Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer
Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (...
Uloženo v:
| Vydáno v: | Physics and imaging in radiation oncology Ročník 9; s. 69 - 76 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.01.2019
Elsevier |
| Témata: | |
| ISSN: | 2405-6316, 2405-6316 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (PTV) margins, and finally the option to perform daily plan re-optimization.
A total of 140 patients (700 fractions) have been treated with MRgRT and online plan adaptation for localized prostate cancer since early 2016. Clinical workflow for MRgRT of prostate cancer consisted of patient selection, simulation on both MR- and computed tomography (CT) scan, inverse intensity-modulated radiotherapy (IMRT) treatment planning and daily plan re-optimization prior to treatment delivery with partial organs at risk (OAR) recontouring within the first 2 cm outside the PTV. For each adapted plan online patient-specific quality assurance (QA) was performed by means of a secondary Monte Carlo 3D dose calculation and gamma analysis comparison. Patient experiences with MRgRT were assessed using a patient-reported outcome questionnaire (PRO-Q) after the last fraction.
In 97% of fractions, MRgRT was delivered using the online adapted plan. Intrafractional prostate drifts necessitated 2D-corrections during treatment in approximately 20% of fractions. The average duration of an uneventful fraction of MRgRT was 45 min. PRO-Q’s (N = 89) showed that MRgRT was generally well tolerated, with disturbing noise sensations being most commonly reported.
MRgRT with daily online plan adaptation constitutes an innovative approach for delivering SBRT for prostate cancer and appears to be feasible, although necessitating extended timeslots and logistical challenges. |
|---|---|
| AbstractList | Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (PTV) margins, and finally the option to perform daily plan re-optimization.
A total of 140 patients (700 fractions) have been treated with MRgRT and online plan adaptation for localized prostate cancer since early 2016. Clinical workflow for MRgRT of prostate cancer consisted of patient selection, simulation on both MR- and computed tomography (CT) scan, inverse intensity-modulated radiotherapy (IMRT) treatment planning and daily plan re-optimization prior to treatment delivery with partial organs at risk (OAR) recontouring within the first 2 cm outside the PTV. For each adapted plan online patient-specific quality assurance (QA) was performed by means of a secondary Monte Carlo 3D dose calculation and gamma analysis comparison. Patient experiences with MRgRT were assessed using a patient-reported outcome questionnaire (PRO-Q) after the last fraction.
In 97% of fractions, MRgRT was delivered using the online adapted plan. Intrafractional prostate drifts necessitated 2D-corrections during treatment in approximately 20% of fractions. The average duration of an uneventful fraction of MRgRT was 45 min. PRO-Q’s (N = 89) showed that MRgRT was generally well tolerated, with disturbing noise sensations being most commonly reported.
MRgRT with daily online plan adaptation constitutes an innovative approach for delivering SBRT for prostate cancer and appears to be feasible, although necessitating extended timeslots and logistical challenges. Background and purpose: Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (PTV) margins, and finally the option to perform daily plan re-optimization. Materials and methods: A total of 140 patients (700 fractions) have been treated with MRgRT and online plan adaptation for localized prostate cancer since early 2016. Clinical workflow for MRgRT of prostate cancer consisted of patient selection, simulation on both MR- and computed tomography (CT) scan, inverse intensity-modulated radiotherapy (IMRT) treatment planning and daily plan re-optimization prior to treatment delivery with partial organs at risk (OAR) recontouring within the first 2 cm outside the PTV. For each adapted plan online patient-specific quality assurance (QA) was performed by means of a secondary Monte Carlo 3D dose calculation and gamma analysis comparison. Patient experiences with MRgRT were assessed using a patient-reported outcome questionnaire (PRO-Q) after the last fraction. Results: In 97% of fractions, MRgRT was delivered using the online adapted plan. Intrafractional prostate drifts necessitated 2D-corrections during treatment in approximately 20% of fractions. The average duration of an uneventful fraction of MRgRT was 45 min. PRO-Q’s (N = 89) showed that MRgRT was generally well tolerated, with disturbing noise sensations being most commonly reported. Conclusions: MRgRT with daily online plan adaptation constitutes an innovative approach for delivering SBRT for prostate cancer and appears to be feasible, although necessitating extended timeslots and logistical challenges. Keywords: Prostate cancer, MR-guided Radiotherapy (MRgRT), Stereotactic body radiotherapy (SBRT), On-table adaptation, Workflow Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (PTV) margins, and finally the option to perform daily plan re-optimization.BACKGROUND AND PURPOSEMagnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (PTV) margins, and finally the option to perform daily plan