Limited evidence for blood eQTLs in human sexual dimorphism
Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed s...
Gespeichert in:
| Veröffentlicht in: | Genome medicine Jg. 14; H. 1; S. 89 - 13 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
11.08.2022
BioMed Central Ltd Springer Nature B.V BMC |
| Schlagworte: | |
| ISSN: | 1756-994X, 1756-994X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Background
The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits.
Methods
To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs.
Results
Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased
cis
-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased
cis
-eQTLs. Compensatory effects may further hamper their detection.
Conclusions
Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs. |
|---|---|
| AbstractList | Abstract Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. Methods To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Results Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection. Conclusions Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs. The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection. Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs. The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection. Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs. The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits.BACKGROUNDThe genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits.To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs.METHODSTo explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs.Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection.RESULTSAmong 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection.Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs.CONCLUSIONSOur results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs. Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. Methods To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Results Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection. Conclusions Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs. Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. Methods To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Results Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis -eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis -eQTLs. Compensatory effects may further hamper their detection. Conclusions Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs. |
| ArticleNumber | 89 |
| Audience | Academic |
| Author | Reymond, Alexandre Richardson, Tom G. Teumer, Alexander Kutalik, Zoltán Weihs, Antoine Franke, Lude Lepik, Kaido Santoni, Federico A. Claringbould, Annique Völker, Uwe Porcu, Eleonora |
| Author_xml | – sequence: 1 givenname: Eleonora orcidid: 0000-0003-2878-7485 surname: Porcu fullname: Porcu, Eleonora email: eleonora.porcu@unil.ch organization: Center for Integrative Genomics, University of Lausanne, Swiss Institute of Bioinformatics, University Center for Primary Care and Public Health – sequence: 2 givenname: Annique surname: Claringbould fullname: Claringbould, Annique organization: University Medical Centre Groningen, Structural and Computational Biology Unit, European Molecular Biology Laboratories (EMBL) – sequence: 3 givenname: Antoine surname: Weihs fullname: Weihs, Antoine organization: Department of Psychiatry and