Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation

The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine Jg. 69; S. 166 - 180
Hauptverfasser: Calmet, Hadrien, Gambaruto, Alberto M., Bates, Alister J., Vázquez, Mariano, Houzeaux, Guillaume, Doorly, Denis J.
Format: Journal Article Verlag
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.02.2016
Elsevier Limited
Elsevier
Schlagworte:
ISSN:0010-4825, 1879-0534, 1879-0534
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier–Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery. •Unsteady flow in the human large airways during a rapid inhalation is proposed.•The finest mesh contained 350 million elements.•Thanks to the high fidelity simulations, turbulence and transitional regime are observed.
AbstractList The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier–Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery. •Unsteady flow in the human large airways during a rapid inhalation is proposed.•The finest mesh contained 350 million elements.•Thanks to the high fidelity simulations, turbulence and transitional regime are observed.
The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier-Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery.
The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier–Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery. We acknowledge PRACE for awarding us access to resource FERMI based in Italy at Bologna hosted by Cineca. This work was financially supported by the PRACE project Pra04 693 (2011050693 to the Fourth PRACE regular call). The second author gratefully acknowledges support from project ‘MatComPhys’ under the European Research Executive Agency FP7-PEOPLE-2011- IEF framework. The third author was supported by the Engineering and Physical Sciences Research Council [grant number EP/ M506345/1]. Peer Reviewed
Abstract The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier–Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery.
The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier-Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery.The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid dynamics on a subject-specific geometry. The simulations were performed to resolve all the spatial and temporal scales of the flow, thanks to the use of massive computational resources. A highly parallel finite element code was used, running on two supercomputers, solving the transient incompressible Navier-Stokes equations on unstructured meshes. Given that the finest mesh contained 350 million elements, the study sets a precedent for large-scale simulations of the respiratory system, proposing an analysis strategy for mean flow, fluctuations and wall shear stresses on a rapid and short inhalation (a so-called sniff). The geometry used encompasses the exterior face and the airways from the nasal cavity, through the trachea and up to the third lung bifurcation; it was derived from a contrast-enhanced computed tomography (CT) scan of a 48-year-old male. The transient inflow produces complex flows over a wide range of Reynolds numbers (Re). Thanks to the high fidelity simulations, many features involving the flow transition were observed, with the level of turbulence clearly higher in the throat than in the nose. Spectral analysis revealed turbulent characteristics persisting downstream of the glottis, and were captured even with a medium mesh resolution. However a fine mesh resolution was found necessary in the nasal cavity to observe transitional features. This work indicates the potential of large-scale simulations to further understanding of airway physiological mechanics, which is essential to guide clinical diagnosis; better understanding of the flow also has implications for the design of interventions such as aerosol drug delivery.
Author Calmet, Hadrien
Vázquez, Mariano
Gambaruto, Alberto M.
Bates, Alister J.
Houzeaux, Guillaume
Doorly, Denis J.
Author_xml – sequence: 1
  givenname: Hadrien
  surname: Calmet
  fullname: Calmet, Hadrien
  email: hadrien.calmet@bsc.es
  organization: Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Edificio Nexus II – Planta 3 C/ JORDI GIRONA, 29 08034 Barcelona, Spain
– sequence: 2
  givenname: Alberto M.
  orcidid: 0000-0002-3291-2827
  surname: Gambaruto
  fullname: Gambaruto, Alberto M.
  organization: Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Edificio Nexus II – Planta 3 C/ JORDI GIRONA, 29 08034 Barcelona, Spain
– sequence: 3
  givenname: Alister J.
  surname: Bates
  fullname: Bates, Alister J.
  organization: Imperial College London, Department of Aeronautics, Exhibition Road, London SW7 2AZ, UK
– sequence: 4
  givenname: Mariano
  surname: Vázquez
  fullname: Vázquez, Mariano
  organization: Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Edificio Nexus II – Planta 3 C/ JORDI GIRONA, 29 08034 Barcelona, Spain
– sequence: 5
  givenname: Guillaume
  surname: Houzeaux
  fullname: Houzeaux, Guillaume
  organization: Barcelona Supercomputing Center (BSC-CNS), Department of Computer Applications in Science and Engineering, Edificio Nexus II – Planta 3 C/ JORDI GIRONA, 29 08034 Barcelona, Spain
– sequence: 6
  givenname: Denis J.
  surname: Doorly
  fullname: Doorly, Denis J.
