Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer

Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physics and imaging in radiation oncology Ročník 9; s. 69 - 76
Hlavní autoři: Tetar, Shyama U., Bruynzeel, Anna M.E., Lagerwaard, Frank J., Slotman, Ben J., Bohoudi, Omar, Palacios, Miguel A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.01.2019
Elsevier
Témata:
ISSN:2405-6316, 2405-6316
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (PTV) margins, and finally the option to perform daily plan re-optimization. A total of 140 patients (700 fractions) have been treated with MRgRT and online plan adaptation for localized prostate cancer since early 2016. Clinical workflow for MRgRT of prostate cancer consisted of patient selection, simulation on both MR- and computed tomography (CT) scan, inverse intensity-modulated radiotherapy (IMRT) treatment planning and daily plan re-optimization prior to treatment delivery with partial organs at risk (OAR) recontouring within the first 2 cm outside the PTV. For each adapted plan online patient-specific quality assurance (QA) was performed by means of a secondary Monte Carlo 3D dose calculation and gamma analysis comparison. Patient experiences with MRgRT were assessed using a patient-reported outcome questionnaire (PRO-Q) after the last fraction. In 97% of fractions, MRgRT was delivered using the online adapted plan. Intrafractional prostate drifts necessitated 2D-corrections during treatment in approximately 20% of fractions. The average duration of an uneventful fraction of MRgRT was 45 min. PRO-Q’s (N = 89) showed that MRgRT was generally well tolerated, with disturbing noise sensations being most commonly reported. MRgRT with daily online plan adaptation constitutes an innovative approach for delivering SBRT for prostate cancer and appears to be feasible, although necessitating extended timeslots and logistical challenges.
AbstractList Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (PTV) margins, and finally the option to perform daily plan re-optimization. A total of 140 patients (700 fractions) have been treated with MRgRT and online plan adaptation for localized prostate cancer since early 2016. Clinical workflow for MRgRT of prostate cancer consisted of patient selection, simulation on both MR- and computed tomography (CT) scan, inverse intensity-modulated radiotherapy (IMRT) treatment planning and daily plan re-optimization prior to treatment delivery with partial organs at risk (OAR) recontouring within the first 2 cm outside the PTV. For each adapted plan online patient-specific quality assurance (QA) was performed by means of a secondary Monte Carlo 3D dose calculation and gamma analysis comparison. Patient experiences with MRgRT were assessed using a patient-reported outcome questionnaire (PRO-Q) after the last fraction. In 97% of fractions, MRgRT was delivered using the online adapted plan. Intrafractional prostate drifts necessitated 2D-corrections during treatment in approximately 20% of fractions. The average duration of an uneventful fraction of MRgRT was 45 min. PRO-Q’s (N = 89) showed that MRgRT was generally well tolerated, with disturbing noise sensations being most commonly reported. MRgRT with daily online plan adaptation constitutes an innovative approach for delivering SBRT for prostate cancer and appears to be feasible, although necessitating extended timeslots and logistical challenges.
Background and purpose: Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (PTV) margins, and finally the option to perform daily plan re-optimization. Materials and methods: A total of 140 patients (700 fractions) have been treated with MRgRT and online plan adaptation for localized prostate cancer since early 2016. Clinical workflow for MRgRT of prostate cancer consisted of patient selection, simulation on both MR- and computed tomography (CT) scan, inverse intensity-modulated radiotherapy (IMRT) treatment planning and daily plan re-optimization prior to treatment delivery with partial organs at risk (OAR) recontouring within the first 2 cm outside the PTV. For each adapted plan online patient-specific quality assurance (QA) was performed by means of a secondary Monte Carlo 3D dose calculation and gamma analysis comparison. Patient experiences with MRgRT were assessed using a patient-reported outcome questionnaire (PRO-Q) after the last fraction. Results: In 97% of fractions, MRgRT was delivered using the online adapted plan. Intrafractional prostate drifts necessitated 2D-corrections during treatment in approximately 20% of fractions. The average duration of an uneventful fraction of MRgRT was 45 min. PRO-Q’s (N = 89) showed that MRgRT was generally well tolerated, with disturbing noise sensations being most commonly reported. Conclusions: MRgRT with daily online plan adaptation constitutes an innovative approach for delivering SBRT for prostate cancer and appears to be feasible, although necessitating extended timeslots and logistical challenges. Keywords: Prostate cancer, MR-guided Radiotherapy (MRgRT), Stereotactic body radiotherapy (SBRT), On-table adaptation, Workflow
Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (PTV) margins, and finally the option to perform daily plan re-optimization.BACKGROUND AND PURPOSEMagnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (PTV) margins, and finally the option to perform daily plan re-optimization.A total of 140 patients (700 fractions) have been treated with MRgRT and online plan adaptation for localized prostate cancer since early 2016. Clinical workflow for MRgRT of prostate cancer consisted of patient selection, simulation on both MR- and computed tomography (CT) scan, inverse intensity-modulated radiotherapy (IMRT) treatment planning and daily plan re-optimization prior to treatment delivery with partial organs at risk (OAR) recontouring within the first 2 cm outside the PTV. For each adapted plan online patient-specific quality assurance (QA) was performed by means of a secondary Monte Carlo 3D dose calculation and gamma analysis comparison. Patient experiences with MRgRT were assessed using a patient-reported outcome questionnaire (PRO-Q) after the last fraction.MATERIALS AND METHODSA total of 140 patients (700 fractions) have been treated with MRgRT and online plan adaptation for localized prostate cancer since early 2016. Clinical workflow for MRgRT of prostate cancer consisted of patient selection, simulation on both MR- and computed tomography (CT) scan, inverse intensity-modulated radiotherapy (IMRT) treatment planning and daily plan re-optimization prior to treatment delivery with partial organs at risk (OAR) recontouring within the first 2 cm outside the PTV. For each adapted plan online patient-specific quality assurance (QA) was performed by means of a secondary Monte Carlo 3D dose calculation and gamma analysis comparison. Patient experiences with MRgRT were assessed using a patient-reported outcome questionnaire (PRO-Q) after the last fraction.In 97% of fractions, MRgRT was delivered using the online adapted plan. Intrafractional prostate drifts necessitated 2D-corrections during treatment in approximately 20% of fractions. The average duration of an uneventful fraction of MRgRT was 45 min. PRO-Q's (N = 89) showed that MRgRT was generally well tolerated, with disturbing noise sensations being most commonly reported.RESULTSIn 97% of fractions, MRgRT was delivered using the online adapted plan. Intrafractional prostate drifts necessitated 2D-corrections during treatment in approximately 20% of fractions. The average duration of an uneventful fraction of MRgRT was 45 min. PRO-Q's (N = 89) showed that MRgRT was generally well tolerated, with disturbing noise sensations being most commonly reported.MRgRT with daily online plan adaptation constitutes an innovative approach for delivering SBRT for prostate cancer and appears to be feasible, although necessitating extended timeslots and logistical challenges.CONCLUSIONSMRgRT with daily online plan adaptation constitutes an innovative approach for delivering SBRT for prostate cancer and appears to be feasible, although necessitating extended timeslots and logistical challenges.
