The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS)
Background Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability,...
Saved in:
| Published in: | BMC medicine Vol. 19; no. 1; pp. 13 - 14 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
20.01.2021
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects: | |
| ISSN: | 1741-7015, 1741-7015 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS.
Main body
The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications.
Conclusion
Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance. |
|---|---|
| AbstractList | Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance. Background Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. Main body The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications. Conclusion Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance. Background Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. Main body The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications. Conclusion Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance. Keywords: Amyotrophic lateral sclerosis, ALS, Microbiome, Disease modifiers, Microbial metabolites, Microbial Background Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. Main body The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications. Conclusion Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance. Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications. Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance. Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS.BACKGROUNDMuch progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS.The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications.MAIN BODYThe microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications.Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance.CONCLUSIONProfiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance. Abstract Background Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. Main body The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications. Conclusion Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance. |
| ArticleNumber | 13 |
| Audience | Academic |
| Author | Sassani, Matilde Barker, Lynne A. Shaw, Pamela J. Elinav, Eran Boddy, Sarah L. Segal, Eran Snyder, Michael P. Cooper-Knock, Johnathan Giovannelli, Ilaria McDermott, Christopher J. |
| Author_xml | – sequence: 1 givenname: Sarah L. surname: Boddy fullname: Boddy, Sarah L. organization: Sheffield Institute for Translational Neuroscience, University of Sheffield – sequence: 2 givenname: Ilaria surname: Giovannelli fullname: Giovannelli, Ilaria organization: Sheffield Institute for Translational Neuroscience, University of Sheffield – sequence: 3 givenname: Matilde surname: Sassani fullname: Sassani, Matilde organization: Sheffield Institute for Translational Neuroscience, University of Sheffield – sequence: 4 givenname: Johnathan surname: Cooper-Knock fullname: Cooper-Knock, Johnathan organization: Sheffield Institute for Translational Neuroscience, University of Sheffield – sequence: 5 givenname: Michael P. surname: Snyder fullname: Snyder, Michael P. organization: Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine – sequence: 6 givenname: Eran surname: Segal fullname: Segal, Eran organization: Department of Computer Science and Applied Mathematics, Weizmann Institute of Science – sequence: 7 givenname: Eran surname: Elinav fullname: Elinav, Eran organization: Department of Immunology, Weizmann Institute of Science, Division of Cancer-Microbiome Research, DKFZ – sequence: 8 givenname: Lynne A. surname: Barker fullname: Barker, Lynne A. organization: Centre for Behavioural Science and Applied Psychology, Sheffield Hallam University – sequence: 9 givenname: Pamela J. surname: Shaw fullname: Shaw, Pamela J. organization: Sheffield Institute for Translational Neuroscience, University of Sheffield – sequence: 10 givenname: Christopher J. surname: McDermott fullname: McDermott, Christopher J. email: c.j.mcdermott@sheffield.ac.uk organization: Sheffield Institute for Translational Neuroscience, University of Sheffield |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33468103$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1DAYhSNURC_wAiyQJSRUFim-xg4LpFHFpdJILCgLVpbt_JnxkMSDnSDm7fF0SjtToSoLR_Z3ju3jc1ocDWGAonhJ8AUhqnqXCK1JVWKKS0yUEiV7UpwQyUkpMRFHe__HxWlKK4ypkJI_K44Z45UimJ0UP66XgBbTiHrvYrA-9PAeGfQTNmjdmQ1E5Ac0ZsaFft3BHz9uUGiR6TdhjGG99A51ZoRoOpRcBzEkn9D5bP7t7fPiaWu6BC9ux7Pi-6eP15dfyvnXz1eXs3npKqbGUhgwrSUNkU5QB84JZYEzzqkQ1graCEVt41oKilhLRAstaSXnTGU9ocDOiqudbxPMSq-j703c6GC8vpkIcaFNHH0-nFY1VYwzKW1DeUMaixvMacWwpc6SmmavDzuv9WR7aBwMY77ZgenhyuCXehF-a6lIxaTIBue3BjH8miCNuvfJQdeZAcKUNOWy5pQqJTP6-gG6ClMcclSZqnHN6kqye2ph8gX80ObYjdua6lklMOeYUZKpi_9Q-Wsgv2tuTevz_IHgzZ5gCaYblyl00-jDkA7BV_uJ3EXxr0EZoDsg1yelCO0dQrDe1lTvaqpzTfVNTfVWpB6InB_NdvN8bt89LmU7acr7DAuI97E9ovoLmVn4xA |