Psychotherapy, University Medicine Greifswald – sequence: 4 givenname: Kaido surname: Lepik fullname: Lepik, Kaido organization: Institute of Computer Science, University of Tartu, Estonian Genome Centre, Institute of Genomics, University of Tartu – sequence: 6 givenname: Tom G. surname: Richardson fullname: Richardson, Tom G. organization: MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Novo Nordisk Research Centre Oxford – sequence: 7 givenname: Uwe surname: Völker fullname: Völker, Uwe organization: Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, DZHK (German Centre for Cardiovascular Research), partner site Greifswald – sequence: 8 givenname: Federico A. surname: Santoni fullname: Santoni, Federico A. organization: Endocrine, Diabetes, and Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology and Medicine, University of Lausanne – sequence: 9 givenname: Alexander surname: Teumer fullname: Teumer, Alexander organization: DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Institute for Community Medicine, University Medicine Greifswald – sequence: 10 givenname: Lude surname: Franke fullname: Franke, Lude organization: University Medical Centre Groningen – sequence: 11 givenname: Alexandre surname: Reymond fullname: Reymond, Alexandre email: alexandre.reymond@unil.ch organization: Center for Integrative Genomics, University of Lausanne – sequence: 12 givenname: Zoltán surname: Kutalik fullname: Kutalik, Zoltán email: zoltan.kutalik@unil.ch organization: Swiss Institute of Bioinformatics, University Center for Primary Care and Public Health, Department of Computational Biology, University of Lausanne |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35953856$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kltr2zAYhs3oWA_bH9jFMAzGbtzpEJ0YFErZoRAYgw52J2Tpc6JgS51kt9u_n5K0XVJG8YUt-Xkf2R_vcXUQYoCqeo3RKcaSf8iYIkEbREiDMJKyuX1WHWHBeKPU7OfBzvNhdZzzCiE-IzPxojqkTDEqGT-qPs794EdwNdx4B8FC3cVUt32MZev71TzXPtTLaTChzvB7Mn3t_BDT9dLn4WX1vDN9hld395Pqx-dPVxdfm_m3L5cX5_PGcirHRgKVEpxEHSdIta0tJwNDxrTCdEooYNJRZnAnHWKSE9laxZQCilteVo6eVJdbr4tmpa-TH0z6o6PxerMR00KbNHrbgza0Y5a2XEihZkYw41zbckIJYY5gxIvrbOu6ntoBnIUwJtPvSfffBL_Ui3ijFRWUMlYE7-8EKf6aII968NlC35sAccqaCESwImqDvn2EruKUQhnVmpohJlhxPlALU37Ahy6Wc-1aqs8FpqJgfO06_Q9VLgeDt6UXnS_7e4F3O4ElmH5c5thPo48h74NvdifyMIr7jhRAbgGbYs4JOm39aNae8gm-1xjpdR31to661FFv6qhvS5Q8it7bnwzRbSgXOCwg_RvbE6m_b_bvJA |
| CitedBy_id | crossref_primary_10_1038_s41467_025_58128_3 crossref_primary_10_1146_annurev_physiol_042022_014322 crossref_primary_10_1186_s12864_024_10065_z crossref_primary_10_1016_j_xhgg_2025_100463 crossref_primary_10_1038_s41588_022_01251_4 |
| Cites_doi | 10.1111/j.1365-2362.2010.02418.x 10.1126/science.283.5406.1277 10.1038/ng.3643 10.1093/hmg/ddy327 10.1038/ng.3506 10.1038/ng.3538 10.1093/bioinformatics/btu638 10.1056/NEJMoa1502214 10.1371/journal.pgen.1000895 10.1038/ng.3737 10.1136/jnnp.2011.244939 10.1038/sj.ejhg.5201508 10.1186/s12859-020-03576-5 10.1038/ejhg.2013.118 10.1038/s41588-020-0625-2 10.1016/j.nbd.2012.03.020 10.1371/journal.pone.0050938 10.1017/thg.2016.85 10.1038/s41588-021-00846-7 10.1186/s13059-016-1111-0 10.1371/journal.pgen.1000888 10.1001/jamanetworkopen.2018.1670 10.1093/hmg/ddx043 10.1038/ng.3656 10.1371/journal.pgen.1003500 10.1038/ncomms10558 10.1038/ng.3679 10.1038/ncomms9111 10.1038/s41576-018-0083-1 10.1371/journal.pgen.1002197 10.1038/ng.2756 10.1007/s10654-013-9866-z 10.1016/j.biopsych.2017.11.026 