Author Lagerwaard, Frank J.
Tetar, Shyama U.
Slotman, Ben J.
Palacios, Miguel A.
Bruynzeel, Anna M.E.
Bohoudi, Omar
Author_xml – sequence: 1
  givenname: Shyama U.
  surname: Tetar
  fullname: Tetar, Shyama U.
– sequence: 2
  givenname: Anna M.E.
  surname: Bruynzeel
  fullname: Bruynzeel, Anna M.E.
– sequence: 3
  givenname: Frank J.
  surname: Lagerwaard
  fullname: Lagerwaard, Frank J.
– sequence: 4
  givenname: Ben J.
  surname: Slotman
  fullname: Slotman, Ben J.
– sequence: 5
  givenname: Omar
  surname: Bohoudi
  fullname: Bohoudi, Omar
– sequence: 6
  givenname: Miguel A.
  surname: Palacios
  fullname: Palacios, Miguel A.
  email: m.palacios@vumc.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33458428$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNUREvpH2CBsmQzwY88HISQqhGPSpXYwNq6sa8zHjJ2cDIjDb-eO8xQtV2UlS37nO_a99yX2VmIAbPsNWcFZ7x-ty7GVYqFYLwtmCgYE8-yC1GyalFLXp_d259nV9O0ZqRoWllJ9iI7l7KsVCnURTYuBx-8gSH3m3HADYYZZh9DHl2-gT7g7E2ecIoBgkESQe9Dn_dbb9HmYGGc_Q7zBNbHeYUJxn3uYsqHSEz_mzRjihMxMTcHQnqVPXcwTHh1Wi-zH58_fV9-Xdx--3KzvL5dmFqqeYGy7DrhpDEcsLVYGWZlBx2AE66Rpq07XlYMhbJto8CpjqSyZEZJcG3t5GV2c-TaCGs9Jnp52usIXv89iKnXkOhzA-paKat41xqFdcmrrnPOMN7IVoEqy7Ym1scja9x2G7SGmpRgeAB9eBP8SvdxpxvFmrqRBHh7AqT4a4vTrDd-MjgMEDBuJy3KRjVNLaQg6Zv7te6K_IuMBOIoMNTYKaG7k3CmD6Oh6bs0GvowGpoJTcGTST0yGX8Mmt7rh6etH45WpLR2HpOejEeK0vqEZqZ2-qft7x_ZzWnifuL-f-Y_A3PsCQ