| CitedBy_id | crossref_primary_10_3390_ijms26178419 crossref_primary_10_3390_biom11101441 crossref_primary_10_3390_molecules29246026 crossref_primary_10_5937_arhfarm74_46612 crossref_primary_10_1038_s41598_024_75083_z crossref_primary_10_1186_s12916_024_03781_6 crossref_primary_10_3390_ijms232213665 crossref_primary_10_1039_D5NP00021A crossref_primary_10_3390_nu16050590 crossref_primary_10_1007_s12035_025_04747_2 crossref_primary_10_1186_s13099_025_00696_2 crossref_primary_10_1002_cph4_70009 crossref_primary_10_3390_ijms25031871 crossref_primary_10_1021_acschemneuro_5c00254 crossref_primary_10_3389_fonc_2022_926920 crossref_primary_10_3390_cimb46050271 crossref_primary_10_1097_WCO_0000000000000983 crossref_primary_10_1097_WCO_0000000000000986 crossref_primary_10_1038_s41598_022_25033_4 crossref_primary_10_1186_s13024_022_00525_z crossref_primary_10_3390_brainsci12111579 crossref_primary_10_1002_ana_27208 crossref_primary_10_3390_biomedicines11030827 crossref_primary_10_1007_s11010_023_04853_6 crossref_primary_10_3390_biomedicines11030748 crossref_primary_10_1016_j_lfs_2021_120156 crossref_primary_10_1038_s41582_024_00991_7 crossref_primary_10_1007_s12035_024_04228_y crossref_primary_10_3390_diagnostics12071742 crossref_primary_10_1016_j_biopha_2024_117588 crossref_primary_10_1016_j_jclinane_2025_111801 crossref_primary_10_1038_s41582_023_00867_2 crossref_primary_10_1155_2022_3300903 crossref_primary_10_3390_ijms23063253 crossref_primary_10_1007_s12017_025_08870_0 crossref_primary_10_3390_ijms24119577 crossref_primary_10_3389_fneur_2023_1133546 crossref_primary_10_3390_biom14091138 crossref_primary_10_1038_s41598_024_68645_8 crossref_primary_10_1177_19714009251345102 crossref_primary_10_1016_j_lfs_2023_122022 crossref_primary_10_3390_biomedicines9070753 crossref_primary_10_1007_s12035_023_03568_5 crossref_primary_10_3390_medicina61091694 crossref_primary_10_1186_s12974_023_03007_1 crossref_primary_10_1080_21678421_2024_2433578 crossref_primary_10_1007_s12035_024_04269_3 crossref_primary_10_3390_ijms26083658 crossref_primary_10_3390_brainsci14050471 crossref_primary_10_3390_jcm12041650 crossref_primary_10_1093_brain_awad306 crossref_primary_10_3389_fneur_2021_788462 crossref_primary_10_3390_life13102023 crossref_primary_10_4103_1673_5374_382223 crossref_primary_10_3390_microbiolres15020033 crossref_primary_10_1016_j_phrs_2022_106377 crossref_primary_10_1212_WNL_0000000000207367 crossref_primary_10_1002_ana_27126 crossref_primary_10_1007_s12035_025_04830_8 crossref_primary_10_1016_j_neurot_2024_e00469 crossref_primary_10_1016_j_neurot_2024_e00441 crossref_primary_10_1111_joim_13336 crossref_primary_10_1186_s40035_021_00272_z crossref_primary_10_3389_fnins_2022_1002266 crossref_primary_10_1186_s12974_022_02421_1 crossref_primary_10_3389_fneur_2023_1289467 crossref_primary_10_1007_s12640_023_00681_0 crossref_primary_10_1016_j_arr_2024_102504 crossref_primary_10_3390_ijms23094504 crossref_primary_10_3390_ijms26157211 crossref_primary_10_1016_j_neurot_2024_e00478 crossref_primary_10_3390_ijms23031184 crossref_primary_10_1186_s40659_024_00505_1 crossref_primary_10_1016_j_jnutbio_2024_109622 crossref_primary_10_1038_s41582_023_00845_8 crossref_primary_10_4103_1673_5374_335151 crossref_primary_10_1111_jgh_16650 |
