From Clutter to Clarity: Enhancing Radar-Based Human Activity Recognition with Deep Attention and Feature Denoising
Millimeter-wave radar offers advantages such as insensitivity to lighting conditions, strong environmental adaptability, non-contact sensing, and inherent protection of user privacy. These characteristics have led to its increasing application in human activity recognition, with promising use cases...
Uloženo v:
| Vydáno v: | IEEE sensors journal s. 1 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
19.11.2025
|
| Témata: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Millimeter-wave radar offers advantages such as insensitivity to lighting conditions, strong environmental adaptability, non-contact sensing, and inherent protection of user privacy. These characteristics have led to its increasing application in human activity recognition, with promising use cases in smart homes, healthcare monitoring, and security systems. However, during radar data acquisition, substantial background interference and noise can significantly reduce recognition accuracy. To address this issue, this paper proposes a human action recognition method that integrates a deep convolutional autoencoder with a multi-scale attention mechanism. In the preprocessing stage, phase mean subtraction and moving average filtering are applied to suppress static background clutter in the radar micro-Doppler features. Subsequently, feature denoising and enhancement are performed using a convolutional autoencoder and attention modules to improve focus on motion-relevant regions. Experimental results demonstrate that the proposed method achieves over 96% accuracy on both a self-constructed dataset and a public benchmark dataset. Furthermore, the model maintains high recognition performance under low signal-to-noise ratio conditions, confirming its robustness and effectiveness in complex environments. |
|---|---|
| AbstractList | Millimeter-wave radar offers advantages such as insensitivity to lighting conditions, strong environmental adaptability, non-contact sensing, and inherent protection of user privacy. These characteristics have led to its increasing application in human activity recognition, with promising use cases in smart homes, healthcare monitoring, and security systems. However, during radar data acquisition, substantial background interference and noise can significantly reduce recognition accuracy. To address this issue, this paper proposes a human action recognition method that integrates a deep convolutional autoencoder with a multi-scale attention mechanism. In the preprocessing stage, phase mean subtraction and moving average filtering are applied to suppress static background clutter in the radar micro-Doppler features. Subsequently, feature denoising and enhancement are performed using a convolutional autoencoder and attention modules to improve focus on motion-relevant regions. Experimental results demonstrate that the proposed method achieves over 96% accuracy on both a self-constructed dataset and a public benchmark dataset. Furthermore, the model maintains high recognition performance under low signal-to-noise ratio conditions, confirming its robustness and effectiveness in complex environments. |
| Author | Bai, Bingqian Huang, Tao Fei, Rong Wang, Huaijun Li, Shuang Li, Junhuai |
| Author_xml | – sequence: 1 givenname: Huaijun orcidid: 0000-0002-2933-6566 surname: Wang fullname: Wang, Huaijun organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China – sequence: 2 givenname: Shuang surname: Li fullname: Li, Shuang organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China – sequence: 3 givenname: Bingqian surname: Bai fullname: Bai, Bingqian organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China – sequence: 4 givenname: Junhuai orcidid: 0000-0001-5483-5175 surname: Li fullname: Li, Junhuai email: lijunhuai@xaut.edu.cn organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China – sequence: 5 givenname: Rong orcidid: 0000-0002-7092-4378 surname: Fei fullname: Fei, Rong organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China – sequence: 6 givenname: Tao orcidid: 0000-0002-8098-8906 surname: Huang fullname: Huang, Tao email: tao.huang1@jcu.edu.au organization: College of Science and Engineering, James Cook University, Cairns, QLD, Australia |