10.1101/gr.197897.115 10.1038/s41588-021-00913-z 10.1038/s41586-018-0579-z 10.1038/s41467-018-08000-4 10.1017/thg.2012.140 10.1186/1471-2164-15-33 10.1093/bioinformatics/bts635 10.2741/1913 10.1371/journal.pgen.1003649 10.1375/twin.13.3.231 10.1038/ng.2951 10.1101/gr.134981.111 10.1016/0002-8703(86)90155-9 10.1038/ng.2205 10.1016/j.celrep.2019.10.019 10.1038/nature09266 10.7554/eLife.52155 10.1093/ije/dyp394 10.1136/bmjopen-2014-006772 10.1016/j.exger.2016.06.013 10.1093/brain/awz206 10.1038/s41467-019-09861-z 10.1093/hmg/ddt582 10.1016/j.csda.2008.06.010 10.1038/ng.3981 10.1007/s10654-015-0082-x 10.1038/s41467-019-10936-0 10.1038/ng1901 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | BIOS Consortium |
| CorporateAuthor_xml | – name: BIOS Consortium |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1186/s13073-022-01088-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1756-994X |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_a3f5c3b678794a75addbb623225d2106 PMC9373355 A713705765 35953856 10_1186_s13073_022_01088_w |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Netherlands |
| GeographicLocations_xml | – name: Netherlands |
| GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung grantid: 01ZZ9603, 01ZZ0103, 01ZZ0403; 03IS2061A funderid: http://dx.doi.org/10.13039/501100002347 – fundername: Horizon 2020 grantid: 692145 funderid: http://dx.doi.org/10.13039/501100007601 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 31003A-169929; 31003A_160203 funderid: http://dx.doi.org/10.13039/501100001711 – fundername: Medical Research Council grantid: MC_PC_17228 – fundername: Medical Research Council grantid: MC_QA137853 – fundername: ; grantid: 31003A-169929; 31003A_160203 – fundername: ; grantid: 692145 – fundername: ; grantid: 01ZZ9603, 01ZZ0103, 01ZZ0403; 03IS2061A |
| GroupedDBID | --- 0R~ 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFS ACJQM ACUHS ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIAM BBNVY BENPR BHPHI BMC BPHCQ BVXVI C6C CCPQU DIK E3Z EBD EBLON EBS ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR IHW INH INR ITC KQ8 LK8 M1P M7P MK0 M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ ROL RPM RSV SBL SOJ TUS UKHRP AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c638t-8e388ed80f6209bbc385e50aab7af979e58d35a1f8d058628bc9599e31b6628d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839645200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1756-994X |
| IngestDate | Fri Oct 03 12:51:37 EDT 2025 Tue Nov 04 01:52:51 EST 2025 Sun Nov 09 13:36:41 EST 2025 Tue Oct 14 14:12:11 EDT 2025 Tue Nov 11 10:28:05 EST 2025 Tue Nov 04 17:54:32 EST 2025 Thu May 22 20:38:48 EDT 2025 Mon Jul 21 06:03:56 EDT 2025 Sat Nov 29 06:05:14 EST 2025 Tue Nov 18 21:40:40 EST 2025 Sat Sep 06 07:28:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c638t-8e388ed80f6209bbc385e50aab7af979e58d35a1f8d058628bc9599e31b6628d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2878-7485 |
| OpenAccessLink | https://www.proquest.com/docview/2704057573?pq-origsite=%requestingapplication% |
| PMID | 35953856 |
| PQID | 2704057573 |