re-optimization.A total of 140 patients (700 fractions) have been treated with MRgRT and online plan adaptation for localized prostate cancer since early 2016. Clinical workflow for MRgRT of prostate cancer consisted of patient selection, simulation on both MR- and computed tomography (CT) scan, inverse intensity-modulated radiotherapy (IMRT) treatment planning and daily plan re-optimization prior to treatment delivery with partial organs at risk (OAR) recontouring within the first 2 cm outside the PTV. For each adapted plan online patient-specific quality assurance (QA) was performed by means of a secondary Monte Carlo 3D dose calculation and gamma analysis comparison. Patient experiences with MRgRT were assessed using a patient-reported outcome questionnaire (PRO-Q) after the last fraction.MATERIALS AND METHODSA total of 140 patients (700 fractions) have been treated with MRgRT and online plan adaptation for localized prostate cancer since early 2016. Clinical workflow for MRgRT of prostate cancer consisted of patient selection, simulation on both MR- and computed tomography (CT) scan, inverse intensity-modulated radiotherapy (IMRT) treatment planning and daily plan re-optimization prior to treatment delivery with partial organs at risk (OAR) recontouring within the first 2 cm outside the PTV. For each adapted plan online patient-specific quality assurance (QA) was performed by means of a secondary Monte Carlo 3D dose calculation and gamma analysis comparison. Patient experiences with MRgRT were assessed using a patient-reported outcome questionnaire (PRO-Q) after the last fraction.In 97% of fractions, MRgRT was delivered using the online adapted plan. Intrafractional prostate drifts necessitated 2D-corrections during treatment in approximately 20% of fractions. The average duration of an uneventful fraction of MRgRT was 45 min. PRO-Q's (N = 89) showed that MRgRT was generally well tolerated, with disturbing noise sensations being most commonly reported.RESULTSIn 97% of fractions, MRgRT was delivered using the online adapted plan. Intrafractional prostate drifts necessitated 2D-corrections during treatment in approximately 20% of fractions. The average duration of an uneventful fraction of MRgRT was 45 min. PRO-Q's (N = 89) showed that MRgRT was generally well tolerated, with disturbing noise sensations being most commonly reported.MRgRT with daily online plan adaptation constitutes an innovative approach for delivering SBRT for prostate cancer and appears to be feasible, although necessitating extended timeslots and logistical challenges.CONCLUSIONSMRgRT with daily online plan adaptation constitutes an innovative approach for delivering SBRT for prostate cancer and appears to be feasible, although necessitating extended timeslots and logistical challenges. |
| Author | Lagerwaard, Frank J. Tetar, Shyama U. Slotman, Ben J. Palacios, Miguel A. Bruynzeel, Anna M.E. Bohoudi, Omar |
| Author_xml | – sequence: 1 givenname: Shyama U. surname: Tetar fullname: Tetar, Shyama U. – sequence: 2 givenname: Anna M.E. surname: Bruynzeel fullname: Bruynzeel, Anna M.E. – sequence: 3 givenname: Frank J. surname: Lagerwaard fullname: Lagerwaard, Frank J. – sequence: 4 givenname: Ben J. surname: Slotman fullname: Slotman, Ben J. – sequence: 5 givenname: Omar surname: Bohoudi fullname: Bohoudi, Omar – sequence: 6 givenname: Miguel A. surname: Palacios fullname: Palacios, Miguel A. email: m.palacios@vumc.nl |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33458428$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktv1DAUhSNUREvpH2CBsmQzwY88HISQqhGPSpXYwNq6sa8zHjJ2cDIjDb-eO8xQtV2UlS37nO_a99yX2VmIAbPsNWcFZ7x-ty7GVYqFYLwtmCgYE8-yC1GyalFLXp_d259nV9O0ZqRoWllJ9iI7l7KsVCnURTYuBx-8gSH3m3HADYYZZh9DHl2-gT7g7E2ecIoBgkESQe9Dn_dbb9HmYGGc_Q7zBNbHeYUJxn3uYsqHSEz_mzRjihMxMTcHQnqVPXcwTHh1Wi-zH58_fV9-Xdx--3KzvL5dmFqqeYGy7DrhpDEcsLVYGWZlBx2AE66Rpq07XlYMhbJto8CpjqSyZEZJcG3t5GV2c-TaCGs9Jnp52usIXv89iKnXkOhzA-paKat41xqFdcmrrnPOMN7IVoEqy7Ym1scja9x2G7SGmpRgeAB9eBP8SvdxpxvFmrqRBHh7AqT4a4vTrDd-MjgMEDBuJy3KRjVNLaQg6Zv7te6K_IuMBOIoMNTYKaG7k3CmD6Oh6bs0GvowGpoJTcGTST0yGX8Mmt7rh6etH45WpLR2HpOejEeK0vqEZqZ2-qft7x_ZzWnifuL-f-Y_A3PsCQ |
| CitedBy_id | crossref_primary_10_3390_cancers13143564 crossref_primary_10_1088_1361_6560_ab8955 crossref_primary_10_1186_s13014_022_02021_6 crossref_primary_10_1016_j_prro_2020_07_003 crossref_primary_10_1093_jrr_rraa123 crossref_primary_10_3390_cancers17172893 crossref_primary_10_1259_bjr_20210698 crossref_primary_10_1016_j_ctro_2021_05_008 crossref_primary_10_1038_s41571_022_00631_3 crossref_primary_10_1016_j_phro_2023_100445 crossref_primary_10_1016_j_phro_2020_09_009 crossref_primary_10_1016_j_tipsro_2025_100302 crossref_primary_10_1016_j_ctro_2024_100901 crossref_primary_10_1016_j_phro_2024_100562 crossref_primary_10_1016_j_phro_2022_02_018 crossref_primary_10_1016_j_phro_2024_100560 crossref_primary_10_1186_s13014_020_01641_0 crossref_primary_10_1016_j_ctro_2023_100693 crossref_primary_10_1148_rg_230052 crossref_primary_10_1016_j_radonc_2022_02_002 crossref_primary_10_1186_s13014_023_02209_4 crossref_primary_10_1177_03915603211042335 crossref_primary_10_1016_j_phro_2019_09_001 crossref_primary_10_3390_cancers17152478 crossref_primary_10_1186_s13014_020_01604_5 crossref_primary_10_1016_j_radonc_2021_01_022 crossref_primary_10_3390_jcm11051189 crossref_primary_10_1002_acm2_13425 crossref_primary_10_1016_j_phro_2021_05_005 crossref_primary_10_1016_j_radonc_2023_109761 crossref_primary_10_1016_j_phro_2020_09_013 crossref_primary_10_1016_j_ctro_2022_11_012 crossref_primary_10_1016_j_ijrobp_2022_07_027 crossref_primary_10_3389_fonc_2021_620978 crossref_primary_10_1016_j_ctro_2022_11_013 crossref_primary_10_1080_0284186X_2022_2062682 crossref_primary_10_1016_j_phro_2020_12_004 crossref_primary_10_1016_j_semradonc_2023_10_012 crossref_primary_10_1016_j_phro_2020_12_006 crossref_primary_10_1016_j_phro_2020_12_001 crossref_primary_10_1016_j_radonc_2024_110525 crossref_primary_10_1002_acm2_13399 crossref_primary_10_1016_j_ctro_2024_100884 crossref_primary_10_1002_mrm_29450 crossref_primary_10_1016_j_prro_2021_10_001 crossref_primary_10_3389_fonc_2020_616291 crossref_primary_10_1002_mp_13857 crossref_primary_10_7759_cureus_72879 crossref_primary_10_1002_acm2_14253 crossref_primary_10_1016_j_prro_2024_10_009 crossref_primary_10_1016_j_euo_2020_05_007 crossref_primary_10_1016_j_radonc_2019_06_023 crossref_primary_10_1016_j_ejmp_2024_103297 crossref_primary_10_1038_s41585_021_00498_6 crossref_primary_10_1016_j_clgc_2022_01_006 crossref_primary_10_1016_j_radonc_2023_109869 crossref_primary_10_1016_j_radonc_2021_12_013 crossref_primary_10_3390_cancers16061206 crossref_primary_10_1016_j_ejmp_2020_06_010 crossref_primary_10_1016_j_ejmp_2020_04_027 crossref_primary_10_1016_j_semradonc_2023_10_008 crossref_primary_10_1016_j_phro_2021_01_001 crossref_primary_10_1016_j_meddos_2025_03_002 crossref_primary_10_1007_s00066_022_02005_1 crossref_primary_10_1007_s00117_021_00882_8 crossref_primary_10_1016_j_adro_2024_101701 crossref_primary_10_1016_j_clon_2021_06_007 crossref_primary_10_1016_j_radonc_2020_09_021 crossref_primary_10_1016_j_radonc_2021_09_023 crossref_primary_10_1016_j_phro_2019_11_008 crossref_primary_10_1007_s11888_021_00467_6 crossref_primary_10_3389_fonc_2021_616027 crossref_primary_10_1016_j_radonc_2021_07_014 crossref_primary_10_1093_jrr_rrz105 crossref_primary_10_1016_j_radonc_2019_09_014 crossref_primary_10_1259_bjr_20200696 crossref_primary_10_3389_fonc_2021_616156 crossref_primary_10_1002_acm2_13462 crossref_primary_10_1016_j_ijrobp_2020_10_021 crossref_primary_10_1016_j_radonc_2020_06_044 crossref_primary_10_1016_j_prro_2023_08_017 crossref_primary_10_3390_cancers17020208 crossref_primary_10_1016_j_zemedi_2022_01_006 crossref_primary_10_1186_s13244_024_01799_1 crossref_primary_10_1016_j_jmir_2024_101719 crossref_primary_10_3390_jcm12020574 crossref_primary_10_1016_j_prro_2025_01_013 crossref_primary_10_1016_j_semradonc_2022_06_003 crossref_primary_10_1080_0284186X_2019_1627417 crossref_primary_10_1088_1361_6560_ac3e0c crossref_primary_10_1016_j_ijrobp_2021_08_033 crossref_primary_10_1259_bjr_20210800 crossref_primary_10_3390_cancers16091685 crossref_primary_10_1016_j_prro_2025_03_011 crossref_primary_10_1016_j_phro_2023_100490 crossref_primary_10_1016_j_semradonc_2022_06_007 crossref_primary_10_1016_j_canrad_2025_104677 crossref_primary_10_1016_j_phro_2021_11_002 crossref_primary_10_1007_s00066_024_02346_z crossref_primary_10_1111_1754_9485_12968 crossref_primary_10_1016_j_ijrobp_2024_09_032 crossref_primary_10_1016_j_ejmp_2024_103368 crossref_primary_10_1007_s00066_024_02323_6 crossref_primary_10_1002_acm2_13479 crossref_primary_10_1016_j_radonc_2022_11_017 crossref_primary_10_1016_j_phro_2023_100460 crossref_primary_10_1016_j_ctro_2020_04_011 crossref_primary_10_1016_j_phro_2020_07_012 crossref_primary_10_1016_j_ctro_2019_03_006 crossref_primary_10_1016_j_phro_2021_07_010 crossref_primary_10_3390_cancers15235629 crossref_primary_10_3389_fonc_2023_1325105 crossref_primary_10_1016_j_phro_2022_04_009 crossref_primary_10_1016_j_phro_2022_06_013 crossref_primary_10_3389_fonc_2021_637591 crossref_primary_10_1016_j_meddos_2022_06_004 crossref_primary_10_3389_fonc_2023_1151256 crossref_primary_10_3389_fonc_2021_626100 crossref_primary_10_1002_acm2_13523 crossref_primary_10_1016_j_phro_2020_05_002 crossref_primary_10_1200_GO_21_00366 crossref_primary_10_1002_acm2_13801 crossref_primary_10_3389_fonc_2021_636529 crossref_primary_10_3389_fonc_2024_1294252 crossref_primary_10_1002_mp_15678 crossref_primary_10_1016_j_radonc_2021_03_025 crossref_primary_10_1186_s12891_023_06153_y crossref_primary_10_1186_s12955_022_01987_x crossref_primary_10_3389_fphy_2022_897710 crossref_primary_10_1002_acm2_14221 crossref_primary_10_1016_j_ctro_2023_100661 crossref_primary_10_3389_fonc_2020_01741 crossref_primary_10_1186_s13014_021_01858_7 crossref_primary_10_1002_acm2_14060 |
| Cites_doi | 10.1016/S0360-3016(03)01455-X 10.1016/j.ijrobp.2016.08.036 10.3389/fonc.2018.00110 10.1016/j.ijrobp.2010.10.075 10.1016/S0167-8140(18)30829-6 10.1002/mp.13091 10.1016/S0167-8140(17)30705-3 10.1016/j.ijrobp.2014.09.008 10.1016/j.radonc.2006.10.028 10.1016/j.radonc.2007.03.015 10.1118/1.598248 10.1016/j.ejmp.2018.05.006 10.1016/j.radonc.2016.04.014 10.1088/0031-9155/45/8/308 10.1088/0031-9155/45/8/315 10.1118/1.2952443 10.1016/j.radonc.2017.11.012 10.1016/j.ijrobp.2011.12.073 10.1118/1.1598711 10.1016/j.ijrobp.2010.05.008 10.1016/j.radonc.2017.07.028 10.1016/j.ijrobp.2018.06.002 10.1016/j.ejmp.2016.03.010 10.1016/j.semradonc.2018.02.002 10.1118/1.598917 10.1016/j.ijrobp.2004.11.032 10.1088/1361-6560/aa9517 10.1016/j.ijrobp.2010.02.001 10.1088/1361-6560/aaaca4 10.1016/j.eururo.2013.09.046 10.1118/1.4919847 10.1016/j.ijrobp.2006.01.021 10.1016/j.ijrobp.2017.02.089 10.1118/1.2760507 10.1016/j.ijrobp.2009.10.008 10.1016/j.radonc.2018.01.014 10.1016/j.ijrobp.2017.10.020 10.1016/j.ijrobp.2011.10.009 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors 2019 The Authors. 2019 The Authors 2019 |
| Copyright_xml | – notice: 2019 The Authors – notice: 2019 The Authors. – notice: 2019 The Authors 2019 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.phro.2019.02.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2405-6316 |
| EndPage | 76 |
| ExternalDocumentID | oai_doaj_org_article_688d81b9c8e6415bbffc017398a84496 PMC7807673 33458428 10_1016_j_phro_2019_02_002 S2405631618300708 |
| Genre | Journal Article |
| GroupedDBID | .1- .FO 0R~ AAEDW AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADVLN AEUPX AFJKZ AFPUW AFRHN AFTJW AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ M41 M~E O9- OK1 ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH NCXOZ RIG AAYXX CITATION NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c638t-e34bb2f3cc1ae9de5c0d3babaaf2f73c96b1450e28d978af8b3cc340c83af96f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 143 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645136500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2405-6316 |
| IngestDate | Fri Oct 03 12:39:59 EDT 2025 Thu Aug 21 14:04:05 EDT 2025 Sun Nov 09 09:28:26 EST 2025 Mon Jul 21 05:27:00 EDT 2025 Tue Nov 18 22:42:44 EST 2025 Wed Nov 12 18:32:08 EST 2025 Thu Jul 20 19:57:43 EDT 2023 Tue Aug 26 17:19:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stereotactic body radiotherapy (SBRT) Workflow MR-guided Radiotherapy (MRgRT) On-table adaptation Prostate cancer |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2019 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c638t-e34bb2f3cc1ae9de5c0d3babaaf2f73c96b1450e28d978af8b3cc340c83af96f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/688d81b9c8e6415bbffc017398a84496 |
| PMID | 33458428 |
| PQID | 2478776232 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_688d81b9c8e6415bbffc017398a84496 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7807673 proquest_miscellaneous_2478776232 pubmed_primary_33458428 crossref_primary_10_1016_j_phro_2019_02_002 crossref_citationtrail_10_1016_j_phro_2019_02_002 elsevier_sciencedirect_doi_10_1016_j_phro_2019_02_002 elsevier_clinicalkey_doi_10_1016_j_phro_2019_02_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Physics and imaging in radiation oncology |
| PublicationTitleAlternate | Phys Imaging Radiat Oncol |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Pathmanathan, van As, Kerkmeijer, Christodouleas, Lawton, Vesprini (b0100) 2018; 100 Moteabbed, Trofimov, Khan, Wang, Sharp, Zietman (b0045) 2018; 45 Sempau, Wilderman, Bielajew (b0155) 2000; 45 Feng, Valdes, Dixit, Solberg (b0180) 2018; 8 Liu, Erickson, Peng, Li (b0185) 2012; 83 Peng, Ahunbay, Chen, Anderson, Lawton, Li (b0065) 2011; 79 Ahunbay, Peng, Chen, Narayanan, Yu, Lawton (b0195) 2008; 35 Sheng, Li, Lee, Yin, Wu (b0050) 2017; 98 Miralbell, Roberts, Zubizarreta, Hendry (b0010) 2012; 82 Fu, Yang, Yue, Heron, Huq (b0200) 2007; 34 Low, Harms, Mutic, Purdy (b0150) 1998 Pinkawa, Asadpour, Siluschek, Gagel, Piroth, Demirel (b0025) 2007; 83 Bohoudi, Bruynzeel, Senan, Cuijpers, Slotman, Lagerwaard (b0120) 2017; 125 Tanyi, He, Summers, Mburu, Kato, Rhodes (b0055) 2010; 78 Lustberg, van Soest, Gooding, Peressutti, Aljabar, van der Stoep (b0170) 2017; 126 Proust-Lima, Taylor, Sécher, Sandler, Kestin, Pickles (b0015) 2011; 79 Salembier, Villeirs, De Bari, Hoskin, Pieters, Van Vulpen (b0105) 2018; 127 Landoni, Saracino, Marzi, Gallucci, Petrongari, Chianese (b0030) 2006; 65 De Crevoisier, Tucker, Dong, Mohan, Cheung, Cox (b0035) 2005; 62 Raaymakers, Jürgenliemk-Schulz, Bol, Glitzner, Kotte, Van Asselen (b0095) 2017; 62 Kawrakow, Fippel (b0125) 2000; 45 Men, Zhang, Chen, Chen, Tang, Wang (b0175) 2018; 50 Tetar, Bruynzeel, Bakker, Jeulink, Slotman, Oei (b0160) 2018; 10 Palacios, Bohoudi, Bruynzeel, van Sörnsen-de Koste, Cobussen, Slotman (b0085) 2018 Owrangi, Greer, Glide-Hurst (b0190) 2018; 63 Deutschmann, Kametriser, Steininger, Scherer, Schöller, Gaisberger (b0060) 2012; 83 Li, Rodriguez, Green, Hu, Kashani, Wooten (b0140) 2015; 91 Kawrakow (b0130) 2000; 27 Lamb, Cao, Kishan, Agazaryan, Thomas, Shaverdian (b0165) 2017; 9 Henke, Kashani, Yang, Zhao, Green, Olsen (b0090) 2016; 96 McVicar, Popescu, Heath (b0075) 2016; 32 Low, Dempsey (b0145) 2003; 30 Bohoudi, Palacios, Slotman, Senan, Bruynzeel, Lagerwaard (b0115) 2018; 127 Ahunbay, Li (b0070) 2015; 42 Jz, Guerrero, Allen (b0005) 2003; 57 Pinkawa, Siluschek, Gagel, Demirel, Asadpour, Holy (b0020) 2006; 81 Heidenreich, Bastian, Bellmunt, Bolla, Joniau, Van Der Kwast (b0110) 2014; 65 Palacios, Apicella, Hoffmans, Osario, Admiraal, Kawrakow (b0135) 2017; 123 Kashani, Olsen (b0080) 2018; 28 McPartlin, Li, Kershaw, Heide, Kerkmeijer, Lawton (b0040) 2016 Ahunbay (10.1016/j.phro.2019.02.002_b0070) 2015; 42 Kashani (10.1016/j.phro.2019.02.002_b0080) 2018; 28 Men (10.1016/j.phro.2019.02.002_b0175) 2018; 50 Proust-Lima (10.1016/j.phro.2019.02.002_b0015) 2011; 79 Peng (10.1016/j.phro.2019.02.002_b0065) 2011; 79 Low (10.1016/j.phro.2019.02.002_b0145) 2003; 30 