  organization: Imperial College London, Department of Aeronautics, Exhibition Road, London SW7 2AZ, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26773939$$D View this record in MEDLINE/PubMed
BookMark eNqNUs2O0zAYjNAitrvwCsgSFy4p_kli57ICuiwgVeIAnC3H_tK6JHaxE6Bvv07bVaVKSD1Ylq2Z8eeZucmunHeQZYjgOcGkereZa99vG-t7MHOKSTkndI4xe5bNiOB1jktWXGUzjAnOC0HL6-wmxg3GuMAMv8iuacU5q1k9y_4tVVhBHrXqAC0e7lG0_dipwXoXkW_RsAY0BOWina5Uh5QzaBhDM3bgBhRgZXtArQ97ZDeJofXYK4eUDX_VLiIzButWKKitNci6tTqov8yet6qL8Oq432Y_Hz79WHzJl98-f118WOa6YvWQK14bQduGG640aCFYVQjTCGEYL7UguMItLsqW19yQmuhGiRbTRplSEW2gYbcZOejqOGoZQEPQapBe2dNhWhRzKmlVloIlztsDZxv87xHiIHsbNXSdcuDHKAmvRMlpiuISaEkIo3hSfXMG3fgxJE8PKFbQophQr4-osUnpym2wvQo7-RRZAtwdPxR8jAFaqe2wtzTlZDtJsJw6Ijfy1BE5dUQSKvF-DnEm8PTGBdSPByqkxP5YCDJqC06DscnMQRpvLxG5OxPRnXU2NfAX7CCeTJExEeT3qcVTiUmZ2EJMnr__v8BlMzwCWZAH_g
CODEN CBMDAW
CitedBy_id crossref_primary_10_1016_j_resp_2017_06_005
crossref_primary_10_1016_j_jbiomech_2020_110200
crossref_primary_10_1016_j_jaerosci_2017_10_008
crossref_primary_10_1016_j_actbio_2021_04_030
crossref_primary_10_3390_atmos11020137
crossref_primary_10_1016_j_compfluid_2017_08_003
crossref_primary_10_1016_j_compbiomed_2020_104099
crossref_primary_10_1016_j_jbiomech_2019_109434
crossref_primary_10_1016_j_mehy_2025_111757
crossref_primary_10_1038_s41598_020_80241_0
crossref_primary_10_1016_j_heliyon_2022_e10039
crossref_primary_10_1016_j_ijpharm_2023_123098
crossref_primary_10_1016_j_jaerosci_2022_106040
crossref_primary_10_1016_j_compbiomed_2018_06_029
crossref_primary_10_1371_journal_pone_0221330
crossref_primary_10_1016_j_clinbiomech_2017_10_006
crossref_primary_10_1080_10255842_2020_1833865
crossref_primary_10_3390_math11010219
crossref_primary_10_1007_s00348_025_03971_9
crossref_primary_10_1007_s11869_025_01742_3
crossref_primary_10_1080_10618562_2019_1617856
crossref_primary_10_1007_s10494_017_9876_0
crossref_primary_10_1002_cnm_3144
crossref_primary_10_1016_j_compbiomed_2018_05_016
crossref_primary_10_1137_17M1138868
crossref_primary_10_1164_rccm_202208_1574IM
crossref_primary_10_1007_s10494_018_9894_6
crossref_primary_10_1007_s00607_021_00976_0
crossref_primary_10_1016_j_jbiomech_2018_10_028
crossref_primary_10_1016_j_jaerosci_2018_05_008
crossref_primary_10_1080_10255842_2020_1819256
crossref_primary_10_1097_SCS_0000000000009487
crossref_primary_10_1063_5_0072148
crossref_primary_10_1016_j_future_2020_06_033
crossref_primary_10_1016_j_compfluid_2018_01_040
crossref_primary_10_1016_j_jaerosci_2018_11_001
crossref_primary_10_1016_j_clinbiomech_2017_10_018
crossref_primary_10_1007_s10494_020_00160_y
crossref_primary_10_1016_j_clinbiomech_2022_105790
crossref_primary_10_1002_cnm_3112
crossref_primary_10_1016_j_compbiomed_2017_05_006
crossref_primary_10_1152_japplphysiol_00741_2024
crossref_primary_10_1007_s10489_021_02808_2
crossref_primary_10_1016_j_ijengsci_2024_104090
crossref_primary_10_1016_j_compbiomed_2024_108566
crossref_primary_10_1115_1_4069664
crossref_primary_10_1016_j_jbiomech_2020_109715
crossref_primary_10_1007_s42452_025_06617_x
crossref_primary_10_3390_bioengineering11030239
crossref_primary_10_1017_flo_2024_3
crossref_primary_10_1016_j_compbiomed_2025_110449
crossref_primary_10_1016_j_clinbiomech_2017_10_011
crossref_primary_10_1016_j_compbiomed_2018_09_010
crossref_primary_10_1098_rsos_191752
crossref_primary_10_1186_s12938_019_0722_6
crossref_primary_10_3389_fphys_2018_00388
crossref_primary_10_1016_j_cmpb_2023_107818
crossref_primary_10_1080_10618562_2016_1227070
crossref_primary_10_1016_j_compbiomed_2020_103816
crossref_primary_10_1016_j_compfluid_2018_03_016
crossref_primary_10_1002_cnm_3649
crossref_primary_10_1016_j_ijpharm_2022_122118
crossref_primary_10_1016_j_cma_2016_08_010
crossref_primary_10_1007_s10439_023_03419_3
crossref_primary_10_1016_j_ejps_2021_105959
crossref_primary_10_1088_1742_6596_2899_1_012009
crossref_primary_10_1007_s11517_021_02446_3
crossref_primary_10_1016_j_euromechflu_2024_01_003
crossref_primary_10_1016_j_resp_2016_09_002
crossref_primary_10_32604_cmes_2023_022716
crossref_primary_10_1088_1757_899X_1080_1_012039
crossref_primary_10_1007_s11517_022_02715_9
crossref_primary_10_1007_s10494_020_00156_8
crossref_primary_10_1016_j_resp_2019_04_012
crossref_primary_10_3390_fluids10070168
crossref_primary_10_1007_s00707_022_03377_2
crossref_primary_10_1007_s10439_019_02410_1
crossref_primary_10_1371_journal_pone_0256460
crossref_primary_10_1016_j_jcp_2025_114245
crossref_primary_10_1016_j_ijheatfluidflow_2020_108573
crossref_primary_10_1177_1094342019842919
Cites_doi 10.1016/j.compbiomed.2013.09.003