CitedBy_id crossref_primary_10_3390_cancers13143564
crossref_primary_10_1088_1361_6560_ab8955
crossref_primary_10_1186_s13014_022_02021_6
crossref_primary_10_1016_j_prro_2020_07_003
crossref_primary_10_1093_jrr_rraa123
crossref_primary_10_3390_cancers17172893
crossref_primary_10_1259_bjr_20210698
crossref_primary_10_1016_j_ctro_2021_05_008
crossref_primary_10_1038_s41571_022_00631_3
crossref_primary_10_1016_j_phro_2023_100445
crossref_primary_10_1016_j_phro_2020_09_009
crossref_primary_10_1016_j_tipsro_2025_100302
crossref_primary_10_1016_j_ctro_2024_100901
crossref_primary_10_1016_j_phro_2024_100562
crossref_primary_10_1016_j_phro_2022_02_018
crossref_primary_10_1016_j_phro_2024_100560
crossref_primary_10_1186_s13014_020_01641_0
crossref_primary_10_1016_j_ctro_2023_100693
crossref_primary_10_1148_rg_230052
crossref_primary_10_1016_j_radonc_2022_02_002
crossref_primary_10_1186_s13014_023_02209_4
crossref_primary_10_1177_03915603211042335
crossref_primary_10_1016_j_phro_2019_09_001
crossref_primary_10_3390_cancers17152478
crossref_primary_10_1186_s13014_020_01604_5
crossref_primary_10_1016_j_radonc_2021_01_022
crossref_primary_10_3390_jcm11051189
crossref_primary_10_1002_acm2_13425
crossref_primary_10_1016_j_phro_2021_05_005
crossref_primary_10_1016_j_radonc_2023_109761
crossref_primary_10_1016_j_phro_2020_09_013
crossref_primary_10_1016_j_ctro_2022_11_012
crossref_primary_10_1016_j_ijrobp_2022_07_027
crossref_primary_10_3389_fonc_2021_620978
crossref_primary_10_1016_j_ctro_2022_11_013
crossref_primary_10_1080_0284186X_2022_2062682
crossref_primary_10_1016_j_phro_2020_12_004
crossref_primary_10_1016_j_semradonc_2023_10_012
crossref_primary_10_1016_j_phro_2020_12_006
crossref_primary_10_1016_j_phro_2020_12_001
crossref_primary_10_1016_j_radonc_2024_110525
crossref_primary_10_1002_acm2_13399
crossref_primary_10_1016_j_ctro_2024_100884
crossref_primary_10_1002_mrm_29450
crossref_primary_10_1016_j_prro_2021_10_001
crossref_primary_10_3389_fonc_2020_616291
crossref_primary_10_1002_mp_13857
crossref_primary_10_7759_cureus_72879
crossref_primary_10_1002_acm2_14253
crossref_primary_10_1016_j_prro_2024_10_009
crossref_primary_10_1016_j_euo_2020_05_007
crossref_primary_10_1016_j_radonc_2019_06_023
crossref_primary_10_1016_j_ejmp_2024_103297
crossref_primary_10_1038_s41585_021_00498_6
crossref_primary_10_1016_j_clgc_2022_01_006
crossref_primary_10_1016_j_radonc_2023_109869
crossref_primary_10_1016_j_radonc_2021_12_013
crossref_primary_10_3390_cancers16061206
crossref_primary_10_1016_j_ejmp_2020_06_010
crossref_primary_10_1016_j_ejmp_2020_04_027
crossref_primary_10_1016_j_semradonc_2023_10_008
crossref_primary_10_1016_j_phro_2021_01_001
crossref_primary_10_1016_j_meddos_2025_03_002
crossref_primary_10_1007_s00066_022_02005_1
crossref_primary_10_1007_s00117_021_00882_8
crossref_primary_10_1016_j_adro_2024_101701
crossref_primary_10_1016_j_clon_2021_06_007
crossref_primary_10_1016_j_radonc_2020_09_021
crossref_primary_10_1016_j_radonc_2021_09_023
crossref_primary_10_1016_j_phro_2019_11_008
crossref_primary_10_1007_s11888_021_00467_6
crossref_primary_10_3389_fonc_2021_616027
crossref_primary_10_1016_j_radonc_2021_07_014
crossref_primary_10_1093_jrr_rrz105
crossref_primary_10_1016_j_radonc_2019_09_014
crossref_primary_10_1259_bjr_20200696
crossref_primary_10_3389_fonc_2021_616156
crossref_primary_10_1002_acm2_13462
crossref_primary_10_1016_j_ijrobp_2020_10_021
crossref_primary_10_1016_j_radonc_2020_06_044
crossref_primary_10_1016_j_prro_2023_08_017
crossref_primary_10_3390_cancers17020208
crossref_primary_10_1016_j_zemedi_2022_01_006
crossref_primary_10_1186_s13244_024_01799_1
crossref_primary_10_1016_j_jmir_2024_101719
crossref_primary_10_3390_jcm12020574
crossref_primary_10_1016_j_prro_2025_01_013
crossref_primary_10_1016_j_semradonc_2022_06_003
crossref_primary_10_1080_0284186X_2019_1627417
crossref_primary_10_1088_1361_6560_ac3e0c
crossref_primary_10_1016_j_ijrobp_2021_08_033
crossref_primary_10_1259_bjr_20210800
crossref_primary_10_3390_cancers16091685
crossref_primary_10_1016_j_prro_2025_03_011
crossref_primary_10_1016_j_phro_2023_100490
crossref_primary_10_1016_j_semradonc_2022_06_007
crossref_primary_10_1016_j_canrad_2025_104677
crossref_primary_10_1016_j_phro_2021_11_002
crossref_primary_10_1007_s00066_024_02346_z
crossref_primary_10_1111_1754_9485_12968
crossref_primary_10_1016_j_ijrobp_2024_09_032
crossref_primary_10_1016_j_ejmp_2024_103368
crossref_primary_10_1007_s00066_024_02323_6
crossref_primary_10_1002_acm2_13479
crossref_primary_10_1016_j_radonc_2022_11_017
crossref_primary_10_1016_j_phro_2023_100460
crossref_primary_10_1016_j_ctro_2020_04_011
crossref_primary_10_1016_j_phro_2020_07_012
crossref_primary_10_1016_j_ctro_2019_03_006
crossref_primary_10_1016_j_phro_2021_07_010
crossref_primary_10_3390_cancers15235629
crossref_primary_10_3389_fonc_2023_1325105
crossref_primary_10_1016_j_phro_2022_04_009
crossref_primary_10_1016_j_phro_2022_06_013
crossref_primary_10_3389_fonc_2021_637591
crossref_primary_10_1016_j_meddos_2022_06_004
crossref_primary_10_3389_fonc_2023_1151256
crossref_primary_10_3389_fonc_2021_626100
crossref_primary_10_1002_acm2_13523
crossref_primary_10_1016_j_phro_2020_05_002
crossref_primary_10_1200_GO_21_00366
crossref_primary_10_1002_acm2_13801
crossref_primary_10_3389_fonc_2021_636529
crossref_primary_10_3389_fonc_2024_1294252
crossref_primary_10_1002_mp_15678
crossref_primary_10_1016_j_radonc_2021_03_025
crossref_primary_10_1186_s12891_023_06153_y
crossref_primary_10_1186_s12955_022_01987_x
crossref_primary_10_3389_fphy_2022_897710
crossref_primary_10_1002_acm2_14221
crossref_primary_10_1016_j_ctro_2023_100661
crossref_primary_10_3389_fonc_2020_01741
crossref_primary_10_1186_s13014_021_01858_7