Kawrakow (10.1016/j.phro.2019.02.002_b0125) 2000; 45 Owrangi (10.1016/j.phro.2019.02.002_b0190) 2018; 63 Raaymakers (10.1016/j.phro.2019.02.002_b0095) 2017; 62 Bohoudi (10.1016/j.phro.2019.02.002_b0115) 2018; 127 Low (10.1016/j.phro.2019.02.002_b0150) 1998 Pathmanathan (10.1016/j.phro.2019.02.002_b0100) 2018; 100 Lamb (10.1016/j.phro.2019.02.002_b0165) 2017; 9 Lustberg (10.1016/j.phro.2019.02.002_b0170) 2017; 126 Heidenreich (10.1016/j.phro.2019.02.002_b0110) 2014; 65 De Crevoisier (10.1016/j.phro.2019.02.002_b0035) 2005; 62 Li (10.1016/j.phro.2019.02.002_b0140) 2015; 91 Feng (10.1016/j.phro.2019.02.002_b0180) 2018; 8 Moteabbed (10.1016/j.phro.2019.02.002_b0045) 2018; 45 McVicar (10.1016/j.phro.2019.02.002_b0075) 2016; 32 Kawrakow (10.1016/j.phro.2019.02.002_b0130) 2000; 27 Pinkawa (10.1016/j.phro.2019.02.002_b0025) 2007; 83 McPartlin (10.1016/j.phro.2019.02.002_b0040) 2016 Deutschmann (10.1016/j.phro.2019.02.002_b0060) 2012; 83 Tetar (10.1016/j.phro.2019.02.002_b0160) 2018; 10 Palacios (10.1016/j.phro.2019.02.002_b0085) 2018 Palacios (10.1016/j.phro.2019.02.002_b0135) 2017; 123 Salembier (10.1016/j.phro.2019.02.002_b0105) 2018; 127 Tanyi (10.1016/j.phro.2019.02.002_b0055) 2010; 78 Sempau (10.1016/j.phro.2019.02.002_b0155) 2000; 45 Miralbell (10.1016/j.phro.2019.02.002_b0010) 2012; 82 Sheng (10.1016/j.phro.2019.02.002_b0050) 2017; 98 Liu (10.1016/j.phro.2019.02.002_b0185) 2012; 83 Henke (10.1016/j.phro.2019.02.002_b0090) 2016; 96 Ahunbay (10.1016/j.phro.2019.02.002_b0195) 2008; 35 Pinkawa (10.1016/j.phro.2019.02.002_b0020) 2006; 81 Jz (10.1016/j.phro.2019.02.002_b0005) 2003; 57 Landoni (10.1016/j.phro.2019.02.002_b0030) 2006; 65 Bohoudi (10.1016/j.phro.2019.02.002_b0120) 2017; 125 Fu (10.1016/j.phro.2019.02.002_b0200) 2007; 34 |
| References_xml | – volume: 82 start-page: 17 year: 2012 end-page: 24 ident: b0010 article-title: Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9-2.2) Gy publication-title: Int J Radiat Oncol Biol Phys – volume: 83 start-page: 163 year: 2007 end-page: 167 ident: b0025 article-title: Bladder extension variability during pelvic external beam radiotherapy with a full or empty bladder publication-title: Radiother Oncol – volume: 78 start-page: 1579 year: 2010 end-page: 1585 ident: b0055 article-title: Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: Role of daily inter- and intrafraction motion publication-title: Int J Radiat Oncol Biol Phys – volume: 50 start-page: 13 year: 2018 end-page: 19 ident: b0175 article-title: Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning publication-title: Phys Med – volume: 65 start-page: 587 year: 2006 end-page: 594 ident: b0030 article-title: A study of the effect of setup errors and organ motion on prostate cancer treatment with IMRT publication-title: Int J Radiat Oncol Biol Phys – volume: 45 start-page: 2263 year: 2000 end-page: 2292 ident: b0155 article-title: DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations publication-title: Phys Med Biol – volume: 62 start-page: L41 year: 2017 end-page: L50 ident: b0095 article-title: First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment publication-title: Phys Med Biol – volume: 34 start-page: 2368 year: 2007 ident: b0200 article-title: A Cone Beam CT—guided online plan modification technique to correct interfractional anatomic changes for prostate cancer IMRT treatment publication-title: Med Phys – volume: 30 start-page: 2455 year: 2003 ident: b0145 article-title: Evaluation of the gamma dose distribution comparison method publication-title: Med Phys – volume: 65 start-page: 124 year: 2014 end-page: 137 ident: b0110 article-title: EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent – update 2013 publication-title: Eur Urol – volume: 83 start-page: 1624 year: 2012 end-page: 1632 ident: b0060 article-title: First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter- and intrafractional rotations of the prostate publication-title: Int J Radiat Oncol Biol Phys – volume: 79 start-page: 195 year: 2011 end-page: 201 ident: b0015 article-title: Confirmation of a low α/β ratio for prostate cancer treated by external beam radiation therapy alone using a post-treatment repeated-measures model for PSA dynamics publication-title: Int J Radiat Oncol Biol Phys – volume: 63 start-page: 1 year: 2018 end-page: 15 ident: b0190 article-title: MRI-only treatment planning: benefits and challenges publication-title: Phys Med Biol – volume: 45 start-page: 4011 year: 2018 end-page: 4019 ident: b0045 article-title: Impact of interfractional motion on hypofractionated pencil beam scanning proton therapy and VMAT delivery for prostate cancer publication-title: Med Phys – volume: 98 start-page: 473 year: 2017 end-page: 480 ident: b0050 article-title: Exploring the margin recipe for online adaptive radiation therapy for intermediate-risk prostate cancer: an intrafractional seminal vesicles motion analysis publication-title: Int J Radiat Oncol Biol Phys – volume: 62 start-page: 965 year: 2005 end-page: 973 ident: b0035 article-title: Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy publication-title: Int J Radiat Oncol Biol Phys – volume: 100 start-page: 361 year: 2018 end-page: 373 ident: b0100 article-title: Magnetic resonance imaging-guided adaptive radiation therapy: a “game changer” for prostate treatment? publication-title: Int J Radiat Oncol Biol Phys – volume: 123 start-page: S134 year: 2017 end-page: S135 ident: b0135 article-title: Implementation of patient specific QA for daily adaptive MR-guided radiation therapy publication-title: Radiother Oncol – volume: 10 year: 2018 ident: b0160 article-title: Outcome measurements on the tolerance of magnetic resonance publication-title: Imag-guided Radiat Ther Cureus – start-page: 656 year: 1998 end-page: 661 ident: b0150 article-title: A technique for the quantitative evaluation of dose distributions publication-title: Med Phys – volume: 81 start-page: 284 year: 2006 end-page: 290 ident: b0020 article-title: Influence of the initial rectal distension on posterior margins in primary and postoperative radiotherapy for prostate cancer publication-title: Radiother Oncol – volume: 125 start-page: 439 year: 2017 end-page: 444 ident: b0120 article-title: Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer publication-title: Radiother Oncol – volume: 79 start-page: 909 year: 2011 end-page: 914 ident: b0065 article-title: Characterizing interfraction variations and their dosimetric effects in prostate cancer radiotherapy publication-title: Int J Radiat Oncol Biol Phys – volume: 9 year: 2017 ident: b0165 article-title: Adaptive radiation therapy: implementation of a new process of care publication-title: Cureus – year: 2018 ident: b0085 article-title: Role of daily plan adaptation in MR-guided stereotactic ablative radiotherapy for adrenal metastases publication-title: Int J Radiat Oncol – volume: 57 start-page: 1116 year: 2003 end-page: 1121 ident: b0005 article-title: How low is the α/β ratio for prostate cancer? publication-title: Int J Radiat Oncol Biol Phys – volume: 32 start-page: 492 year: 2016 end-page: 498 ident: b0075 article-title: Techniques for adaptive prostate radiotherapy publication-title: Phys Medica – volume: 42 start-page: 2863 year: 2015 end-page: 2876 ident: b0070 article-title: Gradient maintenance: a new algorithm for fast online replanning a) publication-title: Med Phys – volume: 91 start-page: 65 year: 2015 end-page: 72 ident: b0140 article-title: Quality assurance for the delivery of 60Co intensity modulated radiation therapy subject to a 0.35-T lateral magnetic field publication-title: Int J Radiat Oncol – volume: 35 start-page: 3607 year: 2008 end-page: 3615 ident: b0195 article-title: An on-line replanning scheme for interfractional variations publication-title: Med Phys – volume: 28 start-page: 178 year: 2018 end-page: 184 ident: b0080 article-title: Magnetic resonance imaging for target delineation and daily treatment modification publication-title: Semin Radiat Oncol – volume: 45 start-page: 2163 year: 2000 end-page: 2184 ident: b0125 article-title: Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC publication-title: Phys Med Biol – volume: 83 start-page: e423 year: 2012 end-page: e429 ident: b0185 article-title: Characterization and management of interfractional anatomic changes for pancreatic cancer radiotherapy publication-title: Int J Radiat Oncol Biol Phys – volume: 96 start-page: 1078 year: 2016 end-page: 1086 ident: b0090 article-title: Simulated online adaptive magnetic resonance-guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages publication-title: Int J Radiat Oncol Biol Phys – volume: 27 start-page: 485 year: 2000 end-page: 498 ident: b0130 article-title: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version publication-title: Med Phys – year: 2016 ident: b0040 article-title: MRI-guided prostate adaptive radiotherapy – a systematic review publication-title: Radiother Oncol – volume: 126 start-page: 312 year: 2017 end-page: 317 ident: b0170 article-title: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer publication-title: Radiother Oncol – volume: 127 start-page: S273 year: 2018 ident: b0115 article-title: OC-0519: radiotherapy plan quality using a double focused, double stacked multi-leaf collimator publication-title: Radiother Oncol – volume: 8 start-page: 1 year: 2018 end-page: 7 ident: b0180 article-title: Machine learning in radiation oncology: opportunities, requirements, and needs publication-title: Front Oncol – volume: 127 start-page: 49 year: 2018 end-page: 61 ident: b0105 article-title: ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer publication-title: Radiother Oncol – volume: 57 start-page: 1116 year: 2003 ident: 10.1016/j.phro.2019.02.002_b0005 article-title: How low is the α/β ratio for prostate cancer? publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(03)01455-X – volume: 96 start-page: 1078 year: 2016 ident: 10.1016/j.phro.2019.02.002_b0090 article-title: Simulated online adaptive magnetic resonance-guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2016.08.036 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.phro.2019.02.002_b0180 article-title: Machine learning in radiation oncology: opportunities, requirements, and needs publication-title: Front Oncol doi: 10.3389/fonc.2018.00110 – volume: 82 start-page: 17 year: 2012 ident: 10.1016/j.phro.2019.02.002_b0010 article-title: Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9-2.2) Gy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.10.075 – volume: 127 start-page: S273 year: 2018 ident: 10.1016/j.phro.2019.02.002_b0115 article-title: OC-0519: radiotherapy plan quality using a double focused, double stacked multi-leaf collimator publication-title: Radiother Oncol doi: 10.1016/S0167-8140(18)30829-6 – volume: 45 start-page: 4011 year: 2018 ident: 10.1016/j.phro.2019.02.002_b0045 article-title: Impact of interfractional motion on hypofractionated pencil beam scanning proton therapy and VMAT delivery for prostate cancer publication-title: Med Phys doi: 10.1002/mp.13091 – volume: 123 start-page: S134 year: 2017 ident: 10.1016/j.phro.2019.02.002_b0135 article-title: Implementation of patient specific QA for daily adaptive MR-guided radiation therapy publication-title: Radiother Oncol doi: 10.1016/S0167-8140(17)30705-3 – volume: 91 start-page: 65 year: 2015 ident: 10.1016/j.phro.2019.02.002_b0140 article-title: Quality assurance for the delivery of 60Co intensity modulated radiation therapy subject to a 0.35-T lateral magnetic field publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2014.09.008 – volume: 9 year: 2017 ident: 10.1016/j.phro.2019.02.002_b0165 article-title: Adaptive radiation therapy: implementation of a new process of care publication-title: Cureus – volume: 81 start-page: 284 year: 2006 ident: 10.1016/j.phro.2019.02.002_b0020 article-title: Influence of the initial rectal distension on posterior margins in primary and postoperative radiotherapy for prostate cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2006.10.028 – volume: 83 start-page: 163 year: 2007 ident: 10.1016/j.phro.2019.02.002_b0025 article-title: Bladder extension variability during pelvic external beam radiotherapy with a full or empty bladder publication-title: Radiother Oncol doi: 10.1016/j.radonc.2007.03.015 – start-page: 656 year: 1998 ident: 10.1016/j.phro.2019.02.002_b0150 article-title: A technique for the quantitative evaluation of dose distributions publication-title: Med Phys doi: 10.1118/1.598248 – volume: 50 start-page: 13 year: 2018 ident: 10.1016/j.phro.2019.02.002_b0175 article-title: Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning publication-title: Phys Med doi: 10.1016/j.ejmp.2018.05.006 – year: 2016 ident: 10.1016/j.phro.2019.02.002_b0040 article-title: MRI-guided prostate adaptive radiotherapy – a systematic review publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.04.014 – volume: 45 start-page: 2163 year: 2000 ident: 10.1016/j.phro.2019.02.002_b0125 article-title: Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC publication-title: Phys Med Biol doi: 10.1088/0031-9155/45/8/308 – volume: 45 start-page: 2263 year: 2000 ident: 10.1016/j.phro.2019.02.002_b0155 article-title: DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations publication-title: Phys Med Biol doi: 10.1088/0031-9155/45/8/315 – volume: 35 start-page: 3607 year: 2008 ident: 10.1016/j.phro.2019.02.002_b0195 article-title: An on-line replanning scheme for interfractional variations publication-title: Med Phys doi: 10.1118/1.2952443 – volume: 126 start-page: 312 year: 2017 ident: 10.1016/j.phro.2019.02.002_b0170 article-title: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2017.11.012 – volume: 83 start-page: e423 year: 2012 ident: 10.1016/j.phro.2019.02.002_b0185 article-title: Characterization and management of interfractional anatomic changes for pancreatic cancer radiotherapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2011.12.073 – volume: 30 start-page: 2455 year: 2003 ident: 10.1016/j.phro.2019.02.002_b0145 article-title: Evaluation of the gamma dose distribution comparison method publication-title: Med Phys doi: 10.1118/1.1598711 – volume: 79 start-page: 909 year: 2011 ident: 10.1016/j.phro.2019.02.002_b0065 article-title: Characterizing interfraction variations and their dosimetric effects in prostate cancer radiotherapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.05.008 – volume: 125 start-page: 439 year: 2017 ident: 10.1016/j.phro.2019.02.002_b0120 article-title: Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2017.07.028 – year: 2018 ident: 10.1016/j.phro.2019.02.002_b0085 article-title: Role of daily plan adaptation in MR-guided stereotactic ablative radiotherapy for adrenal metastases publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2018.06.002 – volume: 32 start-page: 492 year: 2016 ident: 10.1016/j.phro.2019.02.002_b0075 article-title: Techniques for adaptive prostate radiotherapy publication-title: Phys Medica doi: 10.1016/j.ejmp.2016.03.010 – volume: 28 start-page: 178 year: 2018 ident: 10.1016/j.phro.2019.02.002_b0080 article-title: Magnetic resonance imaging for target delineation and daily treatment modification publication-title: Semin Radiat Oncol doi: 10.1016/j.semradonc.2018.02.002 – volume: 27 start-page: 485 year: 2000 ident: 10.1016/j.phro.2019.02.002_b0130 article-title: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version publication-title: Med Phys doi: 10.1118/1.598917 – volume: 62 start-page: 965 year: 2005 ident: 10.1016/j.phro.2019.02.002_b0035 article-title: Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2004.11.032 – volume: 62 start-page: L41 year: 2017 ident: 10.1016/j.phro.2019.02.002_b0095 article-title: First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa9517 – volume: 78 start-page: 1579 year: 2010 ident: 10.1016/j.phro.2019.02.002_b0055 article-title: Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: Role of daily inter- and intrafraction motion publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.02.001 – volume: 10 year: 2018 ident: 10.1016/j.phro.2019.02.002_b0160 article-title: Outcome measurements on the tolerance of magnetic resonance publication-title: Imag-guided Radiat Ther Cureus – volume: 63 start-page: 1 year: 2018 ident: 10.1016/j.phro.2019.02.002_b0190 article-title: MRI-only treatment planning: benefits and challenges publication-title: Phys Med Biol doi: 10.1088/1361-6560/aaaca4 – volume: 65 start-page: 124 year: 2014 ident: 10.1016/j.phro.2019.02.002_b0110 article-title: EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent – update 2013 publication-title: Eur Urol doi: 10.1016/j.eururo.2013.09.046 – volume: 42 start-page: 2863 year: 2015 ident: 10.1016/j.phro.2019.02.002_b0070 article-title: Gradient maintenance: a new algorithm for fast online replanning a) publication-title: Med Phys doi: 10.1118/1.4919847 – volume: 65 start-page: 587 year: 2006 ident: 10.1016/j.phro.2019.02.002_b0030 article-title: A study of the effect of setup errors and organ motion on prostate cancer treatment with IMRT publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2006.01.021 – volume: 98 start-page: 473 year: 2017 ident: 10.1016/j.phro.2019.02.002_b0050 article-title: Exploring the margin recipe for online adaptive radiation therapy for intermediate-risk prostate cancer: an intrafractional seminal vesicles motion analysis publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2017.02.089 – volume: 34 start-page: 2368 year: 2007 ident: 10.1016/j.phro.2019.02.002_b0200 article-title: A Cone Beam CT—guided online plan modification technique to correct interfractional anatomic changes for prostate cancer IMRT treatment publication-title: Med Phys doi: 10.1118/1.2760507 – volume: 79 start-page: 195 year: 2011 ident: 10.1016/j.phro.2019.02.002_b0015 article-title: Confirmation of a low α/β ratio for prostate cancer treated by external beam radiation therapy alone using a post-treatment repeated-measures model for PSA dynamics publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.10.008 – volume: 127 start-page: 49 year: 2018 ident: 10.1016/j.phro.2019.02.002_b0105 article-title: ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2018.01.014 – volume: 100 start-page: 361 year: 2018 ident: 10.1016/j.phro.2019.02.002_b0100 article-title: Magnetic resonance imaging-guided adaptive radiation therapy: a “game changer” for prostate treatment? publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2017.10.020 – volume: 83 start-page: 1624 year: 2012 ident: 10.1016/j.phro.2019.02.002_b0060 article-title: First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter- and intrafractional rotations of the prostate publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2011.10.009 |
| SSID | ssj0002793530 |
| Score | 2.470172 |
| Snippet | Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years.... Background and purpose: Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 69 |
| SubjectTerms | MR-guided Radiotherapy (MRgRT) On-table adaptation Original Prostate cancer Stereotactic body radiotherapy (SBRT) Workflow |
| Title | Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2405631618300708 https://dx.doi.org/10.1016/j.phro.2019.02.002 https://www.ncbi.nlm.nih.gov/pubmed/33458428 https://www.proquest.com/docview/2478776232 https://pubmed.ncbi.nlm.nih.gov/PMC7807673 https://doaj.org/article/688d81b9c8e6415bbffc017398a84496 |
| Volume | 9 |
| WOSCitedRecordID | wos000645136500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2405-6316 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793530 issn: 2405-6316 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2405-6316 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793530 issn: 2405-6316 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogLKu-FUhmJG4pIPE5iH2nViksrDiDtzfKzpGqzq-0uEhz47YztZLUBqb1wySEZO7JnnPkcz3xDyHvjQ1V6BoW3EgoODgphZFm4StoaODOBuVRsoj0_F_O5_LJT6ivGhGV64DxxHxshHEIraYVv0NkYE4JFKwIptOBcJrJtRD07m6nLdJwmoU6FRtBj1UUDVTNkzOTgLpyomPlXyUzYySZeKZH3T5zTv-Dz7xjKHad0uk8eD2iSfsqjeELu-f4peXg2nJc_I8uB9vOKdtdjoHjUBF0Eeq0v-pjBSHHDvYi0Gx6FUs0ierHpnHdUO72MX0O60q4bMrV-UkS5NHnA7hfKLGPWCOJVamMPq-fk2-nJ1-PPxVBjobC48taFB24MC2Btpb10vralA6ON1oGFFqxsTMVr1KZwuN_UQRgUBV5aATrIJsALstcvev-K0NI4b0LFmdWBo4qxD4_os9UOpRvGZqQa51jZgYA81sG4UmOk2aWKelFRL6pkCvUyIx-2bZaZfuNW6aOouq1kpM5ON9Cg1GBQ6i6DmhEYFa_G7FT8nmJH3a2vrretBuySMcmd7d6NtqVwYcfTGt37xeZGsUibhK4KUOZltrXtwADi8TYTM9JOrHAy8umTvvueyMNbUbZNC6__x1S9IY_iUPIfqQOyt15t_FvywP5YdzerQ3K_nYvDtC7xevb75A_Zjj_3 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+implementation+of+magnetic+resonance+imaging+guided+adaptive+radiotherapy+for+localized+prostate+cancer&rft.jtitle=Physics+and+imaging+in+radiation+oncology&rft.au=Shyama+U.+Tetar&rft.au=Anna+M.E.+Bruynzeel&rft.au=Frank+J.+Lagerwaard&rft.au=Ben+J.+Slotman&rft.date=2019-01-01&rft.pub=Elsevier&rft.issn=2405-6316&rft.eissn=2405-6316&rft.volume=9&rft.spage=69&rft.epage=76&rft_id=info:doi/10.1016%2Fj.phro.2019.02.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_688d81b9c8e6415bbffc017398a84496 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-6316&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-6316&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-6316&client=summon |