solvers for the pressure-poisson equation: extensions and improvements publication-title: Int. J. Numer. Methods Eng. – reference: Alya System, Large scale computational mechanics, 〈 – volume: 38 start-page: 494 year: 2007 end-page: 508 ident: bib32 article-title: Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids publication-title: J. Aerosol Sci. – volume: 44 start-page: 297 year: 2011 end-page: 313 ident: bib25 article-title: Extension of fractional step techniques for incompressible flows: the preconditioned Orthomin(1) for the pressure Schur complement publication-title: Comput. Fluids – volume: 81 start-page: 155 year: 2008 end-page: 188 ident: bib7 article-title: Mean flow structures inside the human upper airway publication-title: Flow Turbul. Combust. – volume: 21 year: 2009 ident: bib12 article-title: On inter- and intra-subject variabilities of airflow in the human lungs publication-title: Phys. Fluids – volume: 39 start-page: 862 year: 2008 end-page: 875 ident: bib6 article-title: Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth–throat publication-title: J. Aerosol Sci. – volume: 13 start-page: 133 year: 2003 end-page: 147 ident: bib27 article-title: A linelet preconditioner for incompressible flow solvers publication-title: Int. J. Numer. Methods Heat Fluid Flow – reference: ANSYS Meshing User׳s Guide, 〈 – reference: G. Karypis, Metis: serial graph partitioning and fill-reducing matrix ordering, Available at: 〈 – volume: 59 start-page: 1259 year: 2009 end-page: 1283 ident: bib31 article-title: Modelling nasal airflow using a fourier descriptor representation of geometry publication-title: IJNMF – volume: 23 start-page: 601 year: 1991 end-page: 639 ident: bib19 article-title: Coherent motions in the turbulent boundary layer publication-title: Ann. Rev. Fluid Mech. – reference: M. Folk, A. Cheng, K. Yates, Hdf5: a file format and i/o library for high performance computing applications, in: Proceedings of Supercomputing, vol. 99, 1999, pp. 5–33. – volume: 268 start-page: 333 year: 1994 end-page: 372 ident: bib35 article-title: Local isotropy in turbulent boundary layers at high Reynolds number publication-title: J. Fluid Mech. – volume: 34 start-page: 349 year: 2002 end-page: 374 ident: bib20 article-title: Wall-layer models for large-eddy simulations publication-title: Ann. Rev. Fluid Mech. – year: 2012 ident: bib37 article-title: Computational Fluid and Particle Dynamics in the Human Respiratory System – reference: G. Taubin, Curve and surface smoothing without shrinkage, in: Proceedings of the Fifth International Conference on Computer Vision, IEEE, MIT, Cambridge, MA, USA, 1995, pp. 852–857. – volume: 163 start-page: 100 year: 2008 end-page: 110 ident: bib3 article-title: Mechanics of airflow in the human nasal airways publication-title: Respir. Physiol. Neurobiol. – volume: 43 start-page: 1833 year: 2013 end-page: 1852 ident: bib4 article-title: Fluid mechanics based classification of the respiratory efficiency of several nasal cavities publication-title: Comput. Biol. Med. – volume: 285 start-page: 32 year: 2015 end-page: 63 ident: bib23 article-title: Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows publication-title: Comput. Methods Appl. Mech. Eng. – year: 2000 ident: bib34 article-title: Turbulent Flows – volume: 131 start-page: 091002 year: 2009 ident: bib14 article-title: Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow publication-title: J. Biomech. Eng. – volume: 4 start-page: 709 year: 1988 end-page: 712 ident: bib17 article-title: Laplacian smoothing and Delaunay triangulations publication-title: Commun. Appl. Numer. Methods – reference: 〉, 1995–2015. – reference: A.J. Bates, D.J. Doorly, R. Cetto, H. Calmet, A.M. Gambaruto, N.S. Tolley, G. Houzeaux, R.C. Schroter, Dynamics of airflow in a short inhalation, J. R. Soc. Interface (2015), – volume: 87 start-page: 96 year: 2011 end-page: 114 ident: bib9 article-title: Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity publication-title: Int. J. Numer. Methods Eng. – volume: 100 start-page: 1003 year: 2006 end-page: 1010 ident: bib11 article-title: Physical stresses at the air-wall interface of the human nasal cavity during breathing publication-title: J. Appl. Physiol. – volume: 1 start-page: 128 year: 2011 end-page: 135 ident: bib30 article-title: Nasal inspiratory flow: at rest and sniffing publication-title: Int. Forum Allergy Rhinol. – volume: 31 start-page: 107 year: 2006 end-page: 118 ident: bib1 article-title: Numerical modelling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose publication-title: Chem. Senses – volume: 582 start-page: 253 year: 2007 end-page: 280 ident: bib13 article-title: Direct numerical simulation of stenotic flows. Part 1, steady flow publication-title: J. Fluid Mech. – reference: . – volume: 229 start-page: 5339 year: 2010 end-page: 5356 ident: bib33 article-title: Wall shear stress and near-wall convective transport: comparisons with vascular remodelling in a peripheral graft anastomosis publication-title: J. Comput. Phys. – volume: 67 start-page: 188 year: 2014 end-page: 206 ident: bib8 article-title: Numerical analysis of stochastic dispersion of micro-particles in turbulent flows in a realistic model of human nasal/upper airway publication-title: J. Aerosol Sci. – volume: 7 start-page: 335 year: 1974 end-page: 342 ident: bib36 article-title: Experimental measurements of turbulence spectra distal to stenoses publication-title: J. Biomech. – volume: 366 start-page: 3225 year: 2008 end-page: 3246 ident: bib2 article-title: Nasal architecture: form and flow publication-title: Philos. Trans. R. Soc. A – reference: 〉, 2000. – volume: 157 start-page: 295 year: 2007 end-page: 309 ident: bib10 article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways publication-title: Respir. Physiol. Neurobiol. – volume: 7 start-page: 515 year: 2010 end-page: 527 ident: bib5 article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow publication-title: J. R. Soc. Interface – volume: 80 start-page: 142 year: 2013 end-page: 151 ident: bib21 article-title: Parallel uniform mesh multiplication applied to a Navier–Stokes solver publication-title: Comput. Fluids – volume: 22 start-page: 135 year: 2008 end-page: 152 ident: bib24 article-title: A variational subgrid scale model for transient incompressible flows publication-title: IJCFD – ident: 10.1016/j.compbiomed.2015.12.003_bib28 – volume: 43 start-page: 1833 year: 2013 ident: 10.1016/j.compbiomed.2015.12.003_bib4 article-title: Fluid mechanics based classification of the respiratory efficiency of several nasal cavities publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.09.003 – volume: 34 start-page: 349 year: 2002 ident: 10.1016/j.compbiomed.2015.12.003_bib20 article-title: Wall-layer models for large-eddy simulations publication-title: Ann. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.34.082901.144919 – volume: 157 start-page: 295 year: 2007 ident: 10.1016/j.compbiomed.2015.12.003_bib10 article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2007.02.006 – volume: 21 year: 2009 ident: 10.1016/j.compbiomed.2015.12.003_bib12 article-title: On inter- and intra-subject variabilities of airflow in the human lungs publication-title: Phys. Fluids doi: 10.1063/1.3247170 – ident: 10.1016/j.compbiomed.2015.12.003_bib15 doi: 10.1098/rsif.2014.0880 – volume: 7 start-page: 515 year: 2010 ident: 10.1016/j.compbiomed.2015.12.003_bib5 article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2009.0306 – ident: 10.1016/j.compbiomed.2015.12.003_bib22 – volume: 285 start-page: 32 year: 2015 ident: 10.1016/j.compbiomed.2015.12.003_bib23 article-title: Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.10.041 – volume: 1 start-page: 128 year: 2011 ident: 10.1016/j.compbiomed.2015.12.003_bib30 article-title: Nasal inspiratory flow: at rest and sniffing publication-title: Int. Forum Allergy Rhinol. doi: 10.1002/alr.20021 – volume: 268 start-page: 333 year: 1994 ident: 10.1016/j.compbiomed.2015.12.003_bib35 article-title: Local isotropy in turbulent boundary layers at high Reynolds number publication-title: J. Fluid Mech. doi: 10.1017/S0022112094001370 – volume: 7 start-page: 335 year: 1974 ident: 10.1016/j.compbiomed.2015.12.003_bib36 article-title: Experimental measurements of turbulence spectra distal to stenoses publication-title: J. Biomech. doi: 10.1016/0021-9290(74)90028-1 – ident: 10.1016/j.compbiomed.2015.12.003_bib16 doi: 10.1109/ICCV.1995.466848 – volume: 582 start-page: 253 year: 2007 ident: 10.1016/j.compbiomed.2015.12.003_bib13 article-title: Direct numerical simulation of stenotic flows. Part 1, steady flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112007005848 – ident: 10.1016/j.compbiomed.2015.12.003_bib18 – volume: 4 start-page: 709 year: 1988 ident: 10.1016/j.compbiomed.2015.12.003_bib17 article-title: Laplacian smoothing and Delaunay triangulations publication-title: Commun. Appl. Numer. Methods doi: 10.1002/cnm.1630040603 – volume: 59 start-page: 1259 year: 2009 ident: 10.1016/j.compbiomed.2015.12.003_bib31 article-title: Modelling nasal airflow using a fourier descriptor representation of geometry publication-title: IJNMF – volume: 87 start-page: 2 year: 2011 ident: 10.1016/j.compbiomed.2015.12.003_bib26 article-title: Deflated preconditioned conjugate gradient solvers for the pressure-poisson equation: extensions and improvements publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2932 – volume: 23 start-page: 601 year: 1991 ident: 10.1016/j.compbiomed.2015.12.003_bib19 article-title: Coherent motions in the turbulent boundary layer publication-title: Ann. Rev. Fluid Mech. doi: 10.1146/annurev.fl.23.010191.003125 – volume: 67 start-page: 188 year: 2014 ident: 10.1016/j.compbiomed.2015.12.003_bib8 article-title: Numerical analysis of stochastic dispersion of micro-particles in turbulent flows in a realistic model of human nasal/upper airway publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2013.09.004 – volume: 87 start-page: 96 year: 2011 ident: 10.1016/j.compbiomed.2015.12.003_bib9 article-title: Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2986 – volume: 163 start-page: 100 year: 2008 ident: 10.1016/j.compbiomed.2015.12.003_bib3 article-title: Mechanics of airflow in the human nasal airways publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2008.07.027 – volume: 131 start-page: 091002 year: 2009 ident: 10.1016/j.compbiomed.2015.12.003_bib14 article-title: Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow publication-title: J. Biomech. Eng. doi: 10.1115/1.3148202 – year: 2012 ident: 10.1016/j.compbiomed.2015.12.003_bib37 – volume: 31 start-page: 107 year: 2006 ident: 10.1016/j.compbiomed.2015.12.003_bib1 article-title: Numerical modelling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose publication-title: Chem. Senses doi: 10.1093/chemse/bjj008 – volume: 13 start-page: 133 year: 2003 ident: 10.1016/j.compbiomed.2015.12.003_bib27 article-title: A linelet preconditioner for incompressible flow solvers publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/09615530310456796 – ident: 10.1016/j.compbiomed.2015.12.003_bib29 – volume: 366 start-page: 3225 year: 2008 ident: 10.1016/j.compbiomed.2015.12.003_bib2 article-title: Nasal architecture: form and flow publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2008.0083 – volume: 44 start-page: 297 year: 2011 ident: 10.1016/j.compbiomed.2015.12.003_bib25 article-title: Extension of fractional step techniques for incompressible flows: the preconditioned Orthomin(1) for the pressure Schur complement publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2011.01.017 – volume: 39 start-page: 862 year: 2008 ident: 10.1016/j.compbiomed.2015.12.003_bib6 article-title: Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth–throat publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2008.06.002 – volume: 80 start-page: 142 year: 2013 ident: 10.1016/j.compbiomed.2015.12.003_bib21 article-title: Parallel uniform mesh multiplication applied to a Navier–Stokes solver publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2012.04.017 – volume: 229 start-page: 5339 year: 2010 ident: 10.1016/j.compbiomed.2015.12.003_bib33 article-title: Wall shear stress and near-wall convective transport: comparisons with vascular remodelling in a peripheral graft anastomosis publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.03.029 – volume: 22 start-page: 135 year: 2008 ident: 10.1016/j.compbiomed.2015.12.003_bib24 article-title: A variational subgrid scale model for transient incompressible flows publication-title: IJCFD – year: 2000 ident: 10.1016/j.compbiomed.2015.12.003_bib34 – volume: 81 start-page: 155 year: 2008 ident: 10.1016/j.compbiomed.2015.12.003_bib7 article-title: Mean flow structures inside the human upper airway publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-007-9113-3 – volume: 38 start-page: 494 year: 2007 ident: 10.1016/j.compbiomed.2015.12.003_bib32 article-title: Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2007.03.003 – volume: 100 start-page: 1003 year: 2006 ident: 10.1016/j.compbiomed.2015.12.003_bib11 article-title: Physical stresses at the air-wall interface of the human nasal cavity during breathing publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01049.2005 |
| SSID | ssj0004030 |
| Score | 2.441874 |
| Snippet | The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid... Abstract The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational... |
| SourceID | csuc proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 166 |
| SubjectTerms | Administration, Inhalation Airways Behavior CFD Computer Simulation Data processing Enginyeria electrònica Fluxos (Sistemes dinàmics diferenciables) Humans Impacte ambiental Inhalation - physiology Inspiratory flow Internal Medicine Large scale systems Male Middle Aged Models, Biological Nasal Cavity - diagnostic imaging Nasal Cavity - physiology Other Pulmonary Ventilation - physiology Respiratory airflow Reynolds number Simulació, Mètodes de Tomography Tomography, X-Ray Computed Trachea - diagnostic imaging Trachea - physiology Turbulence Turbulent flow Àrees temàtiques de la UPC |
| Title | Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482515003881 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482515003881 https://dx.doi.org/10.1016/j.compbiomed.2015.12.003 https://www.ncbi.nlm.nih.gov/pubmed/26773939 https://www.proquest.com/docview/1765342443 https://www.proquest.com/docview/1765113203 https://www.proquest.com/docview/1768572101 https://recercat.cat/handle/2072/265583 |
