Evolutionary rescue and the limits of adaptation
Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection...
Uložené v:
| Vydané v: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences Ročník 368; číslo 1610; s. 20120080 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
19.01.2013
|
| Predmet: | |
| ISSN: | 1471-2970, 1471-2970 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations. |
|---|---|
| AbstractList | Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations.Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations. Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations. |
| Author | Bell, Graham |
| Author_xml | – sequence: 1 givenname: Graham surname: Bell fullname: Bell, Graham email: graham.bell@mcgill.ca organization: Biology Department, McGill University, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada. graham.bell@mcgill.ca |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23209162$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLxDAURoOMOA_dupQu3bTe3CRNs5RhRoUBN7ouaXODlT7GJhX891YcwdX3LQ4Hzpot-qEnxq45ZBxMcTeGWGUIHDOAAs7YikvNUzQaFv_-kq1DeAcAo7S8YEsUCIbnuGKw-xzaKTZDb8evZKRQT5TY3iXxjZK26ZoYksEn1tljtD_YJTv3tg10ddoNe93vXraP6eH54Wl7f0jrXBQxJVHnykqQjgRpRJRSuspXznmpFZe1q1RNRqME0OS1JzJUaKyMVKS5wA27_fUex-FjohDLrgk1ta3taZhCyWcnCqk0n9GbEzpVHbnyODbdXFP-VeI3p15VVg |
| CitedBy_id | crossref_primary_10_1016_j_tim_2015_01_005 crossref_primary_10_1111_eva_12221 crossref_primary_10_1089_ast_2019_2061 crossref_primary_10_1111_eva_12462 crossref_primary_10_1111_mec_17419 crossref_primary_10_1146_annurev_ecolsys_110512_135747 crossref_primary_10_1016_j_jembe_2020_151401 crossref_primary_10_1002_ps_7490 crossref_primary_10_1111_eva_12467 crossref_primary_10_1002_ece3_6257 crossref_primary_10_1016_j_jtbi_2019_01_041 crossref_primary_10_1016_j_tree_2015_03_007 crossref_primary_10_1007_s10682_023_10264_2 crossref_primary_10_1073_pnas_1913534116 crossref_primary_10_1016_j_foreco_2022_120389 crossref_primary_10_1111_evo_13277 crossref_primary_10_3354_meps13473 crossref_primary_10_1371_journal_pone_0126210 crossref_primary_10_7554_eLife_69630 crossref_primary_10_1111_eva_12217 crossref_primary_10_3389_fevo_2024_1335452 crossref_primary_10_1111_gcb_14360 crossref_primary_10_1002_wcc_852 crossref_primary_10_1038_s41559_018_0701_5 crossref_primary_10_1111_pala_12059 crossref_primary_10_7717_peerj_1823 crossref_primary_10_1111_gcb_14510 crossref_primary_10_1146_annurev_genet_022123_102748 crossref_primary_10_1038_s41558_022_01425_2 crossref_primary_10_7554_eLife_70242 crossref_primary_10_1016_j_scitotenv_2024_171057 crossref_primary_10_1111_1365_2435_13493 crossref_primary_10_1073_pnas_1907565116 crossref_primary_10_3389_fmars_2023_1301474 crossref_primary_10_1038_s41437_022_00512_6 crossref_primary_10_1002_ece3_1253 crossref_primary_10_1016_j_jembe_2015_06_016 crossref_primary_10_1111_eva_70112 crossref_primary_10_1186_s12862_014_0252_6 crossref_primary_10_1038_s41467_018_03906_5 crossref_primary_10_1016_j_biocon_2024_110693 crossref_primary_10_1111_jeb_13797 crossref_primary_10_1007_s00360_017_1105_6 crossref_primary_10_1086_731402 crossref_primary_10_1086_692011 crossref_primary_10_1093_conphys_coab057 crossref_primary_10_1590_0001_3765201920180179 crossref_primary_10_3390_genes11050588 crossref_primary_10_1002_ece3_11313 crossref_primary_10_1007_s10750_016_2782_y crossref_primary_10_1016_j_biocontrol_2018_07_001 crossref_primary_10_1111_eva_12447 crossref_primary_10_1111_eva_12568 crossref_primary_10_1002_ece3_7485 crossref_primary_10_1093_molbev_msaa289 crossref_primary_10_1002_ecs2_3915 crossref_primary_10_1007_s00360_015_0940_6 crossref_primary_10_1111_gcb_12929 crossref_primary_10_1111_1365_2656_12794 crossref_primary_10_1111_mec_17634 crossref_primary_10_1186_s12983_017_0222_0 crossref_primary_10_1038_s41559_024_02543_0 crossref_primary_10_1111_ecog_04264 crossref_primary_10_1007_s00227_016_2903_1 crossref_primary_10_1016_j_tree_2014_06_005 crossref_primary_10_1111_eva_13648 crossref_primary_10_1111_evo_13575 crossref_primary_10_1111_evo_14269 