In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice
Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verificati...
Uložené v:
| Vydané v: | Physics and imaging in radiation oncology Ročník 16; s. 1 - 11 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.10.2020
Elsevier |
| Predmet: | |
| ISSN: | 2405-6316, 2405-6316 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time–resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research. |
|---|---|
| AbstractList | Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time–resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research. Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time-resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research.Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time-resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research. Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time-resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research. |
| Author | Kertzscher, Gustavo Verhaegen, Frank Tanderup, Kari Smith, Ryan L. Beddar, Sam Fonseca, Gabriel P. Beaulieu, Luc Johansen, Jacob G. |
| Author_xml | – sequence: 1 givenname: Gabriel P. surname: Fonseca fullname: Fonseca, Gabriel P. email: gabriel.paivafonseca@maastro.nl organization: Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, Doctor Tanslaan 12, 6229 ET Maastricht, the Netherlands – sequence: 2 givenname: Jacob G. surname: Johansen fullname: Johansen, Jacob G. organization: Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark – sequence: 3 givenname: Ryan L. surname: Smith fullname: Smith, Ryan L. organization: Alfred Health Radiation Oncology, Alfred Health, 55 Commercial Rd, Melbourne, VIC 3004, Australia – sequence: 4 givenname: Luc surname: Beaulieu fullname: Beaulieu, Luc organization: Department of Physics, Engineering Physics & Optics and Cancer Research Center, Université Laval, Quebec City, QC, Canada – sequence: 5 givenname: Sam surname: Beddar fullname: Beddar, Sam organization: Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1420, Houston, TX 77030, United States – sequence: 6 givenname: Gustavo surname: Kertzscher fullname: Kertzscher, Gustavo organization: Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark – sequence: 7 givenname: Frank surname: Verhaegen fullname: Verhaegen, Frank organization: Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, Doctor Tanslaan 12, 6229 ET Maastricht, the Netherlands – sequence: 8 givenname: Kari surname: Tanderup fullname: Tanderup, Kari organization: Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33458336$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1uGyEUhVGVqkndvEAXFcsuYhcYhhmiKlIV9cdSpEpVu0YMXGLSMUxgxpXfvjiOqySLlA0IzncucM9rdBRiAITeUrKghIoPN4thleKCEUYWRC4IYS_QCeOknouKiqMH62N0mvMNKYpGVnVFXqHjquJ1W1XiBP1ZBrzxm4htzH4NY9piH3CXtFltxxUkPWzP8Q-4nXyCNYQxYx0sdtM4JcC2bJrRx5CxiwknyKCTWZ1hCxvo47ADzu4A0_vgje7xUJxHb-ANeul0n-H0fp6hX18-_7z8Nr_6_nV5-elqbkTVjvO6BuCCy46CFc5ZpyUI2nHDpWsaKax1dUdb4G1rmroIuWyopEzTTmjJoJqh5d7XRn2jhuTXOm1V1F7dbcR0rXQqF-pBgWmFgYp1vLEcpG6tqBrQoImrmXS6eF3svYapW4M15XVJ949MH58Ev1LXcaOaljS7_56h9_cGKd5OkEe19tlA3-sAccqK8aZtyhCsSN89rPWvyKFzRdDuBSbFnBM4Zfyod80opX2vKFG7nKjy6JITtcuJIlKVFBSUPUEP7s9CH_cQlG5tPCSVjYdgYB-C8p3-efz8CX6IxG_Y_g_-C4B_7eo |
| CitedBy_id | crossref_primary_10_1016_j_diamond_2025_112764 crossref_primary_10_1016_j_brachy_2022_06_006 crossref_primary_10_1088_1361_6560_ac612d crossref_primary_10_2478_pjmpe_2024_0036 crossref_primary_10_1088_1361_6560_ade21f crossref_primary_10_1016_j_zemedi_2022_11_002 crossref_primary_10_1016_j_brachy_2022_07_011 crossref_primary_10_1002_mp_15658 crossref_primary_10_1002_acm2_14150 crossref_primary_10_1002_mp_16629 crossref_primary_10_1002_mp_14607 crossref_primary_10_1016_j_phro_2020_09_001 crossref_primary_10_1088_1742_6596_2630_1_012009 crossref_primary_10_1016_j_brachy_2023_05_003 crossref_primary_10_1109_TMECH_2023_3239750 crossref_primary_10_1016_j_brachy_2024_05_001 crossref_primary_10_1136_bmjopen_2022_070020 crossref_primary_10_1016_j_brachy_2025_03_003 crossref_primary_10_1088_1361_6560_abf605 crossref_primary_10_3390_radiation2040026 crossref_primary_10_1016_j_phro_2024_100638 crossref_primary_10_1002_mp_15257 crossref_primary_10_1088_1361_6560_ad580e crossref_primary_10_1109_ACCESS_2021_3136255 crossref_primary_10_1002_mp_16745 crossref_primary_10_1016_j_ejmp_2021_12_008 crossref_primary_10_1016_j_brachy_2024_11_004 crossref_primary_10_1007_s12553_024_00905_z crossref_primary_10_1016_j_tipsro_2024_100290 crossref_primary_10_1007_s41365_021_00965_0 crossref_primary_10_1016_j_clon_2023_01_001 crossref_primary_10_1088_1748_0221_19_04_P04003 crossref_primary_10_1016_j_ejmp_2024_103401 crossref_primary_10_1016_j_brachy_2024_11_012 crossref_primary_10_1002_mp_16971 crossref_primary_10_3390_jpm14030321 