| Cites_doi | 10.1038/nm.4106 10.1038/nature25973 10.1016/j.nbd.2006.12.015 10.1097/00003246-200004001-00007 10.1186/s40478-019-0797-0 10.1517/17425255.4.9.1223 10.1126/science.1166066 10.1016/j.clinthera.2016.12.014 10.1038/s41575-018-0061-2 10.3389/fphar.2018.01354 10.1016/j.nbd.2017.12.006 10.1038/nature12726 10.1186/s40168-018-0551-z 10.3389/fmicb.2018.02013 10.1016/s0022-510x(01)00613-x 10.1038/s41598-020-69845-8 10.1002/mnfr.201801187 10.1113/jphysiol.1985.sp015882 10.1080/21678421.2020.1772825 10.4199/C00093ED1V01Y201309GMM004 10.1038/s41586-019-1443-5 10.1002/jcp.25518 10.1007/s11481-012-9426-4 10.1038/nature08821 10.1038/s41597-020-0427-5 10.14814/phy2.13443 10.1186/s12974-019-1434-3 10.1073/pnas.1314085111 10.1212/wnl.0000000000005996 10.1016/j.jnutbio.2010.07.009 10.1016/j.nutres.2008.02.012 10.1016/j.cell.2014.06.034 10.3390/ijms20040974 10.1093/epirev/mxu001 10.1016/j.neulet.2017.06.052 10.14814/phy2.12356 10.1212/WNL.50.1.66 10.3389/fmicb.2016.01479 10.1002/ncp.10489 10.1038/s41467-019-08294-y 10.1038/nri.2016.42 10.1007/s13311-017-0585-0 10.3389/fpsyt.2019.00034 10.1016/j.neurobiolaging.2017.09.023 10.1007/s00401-014-1251-9 10.1016/j.cell.2014.03.011 10.1007/s00394-017-1445-8 10.1038/nature05414 10.1111/nan.12520 10.3389/fnins.2019.00171 10.1289/ehp.0900580 10.1001/jamaneurol.2016.0594 10.1080/00365520802321212 10.3389/fneur.2019.01021 10.1016/j.cell.2013.12.016 10.1111/ene.13986 10.1126/science.1154584 10.1038/nature12721 10.1016/j.chom.2015.04.011 10.1016/j.neuron.2011.09.010 10.1038/362059a0 10.1038/nbt.2676 10.1212/01.wnl.0000078320.18564.9f 10.1038/nn.4476 10.3390/ijms21114045 10.1152/ajpgi.00574.2004 10.1182/blood-2018-11-844555 10.1159/000453359 10.1177/0884533611436116 10.1186/s12916-020-01607-9 10.1038/nrneurol.2016.111 10.1016/j.jaci.2020.04.037 10.3389/fimmu.2017.01630 10.3390/nu11040923 10.1038/s41586-019-1291-3 10.1016/j.ncl.2015.07.010 10.7150/ijbs.11084 10.1016/j.neuron.2011.09.011 10.3389/fmicb.2016.00459 10.1053/j.gastro.2015.10.005 10.1111/j.1471-4159.2012.07955.x 10.1016/j.jep.2005.12.032 10.1038/s41598-019-42227-5 10.1242/dmm.041947 10.30802/AALAS-CM-18-000039 10.1038/s41586-020-2288-7 10.1016/j.ygeno.2012.07.012 10.1056/NEJM199403033300901 10.1038/nn.4030 10.3109/17482960802566824 10.1126/science.aad9378 10.1126/science.1241214 10.1097/cm9.0000000000000351 10.1038/nrmicro2536 10.1186/s40478-017-0424-x 10.1038/nrd4609 10.1111/imm.13158 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7U9 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P M7N PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1186/s12916-020-01885-3 |
| DatabaseName | Springer Nature Link CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-7015 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_892834377bd24d1db0d042630b2cb192 PMC7816375 A650440321 33468103 10_1186_s12916_020_01885_3 |
| Genre | Journal Article Review |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: European Research Council – fundername: UK Research and Innovation (GB) – fundername: NIHR Sheffield Biomedical Research Centre (GB) – fundername: University of Sheffield (GB) – fundername: NIHR Oxford Biomedical Research Centre (GB) – fundername: Howard Hughes Medical Institute funderid: http://dx.doi.org/10.13039/100000011 – fundername: Medical Research Council (GB) – fundername: NIH Human Microbiome Project grantid: 1U54DE02378901 – fundername: Bill & Melinda Gates Foundation – fundername: Wellcome Trust funderid: http://dx.doi.org/10.13039/100010269 – fundername: ; – fundername: ; grantid: 1U54DE02378901 |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW INH INR ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB AAYXX AFFHD CITATION -5E -5G -A0 -BR 3V. ACRMQ ADINQ ALIPV C24 NPM 7QL 7U9 7XB 8FK AZQEC C1K DWQXO H94 K9. M7N PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c638t-5aeafb1d17c52cecc58be4344255bb52d582bdcf2e81bb15fef1f74438c6312e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609364600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1741-7015 |
| IngestDate | Fri Oct 03 12:50:44 EDT 2025 Tue Nov 04 01:56:21 EST 2025 Thu Oct 02 09:15:05 EDT 2025 Wed Oct 08 14:21:21 EDT 2025 Tue Nov 11 10:37:04 EST 2025 Tue Nov 04 17:19:29 EST 2025 Thu May 22 21:21:14 EDT 2025 Thu Jan 02 22:57:49 EST 2025 Sat Nov 29 04:08:22 EST 2025 Tue Nov 18 21:01:46 EST 2025 Sat Sep 06 07:29:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | ALS Disease modifiers Amyotrophic lateral sclerosis Microbial Microbial metabolites Microbiome |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c638t-5aeafb1d17c52cecc58be4344255bb52d582bdcf2e81bb15fef1f74438c6312e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2490939673?pq-origsite=%requestingapplication% |
| PMID | 33468103 |
| PQID | 2490939673 |
| PQPubID | 42775 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_892834377bd24d1db0d042630b2cb192 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7816375 proquest_miscellaneous_2479422887 proquest_journals_2490939673 gale_infotracmisc_A650440321 gale_infotracacademiconefile_A650440321 gale_healthsolutions_A650440321 pubmed_primary_33468103 crossref_primary_10_1186_s12916_020_01885_3 crossref_citationtrail_10_1186_s12916_020_01885_3 springer_journals_10_1186_s12916_020_01885_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-20 |
| PublicationDateYYYYMMDD | 2021-01-20 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC medicine |
| PublicationTitleAbbrev | BMC Med |
| PublicationTitleAlternate | BMC Med |
| PublicationYear | 2021 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | M Usami (1885_CR62) 2008; 28 1885_CR73 R Alonso (1885_CR38) 2015; 11 R Vangoitsenhoven (1885_CR71) 2020; 35 K Meyer (1885_CR78) 2014; 111 TJ Kwiatkowski Jr (1885_CR3) 2009; 323 J Cooper-Knock (1885_CR8) 2014; 127 MGI Langille (1885_CR45) 2013; 31 D Erny (1885_CR76) 2015; 18 VK Ridaura (1885_CR83) 2013; 341 R Mittal (1885_CR49) 2017; 232 1885_CR80 G Bensimon (1885_CR86) 1994; 330 1885_CR85 M Zhang (1885_CR66) 2000; 28 J Sun (1885_CR37) 2019; 26 M Zhuang (1885_CR96) 2019; 63 C-D Zhai (1885_CR31) 2019; 132 MG Rooks (1885_CR72) 2016; 16 A Chiò (1885_CR9) 2018; 91 J Cooper-Knock (1885_CR77) 2017; 5 Q Ma (1885_CR52) 2019; 16 B Tilocca (1885_CR47) 2020; 21 DR Rosen (1885_CR2) 1993; 362 BP Willing (1885_CR36) 2011; 9 J Sreedharan (1885_CR4) 2008; 319 ML Soliman (1885_CR60) 2013; 8 J Qin (1885_CR19) 2010; 464 PJ Turnbaugh (1885_CR84) 2006; 444 Y Belkaid (1885_CR70) 2014; 157 D Zhang (1885_CR61) 2019; 133 DW Dickson (1885_CR25) 2019; 7 S Wu (1885_CR21) 2015; 3 SG Cheung (1885_CR92) 2019; 10 1885_CR15 M DeJesus-Hernandez (1885_CR5) 2011; 72 1885_CR7 MM Haney (1885_CR24) 2018; 68 SA Banack (1885_CR11) 2003; 61 J Mandrioli (1885_CR79) 2019; 10 V Rothhammer (1885_CR64) 2016; 22 H Jeong (1885_CR43) 2019; 9 F Fang (1885_CR14) 2009; 117 I Rowland (1885_CR53) 2018; 57 M Mills (1885_CR82) 2019; 11 1885_CR29 A Lerner (1885_CR40) 2017; 8 E Blacher (1885_CR17) 2019; 572 J Mas-Lloret (1885_CR46) 2020; 7 M Benatar (1885_CR26) 2007; 26 SA Banack (1885_CR12) 2006; 106 1885_CR30 EF Smith (1885_CR68) 2019; 710 1885_CR34 1885_CR33 G Lach (1885_CR90) 2018; 15 D Rothschild (1885_CR100) 2018; 555 MJ Waring (1885_CR27) 2015; 14 T Gensollen (1885_CR69) 2016; 352 TR Sampson (1885_CR75) 2015; 17 1885_CR39 IW Mak (1885_CR28) 2014; 6 JD Beard (1885_CR13) 2015; 37 D Brenner (1885_CR32) 2018; 61 P Cimermancic (1885_CR48) 2014; 158 C Figueroa-Romero (1885_CR23) 2020; 13 N Zmora (1885_CR81) 2019; 16 R Krajmalnik-Brown (1885_CR54) 2012; 27 CE Jackson (1885_CR93) 2015; 33 H Abrahamsson (1885_CR94) 2008; 43 EV Hobson (1885_CR99) 2016; 12 T Yajima (1885_CR95) 1985; 368 AE Renton (1885_CR6) 2011; 72 AS Andrew (1885_CR10) 2017; 17 N Arpaia (1885_CR59) 2013; 504 M Pimentel (1885_CR97) 2006; 290 R Sitaraman (1885_CR42) 2018; 6 F De Vadder (1885_CR50) 2014; 156 GJ Groeneveld (1885_CR88) 2001; 191 1885_CR55 Y Furusawa (1885_CR58) 2013; 504 JP Karl (1885_CR91) 2018; 9 J Kehrmann (1885_CR74) 2020; 159 L Liu (1885_CR41) 2012; 100 TC Fung (1885_CR51) 2017; 20 Y-G Zhang (1885_CR22) 2017; 39 A Chio (1885_CR1) 2009; 10 JS Bell (1885_CR20) 2019; 45 ML Soliman (1885_CR57) 2012; 123 M Zimmermann (1885_CR87) 2019; 570 CA Zarate (1885_CR89) 2008; 4 1885_CR67 1885_CR65 G Parthasarathy (1885_CR98) 2016; 150 MAR Vinolo (1885_CR63) 2011; 22 Q Zeng (1885_CR35) 2020; 10 F-C Su (1885_CR16) 2016; 73 A Burberry (1885_CR18) 2020; 582 P Wang (1885_CR56) 2018; 111 J Jovel (1885_CR44) 2016; 7 |
| References_xml | – volume: 22 start-page: 586 year: 2016 ident: 1885_CR64 publication-title: Nat Med doi: 10.1038/nm.4106 – volume: 555 start-page: 210 year: 2018 ident: 1885_CR100 publication-title: Nature. doi: 10.1038/nature25973 – volume: 26 start-page: 1 year: 2007 ident: 1885_CR26 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2006.12.015 – volume: 28 start-page: N60 issue: 4 Suppl year: 2000 ident: 1885_CR66 publication-title: Crit Care Med doi: 10.1097/00003246-200004001-00007 – volume: 7 start-page: 150 year: 2019 ident: 1885_CR25 publication-title: Acta Neuropathol Commun doi: 10.1186/s40478-019-0797-0 – volume: 4 start-page: 1223 year: 2008 ident: 1885_CR89 publication-title: Expert Opin Drug Metab Toxicol doi: 10.1517/17425255.4.9.1223 – volume: 323 start-page: 1205 year: 2009 ident: 1885_CR3 publication-title: Science. doi: 10.1126/science.1166066 – volume: 39 start-page: 322 year: 2017 ident: 1885_CR22 publication-title: Clin Ther doi: 10.1016/j.clinthera.2016.12.014 – volume: 16 start-page: 35 year: 2019 ident: 1885_CR81 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-018-0061-2 – ident: 1885_CR73 doi: 10.3389/fphar.2018.01354 – volume: 111 start-page: 12 year: 2018 ident: 1885_CR56 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2017.12.006 – volume: 504 start-page: 451 year: 2013 ident: 1885_CR59 publication-title: Nature doi: 10.1038/nature12726 – volume: 6 start-page: 163 year: 2018 ident: 1885_CR42 publication-title: Microbiome. doi: 10.1186/s40168-018-0551-z – ident: 1885_CR80 – volume: 9 start-page: 2013 year: 2018 ident: 1885_CR91 publication-title: Front Microbiol doi: 10.3389/fmicb.2018.02013 – volume: 191 start-page: 121 year: 2001 ident: 1885_CR88 publication-title: J Neurol Sci doi: 10.1016/s0022-510x(01)00613-x – volume: 10 start-page: 12998 year: 2020 ident: 1885_CR35 publication-title: Sci Rep doi: 10.1038/s41598-020-69845-8 – volume: 63 start-page: 1801187 year: 2019 ident: 1885_CR96 publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201801187 – volume: 368 start-page: 667 year: 1985 ident: 1885_CR95 publication-title: J Physiol doi: 10.1113/jphysiol.1985.sp015882 – ident: 1885_CR34 doi: 10.1080/21678421.2020.1772825 – ident: 1885_CR15 doi: 10.4199/C00093ED1V01Y201309GMM004 – volume: 572 start-page: 474 year: 2019 ident: 1885_CR17 publication-title: Nature. doi: 10.1038/s41586-019-1443-5 – volume: 232 start-page: 2359 year: 2017 ident: 1885_CR49 publication-title: J Cell Physiol doi: 10.1002/jcp.25518 – volume: 8 start-page: 287 year: 2013 ident: 1885_CR60 publication-title: J NeuroImmune Pharmacol doi: 10.1007/s11481-012-9426-4 – volume: 464 start-page: 59 year: 2010 ident: 1885_CR19 publication-title: Nature. doi: 10.1038/nature08821 – volume: 7 start-page: 92 year: 2020 ident: 1885_CR46 publication-title: Sci Data doi: 10.1038/s41597-020-0427-5 – ident: 1885_CR30 doi: 10.14814/phy2.13443 – volume: 16 start-page: 53 year: 2019 ident: 1885_CR52 publication-title: J Neuroinflammation doi: 10.1186/s12974-019-1434-3 – volume: 111 start-page: 829 year: 2014 ident: 1885_CR78 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1314085111 – volume: 91 start-page: e635 year: 2018 ident: 1885_CR9 publication-title: Neurology. doi: 10.1212/wnl.0000000000005996 – volume: 22 start-page: 849 year: 2011 ident: 1885_CR63 publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2010.07.009 – volume: 28 start-page: 321 year: 2008 ident: 1885_CR62 publication-title: Nutr Res doi: 10.1016/j.nutres.2008.02.012 – volume: 158 start-page: 412 year: 2014 ident: 1885_CR48 publication-title: Cell. doi: 10.1016/j.cell.2014.06.034 – ident: 1885_CR67 doi: 10.3390/ijms20040974 – volume: 37 start-page: 55 year: 2015 ident: 1885_CR13 publication-title: Epidemiol Rev doi: 10.1093/epirev/mxu001 – volume: 710 start-page: 132933 year: 2019 ident: 1885_CR68 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2017.06.052 – volume: 3 start-page: e12356 year: 2015 ident: 1885_CR21 publication-title: Physiol Rep doi: 10.14814/phy2.12356 – ident: 1885_CR85 doi: 10.1212/WNL.50.1.66 – ident: 1885_CR7 – ident: 1885_CR29 doi: 10.3389/fmicb.2016.01479 – volume: 35 start-page: 406 year: 2020 ident: 1885_CR71 publication-title: Nutr Clin Pract doi: 10.1002/ncp.10489 – ident: 1885_CR55 doi: 10.1038/s41467-019-08294-y – volume: 16 start-page: 341 year: 2016 ident: 1885_CR72 publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.42 – volume: 15 start-page: 36 year: 2018 ident: 1885_CR90 publication-title: Neurotherapeutics. doi: 10.1007/s13311-017-0585-0 – volume: 10 start-page: 34 year: 2019 ident: 1885_CR92 publication-title: Front Psychiatry doi: 10.3389/fpsyt.2019.00034 – volume: 61 start-page: 132 year: 2018 ident: 1885_CR32 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2017.09.023 – volume: 127 start-page: 333 year: 2014 ident: 1885_CR8 