crossref_primary_10_1111_fwb_14302 crossref_primary_10_1186_s12964_018_0298_y crossref_primary_10_1016_j_rsma_2023_103079 crossref_primary_10_1139_cjps_2023_0168 crossref_primary_10_3389_fphys_2020_00390 crossref_primary_10_1093_molbev_msaa032 crossref_primary_10_1093_mollus_eyu029 crossref_primary_10_3389_fevo_2023_1038018 crossref_primary_10_1007_s12080_021_00522_w crossref_primary_10_1111_eva_12396 crossref_primary_10_1007_s00338_017_1590_9 crossref_primary_10_1111_mec_16939 crossref_primary_10_1007_s10750_021_04749_w crossref_primary_10_1002_ece3_3576 crossref_primary_10_1007_s00227_016_2966_z crossref_primary_10_1002_etc_4611 crossref_primary_10_1111_mec_16931 crossref_primary_10_1111_oik_01340 crossref_primary_10_1073_pnas_2406314121 crossref_primary_10_1242_jeb_218602 crossref_primary_10_1002_ecy_2346 crossref_primary_10_1038_s41437_018_0137_3 crossref_primary_10_1016_j_scitotenv_2020_137782 crossref_primary_10_1111_brv_12639 crossref_primary_10_1534_genetics_115_178574 crossref_primary_10_1111_1365_2435_14242 crossref_primary_10_1111_evo_14038 crossref_primary_10_1111_eva_12789 crossref_primary_10_1016_j_cub_2025_01_037 crossref_primary_10_1007_s10818_017_9257_8 crossref_primary_10_1111_ele_12465 crossref_primary_10_1038_s41559_020_1134_5 crossref_primary_10_1111_eva_12782 crossref_primary_10_1073_pnas_2011419117 crossref_primary_10_1186_s12862_023_02153_7 crossref_primary_10_1038_nclimate3374 crossref_primary_10_1038_nclimate2682 crossref_primary_10_1038_s41598_018_26443_z crossref_primary_10_1038_s44185_023_00022_6 crossref_primary_10_1111_mec_14068 crossref_primary_10_1111_ele_12185 crossref_primary_10_1016_j_amc_2024_128781 crossref_primary_10_1016_j_pecon_2019_06_001 crossref_primary_10_3390_plants12061258 crossref_primary_10_1038_s41437_023_00661_2 crossref_primary_10_1038_s41558_021_01131_5 crossref_primary_10_1534_genetics_117_300519 crossref_primary_10_1111_mec_15031 crossref_primary_10_1890_14_2080_1 crossref_primary_10_1007_s12064_024_00424_5 crossref_primary_10_1111_brv_12526 crossref_primary_10_1242_jeb_244287 crossref_primary_10_3389_fmars_2022_816772 crossref_primary_10_1007_s11538_018_0504_5 crossref_primary_10_1007_s12229_017_9193_2 crossref_primary_10_1016_j_jtbi_2013_09_026 crossref_primary_10_1016_j_cois_2024_101229 crossref_primary_10_1126_science_aah4993 crossref_primary_10_1111_ele_13845 crossref_primary_10_3389_fmicb_2020_01845 crossref_primary_10_3389_fphy_2018_00138 crossref_primary_10_7717_peerj_327 crossref_primary_10_1111_een_13242 crossref_primary_10_1371_journal_pone_0217711 crossref_primary_10_1073_pnas_1918592117 crossref_primary_10_1002_ece3_2945 crossref_primary_10_1016_j_envpol_2021_117636 crossref_primary_10_1111_mec_13084 crossref_primary_10_1016_j_jtherbio_2016_09_007 crossref_primary_10_1140_epje_s10189_024_00445_4 crossref_primary_10_1016_j_tree_2017_02_019 crossref_primary_10_1111_1749_4877_12298 crossref_primary_10_3389_fmicb_2020_563885 crossref_primary_10_1111_geb_12127 crossref_primary_10_1007_s12080_016_0310_3 crossref_primary_10_1088_1402_4896_aaaba4 crossref_primary_10_1098_rsos_160647 crossref_primary_10_1111_eva_12127 crossref_primary_10_1093_molbev_msae201 crossref_primary_10_3389_fenvs_2023_1232374 crossref_primary_10_1038_s41598_018_34798_6 crossref_primary_10_1111_mec_13075 crossref_primary_10_1038_s41467_025_58742_1 crossref_primary_10_1007_s00338_019_01855_z crossref_primary_10_1098_rsos_161057 crossref_primary_10_1111_eva_70125 crossref_primary_10_3389_fmars_2017_00136 crossref_primary_10_1093_aob_mcu229 crossref_primary_10_1093_plankt_fbaa038 crossref_primary_10_1111_ecog_04740 crossref_primary_10_1111_jeb_14018 crossref_primary_10_1016_j_actao_2017_10_010 crossref_primary_10_1371_journal_pgen_1008668 crossref_primary_10_1126_science_aar5452 crossref_primary_10_1093_ismejo_wrae259 crossref_primary_10_1038_s41598_018_25593_4 crossref_primary_10_1655_HERPMONOGRAPHS_D_14_00006 crossref_primary_10_1093_evolut_qpae074 crossref_primary_10_17221_59_2021_CJAS crossref_primary_10_1111_geb_12911 crossref_primary_10_1086_693006 