| BookMark | eNpFkN1OAjEQhRuDiYA-gIkXfYHF_uxud71DBNEQTZAL7zbDdoAa6JK2aHh7u0Li1ZzMOXOS-XqkYxuLhNxyNuCclfevH-O3gWAiG8hcSsHYBenyLCsSrtKi02rJklSqzyvS8_6LMV6qTHWJn7hmR0fbQwjoaGiiBGfC8YGO7QZsbeyazkGDSx7Bo6bTww4sHdbBfMcUnWPdrK0JprH0x4QNfULc02Ess387sJpOEMLBYbRsY3wsvCaXK9h6vDnPPllMxovRNJm9P7-MhrOkzmWZFClAKrJaI8OCMQWKxf9W9TLPoyN0pvNSc5aWSqUpx0wstQIsoIipgmsm-4SfamvXeO9wVe2d2YE7VpxVLbSqhVa10KoztHhzd7oxiPif5yIXKi_lL-jdayE |
| CODEN | ISJEAZ |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/JSEN.2025.3633200 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JSEN_2025_3633200 11262769 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62571428; 65271427 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ 5VS AAYXX AETIX AGSQL AIBXA CITATION EJD H~9 ZY4 |
| ID | FETCH-LOGICAL-c639-84aa425cde0e8007a70202fcb664aa2d5d69d104977441e52bd7ae8a820281d03 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Thu Nov 27 00:56:44 EST 2025 Wed Nov 26 07:22:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c639-84aa425cde0e8007a70202fcb664aa2d5d69d104977441e52bd7ae8a820281d03 |
| ORCID | 0000-0001-5483-5175 0000-0002-8098-8906 0000-0002-2933-6566 0000-0002-7092-4378 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_11262769 crossref_primary_10_1109_JSEN_2025_3633200 |
| PublicationCentury | 2000 |
| PublicationDate | 20251119 |
| PublicationDateYYYYMMDD | 2025-11-19 |
| PublicationDate_xml | – month: 11 year: 2025 text: 20251119 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0019757 |
| Score | 2.444596 |
| SecondaryResourceType | online_first |
| Snippet | Millimeter-wave radar offers advantages such as insensitivity to lighting conditions, strong environmental adaptability, non-contact sensing, and inherent... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | attention mechanism Convolutional Autoencoder human action recognition millimeter wave radar |
| Title | From Clutter to Clarity: Enhancing Radar-Based Human Activity Recognition with Deep Attention and Feature Denoising |
| URI | https://ieeexplore.ieee.org/document/11262769 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4IMVEPPhAjvrIHTyaFstt2WW-IEOOBGOTArdnuDkKiLSlg4r93dluUiwdvTbfbNDPdzDePb4aQW84kQjYtPKYVOihahF7CJHhGRWYqosC0eeKGTYjhsDOZyJeSrO64MADgis-gaS9dLt9kem1DZS1Ld2EikhVSEUIUZK2flIEUrq0nnmDfC7iYlCnMti9bz6_9IbqCLGzyiHNm2WxbRmhrqoozKoOjf37OMTks0SPtFuo-ITuQ1sjBVk_BGtkrx5rPvk7JcpBnH7T37oZR01VGbTUOwu572k9nttFG-kZHyqjce0BjZqiL6NOuLiZK0NGmuChLqY3X0keABe3iy1yJJFWpoRZCrnPApTSb27hDnYwH_XHvySunLHga0YnXCZTCc6sN-IDgUSiBAJJNdRJFuMJMaCJp0GezODFoQ8gSIxR0FCIHhljX52ekmmYpnBM6FSpB7QYIEiDgiZEMRMj8KTDcFXLWIHcbqceLopdG7HwQX8ZWRbFVUVyqqEHqVuK_D5bCvvjj_iXZt9stTbAtr0h1la_hmuzqz9V8md-4X-UbzHy8Cw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xkoCBN-KNByakQGIncc1WoBXPCkGHbpFjXwEJEhRaJP49ZzdAFwa2KE6s6C7Wfff8AA4EVwTZjAy40eSgGJkEOVcYWJ3avkxjG4nck03ITqfR66m7ulnd98Igoi8-wyN36XP5tjRDFyo7du0uXKZqEqaTOObRqF3rJ2mgpB_sSWc4DGIhe3USMwrV8dVDq0POIE-ORCoEd_1sY2ZojFfFm5X24j8_aAkWavzImiOFL8MEFiswPzZVcAVma2Lzp89VeG9X5Ss7e_F01GxQMlePQ8D7hLWKJzdqo3hk99rqKjglc2aZj-mzphlxSrD77_KismAuYsvOEd9YkzbzRZJMF5Y5EDmskJaK8tlFHtag2251zy6CmmchMIRPgkasNZ1cYzFEgo9SS4KQvG_yNKUVbhObKktem0OKcYQJz63U2NCEHTih3VCsw1RRFrgBrC91TvqNCSZgLHKrOMqEh33k9FYi-CYcfks9extN08i8FxKqzKkocyrKahVtwpqT-O-DtbC3_ri_D7MX3dub7Oayc70Nc24r1zQYqR2YGlRD3IUZ8zF4fq_2_G_zBcGFv1I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Clutter+to+Clarity%3A+Enhancing+Radar-Based+Human+Activity+Recognition+with+Deep+Attention+and+Feature+Denoising&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Huaijun&rft.au=Li%2C+Shuang&rft.au=Bai%2C+Bingqian&rft.au=Li%2C+Junhuai&rft.date=2025-11-19&rft.issn=1530-437X&rft.eissn=1558-1748&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2025.3633200&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2025_3633200 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |