Limited evidence for blood eQTLs in human sexual dimorphism

Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome medicine Jg. 14; H. 1; S. 89 - 13
Hauptverfasser: Porcu, Eleonora, Claringbould, Annique, Weihs, Antoine, Lepik, Kaido, Richardson, Tom G., Völker, Uwe, Santoni, Federico A., Teumer, Alexander, Franke, Lude, Reymond, Alexandre, Kutalik, Zoltán
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 11.08.2022
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1756-994X, 1756-994X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. Methods To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Results Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis -eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis -eQTLs. Compensatory effects may further hamper their detection. Conclusions Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs.
AbstractList Abstract Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. Methods To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Results Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection. Conclusions Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs.
The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection. Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs.
The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection. Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs.
The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits.BACKGROUNDThe genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits.To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs.METHODSTo explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs.Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection.RESULTSAmong 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection.Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs.CONCLUSIONSOur results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs.
Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. Methods To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Results Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection. Conclusions Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs.
Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. Methods To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. Results Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis -eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis -eQTLs. Compensatory effects may further hamper their detection. Conclusions Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs.
ArticleNumber 89
Audience Academic
Author Reymond, Alexandre
Richardson, Tom G.
Teumer, Alexander
Kutalik, Zoltán
Weihs, Antoine
Franke, Lude
Lepik, Kaido
Santoni, Federico A.
Claringbould, Annique
Völker, Uwe
Porcu, Eleonora
Author_xml – sequence: 1
  givenname: Eleonora
  orcidid: 0000-0003-2878-7485
  surname: Porcu
  fullname: Porcu, Eleonora
  email: eleonora.porcu@unil.ch
  organization: Center for Integrative Genomics, University of Lausanne, Swiss Institute of Bioinformatics, University Center for Primary Care and Public Health
– sequence: 2
  givenname: Annique
  surname: Claringbould
  fullname: Claringbould, Annique
  organization: University Medical Centre Groningen, Structural and Computational Biology Unit, European Molecular Biology Laboratories (EMBL)
– sequence: 3
  givenname: Antoine
  surname: Weihs
  fullname: Weihs, Antoine
  organization: Department of Psychiatry and Psychotherapy, University Medicine Greifswald
– sequence: 4
  givenname: Kaido
  surname: Lepik
  fullname: Lepik, Kaido
  organization: Institute of Computer Science, University of Tartu, Estonian Genome Centre, Institute of Genomics, University of Tartu
– sequence: 6
  givenname: Tom G.
  surname: Richardson
  fullname: Richardson, Tom G.
  organization: MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Novo Nordisk Research Centre Oxford
– sequence: 7
  givenname: Uwe
  surname: Völker
  fullname: Völker, Uwe
  organization: Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, DZHK (German Centre for Cardiovascular Research), partner site Greifswald
– sequence: 8
  givenname: Federico A.
  surname: Santoni
  fullname: Santoni, Federico A.
  organization: Endocrine, Diabetes, and Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Faculty of Biology and Medicine, University of Lausanne
– sequence: 9
  givenname: Alexander
  surname: Teumer
  fullname: Teumer, Alexander
  organization: DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Institute for Community Medicine, University Medicine Greifswald
– sequence: 10
  givenname: Lude
  surname: Franke
  fullname: Franke, Lude
  organization: University Medical Centre Groningen
– sequence: 11
  givenname: Alexandre
  surname: Reymond
  fullname: Reymond, Alexandre
  email: alexandre.reymond@unil.ch
  organization: Center for Integrative Genomics, University of Lausanne
– sequence: 12
  givenname: Zoltán
  surname: Kutalik
  fullname: Kutalik, Zoltán
  email: zoltan.kutalik@unil.ch
  organization: Swiss Institute of Bioinformatics, University Center for Primary Care and Public Health, Department of Computational Biology, University of Lausanne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35953856$$D View this record in MEDLINE/PubMed
BookMark eNp9kltr2zAYhs3oWA_bH9jFMAzGbtzpEJ0YFErZoRAYgw52J2Tpc6JgS51kt9u_n5K0XVJG8YUt-Xkf2R_vcXUQYoCqeo3RKcaSf8iYIkEbREiDMJKyuX1WHWHBeKPU7OfBzvNhdZzzCiE-IzPxojqkTDEqGT-qPs794EdwNdx4B8FC3cVUt32MZev71TzXPtTLaTChzvB7Mn3t_BDT9dLn4WX1vDN9hld395Pqx-dPVxdfm_m3L5cX5_PGcirHRgKVEpxEHSdIta0tJwNDxrTCdEooYNJRZnAnHWKSE9laxZQCilteVo6eVJdbr4tmpa-TH0z6o6PxerMR00KbNHrbgza0Y5a2XEihZkYw41zbckIJYY5gxIvrbOu6ntoBnIUwJtPvSfffBL_Ui3ijFRWUMlYE7-8EKf6aII968NlC35sAccqaCESwImqDvn2EruKUQhnVmpohJlhxPlALU37Ahy6Wc-1aqs8FpqJgfO06_Q9VLgeDt6UXnS_7e4F3O4ElmH5c5thPo48h74NvdifyMIr7jhRAbgGbYs4JOm39aNae8gm-1xjpdR31to661FFv6qhvS5Q8it7bnwzRbSgXOCwg_RvbE6m_b_bvJA
CitedBy_id crossref_primary_10_1038_s41467_025_58128_3
crossref_primary_10_1146_annurev_physiol_042022_014322
crossref_primary_10_1186_s12864_024_10065_z
crossref_primary_10_1016_j_xhgg_2025_100463
crossref_primary_10_1038_s41588_022_01251_4
Cites_doi 10.1111/j.1365-2362.2010.02418.x
10.1126/science.283.5406.1277
10.1038/ng.3643
10.1093/hmg/ddy327
10.1038/ng.3506
10.1038/ng.3538
10.1093/bioinformatics/btu638
10.1056/NEJMoa1502214
10.1371/journal.pgen.1000895
10.1038/ng.3737
10.1136/jnnp.2011.244939
10.1038/sj.ejhg.5201508
10.1186/s12859-020-03576-5
10.1038/ejhg.2013.118
10.1038/s41588-020-0625-2
10.1016/j.nbd.2012.03.020
10.1371/journal.pone.0050938
10.1017/thg.2016.85
10.1038/s41588-021-00846-7
10.1186/s13059-016-1111-0
10.1371/journal.pgen.1000888
10.1001/jamanetworkopen.2018.1670
10.1093/hmg/ddx043
10.1038/ng.3656
10.1371/journal.pgen.1003500
10.1038/ncomms10558
10.1038/ng.3679
10.1038/ncomms9111
10.1038/s41576-018-0083-1
10.1371/journal.pgen.1002197
10.1038/ng.2756
10.1007/s10654-013-9866-z
10.1016/j.biopsych.2017.11.026
10.1101/gr.197897.115
10.1038/s41588-021-00913-z
10.1038/s41586-018-0579-z
10.1038/s41467-018-08000-4
10.1017/thg.2012.140
10.1186/1471-2164-15-33
10.1093/bioinformatics/bts635
10.2741/1913
10.1371/journal.pgen.1003649
10.1375/twin.13.3.231
10.1038/ng.2951
10.1101/gr.134981.111
10.1016/0002-8703(86)90155-9
10.1038/ng.2205
10.1016/j.celrep.2019.10.019
10.1038/nature09266
10.7554/eLife.52155
10.1093/ije/dyp394
10.1136/bmjopen-2014-006772
10.1016/j.exger.2016.06.013
10.1093/brain/awz206
10.1038/s41467-019-09861-z
10.1093/hmg/ddt582
10.1016/j.csda.2008.06.010
10.1038/ng.3981
10.1007/s10654-015-0082-x
10.1038/s41467-019-10936-0
10.1038/ng1901
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor BIOS Consortium
CorporateAuthor_xml – name: BIOS Consortium
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13073-022-01088-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-994X
EndPage 13
ExternalDocumentID oai_doaj_org_article_a3f5c3b678794a75addbb623225d2106
PMC9373355
A713705765
35953856
10_1186_s13073_022_01088_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  grantid: 01ZZ9603, 01ZZ0103, 01ZZ0403; 03IS2061A
  funderid: http://dx.doi.org/10.13039/501100002347
– fundername: Horizon 2020
  grantid: 692145
  funderid: http://dx.doi.org/10.13039/501100007601
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 31003A-169929; 31003A_160203
  funderid: http://dx.doi.org/10.13039/501100001711
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: Medical Research Council
  grantid: MC_QA137853
– fundername: ;
  grantid: 31003A-169929; 31003A_160203
– fundername: ;
  grantid: 692145
– fundername: ;
  grantid: 01ZZ9603, 01ZZ0103, 01ZZ0403; 03IS2061A
GroupedDBID ---
0R~
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFS
ACJQM
ACUHS
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIAM
BBNVY
BENPR
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
LK8
M1P
M7P
MK0
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
ROL
RPM
RSV
SBL
SOJ
TUS
UKHRP
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c638t-8e388ed80f6209bbc385e50aab7af979e58d35a1f8d058628bc9599e31b6628d3
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839645200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1756-994X
IngestDate Fri Oct 03 12:51:37 EDT 2025
Tue Nov 04 01:52:51 EST 2025
Sun Nov 09 13:36:41 EST 2025
Tue Oct 14 14:12:11 EDT 2025
Tue Nov 11 10:28:05 EST 2025
Tue Nov 04 17:54:32 EST 2025
Thu May 22 20:38:48 EDT 2025
Mon Jul 21 06:03:56 EDT 2025
Sat Nov 29 06:05:14 EST 2025
Tue Nov 18 21:40:40 EST 2025
Sat Sep 06 07:28:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c638t-8e388ed80f6209bbc385e50aab7af979e58d35a1f8d058628bc9599e31b6628d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2878-7485
OpenAccessLink https://www.proquest.com/docview/2704057573?pq-origsite=%requestingapplication%
PMID 35953856
PQID 2704057573
PQPubID 2040231
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_a3f5c3b678794a75addbb623225d2106
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9373355
proquest_miscellaneous_2702192955
proquest_journals_2704057573
gale_infotracmisc_A713705765
gale_infotracacademiconefile_A713705765
gale_healthsolutions_A713705765
pubmed_primary_35953856
crossref_citationtrail_10_1186_s13073_022_01088_w
crossref_primary_10_1186_s13073_022_01088_w
springer_journals_10_1186_s13073_022_01088_w
PublicationCentury 2000
PublicationDate 2022-08-11
PublicationDateYYYYMMDD 2022-08-11
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome medicine
PublicationTitleAbbrev Genome Med
PublicationTitleAlternate Genome Med
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References J Huang (1088_CR48) 2015; 6
SL Pulit (1088_CR7) 2019; 28
Z Zhu (1088_CR17) 2016; 48
AS Dimas (1088_CR57) 2012; 22
PR Loh (1088_CR46) 2016; 48
EA Khramtsova (1088_CR59) 2019; 20
AC Nica (1088_CR14) 2010; 6
S McCarthy (1088_CR32) 2016; 48
G Willemsen (1088_CR36) 2010; 13
K Musunuru (1088_CR54) 2010; 466
DI Boomsma (1088_CR40) 2014; 22
DG Hernandez (1088_CR13) 2012; 47
I Kassam (1088_CR22) 2016; 17
DV Zhernakova (1088_CR38) 2017; 49
JC Randall (1088_CR8) 2013; 9
CC Whitacre (1088_CR1) 1999; 283
R Jansen (1088_CR51) 2014; 15
C Yao (1088_CR20) 2014; 23
A Gusev (1088_CR16) 2016; 48
HJ Westra (1088_CR43) 2013; 45
DJ Lerner (1088_CR2) 1986; 111
KR Kukurba (1088_CR19) 2016; 26
A Hofman (1088_CR29) 2013; 28
BD Lin (1088_CR28) 2016; 19
AC Leon (1088_CR23) 2009; 53
EF Tigchelaar (1088_CR25) 2015; 5
BP Fairfax (1088_CR61) 2012; 44
1088_CR53
1088_CR11
M Schoenmaker (1088_CR26) 2006; 14
A Hofman (1088_CR30) 2015; 30
J Martin (1088_CR6) 2018; 83
Y Zeng (1088_CR10) 2018; 1
J Deelen (1088_CR27) 2016; 82
A Dobin (1088_CR39) 2013; 29
R Aguirre-Gamboa (1088_CR44) 2020; 21
E Porcu (1088_CR18) 2019; 10
N Liu (1088_CR52) 2006; 11
U Vosa (1088_CR42) 2021; 53
1088_CR62
1088_CR63
M Rask-Andersen (1088_CR9) 2019; 10
1088_CR64
RS Fehrmann (1088_CR12) 2011; 7
1088_CR21
FA Wright (1088_CR37) 2014; 46
H Volzke (1088_CR45) 2011; 40
JA Hartiala (1088_CR5) 2016; 7
SE Graham (1088_CR4) 2019; 10
R Jansen (1088_CR58) 2017; 26
S Anders (1088_CR41) 2015; 31
S Das (1088_CR33) 2016; 48
C Bycroft (1088_CR24) 2018; 562
JS Carroll (1088_CR49) 2006; 38
MH Huisman (1088_CR31) 2011; 82
C Schurmann (1088_CR47) 2012; 7
H Ongen (1088_CR55) 2017; 49
L Dumitrescu (1088_CR3) 2019; 142
E Bongen (1088_CR50) 2019; 29
M Claussnitzer (1088_CR56) 2015; 373
CD Brown (1088_CR60) 2013; 9
MM van Greevenbroek (1088_CR34) 2011; 41
G Willemsen (1088_CR35) 2013; 16
DL Nicolae (1088_CR15) 2010; 6
References_xml – volume: 41
  start-page: 372
  issue: 4
  year: 2011
  ident: 1088_CR34
  publication-title: Eur J Clin Investig
  doi: 10.1111/j.1365-2362.2010.02418.x
– volume: 283
  start-page: 1277
  issue: 5406
  year: 1999
  ident: 1088_CR1
  publication-title: Science
  doi: 10.1126/science.283.5406.1277
– volume: 48
  start-page: 1279
  issue: 10
  year: 2016
  ident: 1088_CR32
  publication-title: Nat Genet
  doi: 10.1038/ng.3643
– volume: 28
  start-page: 166
  issue: 1
  year: 2019
  ident: 1088_CR7
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddy327
– volume: 48
  start-page: 245
  issue: 3
  year: 2016
  ident: 1088_CR16
  publication-title: Nat Genet
  doi: 10.1038/ng.3506
– volume: 48
  start-page: 481
  issue: 5
  year: 2016
  ident: 1088_CR17
  publication-title: Nat Genet
  doi: 10.1038/ng.3538
– volume: 31
  start-page: 166
  issue: 2
  year: 2015
  ident: 1088_CR41
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 373
  start-page: 895
  issue: 10
  year: 2015
  ident: 1088_CR56
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1502214
– ident: 1088_CR63
– volume: 6
  issue: 4
  year: 2010
  ident: 1088_CR14
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000895
– volume: 49
  start-page: 139
  issue: 1
  year: 2017
  ident: 1088_CR38
  publication-title: Nat Genet
  doi: 10.1038/ng.3737
– volume: 82
  start-page: 1165
  issue: 10
  year: 2011
  ident: 1088_CR31
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2011.244939
– volume: 14
  start-page: 79
  issue: 1
  year: 2006
  ident: 1088_CR26
  publication-title: Eur J Hum Genet
  doi: 10.1038/sj.ejhg.5201508
– volume: 21
  start-page: 243
  issue: 1
  year: 2020
  ident: 1088_CR44
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-020-03576-5
– volume: 22
  start-page: 221
  issue: 2
  year: 2014
  ident: 1088_CR40
  publication-title: Eur J Hum Genet
  doi: 10.1038/ejhg.2013.118
– ident: 1088_CR53
  doi: 10.1038/s41588-020-0625-2
– volume: 47
  start-page: 20
  issue: 1
  year: 2012
  ident: 1088_CR13
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2012.03.020
– ident: 1088_CR64
– volume: 7
  issue: 12
  year: 2012
  ident: 1088_CR47
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0050938
– volume: 19
  start-page: 595
  issue: 6
  year: 2016
  ident: 1088_CR28
  publication-title: Twin Res Hum Genet
  doi: 10.1017/thg.2016.85
– ident: 1088_CR11
  doi: 10.1038/s41588-021-00846-7
– volume: 17
  start-page: 248
  issue: 1
  year: 2016
  ident: 1088_CR22
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1111-0
– volume: 6
  issue: 4
  year: 2010
  ident: 1088_CR15
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000888
– volume: 1
  issue: 4
  year: 2018
  ident: 1088_CR10
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2018.1670
– volume: 26
  start-page: 1444
  issue: 8
  year: 2017
  ident: 1088_CR58
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddx043
– volume: 48
  start-page: 1284
  issue: 10
  year: 2016
  ident: 1088_CR33
  publication-title: Nat Genet
  doi: 10.1038/ng.3656
– volume: 9
  issue: 6
  year: 2013
  ident: 1088_CR8
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003500
– volume: 7
  start-page: 10558
  year: 2016
  ident: 1088_CR5
  publication-title: Nat Commun
  doi: 10.1038/ncomms10558
– volume: 48
  start-page: 1443
  issue: 11
  year: 2016
  ident: 1088_CR46
  publication-title: Nat Genet
  doi: 10.1038/ng.3679
– volume: 6
  start-page: 8111
  year: 2015
  ident: 1088_CR48
  publication-title: Nat Commun
  doi: 10.1038/ncomms9111
– volume: 20
  start-page: 173
  issue: 3
  year: 2019
  ident: 1088_CR59
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-018-0083-1
– volume: 7
  issue: 8
  year: 2011
  ident: 1088_CR12
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002197
– volume: 45
  start-page: 1238
  issue: 10
  year: 2013
  ident: 1088_CR43
  publication-title: Nat Genet
  doi: 10.1038/ng.2756
– volume: 28
  start-page: 889
  issue: 11
  year: 2013
  ident: 1088_CR29
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-013-9866-z
– volume: 83
  start-page: 1044
  issue: 12
  year: 2018
  ident: 1088_CR6
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.11.026
– volume: 26
  start-page: 768
  issue: 6
  year: 2016
  ident: 1088_CR19
  publication-title: Genome Res
  doi: 10.1101/gr.197897.115
– volume: 53
  start-page: 1300
  issue: 9
  year: 2021
  ident: 1088_CR42
  publication-title: Nat Genet
  doi: 10.1038/s41588-021-00913-z
– volume: 562
  start-page: 203
  issue: 7726
  year: 2018
  ident: 1088_CR24
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 10
  start-page: 339
  issue: 1
  year: 2019
  ident: 1088_CR9
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-08000-4
– ident: 1088_CR21
– volume: 16
  start-page: 271
  issue: 1
  year: 2013
  ident: 1088_CR35
  publication-title: Twin Res Hum Genetics
  doi: 10.1017/thg.2012.140
– volume: 15
  start-page: 33
  year: 2014
  ident: 1088_CR51
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-33
– volume: 29
  start-page: 15
  issue: 1
  year: 2013
  ident: 1088_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 11
  start-page: 1679
  year: 2006
  ident: 1088_CR52
  publication-title: Front Biosci
  doi: 10.2741/1913
– volume: 9
  issue: 8
  year: 2013
  ident: 1088_CR60
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003649
– volume: 13
  start-page: 231
  issue: 3
  year: 2010
  ident: 1088_CR36
  publication-title: Twin Res Hum Genetics
  doi: 10.1375/twin.13.3.231
– volume: 46
  start-page: 430
  issue: 5
  year: 2014
  ident: 1088_CR37
  publication-title: Nat Genet
  doi: 10.1038/ng.2951
– volume: 22
  start-page: 2368
  issue: 12
  year: 2012
  ident: 1088_CR57
  publication-title: Genome Res
  doi: 10.1101/gr.134981.111
– volume: 111
  start-page: 383
  issue: 2
  year: 1986
  ident: 1088_CR2
  publication-title: Am Heart J
  doi: 10.1016/0002-8703(86)90155-9
– volume: 44
  start-page: 502
  issue: 5
  year: 2012
  ident: 1088_CR61
  publication-title: Nat Genet
  doi: 10.1038/ng.2205
– volume: 29
  start-page: 1961
  issue: 7
  year: 2019
  ident: 1088_CR50
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.10.019
– volume: 466
  start-page: 714
  issue: 7307
  year: 2010
  ident: 1088_CR54
  publication-title: Nature
  doi: 10.1038/nature09266
– ident: 1088_CR62
  doi: 10.7554/eLife.52155
– volume: 40
  start-page: 294
  issue: 2
  year: 2011
  ident: 1088_CR45
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyp394
– volume: 5
  issue: 8
  year: 2015
  ident: 1088_CR25
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2014-006772
– volume: 82
  start-page: 166
  year: 2016
  ident: 1088_CR27
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2016.06.013
– volume: 142
  start-page: 2581
  issue: 9
  year: 2019
  ident: 1088_CR3
  publication-title: Brain
  doi: 10.1093/brain/awz206
– volume: 10
  start-page: 1847
  issue: 1
  year: 2019
  ident: 1088_CR4
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09861-z
– volume: 23
  start-page: 1947
  issue: 7
  year: 2014
  ident: 1088_CR20
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddt582
– volume: 53
  start-page: 603
  issue: 3
  year: 2009
  ident: 1088_CR23
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2008.06.010
– volume: 49
  start-page: 1676
  issue: 12
  year: 2017
  ident: 1088_CR55
  publication-title: Nat Genet
  doi: 10.1038/ng.3981
– volume: 30
  start-page: 661
  issue: 8
  year: 2015
  ident: 1088_CR30
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-015-0082-x
– volume: 10
  start-page: 3300
  issue: 1
  year: 2019
  ident: 1088_CR18
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10936-0
– volume: 38
  start-page: 1289
  issue: 11
  year: 2006
  ident: 1088_CR49
  publication-title: Nat Genet
  doi: 10.1038/ng1901
SSID ssj0064247
Score 2.3709738
Snippet Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could...
The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part...
Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could...
Abstract Background The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 89
SubjectTerms Amyotrophic lateral sclerosis
Analysis
Biobanks
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Blood
Cancer Research
Cohort analysis
Consortia
Diabetes
Female
Gender differences
Gene expression
Gene loci
Genes
Genome-wide association studies
Genome-Wide Association Study - methods
Genomes
Genomics
Human Genetics
Humans
Male
Medicine/Public Health
Metabolomics
Polymorphism, Single Nucleotide
Population
Quantitative genetics
Quantitative Trait Loci
Sex Characteristics
Sexes
Sexual dimorphism
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Systems Biology
Testosterone
Transcriptome
Transcriptomes
Type 2 diabetes
Womens health
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS98wEA9DNtiLuJ9W3cxgsIetmDZNk7AnJ8oehig48C3kJ_uCq8N-VfzvvSRtZx3bXnxscwnN5XO5O3o_EHpvaWVbTkJJNDFl0xBb6pY2IPGNMVRS4euQmk3ww0NxeiqP7rT6ijFhuTxwZtyOpoFZauBOBeRozkAejQGdDTh04K6kYttg9YzOVL6Dwahu-JgiI9qdvopQLmPkOvgfgI3rmRpK1fr_vJPvKKX7AZP3_pomZXSwhlYHKxLv5q9_hh757jl6kvtK3rxAn4e0JeyHnqEYTFOcYtSxPz751uNFh1N3PtynksvYwZEBxxf9z5fo-8H-yd7XcuiSUFqQnWUpPBXCO0FCWxNpjKWCeUa0NlwHyaVnwlGmqyAcYeC_CGMlk9LTyrTw5OgrtNKdd34dYVeF2poAXlhrmgDLuqj9YYbQxHHXFKgamabsUEI8drI4U8mVEK3KjFbAaJUYra4L9HGa8ysX0Pgn9Zd4FhNlLH6dXgAk1AAJ9T9IFGg7nqTKmaSTCKtdcMg52KctK9CHRBGFGDZg9ZCLAGyI5bBmlFszShA-Ox8e0aIG4e9VzUkygzkt0LtpOM6MAW2dP79MNKAraslgidcZXNOmY640HCLsg89gN-PKfKRb_EilwcHYpDSu-WkE6O_P-jvXNx6C65voaZ0ETJRVtYVWlheX_g16bK-Wi_7ibRLPW5qPOZg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JbtUw0IICEhfKTqCAkZA4QFQnjjf1VBAVB1SxFNSb5RWeBHno5bUVf9-xs0DKIsEx8diKZx9lFoQeO1o5LkgsiSG2bBriSsNpAxLfWEsVlaGOediE2N-Xh4fqzVAU1o3Z7uMvyayps1hLvt1ViR3LlH0OMQTQ9-Q8ugDmTiZxfPf-46h_waFuxFge89t9MxOUO_X_qo9_MkhnkyXP_DHNhmhv8_-ucBVdGRxPvNtzyjV0LrTX0aV-FOX3G2hnqHTCYRgzisGbxTmtHYe3B687vGhxHuiHu9ylGXugMhBp0X29iT7svTx48aocBiuUDsRtXcpApQxekshroqx1VLLAiDFWmKiECkx6ykwVpScMQh5pnWJKBVpZDk-e3kIb7bINdxD2VaydjRC4cdtEONYnhwF2SEO88E2BqhHX2g1dx9Pwiy86Rx-S6x4pGpCiM1L0SYGeTnu-9T03_gr9PJFwgkz9svOL5eqTHsRPGxqZoxYsM-gfIxhodWvB8wNt5iHo5QV6mBhA98Wnk9TrXYjhBbi0nBXoSYZIcg8XcGYoXwA0pA5aM8itGSTIq5svj0ymB33R6VqQ7DkLWqBH03LamXLg2rA8yjBgXmrF4IjbPU9Ol07l1UBEuIeYcesMK_OVdvE5dxMH_5TSdOazkWd_fNafsX7338Dvoct1ZntZVtUW2livjsJ9dNEdrxfd6kGW31N2Pz7U
  priority: 102
  providerName: Springer Nature
Title Limited evidence for blood eQTLs in human sexual dimorphism
URI https://link.springer.com/article/10.1186/s13073-022-01088-w
https://www.ncbi.nlm.nih.gov/pubmed/35953856
https://www.proquest.com/docview/2704057573
https://www.proquest.com/docview/2702192955
https://pubmed.ncbi.nlm.nih.gov/PMC9373355
https://doaj.org/article/a3f5c3b678794a75addbb623225d2106
Volume 14
WOSCitedRecordID wos000839645200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: RBZ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1756-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064247
  issn: 1756-994X
  databaseCode: RSV
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KJbkLjwfgTKEiQkDhDViePYEQfUolYgwSqUgrYny6_ASpAtmy0Vf8_YcVJSRC9cVko8tnY8D88480DoqSapLhiuEyyxSvIc60QWJAeJz5UiJeE2q32zCTab8fm8rMKFWxvCKnud6BW1WWp3R76dMextC0ZeHf9IXNco93U1tNDYQJuuUlk-QZu7e7PqoNfFYFznrE-V4cV2mzqWTlwEO_ghwCOno-PIV-3_Wzf_cTidD5w89_XUH0r71_8XnRvoWjBH452Of26iS7a5ha50DSp_3UYvQ_5TbEPz0Rhs3NgHu8f2w-G7Nl40sW_zF7e-dnNsgPZAukX7_Q76tL93-PpNEtotJBqEcJ1wSzi3huO6yHCplCacWoqlVEzWJSst5YZQmdbcYAqOEFe6pGVpSaoKeDLkLpo0y8beR7FJ60yrGty5QuU1LGucGQEzuMSGmTxCab_rQoda5K4lxjfhfRJeiI5SAiglPKXEaYSeD3OOu0ocF0LvOmIOkK6Ktn-xXH0RQSiFJDXVRMF5DVpJMgq6XimwB0HHGXCFiwg9dqwgupTUQReIHfDsGVCvoBF65iGcNgAEtAxJDbANrq7WCHJrBAlSrMfDPZ-IoEVaccYkEXoyDLuZLjKuscsTDwOHTlZSWOJex50D0i7pGogIeLAR3452ZTzSLL76GuNgtRLi1nzRc_jZ3_r3rj-4GIuH6GrmZY8nabqFJuvViX2ELuuf60W7mqINNmf-l0-DHE_9FcnUBeRW8K56-746gqeDj59_A5ccT9c
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQqJFAHCBqEiexI4RQWapWHUYgDdLcjLfASJApkymj_il-I8_OUlJEbz1wnPGzFdvf25K3ADzWNNY5i8owkpEK0zTSocxpihyfKkULym1S-mYTbDzm02nxYQ1-dbkwLqyyk4leUJu5du_ItxIWeduC0VcHP0LXNcp9Xe1aaDSw2LdHK3TZ6pd7b_F-nyTJzrvJm92w7SoQasTaMuSWcm4Nj8o8iQqlNOWZzSIpFZNlwQqbcUMzGZfcRBna-1zpIisKS2OV4y9Dcd1zcB7lOHMhZGzaO3hoyqesS8zh-VYdOwYKXbw8ej2IyNVA-fkeAX9rgj9U4ckwzRPfar0K3Ln6vx3eNbjSGttku-GO67BmqxtwsWm_eXQTXrTZXcS2rVUJWvDEh_IT-3EyqsmsIr6JIal9ZWpiENkIzFn9_RZ8OpMnvw3r1byyd4GYuEy0KtFZzVVa4rLGGUk4g8vIMJMGEHe3LHRbad01_PgmvMfFc9EgQyAyhEeGWAXwrJ9z0NQZOZX6tQNPT-lqhPs_5osvohU5QtIy01ShNYIyV7IMNZlSaO2iBDfo6OcBbDroiSbhtpd0YpvFlCFa8iyAp57CyTrcgJZtygYeg6saNqDcGFCijNLD4Q6XopWRtTgGZQCP-mE308X9VXZ-6GlQpSZFhkvcabih37RLKcdLxH2wAZ8MTmU4Us2--grqaJNT6tZ83nHU8WP9-9Tvnb6LTbi0O3k_EqO98f59uJx4vudhHG_A-nJxaB_ABf1zOasXD73UIPD5rDntN_y7pIc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3JbtQw1IKyiAv7EijUSEgcIKoTx0vEqSwjENWoiIJ6s7zCSJCpJlMq_p5nZ6Epi4Q4Jn624rc_5S0IPbK0sFyQkBNNTF5VxOaa0wokvjKG1lT6MqRhE2I-lwcH9d6JKv6U7T78kuxqGmKXpma9fehCJ-KSb7dFZM08ZqJDPAG0Pj6LzlVxaFCM199_HHQxONeVGEplfrtvYo5S1_5fdfMJ43Q6cfLU39NklGZX_v86V9Hl3iHFOx0HXUNnfHMdXehGVH6_gZ71FVDY9-NHMXi5OKW7Y_9uf7fFiwanQX-4Td2bsQPqA_EW7deb6MPs1f6L13k_cCG3IIbrXHoqpXeSBF6S2hhLJfOMaG2EDrWoPZOOMl0E6QiDUEgaW7O69rQwHJ4cvYU2mmXj7yDsilBaEyCg46YKcKyLjgTskJo44aoMFQPele27kcehGF9UikokVx1SFCBFJaSo4ww9Gfccdr04_gr9PJJzhIx9tNOL5eqT6sVSaRqYpQYsNuglLRhoe2PAIwQt5yAY5hnaisyguqLUURuoHYjtBbi6nGXocYKI-gAuYHVf1gBoiJ21JpCbE0iQYztdHhhO9XqkVaUgyaMWNEMPx-W4M-bGNX55lGDA7JQ1gyNud_w5XjqWXQMR4R5iwrkTrExXmsXn1GUc_FZK45lPB_79-Vl_xvrdfwPfQhf3Xs7U7pv523voUpkkQOZFsYk21qsjfx-dt9_Wi3b1IIn1D_4oSpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limited+evidence+for+blood+eQTLs+in+human+sexual+dimorphism&rft.jtitle=Genome+medicine&rft.au=Porcu%2C+Eleonora&rft.au=Claringbould%2C+Annique&rft.au=Weihs%2C+Antoine&rft.au=Lepik%2C+Kaido&rft.date=2022-08-11&rft.issn=1756-994X&rft.eissn=1756-994X&rft.volume=14&rft.issue=1&rft.spage=89&rft_id=info:doi/10.1186%2Fs13073-022-01088-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-994X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-994X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-994X&client=summon