10.1146/annurev.fluid.34.082901.144919
10.1016/j.resp.2007.02.006
10.1063/1.3247170
10.1098/rsif.2014.0880
10.1098/rsif.2009.0306
10.1016/j.cma.2014.10.041
10.1002/alr.20021
10.1017/S0022112094001370
10.1016/0021-9290(74)90028-1
10.1109/ICCV.1995.466848
10.1017/S0022112007005848
10.1002/cnm.1630040603
10.1002/nme.2932
10.1146/annurev.fl.23.010191.003125
10.1016/j.jaerosci.2013.09.004
10.1002/nme.2986
10.1016/j.resp.2008.07.027
10.1115/1.3148202
10.1093/chemse/bjj008
10.1108/09615530310456796
10.1098/rsta.2008.0083
10.1016/j.compfluid.2011.01.017
10.1016/j.jaerosci.2008.06.002
10.1016/j.compfluid.2012.04.017
10.1016/j.jcp.2010.03.029
10.1007/s10494-007-9113-3
10.1016/j.jaerosci.2007.03.003
10.1152/japplphysiol.01049.2005
ContentType Journal Article
Publication
Contributor Barcelona Supercomputing Center
Contributor_xml – sequence: 1
  fullname: Barcelona Supercomputing Center
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Feb 2016
Attribution-NonCommercial-NoDerivs 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Feb 2016
– notice: Attribution-NonCommercial-NoDerivs 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
XX2
DOI 10.1016/j.compbiomed.2015.12.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
ProQuest research library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
Recercat
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
MEDLINE



Engineering Research Database
Research Library Prep
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 180
ExternalDocumentID oai_recercat_cat_2072_265583
3953820121
26773939
10_1016_j_compbiomed_2015_12_003
S0010482515003881
1_s2_0_S0010482515003881
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
T5K
UKHRP
WOW
Z5R
~G-
~HD
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EMOBN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
SV3
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
AGQPQ
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
XX2
ID FETCH-LOGICAL-c639t-a79d82fb7d7acec883648db88d375c81060f045f797d191cba8f02bad5a1cdeb3
IEDL.DBID K7-
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371188400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Fri Nov 07 13:45:19 EST 2025
Tue Oct 07 09:40:01 EDT 2025
Sun Nov 09 10:31:18 EST 2025
Sat Nov 29 14:31:49 EST 2025
Thu Apr 03 07:11:11 EDT 2025
Sat Nov 29 05:31:11 EST 2025
Tue Nov 18 22:16:23 EST 2025
Fri Feb 23 02:24:56 EST 2024
Sun Feb 23 10:19:13 EST 2025
Tue Oct 14 19:33:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CFD
Airways
Respiratory airflow
Turbulence
Inspiratory flow
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c639t-a79d82fb7d7acec883648db88d375c81060f045f797d191cba8f02bad5a1cdeb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3291-2827
OpenAccessLink https://recercat.cat/handle/2072/265583
PMID 26773939
PQID 1765342443
PQPubID 1226355
PageCount 15
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_265583
proquest_miscellaneous_1768572101
proquest_miscellaneous_1765113203
proquest_journals_1765342443
pubmed_primary_26773939
crossref_citationtrail_10_1016_j_compbiomed_2015_12_003
crossref_primary_10_1016_j_compbiomed_2015_12_003
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2015_12_003
elsevier_clinicalkeyesjournals_1_s2_0_S0010482515003881
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2015_12_003
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
– name: Elsevier
References G. Karypis, Metis: serial graph partitioning and fill-reducing matrix ordering, Available at
Rennie, Gouder, Taylor, Tolley, Schroter, Doorly (bib30) 2011; 1
Jayaraju, Brouns, Verbanck, Lacor (bib32) 2007; 38
Jayaraju, Brouns, Lacor, Belkassem, Verbanck (bib6) 2008; 39
Gambaruto, Taylor, Doorly (bib31) 2009; 59
Soto, Löhner, Camelli (bib27) 2003; 13
Saddoughi, Veeravalli (bib35) 1994; 268
G. Taubin, Curve and surface smoothing without shrinkage, in: Proceedings of the Fifth International Conference on Computer Vision, IEEE, MIT, Cambridge, MA, USA, 1995, pp. 852–857.
Alya System, Large scale computational mechanics
Pope (bib34) 2000
Saksono, Nithiarasu, Sazonov, Yeo (bib9) 2011; 87
Zhao, Dalton, Yang, Scherer (bib1) 2006; 31
Elad, Naftali, Rosenfeld, Wolf (bib11) 2006; 100
Houzeaux, Principe (bib24) 2008; 22
A.J. Bates, D.J. Doorly, R. Cetto, H. Calmet, A.M. Gambaruto, N.S. Tolley, G. Houzeaux, R.C. Schroter, Dynamics of airflow in a short inhalation, J. R. Soc. Interface (2015)
Choi, Tawhai, Hoffman, Lin (bib12) 2009; 21
Piomelli, Balaras (bib20) 2002; 34
Colomés, Badia, Codina, Principe (bib23) 2015; 285
Lintermann, Meinke, Schröder (bib4) 2013; 43
2000.