crossref_primary_10_3390_ph17081031 crossref_primary_10_1016_j_brachy_2023_10_004 crossref_primary_10_3390_biomedicines9111629 crossref_primary_10_1002_mp_16579 crossref_primary_10_1016_j_radonc_2022_01_006 crossref_primary_10_1016_j_brachy_2022_11_012 crossref_primary_10_1088_2058_8585_ac32aa crossref_primary_10_1088_1361_6560_ac9a9b crossref_primary_10_1002_acm2_13729 crossref_primary_10_1016_j_radphyschem_2022_110227 crossref_primary_10_1002_mp_16285 crossref_primary_10_1259_bjr_20220500 crossref_primary_10_1016_j_brachy_2021_08_003 crossref_primary_10_1002_mp_15674 crossref_primary_10_1016_j_radmeas_2023_106936 crossref_primary_10_1002_mp_17614 crossref_primary_10_1016_j_radmeas_2025_107469 crossref_primary_10_3390_encyclopedia5010040 crossref_primary_10_1002_mp_14812 crossref_primary_10_3390_s24020692 crossref_primary_10_1002_mp_14857 crossref_primary_10_3390_jpm12060911 crossref_primary_10_1016_j_apradiso_2024_111429 crossref_primary_10_1016_j_radonc_2021_12_047 crossref_primary_10_1007_s11547_024_01896_7 crossref_primary_10_1002_acm2_70072 crossref_primary_10_3390_cancers13040912 |
| Cites_doi | 10.1088/1361-6560/ab18bf 10.1088/0031-9155/49/1/004 10.1093/rpd/ncn235 10.1118/1.4961393 10.1118/1.1339882 10.1118/1.4810943 10.1259/bjr.20140163 10.1016/j.brachy.2019.05.001 10.1016/j.brachy.2019.06.005 10.1118/1.4747264 10.1016/j.radonc.2011.08.014 10.1088/1361-6560/aabb5a 10.1016/j.ijrobp.2016.06.015 10.1002/mp.13508 10.1016/j.brachy.2017.08.009 10.1016/j.brachy.2017.04.240 10.1118/1.1312811 10.1093/rpd/ncr415 10.1118/1.4803510 10.1118/1.1646040 10.1016/j.radonc.2008.08.016 10.1016/j.ijrobp.2019.02.045 10.1016/j.ejmp.2017.05.003 10.1088/0031-9155/59/7/1831 10.1118/1.4957155 10.1016/j.phro.2016.12.001 10.1016/j.radonc.2017.12.025 10.1016/j.ijrobp.2018.04.066 10.1016/j.radonc.2010.09.009 10.1016/j.ijrobp.2010.03.030 10.1016/j.brachy.2017.04.003 10.1016/j.radonc.2013.11.002 10.1016/j.brachy.2017.08.005 10.1016/j.radmeas.2014.05.021 10.1016/j.radonc.2006.02.016 10.1118/1.4903286 10.1118/1.4947547 10.1016/j.brachy.2018.09.007 10.1016/j.radonc.2005.09.004 10.1088/1361-6560/aa7028 10.5114/jcb.2015.54062 10.1016/j.radonc.2009.09.015 10.1016/j.radonc.2016.05.008 10.1118/1.4823758 10.1118/1.597458 10.1016/j.radonc.2014.12.006 10.1118/1.3693049 10.1016/j.nima.2009.09.122 10.1016/j.radonc.2013.08.043 10.1016/j.radonc.2008.06.010 10.5114/jcb.2017.72567 10.1118/1.4935866 10.1016/j.radonc.2016.03.011 10.1088/0031-9155/50/2/010 10.1007/s13246-019-00809-7 10.1118/1.4811143 10.1118/1.598598 10.1016/S0360-3016(03)00762-4 10.1002/mp.12459 10.1088/1361-6560/aacdc9 10.1118/1.4822736 10.1016/j.brachy.2018.07.014 10.1016/j.brachy.2018.08.006 10.1016/j.canrad.2006.12.003 10.1007/BF03178424 10.1016/j.radonc.2006.07.008 10.1016/j.radonc.2015.12.022 10.1016/j.clon.2015.09.006 10.1016/j.ijrobp.2004.10.031 10.1118/1.4870438 10.1016/j.ejmp.2017.11.003 10.1093/jrr/rrz013 10.1118/1.3238102 10.5114/jcb.2018.76748 10.1016/j.ejmp.2019.03.031 10.1088/1361-6560/aa8d0a 10.1016/j.brachy.2017.08.004 10.1016/j.ejmp.2019.11.025 10.1088/1361-6560/aa91a9 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors 2020 The Authors. 2020 The Authors 2020 |
| Copyright_xml | – notice: 2020 The Authors – notice: 2020 The Authors. – notice: 2020 The Authors 2020 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.phro.2020.09.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2405-6316 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_ec86ce32b47d4e9a8d637eaea0f529fa PMC7807583 33458336 10_1016_j_phro_2020_09_002 S2405631620300518 |
| Genre | Journal Article Review |
| GroupedDBID | .1- .FO 0R~ AAEDW AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADVLN AEUPX AFJKZ AFPUW AFRHN AFTJW AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ M41 M~E O9- OK1 ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH NCXOZ RIG AAYXX CITATION NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c638t-55ee4649b1ed6ffdfa9e61b4c49f7796ddf5b18e488c756494971912a1b6a92e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645142500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2405-6316 |
| IngestDate | Fri Oct 03 12:44:46 EDT 2025 Tue Sep 30 16:59:07 EDT 2025 Thu Oct 02 11:47:54 EDT 2025 Thu Jan 02 22:57:26 EST 2025 Tue Nov 18 22:33:25 EST 2025 Thu Nov 13 04:28:10 EST 2025 Thu Jul 20 20:16:25 EDT 2023 Tue Aug 26 17:19:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Treatment verification In vivo dosimetry Brachytherapy |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2020 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c638t-55ee4649b1ed6ffdfa9e61b4c49f7796ddf5b18e488c756494971912a1b6a92e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Equally contributing authors. Equally contributing senior authors. |
| OpenAccessLink | https://doaj.org/article/ec86ce32b47d4e9a8d637eaea0f529fa |