crossref_primary_10_1002_acm2_14060
Cites_doi 10.1016/S0360-3016(03)01455-X
10.1016/j.ijrobp.2016.08.036
10.3389/fonc.2018.00110
10.1016/j.ijrobp.2010.10.075
10.1016/S0167-8140(18)30829-6
10.1002/mp.13091
10.1016/S0167-8140(17)30705-3
10.1016/j.ijrobp.2014.09.008
10.1016/j.radonc.2006.10.028
10.1016/j.radonc.2007.03.015
10.1118/1.598248
10.1016/j.ejmp.2018.05.006
10.1016/j.radonc.2016.04.014
10.1088/0031-9155/45/8/308
10.1088/0031-9155/45/8/315
10.1118/1.2952443
10.1016/j.radonc.2017.11.012
10.1016/j.ijrobp.2011.12.073
10.1118/1.1598711
10.1016/j.ijrobp.2010.05.008
10.1016/j.radonc.2017.07.028
10.1016/j.ijrobp.2018.06.002
10.1016/j.ejmp.2016.03.010
10.1016/j.semradonc.2018.02.002
10.1118/1.598917
10.1016/j.ijrobp.2004.11.032
10.1088/1361-6560/aa9517
10.1016/j.ijrobp.2010.02.001
10.1088/1361-6560/aaaca4
10.1016/j.eururo.2013.09.046
10.1118/1.4919847
10.1016/j.ijrobp.2006.01.021
10.1016/j.ijrobp.2017.02.089
10.1118/1.2760507
10.1016/j.ijrobp.2009.10.008
10.1016/j.radonc.2018.01.014
10.1016/j.ijrobp.2017.10.020
10.1016/j.ijrobp.2011.10.009
ContentType Journal Article
Copyright 2019 The Authors
2019 The Authors.
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: 2019 The Authors.
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.phro.2019.02.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-6316
EndPage 76
ExternalDocumentID oai_doaj_org_article_688d81b9c8e6415bbffc017398a84496
PMC7807673
33458428
10_1016_j_phro_2019_02_002
S2405631618300708
Genre Journal Article
GroupedDBID .1-
.FO
0R~
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AFTJW
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
O9-
OK1
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
NCXOZ
RIG
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c638t-e34bb2f3cc1ae9de5c0d3babaaf2f73c96b1450e28d978af8b3cc340c83af96f3
IEDL.DBID DOA
ISICitedReferencesCount 143
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645136500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-6316
IngestDate Fri Oct 03 12:39:59 EDT 2025
Thu Aug 21 14:04:05 EDT 2025
Sun Nov 09 09:28:26 EST 2025
Mon Jul 21 05:27:00 EDT 2025
Tue Nov 18 22:42:44 EST 2025
Wed Nov 12 18:32:08 EST 2025
Thu Jul 20 19:57:43 EDT 2023
Tue Aug 26 17:19:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stereotactic body radiotherapy (SBRT)
Workflow
MR-guided Radiotherapy (MRgRT)
On-table adaptation
Prostate cancer
Language English
License This is an open access article under the CC BY-NC-ND license.
2019 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c638t-e34bb2f3cc1ae9de5c0d3babaaf2f73c96b1450e28d978af8b3cc340c83af96f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/688d81b9c8e6415bbffc017398a84496
PMID 33458428
PQID 2478776232
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_688d81b9c8e6415bbffc017398a84496
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7807673
proquest_miscellaneous_2478776232
pubmed_primary_33458428
crossref_primary_10_1016_j_phro_2019_02_002
crossref_citationtrail_10_1016_j_phro_2019_02_002
elsevier_sciencedirect_doi_10_1016_j_phro_2019_02_002
elsevier_clinicalkey_doi_10_1016_j_phro_2019_02_002
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Physics and imaging in radiation oncology
PublicationTitleAlternate Phys Imaging Radiat Oncol
PublicationYear 2019
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Pathmanathan, van As, Kerkmeijer, Christodouleas, Lawton, Vesprini (b0100) 2018; 100
Moteabbed, Trofimov, Khan, Wang, Sharp, Zietman (b0045) 2018; 45
Sempau, Wilderman, Bielajew (b0155) 2000; 45
Feng, Valdes, Dixit, Solberg (b0180) 2018; 8
Liu, Erickson, Peng, Li (b0185) 2012; 83
Peng, Ahunbay, Chen, Anderson, Lawton, Li (b0065) 2011; 79
Ahunbay, Peng, Chen, Narayanan, Yu, Lawton (b0195) 2008; 35
Sheng, Li, Lee, Yin, Wu (b0050) 2017; 98
Miralbell, Roberts, Zubizarreta, Hendry (b0010) 2012; 82
Fu, Yang, Yue, Heron, Huq (b0200) 2007; 34
Low, Harms, Mutic, Purdy (b0150) 1998
Pinkawa, Asadpour, Siluschek, Gagel, Piroth, Demirel (b0025) 2007; 83
Bohoudi, Bruynzeel, Senan, Cuijpers, Slotman, Lagerwaard (b0120) 2017; 125
Tanyi, He, Summers, Mburu, Kato, Rhodes (b0055) 2010; 78
Lustberg, van Soest, Gooding, Peressutti, Aljabar, van der Stoep (b0170) 2017; 126
Proust-Lima, Taylor, Sécher, Sandler, Kestin, Pickles (b0015) 2011; 79
Salembier, Villeirs, De Bari, Hoskin, Pieters, Van Vulpen (b0105) 2018; 127
Landoni, Saracino, Marzi, Gallucci, Petrongari, Chianese (b0030) 2006; 65
De Crevoisier, Tucker, Dong, Mohan, Cheung, Cox (b0035) 2005; 62
Raaymakers, Jürgenliemk-Schulz, Bol, Glitzner, Kotte, Van Asselen (b0095) 2017; 62
Kawrakow, Fippel (b0125) 2000; 45
Men, Zhang, Chen, Chen, Tang, Wang (b0175) 2018; 50
Tetar, Bruynzeel, Bakker, Jeulink, Slotman, Oei (b0160) 2018; 10
Palacios, Bohoudi, Bruynzeel, van Sörnsen-de Koste, Cobussen, Slotman (b0085) 2018
Owrangi, Greer, Glide-Hurst (b0190) 2018; 63
Deutschmann, Kametriser, Steininger, Scherer, Schöller, Gaisberger (b0060) 2012; 83
Li, Rodriguez, Green, Hu, Kashani, Wooten (b0140) 2015; 91
Kawrakow (b0130) 2000; 27
Lamb, Cao, Kishan, Agazaryan, Thomas, Shaverdian (b0165) 2017; 9
Henke, Kashani, Yang, Zhao, Green, Olsen (b0090) 2016; 96
McVicar, Popescu, Heath (b0075) 2016; 32
Low, Dempsey (b0145) 2003; 30
Bohoudi, Palacios, Slotman, Senan, Bruynzeel, Lagerwaard (b0115) 2018; 127
Ahunbay, Li (b0070) 2015; 42
Jz, Guerrero, Allen (b0005) 2003; 57
Pinkawa, Siluschek, Gagel, Demirel, Asadpour, Holy (b0020) 2006; 81
Heidenreich, Bastian, Bellmunt, Bolla, Joniau, Van Der Kwast (b0110) 2014; 65
Palacios, Apicella, Hoffmans, Osario, Admiraal, Kawrakow (b0135) 2017; 123
Kashani, Olsen (b0080) 2018; 28
McPartlin, Li, Kershaw, Heide, Kerkmeijer, Lawton (b0040) 2016