Lin, Tawhai, McLennan, Hoffman (bib10) 2007; 157
Houzeaux, de la Cruz, Owen, Vázquez (bib21) 2013; 80
Houzeaux, Aubry, Vázquez (bib25) 2011; 44
Tu, Inthavong, Ahmadi (bib37) 2012
Craven, Paterson, Settles, Lawson (bib14) 2009; 131
ANSYS Meshing User׳s Guide
Taylor, Doorly, Schroter (bib5) 2010; 7
Ball, Uddin, Pollard (bib7) 2008; 81
Varghese, Frankel, Fischer (bib13) 2007; 582
.
Bang, William (bib36) 1974; 7
1995–2015.
Lohner, Mut, Cebral, Aubry, Houzeaux (bib26) 2011; 87
Doorly, Taylor, Schroter (bib3) 2008; 163
Doorly, Taylor, Gambaruto, Schroter, Tolley (bib2) 2008; 366
Robinson (bib19) 1991; 23
Ghahramani, Abouali, Emdad, Ahmadi (bib8) 2014; 67
Field (bib17) 1988; 4
M. Folk, A. Cheng, K. Yates, Hdf5: a file format and i/o library for high performance computing applications, in: Proceedings of Supercomputing, vol. 99, 1999, pp. 5–33.
Gambaruto, Doorly, Yamaguchi (bib33) 2010; 229
Colomés (10.1016/j.compbiomed.2015.12.003_bib23) 2015; 285
Varghese (10.1016/j.compbiomed.2015.12.003_bib13) 2007; 582
Lin (10.1016/j.compbiomed.2015.12.003_bib10) 2007; 157
Pope (10.1016/j.compbiomed.2015.12.003_bib34) 2000
Tu (10.1016/j.compbiomed.2015.12.003_bib37) 2012
Zhao (10.1016/j.compbiomed.2015.12.003_bib1) 2006; 31
Saksono (10.1016/j.compbiomed.2015.12.003_bib9) 2011; 87
Elad (10.1016/j.compbiomed.2015.12.003_bib11) 2006; 100
Doorly (10.1016/j.compbiomed.2015.12.003_bib3) 2008; 163
Bang (10.1016/j.compbiomed.2015.12.003_bib36) 1974; 7
Gambaruto (10.1016/j.compbiomed.2015.12.003_bib33) 2010; 229
10.1016/j.compbiomed.2015.12.003_bib28
Taylor (10.1016/j.compbiomed.2015.12.003_bib5) 2010; 7
10.1016/j.compbiomed.2015.12.003_bib29
Jayaraju (10.1016/j.compbiomed.2015.12.003_bib32) 2007; 38
Doorly (10.1016/j.compbiomed.2015.12.003_bib2) 2008; 366
10.1016/j.compbiomed.2015.12.003_bib22
Ghahramani (10.1016/j.compbiomed.2015.12.003_bib8) 2014; 67
Lohner (10.1016/j.compbiomed.2015.12.003_bib26) 2011; 87
Robinson (10.1016/j.compbiomed.2015.12.003_bib19) 1991; 23
Rennie (10.1016/j.compbiomed.2015.12.003_bib30) 2011; 1
Ball (10.1016/j.compbiomed.2015.12.003_bib7) 2008; 81
Gambaruto (10.1016/j.compbiomed.2015.12.003_bib31) 2009; 59
Lintermann (10.1016/j.compbiomed.2015.12.003_bib4) 2013; 43
Craven (10.1016/j.compbiomed.2015.12.003_bib14) 2009; 131
Houzeaux (10.1016/j.compbiomed.2015.12.003_bib24) 2008; 22
Piomelli (10.1016/j.compbiomed.2015.12.003_bib20) 2002; 34
Jayaraju (10.1016/j.compbiomed.2015.12.003_bib6) 2008; 39
Saddoughi (10.1016/j.compbiomed.2015.12.003_bib35) 1994; 268
Field (10.1016/j.compbiomed.2015.12.003_bib17) 1988; 4
Houzeaux (10.1016/j.compbiomed.2015.12.003_bib25) 2011; 44
10.1016/j.compbiomed.2015.12.003_bib16
Choi (10.1016/j.compbiomed.2015.12.003_bib12) 2009; 21
10.1016/j.compbiomed.2015.12.003_bib18
Houzeaux (10.1016/j.compbiomed.2015.12.003_bib21) 2013; 80
Soto (10.1016/j.compbiomed.2015.12.003_bib27) 2003; 13
10.1016/j.compbiomed.2015.12.003_bib15
References_xml – volume: 87
  start-page: 2
  year: 2011
  end-page: 14
  ident: bib26
  article-title: Deflated preconditioned conjugate gradient solvers for the pressure-poisson equation: extensions and improvements
  publication-title: Int. J. Numer. Methods Eng.
– reference: Alya System, Large scale computational mechanics, 〈
– volume: 38
  start-page: 494
  year: 2007
  end-page: 508
  ident: bib32
  article-title: Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids
  publication-title: J. Aerosol Sci.