| PQPubID | 2040231 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a3f5c3b678794a75addbb623225d2106 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9373355 proquest_miscellaneous_2702192955 proquest_journals_2704057573 gale_infotracmisc_A713705765 gale_infotracacademiconefile_A713705765 gale_healthsolutions_A713705765 pubmed_primary_35953856 crossref_citationtrail_10_1186_s13073_022_01088_w crossref_primary_10_1186_s13073_022_01088_w springer_journals_10_1186_s13073_022_01088_w |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-11 |
| PublicationDateYYYYMMDD | 2022-08-11 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Genome medicine |
| PublicationTitleAbbrev | Genome Med |
| PublicationTitleAlternate | Genome Med |
| PublicationYear | 2022 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | J Huang (1088_CR48) 2015; 6 SL Pulit (1088_CR7) 2019; 28 Z Zhu (1088_CR17) 2016; 48 AS Dimas (1088_CR57) 2012; 22 PR Loh (1088_CR46) 2016; 48 EA Khramtsova (1088_CR59) 2019; 20 AC Nica (1088_CR14) 2010; 6 S McCarthy (1088_CR32) 2016; 48 G Willemsen (1088_CR36) 2010; 13 K Musunuru (1088_CR54) 2010; 466 DI Boomsma (1088_CR40) 2014; 22 DG Hernandez (1088_CR13) 2012; 47 I Kassam (1088_CR22) 2016; 17 DV Zhernakova (1088_CR38) 2017; 49 JC Randall (1088_CR8) 2013; 9 CC Whitacre (1088_CR1) 1999; 283 R Jansen (1088_CR51) 2014; 15 C Yao (1088_CR20) 2014; 23 A Gusev (1088_CR16) 2016; 48 HJ Westra (1088_CR43) 2013; 45 DJ Lerner (1088_CR2) 1986; 111 KR Kukurba (1088_CR19) 2016; 26 A Hofman (1088_CR29) 2013; 28 BD Lin (1088_CR28) 2016; 19 AC Leon (1088_CR23) 2009; 53 EF Tigchelaar (1088_CR25) 2015; 5 BP Fairfax (1088_CR61) 2012; 44 1088_CR53 1088_CR11 M Schoenmaker (1088_CR26) 2006; 14 A Hofman (1088_CR30) 2015; 30 J Martin (1088_CR6) 2018; 83 Y Zeng (1088_CR10) 2018; 1 J Deelen (1088_CR27) 2016; 82 A Dobin (1088_CR39) 2013; 29 R Aguirre-Gamboa (1088_CR44) 2020; 21 E Porcu (1088_CR18) 2019; 10 N Liu (1088_CR52) 2006; 11 U Vosa (1088_CR42) 2021; 53 1088_CR62 1088_CR63 M Rask-Andersen (1088_CR9) 2019; 10 1088_CR64 RS Fehrmann (1088_CR12) 2011; 7 1088_CR21 FA Wright (1088_CR37) 2014; 46 H Volzke (1088_CR45) 2011; 40 JA Hartiala (1088_CR5) 2016; 7 SE Graham (1088_CR4) 2019; 10 R Jansen (1088_CR58) 2017; 26 S Anders (1088_CR41) 2015; 31 S Das (1088_CR33) 2016; 48 C Bycroft (1088_CR24) 2018; 562 JS Carroll (1088_CR49) 2006; 38 MH Huisman (1088_CR31) 2011; 82 C Schurmann (1088_CR47) 2012; 7 H Ongen (1088_CR55) 2017; 49 L Dumitrescu (1088_CR3) 2019; 142 E Bongen (1088_CR50) 2019; 29 M Claussnitzer (1088_CR56) 2015; 373 CD Brown (1088_CR60) 2013; 9 MM van Greevenbroek (1088_CR34) 2011; 41 G Willemsen (1088_CR35) 2013; 16 DL Nicolae (1088_CR15) 2010; 6 |
| References_xml | – volume: 41 start-page: 372 issue: 4 year: 2011 ident: 1088_CR34 publication-title: Eur J Clin Investig doi: 10.1111/j.1365-2362.2010.02418.x – volume: 283 start-page: 1277 issue: 5406 year: 1999 ident: 1088_CR1 publication-title: Science doi: 10.1126/science.283.5406.1277 – volume: 48 start-page: 1279 issue: 10 year: 2016 ident: 1088_CR32 publication-title: Nat Genet doi: 10.1038/ng.3643 – volume: 28 start-page: 166 issue: 1 year: 2019 ident: 1088_CR7 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddy327 – volume: 48 start-page: 245 issue: 3 year: 2016 ident: 1088_CR16 publication-title: Nat Genet doi: 10.1038/ng.3506 – volume: 48 start-page: 481 issue: 5 year: 2016 ident: 1088_CR17 publication-title: Nat Genet doi: 10.1038/ng.3538 – volume: 31 start-page: 166 issue: 2 year: 2015 ident: 1088_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 373 start-page: 895 issue: 10 year: 2015 ident: 1088_CR56 publication-title: N Engl J Med doi: 