publication-title: Acta Neuropathol doi: 10.1007/s00401-014-1251-9 – volume: 157 start-page: 121 year: 2014 ident: 1885_CR70 publication-title: Cell. doi: 10.1016/j.cell.2014.03.011 – volume: 57 start-page: 1 year: 2018 ident: 1885_CR53 publication-title: Eur J Nutr doi: 10.1007/s00394-017-1445-8 – volume: 444 start-page: 1027 year: 2006 ident: 1885_CR84 publication-title: Nature. doi: 10.1038/nature05414 – volume: 45 start-page: 195 year: 2019 ident: 1885_CR20 publication-title: Neuropathol Appl Neurobiol doi: 10.1111/nan.12520 – ident: 1885_CR39 doi: 10.3389/fnins.2019.00171 – volume: 117 start-page: 1387 year: 2009 ident: 1885_CR14 publication-title: Environ Health Perspect doi: 10.1289/ehp.0900580 – volume: 73 start-page: 803 year: 2016 ident: 1885_CR16 publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2016.0594 – volume: 43 start-page: 1483 year: 2008 ident: 1885_CR94 publication-title: Scand J Gastroenterol doi: 10.1080/00365520802321212 – volume: 10 start-page: 1021 year: 2019 ident: 1885_CR79 publication-title: Front Neurol doi: 10.3389/fneur.2019.01021 – volume: 156 start-page: 84 year: 2014 ident: 1885_CR50 publication-title: Cell. doi: 10.1016/j.cell.2013.12.016 – volume: 26 start-page: 1355 year: 2019 ident: 1885_CR37 publication-title: Eur J Neurol doi: 10.1111/ene.13986 – volume: 319 start-page: 1668 year: 2008 ident: 1885_CR4 publication-title: Science. doi: 10.1126/science.1154584 – volume: 504 start-page: 446 year: 2013 ident: 1885_CR58 publication-title: Nature. doi: 10.1038/nature12721 – volume: 17 start-page: 565 year: 2015 ident: 1885_CR75 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.04.011 – volume: 72 start-page: 257 year: 2011 ident: 1885_CR6 publication-title: Neuron. doi: 10.1016/j.neuron.2011.09.010 – volume: 362 start-page: 59 year: 1993 ident: 1885_CR2 publication-title: Nature. doi: 10.1038/362059a0 – volume: 31 start-page: 814 year: 2013 ident: 1885_CR45 publication-title: Nat Biotechnol doi: 10.1038/nbt.2676 – volume: 61 start-page: 387 year: 2003 ident: 1885_CR11 publication-title: Neurology doi: 10.1212/01.wnl.0000078320.18564.9f – volume: 20 start-page: 145 year: 2017 ident: 1885_CR51 publication-title: Nat Neurosci doi: 10.1038/nn.4476 – volume: 21 start-page: 4045 year: 2020 ident: 1885_CR47 publication-title: Int J Mol Sci doi: 10.3390/ijms21114045 – volume: 290 start-page: G1089 year: 2006 ident: 1885_CR97 publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00574.2004 – volume: 133 start-page: 2168 year: 2019 ident: 1885_CR61 publication-title: Blood. doi: 10.1182/blood-2018-11-844555 – volume: 17 start-page: 110 year: 2017 ident: 1885_CR10 publication-title: Neurodegener Dis doi: 10.1159/000453359 – volume: 27 start-page: 201 year: 2012 ident: 1885_CR54 publication-title: Nutr Clin Pract doi: 10.1177/0884533611436116 – ident: 1885_CR33 doi: 10.1186/s12916-020-01607-9 – volume: 12 start-page: 526 year: 2016 ident: 1885_CR99 publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2016.111 – ident: 1885_CR65 doi: 10.1016/j.jaci.2020.04.037 – volume: 8 start-page: 1630 year: 2017 ident: 1885_CR40 publication-title: Front Immunol doi: 10.3389/fimmu.2017.01630 – volume: 11 start-page: 923 year: 2019 ident: 1885_CR82 publication-title: Nutrients doi: 10.3390/nu11040923 – volume: 570 start-page: 462 year: 2019 ident: 1885_CR87 publication-title: Nature. doi: 10.1038/s41586-019-1291-3 – volume: 33 start-page: 889 year: 2015 ident: 1885_CR93 publication-title: Neurol Clin doi: 10.1016/j.ncl.2015.07.010 – volume: 11 start-page: 546 year: 2015 ident: 1885_CR38 publication-title: Int J Biol Sci doi: 10.7150/ijbs.11084 – volume: 72 start-page: 245 year: 2011 ident: 1885_CR5 publication-title: Neuron. doi: 10.1016/j.neuron.2011.09.011 – volume: 7 start-page: 459 year: 2016 ident: 1885_CR44 publication-title: Front Microbiol doi: 10.3389/fmicb.2016.00459 – volume: 150 start-page: 367 year: 2016 ident: 1885_CR98 publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.10.005 – volume: 123 start-page: 555 year: 2012 ident: 1885_CR57 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2012.07955.x – volume: 106 start-page: 97 year: 2006 ident: 1885_CR12 publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2005.12.032 – volume: 9 start-page: 5953 year: 2019 ident: 1885_CR43 publication-title: Sci Rep doi: 10.1038/s41598-019-42227-5 – volume: 13 start-page: dmm041947 year: 2020 ident: 1885_CR23 publication-title: Dis Models Mech doi: 10.1242/dmm.041947 – volume: 6 start-page: 114 year: 2014 ident: 1885_CR28 publication-title: Am J Transl Res – volume: 68 start-page: 452 year: 2018 ident: 1885_CR24 publication-title: Comp Med doi: 10.30802/AALAS-CM-18-000039 – volume: 582 start-page: 89 year: 2020 ident: 1885_CR18 publication-title: Nature. doi: 10.1038/s41586-020-2288-7 – volume: 100 start-page: 265 year: 2012 ident: 1885_CR41 publication-title: Genomics. doi: 10.1016/j.ygeno.2012.07.012 – volume: 330 start-page: 585 year: 1994 ident: 1885_CR86 publication-title: N Engl J Med doi: 10.1056/NEJM199403033300901 – volume: 18 start-page: 965 year: 2015 ident: 1885_CR76 publication-title: Nat Neurosci doi: 10.1038/nn.4030 – volume: 10 start-page: 310 year: 2009 ident: 1885_CR1 publication-title: Amyotroph Lateral Scler doi: 10.3109/17482960802566824 – volume: 352 start-page: 539 year: 2016 ident: 1885_CR69 publication-title: Science. doi: 10.1126/science.aad9378 – volume: 341 start-page: 1241214 year: 2013 ident: 1885_CR83 publication-title: Science. doi: 10.1126/science.1241214 – volume: 132 start-page: 1815 year: 2019 ident: 1885_CR31 publication-title: Chin Med J doi: 10.1097/cm9.0000000000000351 – volume: 9 start-page: 233 year: 2011 ident: 1885_CR36 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2536 – volume: 5 start-page: 23 year: 2017 ident: 1885_CR77 publication-title: Acta Neuropathol Commun. doi: 10.1186/s40478-017-0424-x – volume: 14 start-page: 475 year: 2015 ident: 1885_CR27 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4609 – volume: 159 start-page: 344 year: 2020 ident: 1885_CR74 publication-title: Immunology. doi: 10.1111/imm.13158 |
| SSID | ssj0025774 |
| Score | 2.582679 |
| SecondaryResourceType | review_article |
| Snippet | Background
Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present... Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no... Background Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present... Abstract Background Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 13 |
| SubjectTerms | Abnormalities ALS Amyotrophic lateral sclerosis Animal diseases Animal models Antibiotics Bioavailability Biodiversity Biomedicine Causes of Development and progression Digestive system Disease Disease modifiers Gastrointestinal tract Gene mapping Genetic abnormalities Genetic variability Genetics Gut microbiota Health aspects Host-bacteria relationships Intestinal microflora Intestine Medicine Medicine & Public Health Metabolites Microbial Microbial activity Microbial metabolites Microbiome Microbiomes Microbiota Microbiota (Symbiotic organisms) Microorganisms Mutation Neurodegeneration Neuroprotection Neurotoxicity Neurotransmitters Nutrients Pathogenesis Precision medicine Review Sample variance Therapeutic targets |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yiPgi3q2uGkFQ0bLNpU3i2yguPugiqLA-hSRN3cJMZ5h2lvXfe5Je3K6oL742J7Q51y_05AtCT0OnBfOGpCVTPOVFplKbBW48Rw01hhc8q-JlE-LoSB4fq0_nrvoKPWE9PXCvuAOpoAByJoQtKS9JabMywH6WWeoswJOQfQH1jJupYauVA6oZj8jI4qCFqkZCs21owpIyT9msDEW2_t9z8rmidLFh8sJf01iMDq-jawOKxIv-62-gS765ia58HP6T30LfwPr4-67Dq7onWlr519hgCFi8WRpA2bhuMEA_HDvK_RlAcbyusFn9WHfb9eakdnhpwtnkJW7hBbCEusXPFx8-v7iNvh6--_L2fTpcopA6CK0uzY03lSUlES6nDgyWS-s54xCrubU5LXNJbekq6gHAWpJXviKV4JxJmE-oZ3fQXrNu_D2EKybAqhysahRXnklewf5QFUKIwqpMJYiMOtVuYBgPF10sddxpyEL3dtBgBx3toFmCXk5zNj2_xl-l3wRTTZKBGzs-AI_Rg8fof3lMgh4HQ-v-oOkU4XoBYJXzjFGSoGdRIsQ4LMCZ4agCqCGwZc0k92eSEJtuPjw6kx5yQ6thw5spBmqD5TyZhsPM0O_W-PUuyECepBQqQILu9r43LZoxHkjkYLaYeeVMK_ORpj6JzOFCAvwWeYJejf7767P-rPX7_0PrD9BVGtqBMgKJeR_tddudf4guu9OubrePYvT-BA4cQi4 priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEA96ivjF96N6agRBRYvNo03qt1U8_KCHeCrnp5Ck6V1ht122XdH_3kn60J4P0K-bGbqZzOM3ZGaC0ANfacGcJnHBch7zLMljk_jZeJZqqjXPeFKGxybE_r48PMzfDU1h7VjtPl5JBk8dzFpmz1qITMQXzPpCKinTmJ1GZyDcSW-O7w8-TWlWCohmbI_5Ld8sBIVJ_b_6458C0sliyRM3piEQ7V38vy1cQhcG4IkXvaZcRqdcfQWdeztcrV9Fn0Fh8NG2w6uqn820cs-xxmDjeL3UAMxxVWNAizgUobuvgN5xU2K9-tZ0m2Z9XFm81L6deYlb-ADsvGrxo8Wbg8fX0Me9Vx9evo6HdxdiC9bYxal2ujSkIMKm1MIZp9I4zjiYd2pMSotUUlPYkjrAvIakpStJKThnEvgJdew62qmb2t1EuGQCFIGDIuic545JXkJKmWdCiMzkSR4hMh6FssNQcv82xlKF5ERmqpeZApmpIDPFIvRk4ln3Izn-Sv3Cn_BE6cdphx-azZEarFPJHFAWZ0KYgvKCFCYpfG7JEkOtAQwcoXteP1Tfmzo5BbUAfMt5wiiJ0MNA4d0CbMDqobsBxOAHbM0od2eUYM52vjzqoBrcSasgR05yBmKD7dyflj2nL5GrXbP1NOBaKYWgEaEbvcpOm2aM-7lzwC1myjyTynylro7DsHEhAbGLNEJPR5X-8bf-LPVb_0Z-G52nvlYoIeC1d9FOt9m6O-is_dJV7eZuMO_vpsBHiA priority: 102 providerName: Springer Nature |
