Evolutionary rescue and the limits of adaptation

Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Philosophical transactions of the Royal Society of London. Series B. Biological sciences Ročník 368; číslo 1610; s. 20120080
Hlavný autor: Bell, Graham
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 19.01.2013
Predmet:
ISSN:1471-2970, 1471-2970
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations.
AbstractList Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations.Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations.
Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations.
Author Bell, Graham
Author_xml – sequence: 1
  givenname: Graham
  surname: Bell
  fullname: Bell, Graham
  email: graham.bell@mcgill.ca
  organization: Biology Department, McGill University, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada. graham.bell@mcgill.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23209162$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLxDAURoOMOA_dupQu3bTe3CRNs5RhRoUBN7ouaXODlT7GJhX891YcwdX3LQ4Hzpot-qEnxq45ZBxMcTeGWGUIHDOAAs7YikvNUzQaFv_-kq1DeAcAo7S8YEsUCIbnuGKw-xzaKTZDb8evZKRQT5TY3iXxjZK26ZoYksEn1tljtD_YJTv3tg10ddoNe93vXraP6eH54Wl7f0jrXBQxJVHnykqQjgRpRJRSuspXznmpFZe1q1RNRqME0OS1JzJUaKyMVKS5wA27_fUex-FjohDLrgk1ta3taZhCyWcnCqk0n9GbEzpVHbnyODbdXFP-VeI3p15VVg
CitedBy_id crossref_primary_10_1016_j_tim_2015_01_005
crossref_primary_10_1111_eva_12221
crossref_primary_10_1089_ast_2019_2061
crossref_primary_10_1111_eva_12462
crossref_primary_10_1111_mec_17419
crossref_primary_10_1146_annurev_ecolsys_110512_135747
crossref_primary_10_1016_j_jembe_2020_151401
crossref_primary_10_1002_ps_7490
crossref_primary_10_1111_eva_12467
crossref_primary_10_1002_ece3_6257
crossref_primary_10_1016_j_jtbi_2019_01_041
crossref_primary_10_1016_j_tree_2015_03_007
crossref_primary_10_1007_s10682_023_10264_2
crossref_primary_10_1073_pnas_1913534116
crossref_primary_10_1016_j_foreco_2022_120389
crossref_primary_10_1111_evo_13277
crossref_primary_10_3354_meps13473
crossref_primary_10_1371_journal_pone_0126210
crossref_primary_10_7554_eLife_69630
crossref_primary_10_1111_eva_12217
crossref_primary_10_3389_fevo_2024_1335452
crossref_primary_10_1111_gcb_14360
crossref_primary_10_1002_wcc_852
crossref_primary_10_1038_s41559_018_0701_5
crossref_primary_10_1111_pala_12059
crossref_primary_10_7717_peerj_1823
crossref_primary_10_1111_gcb_14510
crossref_primary_10_1146_annurev_genet_022123_102748
crossref_primary_10_1038_s41558_022_01425_2
crossref_primary_10_7554_eLife_70242
crossref_primary_10_1016_j_scitotenv_2024_171057
crossref_primary_10_1111_1365_2435_13493
crossref_primary_10_1073_pnas_1907565116
crossref_primary_10_3389_fmars_2023_1301474
crossref_primary_10_1038_s41437_022_00512_6
crossref_primary_10_1002_ece3_1253
crossref_primary_10_1016_j_jembe_2015_06_016
crossref_primary_10_1111_eva_70112
crossref_primary_10_1186_s12862_014_0252_6
crossref_primary_10_1038_s41467_018_03906_5
crossref_primary_10_1016_j_biocon_2024_110693
crossref_primary_10_1111_jeb_13797
crossref_primary_10_1007_s00360_017_1105_6
crossref_primary_10_1086_731402
crossref_primary_10_1086_692011
crossref_primary_10_1093_conphys_coab057
crossref_primary_10_1590_0001_3765201920180179
crossref_primary_10_3390_genes11050588
crossref_primary_10_1002_ece3_11313
crossref_primary_10_1007_s10750_016_2782_y
crossref_primary_10_1016_j_biocontrol_2018_07_001
crossref_primary_10_1111_eva_12447
crossref_primary_10_1111_eva_12568
crossref_primary_10_1002_ece3_7485
crossref_primary_10_1093_molbev_msaa289
crossref_primary_10_1002_ecs2_3915
crossref_primary_10_1007_s00360_015_0940_6
crossref_primary_10_1111_gcb_12929
crossref_primary_10_1111_1365_2656_12794
crossref_primary_10_1111_mec_17634
crossref_primary_10_1186_s12983_017_0222_0
crossref_primary_10_1038_s41559_024_02543_0
crossref_primary_10_1111_ecog_04264
crossref_primary_10_1007_s00227_016_2903_1
crossref_primary_10_1016_j_tree_2014_06_005
crossref_primary_10_1111_eva_13648