10.1056/NEJMoa1502214 – ident: 1088_CR63 – volume: 6 issue: 4 year: 2010 ident: 1088_CR14 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000895 – volume: 49 start-page: 139 issue: 1 year: 2017 ident: 1088_CR38 publication-title: Nat Genet doi: 10.1038/ng.3737 – volume: 82 start-page: 1165 issue: 10 year: 2011 ident: 1088_CR31 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2011.244939 – volume: 14 start-page: 79 issue: 1 year: 2006 ident: 1088_CR26 publication-title: Eur J Hum Genet doi: 10.1038/sj.ejhg.5201508 – volume: 21 start-page: 243 issue: 1 year: 2020 ident: 1088_CR44 publication-title: BMC Bioinformatics doi: 10.1186/s12859-020-03576-5 – volume: 22 start-page: 221 issue: 2 year: 2014 ident: 1088_CR40 publication-title: Eur J Hum Genet doi: 10.1038/ejhg.2013.118 – ident: 1088_CR53 doi: 10.1038/s41588-020-0625-2 – volume: 47 start-page: 20 issue: 1 year: 2012 ident: 1088_CR13 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2012.03.020 – ident: 1088_CR64 – volume: 7 issue: 12 year: 2012 ident: 1088_CR47 publication-title: PLoS One doi: 10.1371/journal.pone.0050938 – volume: 19 start-page: 595 issue: 6 year: 2016 ident: 1088_CR28 publication-title: Twin Res Hum Genet doi: 10.1017/thg.2016.85 – ident: 1088_CR11 doi: 10.1038/s41588-021-00846-7 – volume: 17 start-page: 248 issue: 1 year: 2016 ident: 1088_CR22 publication-title: Genome Biol doi: 10.1186/s13059-016-1111-0 – volume: 6 issue: 4 year: 2010 ident: 1088_CR15 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000888 – volume: 1 issue: 4 year: 2018 ident: 1088_CR10 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2018.1670 – volume: 26 start-page: 1444 issue: 8 year: 2017 ident: 1088_CR58 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddx043 – volume: 48 start-page: 1284 issue: 10 year: 2016 ident: 1088_CR33 publication-title: Nat Genet doi: 10.1038/ng.3656 – volume: 9 issue: 6 year: 2013 ident: 1088_CR8 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003500 – volume: 7 start-page: 10558 year: 2016 ident: 1088_CR5 publication-title: Nat Commun doi: 10.1038/ncomms10558 – volume: 48 start-page: 1443 issue: 11 year: 2016 ident: 1088_CR46 publication-title: Nat Genet doi: 10.1038/ng.3679 – volume: 6 start-page: 8111 year: 2015 ident: 1088_CR48 publication-title: Nat Commun doi: 10.1038/ncomms9111 – volume: 20 start-page: 173 issue: 3 year: 2019 ident: 1088_CR59 publication-title: Nat Rev Genet doi: 10.1038/s41576-018-0083-1 – volume: 7 issue: 8 year: 2011 ident: 1088_CR12 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002197 – volume: 45 start-page: 1238 issue: 10 year: 2013 ident: 1088_CR43 publication-title: Nat Genet doi: 10.1038/ng.2756 – volume: 28 start-page: 889 issue: 11 year: 2013 ident: 1088_CR29 publication-title: Eur J Epidemiol doi: 10.1007/s10654-013-9866-z – volume: 83 start-page: 1044 issue: 12 year: 2018 ident: 1088_CR6 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2017.11.026 – volume: 26 start-page: 768 issue: 6 year: 2016 ident: 1088_CR19 publication-title: Genome Res doi: 10.1101/gr.197897.115 – volume: 53 start-page: 1300 issue: 9 year: 2021 ident: 1088_CR42 publication-title: Nat Genet doi: 10.1038/s41588-021-00913-z – volume: 562 start-page: 203 issue: 7726 year: 2018 ident: 1088_CR24 publication-title: Nature doi: 10.1038/s41586-018-0579-z – volume: 10 start-page: 339 issue: 1 year: 2019 ident: 1088_CR9 publication-title: Nat Commun doi: 10.1038/s41467-018-08000-4 – ident: 1088_CR21 – volume: 16 start-page: 271 issue: 1 year: 2013 ident: 1088_CR35 publication-title: Twin Res Hum Genetics doi: 10.1017/thg.2012.140 – volume: 15 start-page: 33 year: 2014 ident: 1088_CR51 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-33 – volume: 29 start-page: 15 issue: 1 year: 2013 ident: 1088_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 11 start-page: 1679 year: 2006 ident: 1088_CR52 publication-title: Front Biosci doi: 10.2741/1913 – volume: 9 issue: 8 year: 2013 ident: 1088_CR60 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003649 – volume: 13 start-page: 231 issue: 3 year: 2010 ident: 1088_CR36 publication-title: Twin Res Hum Genetics doi: 10.1375/twin.13.3.231 – volume: 46 start-page: 430 issue: 5 year: 2014 ident: 1088_CR37 publication-title: Nat Genet doi: 10.1038/ng.2951 – volume: 22 start-page: 2368 issue: 12 year: 2012 ident: 1088_CR57 publication-title: Genome Res doi: 10.1101/gr.134981.111 – volume: 111 start-page: 383 issue: 2 year: 1986 ident: 1088_CR2 publication-title: Am Heart J doi: 10.1016/0002-8703(86)90155-9 – volume: 44 start-page: 502 issue: 5 year: 2012 ident: 1088_CR61 publication-title: Nat Genet doi: 10.1038/ng.2205 – volume: 29 start-page: 1961 issue: 7 year: 2019 ident: 1088_CR50 publication-title: Cell Rep doi: 10.1016/j.celrep.2019.10.019 – volume: 466 start-page: 714 issue: 7307 year: 2010 ident: 1088_CR54 publication-title: Nature doi: 10.1038/nature09266 – ident: 1088_CR62 doi: 10.7554/eLife.52155 – volume: 40 start-page: 294 issue: 2 year: 2011 ident: 1088_CR45 publication-title: Int J Epidemiol doi: 10.1093/ije/dyp394 – volume: 5 issue: 8 year: 2015 ident: 1088_CR25 publication-title: BMJ Open doi: 10.1136/bmjopen-2014-006772 – volume: 82 start-page: 166 year: 2016 ident: 1088_CR27 publication-title: Exp Gerontol doi: 10.1016/j.exger.2016.06.013 – volume: 142 start-page: 2581 issue: 9 year: 2019 ident: 1088_CR3 publication-title: Brain doi: 10.1093/brain/awz206 – volume: 10 start-page: 1847 issue: 1 year: 2019 ident: 1088_CR4 publication-title: Nat Commun doi: 10.1038/s41467-019-09861-z – volume: 23 start-page: 1947 issue: 7 year: 2014 ident: 1088_CR20 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddt582 – volume: 53 start-page: 603 issue: 3 year: 2009 ident: 1088_CR23 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2008.06.010 – volume: 49 start-page: 1676 issue: 12 year: 2017 ident: 1088_CR55 publication-title: Nat Genet doi: 10.1038/ng.3981 – volume: 30 start-page: 661 issue: 8 year: 2015 ident: 1088_CR30 publication-title: Eur J Epidemiol doi: 10.1007/s10654-015-0082-x – volume: 10 start-page: 3300 issue: 1 year: 2019 ident: 1088_CR18 publication-title: Nat Commun doi: 10.1038/s41467-019-10936-0 – volume: 38 start-page: 1289 issue: 11 year: 2006 ident: 1088_CR49 publication-title: Nat Genet doi: 10.1038/ng1901 |
| SSID | ssj0064247 |
| Score | 2.3709738 |
| Snippet | Background
The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could... The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part... Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could... Abstract Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women,... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 89 |