| Title | The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS) |
| URI | https://link.springer.com/article/10.1186/s12916-020-01885-3 https://www.ncbi.nlm.nih.gov/pubmed/33468103 https://www.proquest.com/docview/2490939673 https://www.proquest.com/docview/2479422887 https://pubmed.ncbi.nlm.nih.gov/PMC7816375 https://doaj.org/article/892834377bd24d1db0d042630b2cb192 |
| Volume | 19 |
| WOSCitedRecordID | wos000609364600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: RBZ dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Open Access Journals customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: M~E dateStart: 20030101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: RSV dateStart: 20031201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0GIdQrzw_REYxUhIgEa0xHZihxfUoU0gsaraAHVPlp04W6Q2KU2L4N9zdtKMDLEXXiqlPivxfZ99vkPopc20oEaFfkYT5rM4SHwd2Np4KVFEKRazIHfNJvh4LKbTZNJuuNVtWuVGJzpFnVWp3SPfgzABgu8k5vT94rtvu0bZ09W2hcYW2raVytgAbe8fjCfHXcgVgXezuSoj4r0arFtok25tMpYQkU975shV7f9bN_9hnC4nTl46PXVG6fD2_y7nDrrVuqN41PDPXXTNlPfQjaP2wP0-OgU2wmfrFZ4XTcWmuXmHFQbJx4uZAncdFyUGHxK71HTzE3x6XOVYzX9Vq2W1OC9SPFP2kvMM1_ACwEFR49ejzydvHqCvhwdfPnz0224MfgoyuvIjZVSuwyzkaURSoHwktGGUgdBHWkckiwTRWZoTA56wDqPc5GHOGaMC5ofE0IdoUFaleYxwTjmwBwP2UAlLDBUsh0ATkMF5rAEvHgo3RJFpW6rcdsyYSReyiFg2hJRASOkIKamHdrs5i6ZQx5XQ-5bWHaQtsu3-qJZnspVZKRLwvRjlXGeEZWGmg8xGnDTQJNXgGXvoueUU2dxY7VSFHIHXy1hASeihVw7CKgtYQKraOw-ABlt2qwe504MEIU_7wxs2kq2SqeUFD3noRTdsZ9rEudJUawsDCpcQMCUeetQwb7doSpmtRgezeY-te1jpj5TFuStBzgX48Tzy0NuNAFx81r-x_uTqVTxFN4nNGApC0N07aLBars0zdD39sSrq5RBt8Sl3v2LYivnQ7aDA0-TT0eQUno5Pvv0GXMJYbg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGh4AX7pfAYEYCAYJoie3EDhJC5TKtWltV2pC2JxMnzhapTUrTAvtT_EaOcxsZYm974LU-TnpOvnNLjs9B6JmptKA6dO2YBsxmvhPYyjG98SISkjBkPnOSctgEH4_FwUEwWUO_mrMwpqyysYmloY7zyLwj34I0AZLvwOf0_fybbaZGma-rzQiNCha7-uQHpGzFu8EneL7PCdn-vP9xx66nCtgRYG1pe6EOE-XGLo88EgEHnlCaUQbg9ZTySOwJouIoIRoiOuV6iU7chDNGBex3iaZw3Uto3dCLHlqfDEaTwzbF8yCaao7mCH-rAG_qmiJfU_wlhGfTjvsrpwT87Qv-cIZnCzXPfK0tneD2jf9NfDfR9Trcxv1KP26hNZ3dRldGdUHBHXQIaoKPVks8S6uOVDP9FocYLBueT0NIR3CaYYiRcVl6r39CzoLzBIezk3y5yOfHaYSnoTnEPcUF3ABknhb4ZX-49-ou-nIhjN1DvSzP9AOEE8oB_gzgHwYs0FSwBBJpED7nvoLnYCG3AYGM6lbsZiLIVJYpmfBlBRwJwJElcCS10Ot2z7xqRHIu9QeDrZbSNBEvf8gXR7K2SVIEEFsyyrmKCYvdWDmxyaipo0ikIPK30KZBpqxO5LamUPYhqmfMocS10IuSwhhDYCAK6zMdIAbTVqxDudGhBCMWdZcb2MraiBbyFLMWetoum52mMDDT-crQgEMhBFylhe5XytIyTSkz3fZgN--oUUcq3ZUsPS5brHMBeQr3LPSmUbjTv_VvqT88n4tNdHVnfzSUw8F49xG6Rkx1lOOCn9pAveVipR-jy9H3ZVosntRmBaOvF62KvwFvhrJa |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEA96yuEX34_q6UUQVLRcm6RN6rf1sSiey8GpnJ9CkqZ3hd122XZF_3snabdezweIXzczdDOZx2_IzAShR67SgloVhznNWMjSKAt15GbjGaKIUixlUeEfm-CzmTg6yg5OdfH7avfNlWTX0-CmNFXt3jIvOhMX6V4DUSp2xbOuqEqIJKTn0QXmHg1y-frh5yHlSgDdbFplfss3Ckd-av-vvvlUcDpbOHnm9tQHpemV_9_OVXS5B6R40mnQNXTOVtfR9of-yv0G-gKKhI_XLV6U3cymhX2BFQbbx8u5AsCOywoDisS-ON1-A1SP6wKrxfe6XdXLk9LguXJtznPcwAdACmWDn0z2D5_eRJ-mbz6-ehv27zGEBqy0DRNlVaHjPOYmIQbOPhHaMsrA7BOtE5IngujcFMQCFtZxUtgiLjhjVAB_TCy9hbaqurJ3EC4oBwVhoCAqY5mlghWQamYp5zzVWZQFKN4cizT9sHL3ZsZc-qRFpLKTmQSZSS8zSQP0bOBZdqM6_kr90p32QOnGbPsf6tWx7K1WigzQF6Oc65ywPM51lLuck0aaGA3YOEC7Tldk17M6OAs5AdzLWERJHKDHnsK5C9iAUX3XA4jBDd4aUe6MKMHMzXh5o4-ydzONhNw5yiiIDbbzcFh2nK50rrL12tGAyyUEgkmAbnfqO2yaUubm0QE3Hyn2SCrjlao88UPIuQAkz5MAPd-o98-_9Wep3_038l20ffB6Kvffzd7fQ5eIKyeKYnDsO2irXa3tfXTRfG3LZvXAW_0PnnFTUA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gut+microbiome%3A+a+key+player+in+the+complexity+of+amyotrophic+lateral+sclerosis+%28ALS%29&rft.jtitle=BMC+medicine&rft.au=Boddy%2C+Sarah+L&rft.au=Giovannelli%2C+Ilaria&rft.au=Sassani%2C+Matilde&rft.au=Cooper-Knock%2C+Johnathan&rft.date=2021-01-20&rft.eissn=1741-7015&rft.volume=19&rft.issue=1&rft.spage=13&rft_id=info:doi/10.1186%2Fs12916-020-01885-3&rft_id=info%3Apmid%2F33468103&rft.externalDocID=33468103 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7015&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7015&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7015&client=summon |