Ahunbay (10.1016/j.phro.2019.02.002_b0070) 2015; 42
Kashani (10.1016/j.phro.2019.02.002_b0080) 2018; 28
Men (10.1016/j.phro.2019.02.002_b0175) 2018; 50
Proust-Lima (10.1016/j.phro.2019.02.002_b0015) 2011; 79
Peng (10.1016/j.phro.2019.02.002_b0065) 2011; 79
Low (10.1016/j.phro.2019.02.002_b0145) 2003; 30
Kawrakow (10.1016/j.phro.2019.02.002_b0125) 2000; 45
Owrangi (10.1016/j.phro.2019.02.002_b0190) 2018; 63
Raaymakers (10.1016/j.phro.2019.02.002_b0095) 2017; 62
Bohoudi (10.1016/j.phro.2019.02.002_b0115) 2018; 127
Low (10.1016/j.phro.2019.02.002_b0150) 1998
Pathmanathan (10.1016/j.phro.2019.02.002_b0100) 2018; 100
Lamb (10.1016/j.phro.2019.02.002_b0165) 2017; 9
Lustberg (10.1016/j.phro.2019.02.002_b0170) 2017; 126
Heidenreich (10.1016/j.phro.2019.02.002_b0110) 2014; 65
De Crevoisier (10.1016/j.phro.2019.02.002_b0035) 2005; 62
Li (10.1016/j.phro.2019.02.002_b0140) 2015; 91
Feng (10.1016/j.phro.2019.02.002_b0180) 2018; 8
Moteabbed (10.1016/j.phro.2019.02.002_b0045) 2018; 45
McVicar (10.1016/j.phro.2019.02.002_b0075) 2016; 32
Kawrakow (10.1016/j.phro.2019.02.002_b0130) 2000; 27
Pinkawa (10.1016/j.phro.2019.02.002_b0025) 2007; 83
McPartlin (10.1016/j.phro.2019.02.002_b0040) 2016
Deutschmann (10.1016/j.phro.2019.02.002_b0060) 2012; 83
Tetar (10.1016/j.phro.2019.02.002_b0160) 2018; 10
Palacios (10.1016/j.phro.2019.02.002_b0085) 2018
Palacios (10.1016/j.phro.2019.02.002_b0135) 2017; 123
Salembier (10.1016/j.phro.2019.02.002_b0105) 2018; 127
Tanyi (10.1016/j.phro.2019.02.002_b0055) 2010; 78
Sempau (10.1016/j.phro.2019.02.002_b0155) 2000; 45
Miralbell (10.1016/j.phro.2019.02.002_b0010) 2012; 82
Sheng (10.1016/j.phro.2019.02.002_b0050) 2017; 98
Liu (10.1016/j.phro.2019.02.002_b0185) 2012; 83
Henke (10.1016/j.phro.2019.02.002_b0090) 2016; 96
Ahunbay (10.1016/j.phro.2019.02.002_b0195) 2008; 35
Pinkawa (10.1016/j.phro.2019.02.002_b0020) 2006; 81
Jz (10.1016/j.phro.2019.02.002_b0005) 2003; 57
Landoni (10.1016/j.phro.2019.02.002_b0030) 2006; 65
Bohoudi (10.1016/j.phro.2019.02.002_b0120) 2017; 125
Fu (10.1016/j.phro.2019.02.002_b0200) 2007; 34
References_xml – volume: 82
  start-page: 17
  year: 2012
  end-page: 24
  ident: b0010
  article-title: Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9-2.2) Gy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 83
  start-page: 163
  year: 2007
  end-page: 167
  ident: b0025
  article-title: Bladder extension variability during pelvic external beam radiotherapy with a full or empty bladder
  publication-title: Radiother Oncol
– volume: 78
  start-page: 1579
  year: 2010
  end-page: 1585
  ident: b0055
  article-title: Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: Role of daily inter- and intrafraction motion
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 50
  start-page: 13
  year: 2018
  end-page: 19
  ident: b0175
  article-title: Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning
  publication-title: Phys Med
– volume: 65
  start-page: 587
  year: 2006
  end-page: 594
  ident: b0030
  article-title: A study of the effect of setup errors and organ motion on prostate cancer treatment with IMRT
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 45
  start-page: 2263
  year: 2000
  end-page: 2292
  ident: b0155
  article-title: DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations
  publication-title: Phys Med Biol
– volume: 62
  start-page: L41
  year: 2017
  end-page: L50
  ident: b0095
  article-title: First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment
  publication-title: Phys Med Biol
– volume: 34
  start-page: 2368
  year: 2007
  ident: b0200
  article-title: A Cone Beam CT—guided online plan modification technique to correct interfractional anatomic changes for prostate cancer IMRT treatment
  publication-title: Med Phys
– volume: 30
  start-page: 2455
  year: 2003
  ident: b0145
  article-title: Evaluation of the gamma dose distribution comparison method
  publication-title: Med Phys
– volume: 65
  start-page: 124
  year: 2014
  end-page: 137
  ident: b0110
  article-title: EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent – update 2013
  publication-title: Eur Urol
– volume: 83
  start-page: 1624
  year: 2012
  end-page: 1632
  ident: b0060
  article-title: First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter- and intrafractional rotations of the prostate
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 79
  start-page: 195
  year: 2011
  end-page: 201
  ident: b0015
  article-title: Confirmation of a low α/β ratio for prostate cancer treated by external beam radiation therapy alone using a post-treatment repeated-measures model for PSA dynamics
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 63
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0190
  article-title: MRI-only treatment planning: benefits and challenges
  publication-title: Phys Med Biol
– volume: 45
  start-page: 4011
  year: 2018
  end-page: 4019
  ident: b0045
  article-title: Impact of interfractional motion on hypofractionated pencil beam scanning proton therapy and VMAT delivery for prostate cancer
  publication-title: Med Phys
– volume: 98
  start-page: 473
  year: 2017
  end-page: 480
  ident: b0050
  article-title: Exploring the margin recipe for online adaptive radiation therapy for intermediate-risk prostate cancer: an intrafractional seminal vesicles motion analysis
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 62
  start-page: 965
  year: 2005
  end-page: 973
  ident: b0035
  article-title: Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 100
  start-page: 361
  year: 2018
  end-page: 373
  ident: b0100
  article-title: Magnetic resonance imaging-guided adaptive radiation therapy: a “game changer” for prostate treatment?