| SubjectTerms | Amyotrophic lateral sclerosis Analysis Biobanks Bioinformatics Biomedical and Life Sciences Biomedicine Blood Cancer Research Cohort analysis Consortia Diabetes Female Gender differences Gene expression Gene loci Genes Genome-wide association studies Genome-Wide Association Study - methods Genomes Genomics Human Genetics Humans Male Medicine/Public Health Metabolomics Polymorphism, Single Nucleotide Population Quantitative genetics Quantitative Trait Loci Sex Characteristics Sexes Sexual dimorphism Single nucleotide polymorphisms Single-nucleotide polymorphism Systems Biology Testosterone Transcriptome Transcriptomes Type 2 diabetes Womens health |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS98wEA9DNtiLuJ9W3cxgsIetmDZNk7AnJ8oehig48C3kJ_uCq8N-VfzvvSRtZx3bXnxscwnN5XO5O3o_EHpvaWVbTkJJNDFl0xBb6pY2IPGNMVRS4euQmk3ww0NxeiqP7rT6ijFhuTxwZtyOpoFZauBOBeRozkAejQGdDTh04K6kYttg9YzOVL6Dwahu-JgiI9qdvopQLmPkOvgfgI3rmRpK1fr_vJPvKKX7AZP3_pomZXSwhlYHKxLv5q9_hh757jl6kvtK3rxAn4e0JeyHnqEYTFOcYtSxPz751uNFh1N3PtynksvYwZEBxxf9z5fo-8H-yd7XcuiSUFqQnWUpPBXCO0FCWxNpjKWCeUa0NlwHyaVnwlGmqyAcYeC_CGMlk9LTyrTw5OgrtNKdd34dYVeF2poAXlhrmgDLuqj9YYbQxHHXFKgamabsUEI8drI4U8mVEK3KjFbAaJUYra4L9HGa8ysX0Pgn9Zd4FhNlLH6dXgAk1AAJ9T9IFGg7nqTKmaSTCKtdcMg52KctK9CHRBGFGDZg9ZCLAGyI5bBmlFszShA-Ox8e0aIG4e9VzUkygzkt0LtpOM6MAW2dP79MNKAraslgidcZXNOmY640HCLsg89gN-PKfKRb_EilwcHYpDSu-WkE6O_P-jvXNx6C65voaZ0ETJRVtYVWlheX_g16bK-Wi_7ibRLPW5qPOZg priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JbtUw0IICEhfKTqCAkZA4QFQnjjf1VBAVB1SxFNSb5RWeBHno5bUVf9-xs0DKIsEx8diKZx9lFoQeO1o5LkgsiSG2bBriSsNpAxLfWEsVlaGOediE2N-Xh4fqzVAU1o3Z7uMvyayps1hLvt1ViR3LlH0OMQTQ9-Q8ugDmTiZxfPf-46h_waFuxFge89t9MxOUO_X_qo9_MkhnkyXP_DHNhmhv8_-ucBVdGRxPvNtzyjV0LrTX0aV-FOX3G2hnqHTCYRgzisGbxTmtHYe3B687vGhxHuiHu9ylGXugMhBp0X29iT7svTx48aocBiuUDsRtXcpApQxekshroqx1VLLAiDFWmKiECkx6ykwVpScMQh5pnWJKBVpZDk-e3kIb7bINdxD2VaydjRC4cdtEONYnhwF2SEO88E2BqhHX2g1dx9Pwiy86Rx-S6x4pGpCiM1L0SYGeTnu-9T03_gr9PJFwgkz9svOL5eqTHsRPGxqZoxYsM-gfIxhodWvB8wNt5iHo5QV6mBhA98Wnk9TrXYjhBbi0nBXoSYZIcg8XcGYoXwA0pA5aM8itGSTIq5svj0ymB33R6VqQ7DkLWqBH03LamXLg2rA8yjBgXmrF4IjbPU9Ol07l1UBEuIeYcesMK_OVdvE5dxMH_5TSdOazkWd_fNafsX7338Dvoct1ZntZVtUW2livjsJ9dNEdrxfd6kGW31N2Pz7U priority: 102 providerName: Springer Nature |
| Title | Limited evidence for blood eQTLs in human sexual dimorphism |
| URI | https://link.springer.com/article/10.1186/s13073-022-01088-w https://www.ncbi.nlm.nih.gov/pubmed/35953856 https://www.proquest.com/docview/2704057573 https://www.proquest.com/docview/2702192955 https://pubmed.ncbi.nlm.nih.gov/PMC9373355 https://doaj.org/article/a3f5c3b678794a75addbb623225d2106 |
| Volume | 14 |
| WOSCitedRecordID | wos000839645200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1756-994X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064247 issn: 1756-994X databaseCode: RBZ dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1756-994X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064247 issn: 1756-994X databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1756-994X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064247 issn: 1756-994X databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1756-994X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064247 issn: 1756-994X databaseCode: M7P dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1756-994X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064247 issn: 1756-994X databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1756-994X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064247 