– volume: 44
  start-page: 297
  year: 2011
  end-page: 313
  ident: bib25
  article-title: Extension of fractional step techniques for incompressible flows: the preconditioned Orthomin(1) for the pressure Schur complement
  publication-title: Comput. Fluids
– volume: 81
  start-page: 155
  year: 2008
  end-page: 188
  ident: bib7
  article-title: Mean flow structures inside the human upper airway
  publication-title: Flow Turbul. Combust.
– volume: 21
  year: 2009
  ident: bib12
  article-title: On inter- and intra-subject variabilities of airflow in the human lungs
  publication-title: Phys. Fluids
– volume: 39
  start-page: 862
  year: 2008
  end-page: 875
  ident: bib6
  article-title: Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth–throat
  publication-title: J. Aerosol Sci.
– volume: 13
  start-page: 133
  year: 2003
  end-page: 147
  ident: bib27
  article-title: A linelet preconditioner for incompressible flow solvers
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– reference: ANSYS Meshing User׳s Guide, 〈
– reference: G. Karypis, Metis: serial graph partitioning and fill-reducing matrix ordering, Available at: 〈
– volume: 59
  start-page: 1259
  year: 2009
  end-page: 1283
  ident: bib31
  article-title: Modelling nasal airflow using a fourier descriptor representation of geometry
  publication-title: IJNMF
– volume: 23
  start-page: 601
  year: 1991
  end-page: 639
  ident: bib19
  article-title: Coherent motions in the turbulent boundary layer
  publication-title: Ann. Rev. Fluid Mech.
– reference: M. Folk, A. Cheng, K. Yates, Hdf5: a file format and i/o library for high performance computing applications, in: Proceedings of Supercomputing, vol. 99, 1999, pp. 5–33.
– volume: 268
  start-page: 333
  year: 1994
  end-page: 372
  ident: bib35
  article-title: Local isotropy in turbulent boundary layers at high Reynolds number
  publication-title: J. Fluid Mech.
– volume: 34
  start-page: 349
  year: 2002
  end-page: 374
  ident: bib20
  article-title: Wall-layer models for large-eddy simulations
  publication-title: Ann. Rev. Fluid Mech.
– year: 2012
  ident: bib37
  article-title: Computational Fluid and Particle Dynamics in the Human Respiratory System
– reference: G. Taubin, Curve and surface smoothing without shrinkage, in: Proceedings of the Fifth International Conference on Computer Vision, IEEE, MIT, Cambridge, MA, USA, 1995, pp. 852–857.
– volume: 163
  start-page: 100
  year: 2008
  end-page: 110
  ident: bib3
  article-title: Mechanics of airflow in the human nasal airways
  publication-title: Respir. Physiol. Neurobiol.
– volume: 43
  start-page: 1833
  year: 2013
  end-page: 1852
  ident: bib4
  article-title: Fluid mechanics based classification of the respiratory efficiency of several nasal cavities
  publication-title: Comput. Biol. Med.
– volume: 285
  start-page: 32
  year: 2015
  end-page: 63
  ident: bib23
  article-title: Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2000
  ident: bib34
  article-title: Turbulent Flows
– volume: 131
  start-page: 091002
  year: 2009
  ident: bib14
  article-title: Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow
  publication-title: J. Biomech. Eng.
– volume: 4
  start-page: 709
  year: 1988
  end-page: 712
  ident: bib17
  article-title: Laplacian smoothing and Delaunay triangulations
  publication-title: Commun. Appl. Numer. Methods
– reference: 〉, 1995–2015.
– reference: A.J. Bates, D.J. Doorly, R. Cetto, H. Calmet, A.M. Gambaruto, N.S. Tolley, G. Houzeaux, R.C. Schroter, Dynamics of airflow in a short inhalation, J. R. Soc. Interface (2015),
– volume: 87
  start-page: 96
  year: 2011
  end-page: 114
  ident: bib9
  article-title: Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity
  publication-title: Int. J. Numer. Methods Eng.
– volume: 100
  start-page: 1003
  year: 2006
  end-page: 1010
  ident: bib11
  article-title: Physical stresses at the air-wall interface of the human nasal cavity during breathing
  publication-title: J. Appl. Physiol.
– volume: 1
  start-page: 128
  year: 2011
  end-page: 135
  ident: bib30
  article-title: Nasal inspiratory flow: at rest and sniffing
  publication-title: Int. Forum Allergy Rhinol.
– volume: 31
  start-page: 107
  year: 2006
  end-page: 118
  ident: bib1
  article-title: Numerical modelling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose
  publication-title: Chem. Senses
– volume: 582
  start-page: 253
  year: 2007
  end-page: 280
  ident: bib13
  article-title: Direct numerical simulation of stenotic flows. Part 1, steady flow
  publication-title: J. Fluid Mech.
– reference: .
– volume: 229
  start-page: 5339
  year: 2010
  end-page: 5356
  ident: bib33
  article-title: Wall shear stress and near-wall convective transport: comparisons with vascular remodelling in a peripheral graft anastomosis
  publication-title: J. Comput. Phys.
– volume: 67
  start-page: 188
  year: 2014
  end-page: 206
  ident: bib8
  article-title: Numerical analysis of stochastic dispersion of micro-particles in turbulent flows in a realistic model of human nasal/upper airway
  publication-title: J. Aerosol Sci.