| Volume | 69 |
| WOSCitedRecordID | wos000371188400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: P5Z dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: K7- dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7RV dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1rixMxMHg9Eb_4flTPEsFPwmI3u9lk8YPoeUXwrpbzQfFLyCZZXLnb1m7r4987s8luEfQo-KEDpZNN2pnOI_Mi5InW0tkSo7p5mUZpKsZRznkSlbERFjQm-G9tofCxmE7lfJ7PwoVbE9IqO5nYCmq7MHhH_iwWGU-wKit5sfwW4dQojK6GERp7ZD9mLEY-fyuibV3kOPElKCBrUnCFQiaPz-_ClG1f4o4JXry9FOxGZwX1NDDNxvyhpf5lhbbaaHL9f7_HDXIt2KH0pWecm-SSq2-RKych0n6b_DzGFPGoARI6ejh5TZvqPEz6auiipGA30jXqucpfJlJdWwrqq9igGqM47-HcUbCIW8wzfBht5wFSXa1-6F8N9QWSdKWXlaVV_UX7p98hHydHHw7fRGFKQ2TAullHWuRWsrIQVmjjjJRJlkpbSGkTwY0El3Ncgt1YilxYcA5NoWU5ZoW2XMfGAi_cJYN6Ubv7hGZFIaQRzsaOpxZ8t7xIWJFpDYq8YLIcEtERR5nQwhwnaZypLlftq9qSVSFZVcyw_emQxP3KpW_jscOap0h_BZrHrYxeK-zE3b_BFxsLpljGuQTkvOMS1dW0ghRWoJh22Ej8ba1rgjhpVKwawFTv225KWGzMMaIr4yF53q8MFpO3hHbc96BjUbXdqufPIXncfwwyBwNJunaLjceJsfb-YhzJBYMDDMk9_1fpf3mWCWzEmD-4-AAPyVU4bciRPyCD9WrjHpHL5vu6alYjsidOPyGcixbKEdl_dTSdnY5aIQDwhL1DKGYAZ_zzb9ZhZgw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQcAL3x-FAUaCF6SIxIljRwghtFFtWlchMaS-Gcd2RNCWlqZl7J_ib-QuTlIhwdSXPfDQh6rnj6R397uz74OQF1pLZwu81c2KJEgSEQYZ53FQREZYQEzw35pE4bGYTOR0mn3cIr-6XBgMq-x0YqOo7czgGfnrSKQ8xqys-N38e4Bdo_B2tWuh4dniwJ2dgstWv93fhf_3JWOjD0c7e0HbVSAwgMbLQIvMSlbkwgptnJEyThNpcyltLLiR4CKFBdg5hciEBWfG5FoWIcu15ToyFvYO814il0GPCwwhE1OxzsMMY5_yArotAderjRzy8WQYIu5T6jGgjDeHkF2rrhYOB6ZemT9Q8V9Wb4N-o5v_23u7RW60djZ97wXjNtly1R1y9bCNJLhLfo4xBD6ogUUd3Rnt0ro8aTuZ1XRWULCL6RJxvPSHpVRXlgI85yuEaYr9LE4cBYu_oTzGyWjT75DqcnGqz2rqE0DpQs9LS8vqq_az3yOfL-S575NBNavcQ0LTPBfSCGcjxxMLvmmWxyxPtQZDJWeyGBLRMYMybYl27BRyrLpYvG9qzUYK2UhFDMu7DknUj5z7MiUbjHmF_KYAWd3C6KXCSuP9F_ywUDDFUs4lEGcdV6ouZxdQRgHwbrCQ-NtYV7fqslaRqoFSfWqqRWEyNccbaxkNyZt-ZGsRektvw3W3O5FQ66V6eRiS5_3PoFPxokxXbrbyNBHWFjifRnLBYAND8sCLZv_mWSqw0GT26PwNPCPX9o4Ox2q8Pzl4TK7Dztt8gG0yWC5W7gm5Yn4sy3rxtFEzlHy5aPn8DeXnvhQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQdNe-P4oDDASvCBFa5w4doQQQisV00pVCZAmXoxjOyLTlpamZexf46_jLk5SIcHUlz3w0Ieq54-kd_e7s--DkOdaS2dzvNVN8ziIYzEIUs6jIA-NsICY4L_VicJjMZnIo6N0ukV-tbkwGFbZ6sRaUduZwTPyvVAkPMKsrGgvb8IipsPRm_n3ADtI4U1r207Ds8ihOz8D9616fTCE__oFY6N3n_bfB02HgcAAMi8DLVIrWZ4JK7RxRsooiaXNpLSR4EaCuzTIwebJRSosODYm0zIfsExbrkNj4Tlg3ivkqgAfEx2_Kf-yzskcRD79BfRcDG5YE0XkY8swXNyn12NwGa8PJNu2XQ009ky1Mn8g5L8s4BoJRzf-53d4k1xv7G_61gvMLbLlyttk-0MTYXCH_BxjaHxQAes6uj8a0qo4bTqcVXSWU7CX6RLxvfCHqFSXlgJsZyuEb4p9Lk4dBU-gpjzByWjdB5HqYnGmzyvqE0PpQs8LS4vym_az3yWfL-W575FeOSvdA0KTLBPSCGdDx2MLPmuaRSxLtAYDJmMy7xPRMoYyTel27CByotoYvWO1ZimFLKVChmVf-yTsRs59-ZINxrxE3lOAuG5h9FJhBfLuC37YQDDFEs4lEKcth6o2lxfQRwEgb7CQ-NtYVzVqtFKhqoBSfayrSGGSNcebbBn2yatuZGMpegtww3V3W_FQ66U62eiTZ93PoGvxAk2XbrbyNCHWHLiYRnLBYAN9ct-LaffmWSKwAGX68OINPCXbIJZqfDA5fER2YONNmsAu6S0XK_eYXDM_lkW1eFJrHEq-XrZ4_gb048cH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+CFD+simulations+of+the+transitional+and+turbulent+regime+for+the+large+human+airways+during+rapid+inhalation&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Calmet%2C+Hadrien&rft.au=Gambaruto%2C+Alberto+M.&rft.au=Bates%2C+Alister+J.&rft.au=V%C3%A1zquez%2C+Mariano&rft.date=2016-02-01&rft.issn=0010-4825&rft.volume=69&rft.spage=166&rft.epage=180&rft_id=info:doi/10.1016%2Fj.compbiomed.2015.12.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2015_12_003 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482515X00138%2Fcov150h.gif |