issn: 1756-994X databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1756-994X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064247 issn: 1756-994X databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1756-994X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064247 issn: 1756-994X databaseCode: RSV dateStart: 20090101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KJbkLjwfgTKEiQkDhDViePYEQfUolYgwSqUgrYny6_ASpAtmy0Vf8_YcVJSRC9cVko8tnY8D88480DoqSapLhiuEyyxSvIc60QWJAeJz5UiJeE2q32zCTab8fm8rMKFWxvCKnud6BW1WWp3R76dMextC0ZeHf9IXNco93U1tNDYQJuuUlk-QZu7e7PqoNfFYFznrE-V4cV2mzqWTlwEO_ghwCOno-PIV-3_Wzf_cTidD5w89_XUH0r71_8XnRvoWjBH452Of26iS7a5ha50DSp_3UYvQ_5TbEPz0Rhs3NgHu8f2w-G7Nl40sW_zF7e-dnNsgPZAukX7_Q76tL93-PpNEtotJBqEcJ1wSzi3huO6yHCplCacWoqlVEzWJSst5YZQmdbcYAqOEFe6pGVpSaoKeDLkLpo0y8beR7FJ60yrGty5QuU1LGucGQEzuMSGmTxCab_rQoda5K4lxjfhfRJeiI5SAiglPKXEaYSeD3OOu0ocF0LvOmIOkK6Ktn-xXH0RQSiFJDXVRMF5DVpJMgq6XimwB0HHGXCFiwg9dqwgupTUQReIHfDsGVCvoBF65iGcNgAEtAxJDbANrq7WCHJrBAlSrMfDPZ-IoEVaccYkEXoyDLuZLjKuscsTDwOHTlZSWOJex50D0i7pGogIeLAR3452ZTzSLL76GuNgtRLi1nzRc_jZ3_r3rj-4GIuH6GrmZY8nabqFJuvViX2ELuuf60W7mqINNmf-l0-DHE_9FcnUBeRW8K56-746gqeDj59_A5ccT9c |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQqJFAHCBqEiexI4RQWapWHUYgDdLcjLfASJApkymj_il-I8_OUlJEbz1wnPGzFdvf25K3ADzWNNY5i8owkpEK0zTSocxpihyfKkULym1S-mYTbDzm02nxYQ1-dbkwLqyyk4leUJu5du_ItxIWeduC0VcHP0LXNcp9Xe1aaDSw2LdHK3TZ6pd7b_F-nyTJzrvJm92w7SoQasTaMuSWcm4Nj8o8iQqlNOWZzSIpFZNlwQqbcUMzGZfcRBna-1zpIisKS2OV4y9Dcd1zcB7lOHMhZGzaO3hoyqesS8zh-VYdOwYKXbw8ej2IyNVA-fkeAX9rgj9U4ckwzRPfar0K3Ln6vx3eNbjSGttku-GO67BmqxtwsWm_eXQTXrTZXcS2rVUJWvDEh_IT-3EyqsmsIr6JIal9ZWpiENkIzFn9_RZ8OpMnvw3r1byyd4GYuEy0KtFZzVVa4rLGGUk4g8vIMJMGEHe3LHRbad01_PgmvMfFc9EgQyAyhEeGWAXwrJ9z0NQZOZX6tQNPT-lqhPs_5osvohU5QtIy01ShNYIyV7IMNZlSaO2iBDfo6OcBbDroiSbhtpd0YpvFlCFa8iyAp57CyTrcgJZtygYeg6saNqDcGFCijNLD4Q6XopWRtTgGZQCP-mE308X9VXZ-6GlQpSZFhkvcabih37RLKcdLxH2wAZ8MTmU4Us2--grqaJNT6tZ83nHU8WP9-9Tvnb6LTbi0O3k_EqO98f59uJx4vudhHG_A-nJxaB_ABf1zOasXD73UIPD5rDntN_y7pIc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3JbtQw1IKyiAv7EijUSEgcIKoTx0vEqSwjENWoiIJ6s7zCSJCpJlMq_p5nZ6Epi4Q4Jn624rc_5S0IPbK0sFyQkBNNTF5VxOaa0wokvjKG1lT6MqRhE2I-lwcH9d6JKv6U7T78kuxqGmKXpma9fehCJ-KSb7dFZM08ZqJDPAG0Pj6LzlVxaFCM199_HHQxONeVGEplfrtvYo5S1_5fdfMJ43Q6cfLU39NklGZX_v86V9Hl3iHFOx0HXUNnfHMdXehGVH6_gZ71FVDY9-NHMXi5OKW7Y_9uf7fFiwanQX-4Td2bsQPqA_EW7deb6MPs1f6L13k_cCG3IIbrXHoqpXeSBF6S2hhLJfOMaG2EDrWoPZOOMl0E6QiDUEgaW7O69rQwHJ4cvYU2mmXj7yDsilBaEyCg46YKcKyLjgTskJo44aoMFQPele27kcehGF9UikokVx1SFCBFJaSo4ww9Gfccdr04_gr9PJJzhIx9tNOL5eqT6sVSaRqYpQYsNuglLRhoe2PAIwQt5yAY5hnaisyguqLUURuoHYjtBbi6nGXocYKI-gAuYHVf1gBoiJ21JpCbE0iQYztdHhhO9XqkVaUgyaMWNEMPx-W4M-bGNX55lGDA7JQ1gyNud_w5XjqWXQMR4R5iwrkTrExXmsXn1GUc_FZK45lPB_79-Vl_xvrdfwPfQhf3Xs7U7pv523voUpkkQOZFsYk21qsjfx-dt9_Wi3b1IIn1D_4oSpw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limited+evidence+for+blood+eQTLs+in+human+sexual+dimorphism&rft.jtitle=Genome+medicine&rft.au=Porcu%2C+Eleonora&rft.au=Claringbould%2C+Annique&rft.au=Weihs%2C+Antoine&rft.au=Lepik%2C+Kaido&rft.date=2022-08-11&rft.issn=1756-994X&rft.eissn=1756-994X&rft.volume=14&rft.issue=1&rft.spage=89&rft_id=info:doi/10.1186%2Fs13073-022-01088-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-994X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-994X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-994X&client=summon |