– volume: 7
  start-page: 335
  year: 1974
  end-page: 342
  ident: bib36
  article-title: Experimental measurements of turbulence spectra distal to stenoses
  publication-title: J. Biomech.
– volume: 366
  start-page: 3225
  year: 2008
  end-page: 3246
  ident: bib2
  article-title: Nasal architecture: form and flow
  publication-title: Philos. Trans. R. Soc. A
– reference: 〉, 2000.
– volume: 157
  start-page: 295
  year: 2007
  end-page: 309
  ident: bib10
  article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways
  publication-title: Respir. Physiol. Neurobiol.
– volume: 7
  start-page: 515
  year: 2010
  end-page: 527
  ident: bib5
  article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow
  publication-title: J. R. Soc. Interface
– volume: 80
  start-page: 142
  year: 2013
  end-page: 151
  ident: bib21
  article-title: Parallel uniform mesh multiplication applied to a Navier–Stokes solver
  publication-title: Comput. Fluids
– volume: 22
  start-page: 135
  year: 2008
  end-page: 152
  ident: bib24
  article-title: A variational subgrid scale model for transient incompressible flows
  publication-title: IJCFD
– ident: 10.1016/j.compbiomed.2015.12.003_bib28
– volume: 43
  start-page: 1833
  year: 2013
  ident: 10.1016/j.compbiomed.2015.12.003_bib4
  article-title: Fluid mechanics based classification of the respiratory efficiency of several nasal cavities
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.09.003
– volume: 34
  start-page: 349
  year: 2002
  ident: 10.1016/j.compbiomed.2015.12.003_bib20
  article-title: Wall-layer models for large-eddy simulations
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.34.082901.144919
– volume: 157
  start-page: 295
  year: 2007
  ident: 10.1016/j.compbiomed.2015.12.003_bib10
  article-title: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2007.02.006
– volume: 21
  year: 2009
  ident: 10.1016/j.compbiomed.2015.12.003_bib12
  article-title: On inter- and intra-subject variabilities of airflow in the human lungs
  publication-title: Phys. Fluids
  doi: 10.1063/1.3247170
– ident: 10.1016/j.compbiomed.2015.12.003_bib15
  doi: 10.1098/rsif.2014.0880
– volume: 7
  start-page: 515
  year: 2010
  ident: 10.1016/j.compbiomed.2015.12.003_bib5
  article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2009.0306
– ident: 10.1016/j.compbiomed.2015.12.003_bib22
– volume: 285
  start-page: 32
  year: 2015
  ident: 10.1016/j.compbiomed.2015.12.003_bib23
  article-title: Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.10.041
– volume: 1
  start-page: 128
  year: 2011
  ident: 10.1016/j.compbiomed.2015.12.003_bib30
  article-title: Nasal inspiratory flow: at rest and sniffing
  publication-title: Int. Forum Allergy Rhinol.
  doi: 10.1002/alr.20021
– volume: 268
  start-page: 333
  year: 1994
  ident: 10.1016/j.compbiomed.2015.12.003_bib35
  article-title: Local isotropy in turbulent boundary layers at high Reynolds number
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094001370
– volume: 7
  start-page: 335
  year: 1974
  ident: 10.1016/j.compbiomed.2015.12.003_bib36
  article-title: Experimental measurements of turbulence spectra distal to stenoses
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(74)90028-1
– ident: 10.1016/j.compbiomed.2015.12.003_bib16
  doi: 10.1109/ICCV.1995.466848
– volume: 582
  start-page: 253
  year: 2007
  ident: 10.1016/j.compbiomed.2015.12.003_bib13
  article-title: Direct numerical simulation of stenotic flows. Part 1, steady flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007005848
– ident: 10.1016/j.compbiomed.2015.12.003_bib18
– volume: 4
  start-page: 709
  year: 1988
  ident: 10.1016/j.compbiomed.2015.12.003_bib17
  article-title: Laplacian smoothing and Delaunay triangulations
  publication-title: Commun. Appl. Numer. Methods
  doi: 10.1002/cnm.1630040603
– volume: 59
  start-page: 1259
  year: 2009
  ident: 10.1016/j.compbiomed.2015.12.003_bib31
  article-title: Modelling nasal airflow using a fourier descriptor representation of geometry
  publication-title: IJNMF
– volume: 87
  start-page: 2
  year: 2011
  ident: 10.1016/j.compbiomed.2015.12.003_bib26
  article-title: Deflated preconditioned conjugate gradient solvers for the pressure-poisson equation: extensions and improvements