crossref_primary_10_1111_evo_13575
crossref_primary_10_1111_evo_14269
crossref_primary_10_1111_fwb_14302
crossref_primary_10_1186_s12964_018_0298_y
crossref_primary_10_1016_j_rsma_2023_103079
crossref_primary_10_1139_cjps_2023_0168
crossref_primary_10_3389_fphys_2020_00390
crossref_primary_10_1093_molbev_msaa032
crossref_primary_10_1093_mollus_eyu029
crossref_primary_10_3389_fevo_2023_1038018
crossref_primary_10_1007_s12080_021_00522_w
crossref_primary_10_1111_eva_12396
crossref_primary_10_1007_s00338_017_1590_9
crossref_primary_10_1111_mec_16939
crossref_primary_10_1007_s10750_021_04749_w
crossref_primary_10_1002_ece3_3576
crossref_primary_10_1007_s00227_016_2966_z
crossref_primary_10_1002_etc_4611
crossref_primary_10_1111_mec_16931
crossref_primary_10_1111_oik_01340
crossref_primary_10_1073_pnas_2406314121
crossref_primary_10_1242_jeb_218602
crossref_primary_10_1002_ecy_2346
crossref_primary_10_1038_s41437_018_0137_3
crossref_primary_10_1016_j_scitotenv_2020_137782
crossref_primary_10_1111_brv_12639
crossref_primary_10_1534_genetics_115_178574
crossref_primary_10_1111_1365_2435_14242
crossref_primary_10_1111_evo_14038
crossref_primary_10_1111_eva_12789
crossref_primary_10_1016_j_cub_2025_01_037
crossref_primary_10_1007_s10818_017_9257_8
crossref_primary_10_1111_ele_12465
crossref_primary_10_1038_s41559_020_1134_5
crossref_primary_10_1111_eva_12782
crossref_primary_10_1073_pnas_2011419117
crossref_primary_10_1186_s12862_023_02153_7
crossref_primary_10_1038_nclimate3374
crossref_primary_10_1038_nclimate2682
crossref_primary_10_1038_s41598_018_26443_z
crossref_primary_10_1038_s44185_023_00022_6
crossref_primary_10_1111_mec_14068
crossref_primary_10_1111_ele_12185
crossref_primary_10_1016_j_amc_2024_128781
crossref_primary_10_1016_j_pecon_2019_06_001
crossref_primary_10_3390_plants12061258
crossref_primary_10_1038_s41437_023_00661_2
crossref_primary_10_1038_s41558_021_01131_5
crossref_primary_10_1534_genetics_117_300519
crossref_primary_10_1111_mec_15031
crossref_primary_10_1890_14_2080_1
crossref_primary_10_1007_s12064_024_00424_5
crossref_primary_10_1111_brv_12526
crossref_primary_10_1242_jeb_244287
crossref_primary_10_3389_fmars_2022_816772
crossref_primary_10_1007_s11538_018_0504_5
crossref_primary_10_1007_s12229_017_9193_2
crossref_primary_10_1016_j_jtbi_2013_09_026
crossref_primary_10_1016_j_cois_2024_101229
crossref_primary_10_1126_science_aah4993
crossref_primary_10_1111_ele_13845
crossref_primary_10_3389_fmicb_2020_01845
crossref_primary_10_3389_fphy_2018_00138
crossref_primary_10_7717_peerj_327
crossref_primary_10_1111_een_13242
crossref_primary_10_1371_journal_pone_0217711
crossref_primary_10_1073_pnas_1918592117
crossref_primary_10_1002_ece3_2945
crossref_primary_10_1016_j_envpol_2021_117636
crossref_primary_10_1111_mec_13084
crossref_primary_10_1016_j_jtherbio_2016_09_007
crossref_primary_10_1140_epje_s10189_024_00445_4
crossref_primary_10_1016_j_tree_2017_02_019
crossref_primary_10_1111_1749_4877_12298
crossref_primary_10_3389_fmicb_2020_563885
crossref_primary_10_1111_geb_12127
crossref_primary_10_1007_s12080_016_0310_3
crossref_primary_10_1088_1402_4896_aaaba4
crossref_primary_10_1098_rsos_160647
crossref_primary_10_1111_eva_12127
crossref_primary_10_1093_molbev_msae201
crossref_primary_10_3389_fenvs_2023_1232374
crossref_primary_10_1038_s41598_018_34798_6
crossref_primary_10_1111_mec_13075
crossref_primary_10_1038_s41467_025_58742_1
crossref_primary_10_1007_s00338_019_01855_z
crossref_primary_10_1098_rsos_161057
crossref_primary_10_1111_eva_70125
crossref_primary_10_3389_fmars_2017_00136
crossref_primary_10_1093_aob_mcu229
crossref_primary_10_1093_plankt_fbaa038
crossref_primary_10_1111_ecog_04740
crossref_primary_10_1111_jeb_14018
crossref_primary_10_1016_j_actao_2017_10_010
crossref_primary_10_1371_journal_pgen_1008668
crossref_primary_10_1126_science_aar5452
crossref_primary_10_1093_ismejo_wrae259
crossref_primary_10_1038_s41598_018_25593_4
crossref_primary_10_1655_HERPMONOGRAPHS_D_14_00006