| PMID | 33458336 |
| PQID | 2478777762 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ec86ce32b47d4e9a8d637eaea0f529fa pubmedcentral_primary_oai_pubmedcentral_nih_gov_7807583 proquest_miscellaneous_2478777762 pubmed_primary_33458336 crossref_citationtrail_10_1016_j_phro_2020_09_002 crossref_primary_10_1016_j_phro_2020_09_002 elsevier_sciencedirect_doi_10_1016_j_phro_2020_09_002 elsevier_clinicalkey_doi_10_1016_j_phro_2020_09_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Physics and imaging in radiation oncology |
| PublicationTitleAlternate | Phys Imaging Radiat Oncol |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Wang, Ribouton, Pittet, Guiral, Jalade, Lu (b0175) 2014; 71 Nose, Masui, Takenaka, Yamazaki, Nakata, Otani (b0355) 2019; 60 Carrara, Tenconi, Rossi, Borroni, Cerrotta, Grisotto (b0125) 2016; 118 Fonseca, Van den Bosch, Voncken, Podesta, Verhaegen (b0190) 2017; 62 Watanabe, Muraishi, Takei, Hara, Terazaki, Shuto (b0155) 2018; 63 Guedea, Venselaar, Hoskin, Hellebust, Peiffert, Londres (b0335) 2010; 97 Jaberi, Siavashpour, Aghamiri, Kirisits, Ghaderi (b0325) 2017; 9 Duan, Macey, Pareek, Brezovich (b0405) 2001; 28 Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF and Meigooni AS, Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys. 1995; 22:209-34. 10.1118/1.597458. Simnor, Li, Lowe, Ostler, Bryant, Chapman (b0095) 2009; 93 Huq, Fraass, Dunscombe, Gibbons, Ibbott, Mundt (b0065) 2016; 43 Hoskin, Rojas, Ostler, Hughes, Bryant, Lowe (b0075) 2014; 110 Astrom, Grusell, Sandin, Turesson, Holmberg (b0040) 2018; 127 Das, Toye, Kron, Williams, Duchesne (b0220) 2007; 30 Wagner, Hermann, Hille (b0275) 2017; 16 Tho, Beaulieu (b0365) 2019; 46 Alecu, Alecu (b0260) 1999; 26 Sharma, Jursinic (b0245) 2013; 40 Johansen, Rylander, Buus, Bentzen, Hokland, Sondergaard (b0180) 2018; 17 Honderden vrouwen onjuist bestraald in Maastricht. 2014 [cited 2018 13/11/2018]; Available from Ma, Vijande, Ballester, Tedgren, Granero, Haworth (b0020) 2017; 44 Palmer, Diez, Gandon, Wynn-Jones, Bownes, Lee (b0345) 2015; 114 Fonseca, Landry, Reniers, Hoffmann, Rubo, Antunes (b0305) 2014; 59 Smith, Hanlon, Panettieri, Millar, Matheson, Haworth (b0185) 2018; 17 Tanderup, Hellebust, Lang, Granfeldt, Potter, Lindegaard (b0080) 2008; 89 Boutaleb, Racine, Fillion, Bonillas, Hautvast, Binnekamp (b0375) 2015; 7 Radiation equipment may not have correctly targeted cervical cancer in 25 patients. 2019 04/06/2019]; Available from Fonseca, Podesta, Reniers, Verhaegen (b0195) 2016; 43 Safavi-Naeini, Han, Alnaghy, Cutajar, Petasecca, Lerch (b0200) 2015; 42 . Fonseca, Viana, Podesta, Rubo, de Sales, Reniers (b0310) 2015; 42 Therriault-Proulx, Beddar, Beaulieu (b0170) 2013; 40 Derreumaux, Etard, Huet, Trompier, Clairand, Bottollier-Depois (b0395) 2008; 131 Guiral, Ribouton, Jalade, Wang, Galvan, Lu (b0130) 2016; 43 ISO/IEC, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). 2008, JCGM. Andersen, Nielsen, Lindegaard, Tanderup (b0120) 2009; 36 Waldhausl, Wambersie, Potter, Georg (b0255) 2005; 77 Damato, Viswanathan, Don, Hansen, Cormack (b0380) 2014; 41 The Patient Safety in Radiotherapy Steering Group and Public Health England. 14/12/2019]; Available from Kallis, Kreppner, Lotter, Fietkau, Strnad, Bert (b0385) 2018; 63 Cygler, Saoudi, Perry (b0240) 2006; 80 Mason, Mamo, Al-Qaisieh, Henry, Bownes (b0280) 2016; 120 Nakano, Suchowerska, McKenzie, Bilek (b0410) 2005; 50 Belley, Craciunescu, Chang, Langloss, Stanton, Yoshizumi (b0425) 2018; 17 Sturdza, Potter, Fokdal, Haie-Meder, Tan, Mazeron (b0035) 2016; 120 Radiological Protection Act 1991 (Ionising Radiation) Regulations 2019. Brezovich, Duan, Pareek, Fiveash, Ezekiel (b0210) 2000; 27 Papagiannis, Pantelis, Karaiskos (b0030) 2014; 87 Jamalludin, Jong, Malik, Rosenfeld, Ung (b0435) 2019; 69 Tanderup, Beddar, Andersen, Kertzscher, Cygler (b0060) 2013; 40 Melchert, Soror, Kovacs (b0230) 2018; 10 Beld, Seevinck, Schuurman, Viergever, Lagendijk, Moerland (b0360) 2018; 102 Peiffert, Mazeron, Guedea, Nisin (b0330) 2007; 11 Nose, Koizumi, Yoshida, Nishiyama, Sasaki, Ohnishi (b0265) 2005; 61 Diez, Aird, Sander, Gouldstone, Sharpe, Lee (b0340) 2017; 62 Shaaer, Davidson, Semple, Nicolae, Mendez, Chung (b0005) 2019; 18 Han, Safigholi, Soliman, Ravi, Leung, Scanderbeg (b0015) 2016; 96 Kirisits, Rivard, Baltas, Ballester, De Brabandere, van der Laarse (b0290) 2014; 110 Van Gellekom, Canters, Dankers, Loopstra, van der Steen-Banasik, Haverkort (b0420) 2018; 17 Jamalludin, Jong, Ho, Rosenfeld, Ung (b0430) 2019; 42 Verhaegen, Palefsky, Rempel, Poon (b0300) 2007; 6510 Johansen, Kertzscher, Jorgensen, Rylander, Bentzen, Hokland (b0135) 2019; 60 Pasalic, Kuban, Allen, Tang, Mesko, Grant (b0090) 2019; 104 Suchowerska, Jackson, Lambert, Yin, Hruby, McKenzie (b0270) 2011; 79 