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 123
  start-page: S134
  year: 2017
  end-page: S135
  ident: b0135
  article-title: Implementation of patient specific QA for daily adaptive MR-guided radiation therapy
  publication-title: Radiother Oncol
– volume: 10
  year: 2018
  ident: b0160
  article-title: Outcome measurements on the tolerance of magnetic resonance
  publication-title: Imag-guided Radiat Ther Cureus
– start-page: 656
  year: 1998
  end-page: 661
  ident: b0150
  article-title: A technique for the quantitative evaluation of dose distributions
  publication-title: Med Phys
– volume: 81
  start-page: 284
  year: 2006
  end-page: 290
  ident: b0020
  article-title: Influence of the initial rectal distension on posterior margins in primary and postoperative radiotherapy for prostate cancer
  publication-title: Radiother Oncol
– volume: 125
  start-page: 439
  year: 2017
  end-page: 444
  ident: b0120
  article-title: Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer
  publication-title: Radiother Oncol
– volume: 79
  start-page: 909
  year: 2011
  end-page: 914
  ident: b0065
  article-title: Characterizing interfraction variations and their dosimetric effects in prostate cancer radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 9
  year: 2017
  ident: b0165
  article-title: Adaptive radiation therapy: implementation of a new process of care
  publication-title: Cureus
– year: 2018
  ident: b0085
  article-title: Role of daily plan adaptation in MR-guided stereotactic ablative radiotherapy for adrenal metastases
  publication-title: Int J Radiat Oncol
– volume: 57
  start-page: 1116
  year: 2003
  end-page: 1121
  ident: b0005
  article-title: How low is the α/β ratio for prostate cancer?
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 32
  start-page: 492
  year: 2016
  end-page: 498
  ident: b0075
  article-title: Techniques for adaptive prostate radiotherapy
  publication-title: Phys Medica
– volume: 42
  start-page: 2863
  year: 2015
  end-page: 2876
  ident: b0070
  article-title: Gradient maintenance: a new algorithm for fast online replanning a)
  publication-title: Med Phys
– volume: 91
  start-page: 65
  year: 2015
  end-page: 72
  ident: b0140
  article-title: Quality assurance for the delivery of 60Co intensity modulated radiation therapy subject to a 0.35-T lateral magnetic field
  publication-title: Int J Radiat Oncol
– volume: 35
  start-page: 3607
  year: 2008
  end-page: 3615
  ident: b0195
  article-title: An on-line replanning scheme for interfractional variations
  publication-title: Med Phys
– volume: 28
  start-page: 178
  year: 2018
  end-page: 184
  ident: b0080
  article-title: Magnetic resonance imaging for target delineation and daily treatment modification
  publication-title: Semin Radiat Oncol
– volume: 45
  start-page: 2163
  year: 2000
  end-page: 2184
  ident: b0125
  article-title: Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC
  publication-title: Phys Med Biol
– volume: 83
  start-page: e423
  year: 2012
  end-page: e429
  ident: b0185
  article-title: Characterization and management of interfractional anatomic changes for pancreatic cancer radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 96
  start-page: 1078
  year: 2016
  end-page: 1086
  ident: b0090
  article-title: Simulated online adaptive magnetic resonance-guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 27
  start-page: 485
  year: 2000
  end-page: 498
  ident: b0130
  article-title: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version
  publication-title: Med Phys
– year: 2016
  ident: b0040
  article-title: MRI-guided prostate adaptive radiotherapy – a systematic review
  publication-title: Radiother Oncol
– volume: 126
  start-page: 312
  year: 2017
  end-page: 317
  ident: b0170
  article-title: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer
  publication-title: Radiother Oncol
– volume: 127
  start-page: S273
  year: 2018
  ident: b0115
  article-title: OC-0519: radiotherapy plan quality using a double focused, double stacked multi-leaf collimator
  publication-title: Radiother Oncol
– volume: 8
  start-page: 1
  year: 2018
  end-page: 7
  ident: b0180
  article-title: Machine learning in radiation oncology: opportunities, requirements, and needs
  publication-title: Front Oncol
– volume: 127
  start-page: 49
  year: 2018
  end-page: 61
  ident: b0105
  article-title: ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer
  publication-title: Radiother Oncol
– volume: 57
  start-page: 1116
  year: 2003
  ident: 10.1016/j.phro.2019.02.002_b0005
  article-title: How low is the α/β ratio for prostate cancer?