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2932
– volume: 23
  start-page: 601
  year: 1991
  ident: 10.1016/j.compbiomed.2015.12.003_bib19
  article-title: Coherent motions in the turbulent boundary layer
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.23.010191.003125
– volume: 67
  start-page: 188
  year: 2014
  ident: 10.1016/j.compbiomed.2015.12.003_bib8
  article-title: Numerical analysis of stochastic dispersion of micro-particles in turbulent flows in a realistic model of human nasal/upper airway
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2013.09.004
– volume: 87
  start-page: 96
  year: 2011
  ident: 10.1016/j.compbiomed.2015.12.003_bib9
  article-title: Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2986
– volume: 163
  start-page: 100
  year: 2008
  ident: 10.1016/j.compbiomed.2015.12.003_bib3
  article-title: Mechanics of airflow in the human nasal airways
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2008.07.027
– volume: 131
  start-page: 091002
  year: 2009
  ident: 10.1016/j.compbiomed.2015.12.003_bib14
  article-title: Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3148202
– year: 2012
  ident: 10.1016/j.compbiomed.2015.12.003_bib37
– volume: 31
  start-page: 107
  year: 2006
  ident: 10.1016/j.compbiomed.2015.12.003_bib1
  article-title: Numerical modelling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose
  publication-title: Chem. Senses
  doi: 10.1093/chemse/bjj008
– volume: 13
  start-page: 133
  year: 2003
  ident: 10.1016/j.compbiomed.2015.12.003_bib27
  article-title: A linelet preconditioner for incompressible flow solvers
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/09615530310456796
– ident: 10.1016/j.compbiomed.2015.12.003_bib29
– volume: 366
  start-page: 3225
  year: 2008
  ident: 10.1016/j.compbiomed.2015.12.003_bib2
  article-title: Nasal architecture: form and flow
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2008.0083
– volume: 44
  start-page: 297
  year: 2011
  ident: 10.1016/j.compbiomed.2015.12.003_bib25
  article-title: Extension of fractional step techniques for incompressible flows: the preconditioned Orthomin(1) for the pressure Schur complement
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2011.01.017
– volume: 39
  start-page: 862
  year: 2008
  ident: 10.1016/j.compbiomed.2015.12.003_bib6
  article-title: Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth–throat
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2008.06.002
– volume: 80
  start-page: 142
  year: 2013
  ident: 10.1016/j.compbiomed.2015.12.003_bib21
  article-title: Parallel uniform mesh multiplication applied to a Navier–Stokes solver
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2012.04.017
– volume: 229
  start-page: 5339
  year: 2010
  ident: 10.1016/j.compbiomed.2015.12.003_bib33
  article-title: Wall shear stress and near-wall convective transport: comparisons with vascular remodelling in a peripheral graft anastomosis
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.03.029
– volume: 22
  start-page: 135
  year: 2008
  ident: 10.1016/j.compbiomed.2015.12.003_bib24
  article-title: A variational subgrid scale model for transient incompressible flows
  publication-title: IJCFD
– year: 2000
  ident: 10.1016/j.compbiomed.2015.12.003_bib34
– volume: 81
  start-page: 155
  year: 2008
  ident: 10.1016/j.compbiomed.2015.12.003_bib7
  article-title: Mean flow structures inside the human upper airway
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-007-9113-3
– volume: 38
  start-page: 494
  year: 2007
  ident: 10.1016/j.compbiomed.2015.12.003_bib32
  article-title: Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2007.03.003
– volume: 100
  start-page: 1003
  year: 2006
  ident: 10.1016/j.compbiomed.2015.12.003_bib11
  article-title: Physical stresses at the air-wall interface of the human nasal cavity during breathing
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01049.2005
SSID ssj0004030
Score 2.441874
Snippet The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational fluid...
Abstract The dynamics of unsteady flow in the human large airways during a rapid inhalation were investigated using highly detailed large-scale computational...
SourceID csuc