crossref_primary_10_1093_biosci_biab010 crossref_primary_10_1111_ele_13942 crossref_primary_10_1111_eva_12876 crossref_primary_10_1093_biolinnean_blae094 crossref_primary_10_1111_jeb_14024 crossref_primary_10_1002_ece3_10397 crossref_primary_10_1111_ele_14234 crossref_primary_10_1111_eva_12470 crossref_primary_10_1111_jeb_13735 crossref_primary_10_1073_pnas_2414877121 crossref_primary_10_1111_mec_15085 crossref_primary_10_3390_w6113545 crossref_primary_10_1656_045_030_0207 crossref_primary_10_7554_eLife_18770 crossref_primary_10_1038_s42003_022_04327_3 crossref_primary_10_1111_eva_12745 crossref_primary_10_1111_jeb_13979 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1098/rstb.2012.0080 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Sciences (General) Biology |
| EISSN | 1471-2970 |
| ExternalDocumentID | 23209162 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- -~X 0R~ 29O 2WC 4.4 53G AACGO AANCE ABBHK ABPLY ABTLG ABXSQ ACHIC ACPRK ACQIA ACRPL ACSFO ADBBV ADNMO ADQXQ ADULT AEUPB AEXZC AFRAH AGPVY AGQPQ AJZGM ALMA_UNASSIGNED_HOLDINGS ALMYZ AOIJS AQVQM BAWUL BGBPD BTFSW CGR CUY CVF DCCCD DIK E3Z EBS ECM EIF EJD F5P GX1 H13 HYE HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KQ8 MRS MV1 NPM NSAHA O9- OK1 RPM RRY SA0 TN5 V1E W8F YNT ~02 7X8 |
| ID | FETCH-LOGICAL-c638t-e3c65a404de3e7222444dbfbddf47514cdb5ce9724007ef7fee9e872b945e7132 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 532 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000311946400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2970 |
| IngestDate | Fri Jul 11 11:03:36 EDT 2025 Mon Jul 21 06:03:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1610 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c638t-e3c65a404de3e7222444dbfbddf47514cdb5ce9724007ef7fee9e872b945e7132 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2012.0080 |
| PMID | 23209162 |
| PQID | 1222234571 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1222234571 pubmed_primary_23209162 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Jan-19 20130119 |
| PublicationDateYYYYMMDD | 2013-01-19 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-Jan-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
| PublicationTitleAlternate | Philos Trans R Soc Lond B Biol Sci |
| PublicationYear | 2013 |
| SSID | ssj0009574 |
| Score | 2.590563 |
| SecondaryResourceType | review_article |
| Snippet | Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 20120080 |
| SubjectTerms | Adaptation, Biological Alleles Biological Evolution Biota Environment Extinction, Biological Gene Frequency Genetic Fitness Genetic Variation Population Density Population Dynamics Selection, Genetic Stress, Physiological |
| Title | Evolutionary rescue and the limits of adaptation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23209162 https://www.proquest.com/docview/1222234571 |
| Volume | 368 |
| WOSCitedRecordID | wos000311946400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7UqnhRW98vInjQQ-g-spvNSURaPNjSg0JvS54gyG7ttoX-e5PdVL0IgpfcFsLszOTLzOT7AG44VYJLE2DDpMFE0RBzmkksIvvDFeEsVDWJ6zMdDrPxmI18wa3yY5WrnFgnalVKVyPvhpE7yUhCw_vJB3aqUa676iU01qEVWyjjvJqOsx-kuzULc2gTMI4YDb5IG7OuhVbCDXY5us4s-B1e1sdMf--_G9yHXQ8w0UPjEW1Y00UHthrJyWUHtge-md6Bto_rCt168um7Awh6C--MfLpE9i4u5xrxQiELFNG7ew1VodIgrvikaeIfwmu_9_L4hL2qApY21mZYxzJNOAmI0rGmds-EECWMUMoQauGTVCKRmlE3XEq1oUZrpjMaCUYSba-00RFsFGWhTwBRY7NTSlhAiCZMRlwYI1zxk5s4SRk_heuVqXLrta4VwQtdzqv821incNzYO5809Bq5xXgWxKTR2R--PoedqNanCHHILqBlbMzqS9iUi9lbNb2q3cGuw9HgEyxavlQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+rescue+and+the+limits+of+adaptation&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Bell%2C+Graham&rft.date=2013-01-19&rft.eissn=1471-2970&rft.volume=368&rft.issue=1610&rft.spage=20120080&rft_id=info:doi/10.1098%2Frstb.2012.0080&rft_id=info%3Apmid%2F23209162&rft_id=info%3Apmid%2F23209162&rft.externalDocID=23209162 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2970&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2970&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2970&client=summon |