Allahverdi, Sarkhosh, Aghili, Jaberi, Adelnia, Geraily (b0250) 2012; 150 Carrara, Romanyukha, Tenconi, Mazzeo, Cerrotta, Borroni (b0235) 2017; 41 Buus, Lizondo, Hokland, Rylander, Pedersen, Tanderup (b0105) 2018; 17 Pantelis, Papagiannis, Anagnostopoulos, Baltas, Karaiskos, Sandilos (b0110) 2004; 49 Humbert-Vidan, Sander, Eaton, Clark (b0350) 2017; 1 Fonseca, Podesta, Bellezzo, Van den Bosch, Lutgens, Vanneste (b0145) 2017; 62 Toye, Das, Kron, Franich, Johnston, Duchesne (b0225) 2009; 91 Espinoza, Beeksma, Petasecca, Fuduli, Porumb, Cutajar (b0150) 2013; 40 Bati, Burger, Cindro, Kramberger (b0415) 2010; 617 Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, et al., Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004; 31:633-74. 10.1118/1.1646040. Valentin (b0045) 2005; 35 Shen, Gonzalez, Klages, Qin, Jung, Chen (b0320) 2019; 64 Anagnostopoulos, Baltas, Geretschlaeger, Martin, Papagiannis, Tselis (b0215) 2003; 57 Reniers, Landry, Eichner, Hallil, Verhaegen (b0370) 2012; 39 Aristei, Lancellotta, Piergentini, Costantini, Saldi, Chierchini (b0010) 2018; 18 Jaselske, Adliene, Rudzianskas, Urbonavicius, Inciura (b0205) 2017; 44 Beaulieu, Carlsson Tedgren, Carrier, Davis, Mourtada, Rivard (b0025) 2012; 39 Bellezzo, Baeza, Voncken, Reniers, Verhaegen, Fonseca (b0315) 2019; 18 Smith, Taylor, McDermott, Haworth, Millar, Franich (b0140) 2013; 40 Kertzscher, Andersen, Tanderup (b0295) 2014; 41 Poder, Carrara, Howie, Cutajar, Bucci, Rosenfeld (b0100) 2019; 18 Tanderup, Christensen, Granfeldt, Lindegaard (b0285) 2006; 79 Schmid, Kirisits, Nesvacil, Dimopoulos, Berger, Pötter (b0070) 2011; 100 Uzan, Nahum, Syndikus (b0085) 2016; 28 Kertzscher (10.1016/j.phro.2020.09.002_b0295) 2014; 41 Van Gellekom (10.1016/j.phro.2020.09.002_b0420) 2018; 17 Mason (10.1016/j.phro.2020.09.002_b0280) 2016; 120 Pantelis (10.1016/j.phro.2020.09.002_b0110) 2004; 49 Therriault-Proulx (10.1016/j.phro.2020.09.002_b0170) 2013; 40 Fonseca (10.1016/j.phro.2020.09.002_b0195) 2016; 43 Ma (10.1016/j.phro.2020.09.002_b0020) 2017; 44 Smith (10.1016/j.phro.2020.09.002_b0185) 2018; 17 Carrara (10.1016/j.phro.2020.09.002_b0125) 2016; 118 Boutaleb (10.1016/j.phro.2020.09.002_b0375) 2015; 7 Valentin (10.1016/j.phro.2020.09.002_b0045) 2005; 35 Tanderup (10.1016/j.phro.2020.09.002_b0080) 2008; 89 Pasalic (10.1016/j.phro.2020.09.002_b0090) 2019; 104 Guiral (10.1016/j.phro.2020.09.002_b0130) 2016; 43 Bati (10.1016/j.phro.2020.09.002_b0415) 2010; 617 Toye (10.1016/j.phro.2020.09.002_b0225) 2009; 91 Tho (10.1016/j.phro.2020.09.002_b0365) 2019; 46 Sturdza (10.1016/j.phro.2020.09.002_b0035) 2016; 120 Diez (10.1016/j.phro.2020.09.002_b0340) 2017; 62 Humbert-Vidan (10.1016/j.phro.2020.09.002_b0350) 2017; 1 Smith (10.1016/j.phro.2020.09.002_b0140) 2013; 40 10.1016/j.phro.2020.09.002_b0390 Astrom (10.1016/j.phro.2020.09.002_b0040) 2018; 127 Reniers (10.1016/j.phro.2020.09.002_b0370) 2012; 39 Melchert (10.1016/j.phro.2020.09.002_b0230) 2018; 10 10.1016/j.phro.2020.09.002_b0115 Shen (10.1016/j.phro.2020.09.002_b0320) 2019; 64 Espinoza (10.1016/j.phro.2020.09.002_b0150) 2013; 40 Waldhausl (10.1016/j.phro.2020.09.002_b0255) 2005; 77 Derreumaux (10.1016/j.phro.2020.09.002_b0395) 2008; 131 Jaselske (10.1016/j.phro.2020.09.002_b0205) 2017; 44 Guedea (10.1016/j.phro.2020.09.002_b0335) 2010; 97 Huq (10.1016/j.phro.2020.09.002_b0065) 2016; 43 Hoskin (10.1016/j.phro.2020.09.002_b0075) 2014; 110 Brezovich (10.1016/j.phro.2020.09.002_b0210) 2000; 27 Tanderup (10.1016/j.phro.2020.09.002_b0060) 2013; 40 Carrara (10.1016/j.phro.2020.09.002_b0235) 2017; 41 Fonseca (10.1016/j.phro.2020.09.002_b0310) 2015; 42 Jamalludin (10.1016/j.phro.2020.09.002_b0435) 2019; 69 Belley (10.1016/j.phro.2020.09.002_b0425) 2018; 17 Jamalludin (10.1016/j.phro.2020.09.002_b0430) 2019; 42 Verhaegen (10.1016/j.phro.2020.09.002_b0300) 2007; 6510 Cygler (10.1016/j.phro.2020.09.002_b0240) 2006; 80 10.1016/j.phro.2020.09.002_b0160 Nakano (10.1016/j.phro.2020.09.002_b0410) 2005; 50 Suchowerska (10.1016/j.phro.2020.09.002_b0270) 2011; 79 10.1016/j.phro.2020.09.002_b0400 Wang (10.1016/j.phro.2020.09.002_b0175) 2014; 71 Shaaer (10.1016/j.phro.2020.09.002_b0005) 2019; 18 Beaulieu (10.1016/j.phro.2020.09.002_b0025) 2012; 39 10.1016/j.phro.2020.09.002_b0165 Nose (10.1016/j.phro.2020.09.002_b0355) 2019; 60 Peiffert (10.1016/j.phro.2020.09.002_b0330) 2007; 11 Uzan (10.1016/j.phro.2020.09.002_b0085) 2016; 28 Tanderup (10.1016/j.phro.2020.09.002_b0285) 2006; 79 Schmid (10.1016/j.phro.2020.09.002_b0070) 2011; 100 Jaberi (10.1016/j.phro.2020.09.002_b0325) 2017; 9 Palmer (10.1016/j.phro.2020.09.002_b0345) 2015; 114 Kallis (10.1016/j.phro.2020.09.002_b0385) 2018; 63 Aristei (10.1016/j.phro.2020.09.002_b0010) 2018; 18 Watanabe (10.1016/j.phro.2020.09.002_b0155) 2018; 63 Kirisits (10.1016/j.phro.2020.09.002_b0290) 2014; 110 Duan (10.1016/j.phro.2020.09.002_b0405) 2001; 28 Alecu (10.1016/j.phro.2020.09.002_b0260) 1999; 26 Han (10.1016/j.phro.2020.09.002_b0015) 2016; 96 Safavi-Naeini (10.1016/j.phro.2020.09.002_b0200) 2015; 42 Damato (10.1016/j.phro.2020.09.002_b0380) 2014; 41 Fonseca (10.1016/j.phro.2020.09.002_b0190) 2017; 62 Papagiannis (10.1016/j.phro.2020.09.002_b0030) 2014; 87 10.1016/j.phro.2020.09.002_b0050 Simnor (10.1016/j.phro.2020.09.002_b0095) 2009; 93 Johansen (10.1016/j.phro.2020.09.002_b0135) 2019; 60 Das (10.1016/j.phro.2020.09.002_b0220) 2007; 30 10.1016/j.phro.2020.09.002_b0055 Beld (10.1016/j.phro.2020.09.002_b0360) 2018; 102 Bellezzo (10.1016/j.phro.2020.09.002_b0315) 2019; 18 Johansen (10.1016/j.phro.2020.09.002_b0180) 2018; 17 Andersen (10.1016/j.phro.2020.09.002_b0120) 2009; 36 Nose (10.1016/j.phro.2020.09.002_b0265) 2005; 61 Allahverdi (10.1016/j.phro.2020.09.002_b0250) 2012; 150 Sharma (10.1016/j.phro.2020.09.002_b0245) 2013; 40 Buus (10.1016/j.phro.2020.09.002_b0105) 2018; 17 Wagner (10.1016/j.phro.2020.09.002_b0275) 2017; 16 Anagnostopoulos (10.1016/j.phro.2020.09.002_b0215) 2003; 57 Poder (10.1016/j.phro.2020.09.002_b0100) 2019; 18 Fonseca (10.1016/j.phro.2020.09.002_b0145) 2017; 62 Fonseca (10.1016/j.phro.2020.09.002_b0305) 2014; 59 |
| References_xml | – volume: 104 start-page: 790 year: 2019 end-page: 797 ident: b0090 article-title: Dose escalation for prostate adenocarcinoma: a long-term update on the outcomes of a phase 3, single institution randomized clinical trial publication-title: Int J Radiat Oncol Biol Phys – volume: 62 start-page: 8832 year: 2017 end-page: 8849 ident: b0340 article-title: A multicentre audit of HDR/PDR brachytherapy absolute dosimetry in association with the INTERLACE trial (NCT015662405) publication-title: Phys Med Biol – volume: 41 start-page: 5 year: 2017 end-page: 12 ident: b0235 article-title: Clinical application of MOSkin dosimeters to rectal wall in vivo dosimetry in gynecological HDR brachytherapy publication-title: Phys Med – volume: 1 start-page: 1 year: 2017 end-page: 5 ident: b0350 article-title: National audit of a system for rectal contact brachytherapy publication-title: Phys Imag Radiat Oncol – volume: 28 start-page: 167 year: 2001 end-page: 173 ident: b0405 article-title: Real-time monitoring and verification of in vivo high dose rate brachytherapy using a pinhole camera publication-title: Med Phys – volume: 40 year: 2013 ident: b0170 article-title: On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy publication-title: Med Phys – volume: 11 start-page: 146 year: 2007 end-page: 149 ident: b0330 article-title: Brachytherapy in France in 2002: results of the ESTRO-PCBE questionnaire publication-title: Cancer Radiother – reference: The Patient Safety in Radiotherapy Steering Group and Public Health England. 14/12/2019]; Available from: – volume: 127 start-page: 81 year: 2018 end-page: 87 ident: b0040 article-title: Two decades of high dose rate brachytherapy with external beam radiotherapy for prostate cancer publication-title: Radiother Oncol – volume: 57 start-page: 1183 year: 2003 end-page: 1191 ident: b0215 article-title: In vivo thermoluminescence dosimetry dose verification of transperineal 192Ir high-dose-rate brachytherapy using CT-based planning for the treatment of prostate cancer publication-title: Int J Radiat Oncol Biol Phys – volume: 93 start-page: 253 year: 2009 end-page: 258 ident: b0095 article-title: Justification for inter-fraction correction of catheter movement in fractionated high dose-rate brachytherapy treatment of prostate cancer publication-title: Radiother Oncol – reference: Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, et al., Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004; 31:633-74. 10.1118/1.1646040. – volume: 80 start-page: 296 year: 2006 end-page: 301 ident: b0240 article-title: Morash C and E C, Feasibility study of using MOSFET detectors for in vivo dosimetry during permanent low-dose-rate prostate implants publication-title: Radiother Oncol – volume: 43 start-page: 5240 year: 2016 ident: b0130 article-title: Design and testing of a phantom and instrumented gynecological applicator based on GaN dosimeter for use in high dose rate brachytherapy quality assurance publication-title: Med Phys – volume: 39 start-page: 1925 year: 2012 end-page: 1935 ident: b0370 article-title: In vivo dosimetry for gynaecological brachytherapy using a novel position sensitive radiation detector: feasibility study publication-title: Med Phys – volume: 17 start-page: 50 year: 2018 end-page: 58 ident: b0105 article-title: Needle migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer evaluated by repeated MRI publication-title: Brachytherapy – volume: 30 start-page: 178 year: 2007 end-page: 184 ident: b0220 article-title: Thermoluminescence dosimetry for in-vivo verification of high dose rate brachytherapy for prostate cancer publication-title: Australas Phys Eng Sci Med – volume: 69 start-page: 52 year: 2019 end-page: 60 ident: b0435 article-title: Evaluation of rectal dose discrepancies between planned and in vivo dosimetry using MOSkin detector and PTW 9112 semiconductor probe during (60)Co HDR CT-based intracavitary cervix brachytherapy publication-title: Phys Med – reference: Radiation equipment may not have correctly targeted cervical cancer in 25 patients. 