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(03)01455-X
– volume: 96
  start-page: 1078
  year: 2016
  ident: 10.1016/j.phro.2019.02.002_b0090
  article-title: Simulated online adaptive magnetic resonance-guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2016.08.036
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.phro.2019.02.002_b0180
  article-title: Machine learning in radiation oncology: opportunities, requirements, and needs
  publication-title: Front Oncol
  doi: 10.3389/fonc.2018.00110
– volume: 82
  start-page: 17
  year: 2012
  ident: 10.1016/j.phro.2019.02.002_b0010
  article-title: Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9-2.2) Gy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.10.075
– volume: 127
  start-page: S273
  year: 2018
  ident: 10.1016/j.phro.2019.02.002_b0115
  article-title: OC-0519: radiotherapy plan quality using a double focused, double stacked multi-leaf collimator
  publication-title: Radiother Oncol
  doi: 10.1016/S0167-8140(18)30829-6
– volume: 45
  start-page: 4011
  year: 2018
  ident: 10.1016/j.phro.2019.02.002_b0045
  article-title: Impact of interfractional motion on hypofractionated pencil beam scanning proton therapy and VMAT delivery for prostate cancer
  publication-title: Med Phys
  doi: 10.1002/mp.13091
– volume: 123
  start-page: S134
  year: 2017
  ident: 10.1016/j.phro.2019.02.002_b0135
  article-title: Implementation of patient specific QA for daily adaptive MR-guided radiation therapy
  publication-title: Radiother Oncol
  doi: 10.1016/S0167-8140(17)30705-3
– volume: 91
  start-page: 65
  year: 2015
  ident: 10.1016/j.phro.2019.02.002_b0140
  article-title: Quality assurance for the delivery of 60Co intensity modulated radiation therapy subject to a 0.35-T lateral magnetic field
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2014.09.008
– volume: 9
  year: 2017
  ident: 10.1016/j.phro.2019.02.002_b0165
  article-title: Adaptive radiation therapy: implementation of a new process of care
  publication-title: Cureus
– volume: 81
  start-page: 284
  year: 2006
  ident: 10.1016/j.phro.2019.02.002_b0020
  article-title: Influence of the initial rectal distension on posterior margins in primary and postoperative radiotherapy for prostate cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2006.10.028
– volume: 83
  start-page: 163
  year: 2007
  ident: 10.1016/j.phro.2019.02.002_b0025
  article-title: Bladder extension variability during pelvic external beam radiotherapy with a full or empty bladder
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2007.03.015
– start-page: 656
  year: 1998
  ident: 10.1016/j.phro.2019.02.002_b0150
  article-title: A technique for the quantitative evaluation of dose distributions
  publication-title: Med Phys
  doi: 10.1118/1.598248
– volume: 50
  start-page: 13
  year: 2018
  ident: 10.1016/j.phro.2019.02.002_b0175
  article-title: Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2018.05.006
– year: 2016
  ident: 10.1016/j.phro.2019.02.002_b0040
  article-title: MRI-guided prostate adaptive radiotherapy – a systematic review
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.04.014
– volume: 45
  start-page: 2163
  year: 2000
  ident: 10.1016/j.phro.2019.02.002_b0125
  article-title: Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/45/8/308
– volume: 45
  start-page: 2263
  year: 2000
  ident: 10.1016/j.phro.2019.02.002_b0155
  article-title: DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/45/8/315
– volume: 35
  start-page: 3607
  year: 2008
  ident: 10.1016/j.phro.2019.02.002_b0195
  article-title: An on-line replanning scheme for interfractional variations
  publication-title: Med Phys
  doi: 10.1118/1.2952443
– volume: 126
  start-page: 312
  year: 2017
  ident: 10.1016/j.phro.2019.02.002_b0170
  article-title: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2017.11.012
– volume: 83
  start-page: e423
  year: 2012
  ident: 10.1016/j.phro.2019.02.002_b0185
  article-title: Characterization and management of interfractional anatomic changes for pancreatic cancer radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2011.12.073
– volume: 30
  start-page: 2455
  year: 2003
  ident: 10.1016/j.phro.2019.02.002_b0145
  article-title: Evaluation of the gamma dose distribution comparison method
  publication-title: Med Phys
  doi: 10.1118/1.1598711
– volume: 79
  start-page: 909
  year: 2011
  ident: 10.1016/j.phro.2019.02.002_b0065
  article-title: Characterizing interfraction variations and their dosimetric effects in prostate cancer radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.05.008
– volume: 125
  start-page: 439
  year: 2017
  ident: 10.1016/j.phro.2019.02.002_b0120
  article-title: Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2017.07.028
– year: 2018
  ident: 10.1016/j.phro.2019.02.002_b0085
  article-title: Role of daily plan adaptation in MR-guided stereotactic ablative radiotherapy for adrenal metastases
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2018.06.002
– volume: 32
  start-page: 492
  year: 2016
  ident: 10.1016/j.phro.2019.02.002_b0075
  article-title: Techniques for adaptive prostate radiotherapy
  publication-title: Phys Medica
  doi: 10.1016/j.ejmp.2016.03.010
– volume: 28
  start-page: 178
  year: 2018
  ident: 10.1016/j.phro.2019.02.002_b0080
  article-title: Magnetic resonance imaging for target delineation and daily treatment modification
  publication-title: Semin Radiat Oncol
  doi: 10.1016/j.semradonc.2018.02.002
– volume: 27
  start-page: 485
  year: 2000
  ident: 10.1016/j.phro.2019.02.002_b0130
  article-title: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version
  publication-title: Med Phys
  doi: 10.1118/1.598917
– volume: 62
  start-page: 965
  year: 2005