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 166
SubjectTerms Administration, Inhalation
Airways
Behavior
CFD
Computer Simulation
Data processing
Enginyeria electrònica
Fluxos (Sistemes dinàmics diferenciables)
Humans
Impacte ambiental
Inhalation - physiology
Inspiratory flow
Internal Medicine
Large scale systems
Male
Middle Aged
Models, Biological
Nasal Cavity - diagnostic imaging
Nasal Cavity - physiology
Other
Pulmonary Ventilation - physiology
Respiratory airflow
Reynolds number
Simulació, Mètodes de
Tomography
Tomography, X-Ray Computed
Trachea - diagnostic imaging
Trachea - physiology
Turbulence
Turbulent flow
Àrees temàtiques de la UPC
Title Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482515003881
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482515003881
https://dx.doi.org/10.1016/j.compbiomed.2015.12.003
https://www.ncbi.nlm.nih.gov/pubmed/26773939
https://www.proquest.com/docview/1765342443
https://www.proquest.com/docview/1765113203
https://www.proquest.com/docview/1768572101
https://recercat.cat/handle/2072/265583
Volume 69
WOSCitedRecordID wos000371188400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1rixMxMHg9Eb_4flTPEsFPwmI3u9lk8YPoeUXwrpbzQfFLyCZZXLnb1m7r4987s8luEfQo-KEDpZNN2pnOI_Mi5InW0tkSo7p5mUZpKsZRznkSlbERFjQm-G9tofCxmE7lfJ7PwoVbE9IqO5nYCmq7MHhH_iwWGU-wKit5sfwW4dQojK6GERp7ZD9mLEY-fyuibV3kOPElKCBrUnCFQiaPz-_ClG1f4o4JXry9FOxGZwX1NDDNxvyhpf5lhbbaaHL9f7_HDXIt2KH0pWecm-SSq2-RKych0n6b_DzGFPGoARI6ejh5TZvqPEz6auiipGA30jXqucpfJlJdWwrqq9igGqM47-HcUbCIW8wzfBht5wFSXa1-6F8N9QWSdKWXlaVV_UX7p98hHydHHw7fRGFKQ2TAullHWuRWsrIQVmjjjJRJlkpbSGkTwY0El3Ncgt1YilxYcA5NoWU5ZoW2XMfGAi_cJYN6Ubv7hGZFIaQRzsaOpxZ8t7xIWJFpDYq8YLIcEtERR5nQwhwnaZypLlftq9qSVSFZVcyw_emQxP3KpW_jscOap0h_BZrHrYxeK-zE3b_BFxsLpljGuQTkvOMS1dW0ghRWoJh22Ej8ba1rgjhpVKwawFTv225KWGzMMaIr4yF53q8MFpO3hHbc96BjUbXdqufPIXncfwwyBwNJunaLjceJsfb-YhzJBYMDDMk9_1fpf3mWCWzEmD-4-AAPyVU4bciRPyCD9WrjHpHL5vu6alYjsidOPyGcixbKEdl_dTSdnY5aIQDwhL1DKGYAZ_zzb9ZhZgw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQcAL3x-FAUaCF6SIxIljRwghtFFtWlchMaS-Gcd2RNCWlqZl7J_ib-QuTlIhwdSXPfDQh6rnj6R397uz74OQF1pLZwu81c2KJEgSEQYZ53FQREZYQEzw35pE4bGYTOR0mn3cIr-6XBgMq-x0YqOo7czgGfnrSKQ8xqys-N38e4Bdo_B2tWuh4dniwJ2dgstWv93fhf_3JWOjD0c7e0HbVSAwgMbLQIvMSlbkwgptnJEyThNpcyltLLiR4CKFBdg5hciEBWfG5FoWIcu15ToyFvYO814il0GPCwwhE1OxzsMMY5_yArotAderjRzy8WQYIu5T6jGgjDeHkF2rrhYOB6ZemT9Q8V9Wb4N-o5v_23u7RW60djZ97wXjNtly1R1y9bCNJLhLfo4xBD6ogUUd3Rnt0ro8aTuZ1XRWULCL6RJxvPSHpVRXlgI85yuEaYr9LE4cBYu_oTzGyWjT75DqcnGqz2rqE0DpQs9LS8vqq_az3yOfL-S575NBNavcQ0LTPBfSCGcjxxMLvmmWxyxPtQZDJWeyGBLRMYMybYl27BRyrLpYvG9qzUYK2UhFDMu7DknUj5z7MiUbjHmF_KYAWd3C6KXCSuP9F_ywUDDFUs4lEGcdV6ouZxdQRgHwbrCQ-NtYV7fqslaRqoFSfWqqRWEyNccbaxkNyZt-ZGsRektvw3W3O5FQ66V6eRiS5_3PoFPxokxXbrbyNBHWFjifRnLBYAND8sCLZv_mWSqw0GT26PwNPCPX9o4Ox2q8Pzl4TK7Dztt8gG0yWC5W7gm5Yn4sy3rxtFEzlHy5aPn8DeXnvhQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQdNe-P4oDDASvCBFa5w4doQQQisV00pVCZAmXoxjOyLTlpamZexf46_jLk5SIcHUlz3w0Ieq54-kd_e7s--DkOdaS2dzvNVN8ziIYzEIUs6jIA-NsICY4L_VicJjMZnIo6N0ukV-tbkwGFbZ6sRaUduZwTPyvVAkPMKsrGgvb8IipsPRm_n3ADtI4U1r207Ds8ihOz8D9616fTCE__oFY6N3n_bfB02HgcAAMi8DLVIrWZ4JK7RxRsooiaXNpLSR4EaCuzTIwebJRSosODYm0zIfsExbrkNj4Tlg3ivkqgAfEx2_Kf-yzskcRD79BfRcDG5YE0XkY8swXNyn12NwGa8PJNu2XQ009ky1Mn8g5L8s4BoJRzf-53d4k1xv7G_61gvMLbLlyttk-0MTYXCH_BxjaHxQAes6uj8a0qo4bTqcVXSWU7CX6RLxvfCHqFSXlgJsZyuEb4p9Lk4dBU-gpjzByWjdB5HqYnGmzyvqE0PpQs8LS4vym_az3yWfL-W575FeOSvdA0KTLBPSCGdDx2MLPmuaRSxLtAYDJmMy7xPRMoYyTel27CByotoYvWO1ZimFLKVChmVf-yTsRs59-ZINxrxE3lOAuG5h9FJhBfLuC37YQDDFEs4lEKcth6o2lxfQRwEgb7CQ-NtYVzVqtFKhqoBSfayrSGGSNcebbBn2yatuZGMpegtww3V3W_FQ66U62eiTZ93PoGvxAk2XbrbyNCHWHLiYRnLBYAN9ct-LaffmWSKwAGX68OINPCXbIJZqfDA5fER2YONNmsAu6S0XK_eYXDM_lkW1eFJrHEq-XrZ4_gb048cH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+CFD+simulations+of+the+transitional+and+turbulent+regime+for+the+large+human+airways+during+rapid+inhalation&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Calmet%2C+Hadrien&rft.au=Gambaruto%2C+Alberto+M.&rft.au=Bates%2C+Alister+J.&rft.au=V%C3%A1zquez%2C+Mariano&rft.date=2016-02-01&rft.issn=0010-4825&rft.volume=69&rft.spage=166&rft.epage=180&rft_id=info:doi/10.1016%2Fj.compbiomed.2015.12.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2015_12_003
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482515X00138%2Fcov150h.gif