crossref_primary_10_1093_evolut_qpae074
crossref_primary_10_17221_59_2021_CJAS
crossref_primary_10_1111_geb_12911
crossref_primary_10_1086_693006
crossref_primary_10_1093_biosci_biab010
crossref_primary_10_1111_ele_13942
crossref_primary_10_1111_eva_12876
crossref_primary_10_1093_biolinnean_blae094
crossref_primary_10_1111_jeb_14024
crossref_primary_10_1002_ece3_10397
crossref_primary_10_1111_ele_14234
crossref_primary_10_1111_eva_12470
crossref_primary_10_1111_jeb_13735
crossref_primary_10_1073_pnas_2414877121
crossref_primary_10_1111_mec_15085
crossref_primary_10_3390_w6113545
crossref_primary_10_1656_045_030_0207
crossref_primary_10_7554_eLife_18770
crossref_primary_10_1038_s42003_022_04327_3
crossref_primary_10_1111_eva_12745
crossref_primary_10_1111_jeb_13979
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1098/rstb.2012.0080
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Sciences (General)
Biology
EISSN 1471-2970
ExternalDocumentID 23209162
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-~X
0R~
29O
2WC
4.4
53G
AACGO
AANCE
ABBHK
ABPLY
ABTLG
ABXSQ
ACHIC
ACPRK
ACQIA
ACRPL
ACSFO
ADBBV
ADNMO
ADQXQ
ADULT
AEUPB
AEXZC
AFRAH
AGPVY
AGQPQ
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
AQVQM
BAWUL
BGBPD
BTFSW
CGR
CUY
CVF
DCCCD
DIK
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KQ8
MRS
MV1
NPM
NSAHA
O9-
OK1
RPM
RRY
SA0
TN5
V1E
W8F
YNT
~02
7X8
ID FETCH-LOGICAL-c638t-e3c65a404de3e7222444dbfbddf47514cdb5ce9724007ef7fee9e872b945e7132
IEDL.DBID 7X8
ISICitedReferencesCount 532
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000311946400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2970
IngestDate Fri Jul 11 11:03:36 EDT 2025
Mon Jul 21 06:03:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1610
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c638t-e3c65a404de3e7222444dbfbddf47514cdb5ce9724007ef7fee9e872b945e7132
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2012.0080
PMID 23209162
PQID 1222234571
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1222234571
pubmed_primary_23209162
PublicationCentury 2000
PublicationDate 2013-Jan-19
20130119
PublicationDateYYYYMMDD 2013-01-19
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan-19
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series B. Biological sciences
PublicationTitleAlternate Philos Trans R Soc Lond B Biol Sci
PublicationYear 2013
SSID ssj0009574
Score 2.590563
SecondaryResourceType review_article
Snippet Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 20120080
SubjectTerms Adaptation, Biological
Alleles
Biological Evolution
Biota
Environment
Extinction, Biological
Gene Frequency
Genetic Fitness
Genetic Variation
Population Density
Population Dynamics
Selection, Genetic
Stress, Physiological
Title Evolutionary rescue and the limits of adaptation
URI https://www.ncbi.nlm.nih.gov/pubmed/23209162
https://www.proquest.com/docview/1222234571
Volume 368
WOSCitedRecordID wos000311946400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7UqnhRW98vInjQQ-g-spvNSURaPNjSg0JvS54gyG7ttoX-e5PdVL0IgpfcFsLszOTLzOT7AG44VYJLE2DDpMFE0RBzmkksIvvDFeEsVDWJ6zMdDrPxmI18wa3yY5WrnFgnalVKVyPvhpE7yUhCw_vJB3aqUa676iU01qEVWyjjvJqOsx-kuzULc2gTMI4YDb5IG7OuhVbCDXY5us4s-B1e1sdMf--_G9yHXQ8w0UPjEW1Y00UHthrJyWUHtge-md6Bto_rCt168um7Awh6C--MfLpE9i4u5xrxQiELFNG7ew1VodIgrvikaeIfwmu_9_L4hL2qApY21mZYxzJNOAmI0rGmds-EECWMUMoQauGTVCKRmlE3XEq1oUZrpjMaCUYSba-00RFsFGWhTwBRY7NTSlhAiCZMRlwYI1zxk5s4SRk_heuVqXLrta4VwQtdzqv821incNzYO5809Bq5xXgWxKTR2R--PoedqNanCHHILqBlbMzqS9iUi9lbNb2q3cGuw9HgEyxavlQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+rescue+and+the+limits+of+adaptation&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Bell%2C+Graham&rft.date=2013-01-19&rft.eissn=1471-2970&rft.volume=368&rft.issue=1610&rft.spage=20120080&rft_id=info:doi/10.1098%2Frstb.2012.0080&rft_id=info%3Apmid%2F23209162&rft_id=info%3Apmid%2F23209162&rft.externalDocID=23209162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2970&client=summon