  ident: 10.1016/j.phro.2019.02.002_b0035
  article-title: Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2004.11.032
– volume: 62
  start-page: L41
  year: 2017
  ident: 10.1016/j.phro.2019.02.002_b0095
  article-title: First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa9517
– volume: 78
  start-page: 1579
  year: 2010
  ident: 10.1016/j.phro.2019.02.002_b0055
  article-title: Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: Role of daily inter- and intrafraction motion
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.02.001
– volume: 10
  year: 2018
  ident: 10.1016/j.phro.2019.02.002_b0160
  article-title: Outcome measurements on the tolerance of magnetic resonance
  publication-title: Imag-guided Radiat Ther Cureus
– volume: 63
  start-page: 1
  year: 2018
  ident: 10.1016/j.phro.2019.02.002_b0190
  article-title: MRI-only treatment planning: benefits and challenges
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aaaca4
– volume: 65
  start-page: 124
  year: 2014
  ident: 10.1016/j.phro.2019.02.002_b0110
  article-title: EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent – update 2013
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2013.09.046
– volume: 42
  start-page: 2863
  year: 2015
  ident: 10.1016/j.phro.2019.02.002_b0070
  article-title: Gradient maintenance: a new algorithm for fast online replanning a)
  publication-title: Med Phys
  doi: 10.1118/1.4919847
– volume: 65
  start-page: 587
  year: 2006
  ident: 10.1016/j.phro.2019.02.002_b0030
  article-title: A study of the effect of setup errors and organ motion on prostate cancer treatment with IMRT
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2006.01.021
– volume: 98
  start-page: 473
  year: 2017
  ident: 10.1016/j.phro.2019.02.002_b0050
  article-title: Exploring the margin recipe for online adaptive radiation therapy for intermediate-risk prostate cancer: an intrafractional seminal vesicles motion analysis
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2017.02.089
– volume: 34
  start-page: 2368
  year: 2007
  ident: 10.1016/j.phro.2019.02.002_b0200
  article-title: A Cone Beam CT—guided online plan modification technique to correct interfractional anatomic changes for prostate cancer IMRT treatment
  publication-title: Med Phys
  doi: 10.1118/1.2760507
– volume: 79
  start-page: 195
  year: 2011
  ident: 10.1016/j.phro.2019.02.002_b0015
  article-title: Confirmation of a low α/β ratio for prostate cancer treated by external beam radiation therapy alone using a post-treatment repeated-measures model for PSA dynamics
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2009.10.008
– volume: 127
  start-page: 49
  year: 2018
  ident: 10.1016/j.phro.2019.02.002_b0105
  article-title: ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2018.01.014
– volume: 100
  start-page: 361
  year: 2018
  ident: 10.1016/j.phro.2019.02.002_b0100
  article-title: Magnetic resonance imaging-guided adaptive radiation therapy: a “game changer” for prostate treatment?
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2017.10.020
– volume: 83
  start-page: 1624
  year: 2012
  ident: 10.1016/j.phro.2019.02.002_b0060
  article-title: First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter- and intrafractional rotations of the prostate
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2011.10.009
SSID ssj0002793530
Score 2.470172
Snippet Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years....
Background and purpose: Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 69
SubjectTerms MR-guided Radiotherapy (MRgRT)
On-table adaptation
Original
Prostate cancer
Stereotactic body radiotherapy (SBRT)
Workflow
Title Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2405631618300708
https://dx.doi.org/10.1016/j.phro.2019.02.002
https://www.ncbi.nlm.nih.gov/pubmed/33458428
https://www.proquest.com/docview/2478776232
https://pubmed.ncbi.nlm.nih.gov/PMC7807673
https://doaj.org/article/688d81b9c8e6415bbffc017398a84496
Volume 9
WOSCitedRecordID wos000645136500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-6316
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793530
  issn: 2405-6316
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-6316
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793530
  issn: 2405-6316
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogLKu-FUhmJG4pIPE5iH2nViksrDiDtzfKzpGqzq-0uEhz47YztZLUBqb1wySEZO7JnnPkcz3xDyHvjQ1V6BoW3EgoODgphZFm4StoaODOBuVRsoj0_F_O5_LJT6ivGhGV64DxxHxshHEIraYVv0NkYE4JFKwIptOBcJrJtRD07m6nLdJwmoU6FRtBj1UUDVTNkzOTgLpyomPlXyUzYySZeKZH3T5zTv-Dz7xjKHad0uk8eD2iSfsqjeELu-f4peXg2nJc_I8uB9vOKdtdjoHjUBF0Eeq0v-pjBSHHDvYi0Gx6FUs0ierHpnHdUO72MX0O60q4bMrV-UkS5NHnA7hfKLGPWCOJVamMPq-fk2-nJ1-PPxVBjobC48taFB24MC2Btpb10vralA6ON1oGFFqxsTMVr1KZwuN_UQRgUBV5aATrIJsALstcvev-K0NI4b0LFmdWBo4qxD4_os9UOpRvGZqQa51jZgYA81sG4UmOk2aWKelFRL6pkCvUyIx-2bZaZfuNW6aOouq1kpM5ON9Cg1GBQ6i6DmhEYFa_G7FT8nmJH3a2vrretBuySMcmd7d6NtqVwYcfTGt37xeZGsUibhK4KUOZltrXtwADi8TYTM9JOrHAy8umTvvueyMNbUbZNC6__x1S9IY_iUPIfqQOyt15t_FvywP5YdzerQ3K_nYvDtC7xevb75A_Zjj_3
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+implementation+of+magnetic+resonance+imaging+guided+adaptive+radiotherapy+for+localized+prostate+cancer&rft.jtitle=Physics+and+imaging+in+radiation+oncology&rft.au=Shyama+U.+Tetar&rft.au=Anna+M.E.+Bruynzeel&rft.au=Frank+J.+Lagerwaard&rft.au=Ben+J.+Slotman&rft.date=2019-01-01&rft.pub=Elsevier&rft.issn=2405-6316&rft.eissn=2405-6316&rft.volume=9&rft.spage=69&rft.epage=76&rft_id=info:doi/10.1016%2Fj.phro.2019.02.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_688d81b9c8e6415bbffc017398a84496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-6316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-6316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-6316&client=summon