2019 04/06/2019]; Available from: – volume: 40 year: 2013 ident: b0150 article-title: The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance publication-title: Med Phys – volume: 42 start-page: 7098 year: 2015 end-page: 7107 ident: b0200 article-title: BrachyView, a novel in-body imaging system for HDR prostate brachytherapy: Experimental evaluation publication-title: Med Phys – volume: 102 start-page: 960 year: 2018 end-page: 968 ident: b0360 article-title: Development and testing of a magnetic resonance (MR) conditional afterloader for source tracking in magnetic resonance imaging-guided high-dose-rate (HDR) brachytherapy publication-title: Int J Radiat Oncol Biol Phys – volume: 17 start-page: 122 year: 2018 end-page: 132 ident: b0180 article-title: Time-resolved in vivo dosimetry for source tracking in brachytherapy publication-title: Brachytherapy – reference: Honderden vrouwen onjuist bestraald in Maastricht. 2014 [cited 2018 13/11/2018]; Available from: – volume: 64 year: 2019 ident: b0320 article-title: Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer publication-title: Phys Med Biol – volume: 100 start-page: 468 year: 2011 end-page: 472 ident: b0070 article-title: Local recurrences in cervical cancer patients in the setting of image-guided brachytherapy: A comparison of spatial dose distribution within a matched-pair analysis publication-title: Radiother Oncol – volume: 63 year: 2018 ident: b0155 article-title: Automated source tracking with a pinhole imaging system during high-dose-rate brachytherapy treatment publication-title: Phys Med Biol – volume: 26 start-page: 768 year: 1999 end-page: 770 ident: b0260 article-title: In-vivo rectal dose measurements with diodes to avoid misadministrations during intracavitary high dose rate brachytherapy for carcinoma of the cervix publication-title: Med Phys – volume: 131 start-page: 130 year: 2008 end-page: 135 ident: b0395 article-title: Lessons from recent accidents in radiation therapy in France publication-title: Radiat Prot Dosimetry – reference: Radiological Protection Act 1991 (Ionising Radiation) Regulations 2019. – reference: Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF and Meigooni AS, Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys. 1995; 22:209-34. 10.1118/1.597458. – volume: 40 year: 2013 ident: b0245 article-title: In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters publication-title: Med Phys – volume: 63 year: 2018 ident: b0385 article-title: Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy publication-title: Phys Med Biol – reference: ISO/IEC, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). 2008, JCGM. – volume: 43 year: 2016 ident: b0195 article-title: MO-AB-BRA-03: development of novel real time in vivo EPID treatment verification for brachytherapy publication-title: Med Phys – volume: 79 start-page: 609 year: 2011 end-page: 615 ident: b0270 article-title: Clinical trials of a urethral dose measurement system in brachytherapy using scintillation detectors publication-title: Int J Radiat Oncol Biol Phys – volume: 41 year: 2014 ident: b0380 article-title: A system to use electromagnetic tracking for the quality assurance of brachytherapy catheter digitization publication-title: Med Phys – volume: 44 start-page: 1 year: 2017 end-page: 10 ident: b0205 article-title: In vivo dose verification method in catheter based high dose rate brachytherapy publication-title: Phys Med – volume: 43 start-page: 4209 year: 2016 ident: b0065 article-title: The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management publication-title: Med Phys – volume: 97 start-page: 514 year: 2010 end-page: 520 ident: b0335 article-title: Patterns of care for brachytherapy in Europe: updated results publication-title: Radiother Oncol – volume: 79 start-page: 87 year: 2006 end-page: 93 ident: b0285 article-title: Geometric stability of intracavitary pulsed dose rate brachytherapy monitored by in vivo rectal dosimetry publication-title: Radiother Oncol – volume: 17 start-page: 146 year: 2018 end-page: 153 ident: b0420 article-title: In vivo dosimetry in gynecological applications-A feasibility study publication-title: Brachytherapy – volume: 62 start-page: 5440 year: 2017 end-page: 5461 ident: b0145 article-title: Online pretreatment verification of high-dose rate brachytherapy using an imaging panel publication-title: Phys Med Biol – volume: 62 start-page: 8360 year: 2017 end-page: 8375 ident: b0190 article-title: A novel system for commissioning brachytherapy applicators: example of a ring applicator publication-title: Phys Med Biol – volume: 17 start-page: 111 year: 2018 end-page: 121 ident: b0185 article-title: An integrated system for clinical treatment verification of HDR prostate brachytherapy combining source tracking with pretreatment imaging publication-title: Brachytherapy – volume: 110 start-page: 199 year: 2014 end-page: 212 ident: b0290 article-title: Review of clinical brachytherapy uncertainties: analysis guidelines of GEC-ESTRO and the AAPM publication-title: Radiother Oncol – volume: 110 start-page: 110 year: 2014 end-page: 113 ident: b0075 article-title: Dosimetric predictors of biochemical control of prostate cancer in patients randomised to external beam radiotherapy with a boost of high dose rate brachytherapy publication-title: Radiother Oncol – volume: 96 start-page: 440 year: 2016 end-page: 448 ident: b0015 article-title: Direction modulated brachytherapy for treatment of cervical cancer. II: Comparative planning study with intracavitary and intracavitary-interstitial techniques publication-title: Int J Radiat Oncol Biol Phys – volume: 120 start-page: 428 year: 2016 end-page: 433 ident: b0035 article-title: Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study publication-title: Radiother Oncol – volume: 46 start-page: 2031 year: 2019 end-page: 2036 ident: b0365 article-title: Technical Note: Identification of an optimal electromagnetic sensor for in vivo electromagnetic-tracked scintillation dosimeter for HDR brachytherapy publication-title: Med Phys – volume: 49 start-page: 55 year: 2004 end-page: 67 ident: b0110 article-title: Evaluation of a TG-43 compliant analytical dosimetry model in clinical 192Ir HDR brachytherapy treatment planning and assessment of the significance of source position and catheter reconstruction uncertainties publication-title: Phys Med Biol – volume: 42 start-page: 1099 year: 2019 end-page: 1107 ident: b0430 article-title: In vivo dosimetry using MOSkin detector during Cobalt-60 high-dose-rate (HDR) brachytherapy of skin cancer publication-title: Australas Phys Eng Sci Med – volume: 18 start-page: 57 year: 2018 end-page: 62 ident: b0010 article-title: Individualized 3D-printed templates for high-dose-rate interstitial multicathether brachytherapy in patients with breast cancer publication-title: Brachytherapy – volume: 60 start-page: 156 year: 2019 end-page: 161 ident: b0135 article-title: Dwell time verification in brachytherapy based on time resolved in vivo dosimetry publication-title: Phys Med – volume: 7 start-page: 280 year: 2015 end-page: 289 ident: b0375 article-title: Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy publication-title: J Contemp Brachytherapy – volume: 9 start-page: 508 year: 2017 end-page: 518 ident: b0325 article-title: Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation publication-title: J Contemp Brachytherapy – volume: 39 start-page: 6208 year: 2012 end-page: 6236 ident: b0025 article-title: Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation publication-title: Med Phys – volume: 36 start-page: 5033 year: 2009 end-page: 5043 ident: b0120 article-title: Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy publication-title: Med Phys – volume: 118 start-page: 148 year: 2016 end-page: 153 ident: b0125 article-title: In vivo rectal wall measurements during HDR prostate brachytherapy with MOSkin dosimeters integrated on a trans-rectal US probe: Comparison with planned and reconstructed doses publication-title: Radiother Oncol – volume: 18 start-page: 95 year: 2019 end-page: 102 ident: b0005 article-title: Clinical evaluation of an MRI-to-ultrasound deformable image registration algorithm for prostate brachytherapy publication-title: Brachytherapy – volume: 150 start-page: 312 year: 2012 end-page: 315 ident: b0250 article-title: Evaluation of treatment planning system of brachytherapy according to dose to the rectum delivered publication-title: Radiat Prot Dosim – volume: 42 start-page: 412 year: 2015 end-page: 415 ident: b0310 article-title: HDR 192Ir source speed measurements using a high speed video camera publication-title: Med Phys – volume: 114 start-page: 264 year: 2015 end-page: 271 ident: b0345 article-title: A multicentre 'end to end' dosimetry audit for cervix HDR brachytherapy treatment publication-title: Radiother Oncol – volume: 6510 year: 2007 ident: b0300 article-title: Imaging with Iridium photons: an application in brachytherapy publication-title: Med Imaging – volume: 35 year: 2005 ident: b0045 article-title: Prevention of high-dose-rate brachytherapy accidents. ICRP Publication 97 publication-title: Ann ICRP – volume: 61 start-page: 945 year: 2005 end-page: 953 ident: b0265 article-title: In vivo dosimetry of high-dose-rate brachytherapy: study on 61 head-and-neck cancer patients using radiophotoluminescence glass dosimeter publication-title: Int J Radiat Oncol Biol Phys – volume: 44 start-page: 5961 year: 2017 end-page: 5976 ident: b0020 article-title: A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate (192) Ir brachytherapy publication-title: Med Phys – volume: 18 start-page: 711 year: 2019 end-page: 719 ident: b0100 article-title: Derivation of in vivo source tracking error thresholds for TRUS-based HDR prostate brachytherapy through simulation of source positioning errors publication-title: Brachytherapy – volume: 40 year: 2013 ident: b0060 article-title: In vivo dosimetry in brachytherapy publication-title: Med Phys – volume: 16 start-page: 815 year: 2017 end-page: 821 ident: b0275 article-title: In vivo dosimetry with alanine/electron spin resonance dosimetry to evaluate the urethra dose during high-dose-rate brachytherapy publication-title: Brachytherapy – volume: 91 start-page: 243 year: 2009 end-page: 248 ident: b0225 article-title: An in vivo investigative protocol for HDR prostate brachytherapy using urethral and rectal thermoluminescence dosimetry publication-title: Radiother Oncol – volume: 60 start-page: 412 year: 2019 end-page: 415 ident: b0355 article-title: An easy and novel method for safer brachytherapy: real-time fluoroscopic verification of high-dose-rate 192Ir source position using a flat-panel detector publication-title: J Radiat Res – volume: 50 start-page: 319 year: 2005 end-page: 327 ident: b0410 article-title: Real-time verification of HDR brachytherapy source location: implementation of detector redundancy publication-title: Phys Med Biol – volume: 28 start-page: 165 year: 2016 end-page: 170 ident: b0085 article-title: Prostate dose-painting radiotherapy and radiobiological guided optimisation enhances the therapeutic ratio publication-title: Clin Oncol (R Coll Radiol) – volume: 71 start-page: 293 year: 2014 end-page: 296 ident: b0175 article-title: Implementation of GaN based real-time source position monitoring in HDR brachytherapy publication-title: Radiat Meas – volume: 17 start-page: 1023 year: 2018 end-page: 1029 ident: b0425 article-title: Real-time dose-rate monitoring with gynecologic brachytherapy: Results of an initial clinical trial publication-title: Brachytherapy – reference: . – volume: 59 start-page: 1831 year: 2014 end-page: 1844 ident: b0305 article-title: The contribution from transit dose for (192)Ir HDR brachytherapy treatments publication-title: Phys Med Biol – volume: 87 start-page: 20140163 year: 2014 ident: b0030 article-title: Current state of the art brachytherapy treatment planning dosimetry algorithms publication-title: Br J Radiol – volume: 27 start-page: 2297 year: 2000 end-page: 2301 ident: b0210 article-title: In vivo urethral dose measurements: a method to verify high dose rate prostate treatments publication-title: Med Phys – volume: 41 year: 2014 ident: b0295 article-title: Adaptive error detection for HDR/PDR brachytherapy: guidance for decision making during real-time in vivo point dosimetry publication-title: Med Phys – volume: 120 start-page: 333 year: 2016 end-page: 338 ident: b0280 article-title: Real-time in vivo dosimetry in high dose rate prostate brachytherapy publication-title: Radiother Oncol – volume: 617 start-page: 206 year: 2010 end-page: 208 ident: b0415 article-title: Verification of high dose rate 192Ir source position during brachytherapy treatment publication-title: Nucl Instrum Methods Phys Res A – volume: 18 start-page: 852 year: 2019 end-page: 862 ident: b0315 article-title: Mechanical evaluation of the Bravos afterloader system for HDR brachytherapy publication-title: Brachytherapy – volume: 89 start-page: 156 year: 2008 end-page: 163 ident: b0080 article-title: Consequences of random and systematic reconstruction uncertainties in 3D image based brachytherapy in cervical cancer publication-title: Radiother Oncol – volume: 10 start-page: 232 year: 2018 end-page: 237 ident: b0230 article-title: Quality assurance during interstitial brachytherapy: in vivo dosimetry using MOSFET dosimeters publication-title: J Contemp Brachytherapy – volume: 40 year: 2013 ident: b0140 article-title: Source position verification and dosimetry in HDR brachytherapy using an EPID publication-title: Med Phys – volume: 77 start-page: 310 year: 2005 end-page: 317 ident: b0255 article-title: In-vivo dosimetry for gynaecological brachytherapy: physical and clinical considerations publication-title: Radiother Oncol – volume: 64 year: 2019 ident: 10.1016/j.phro.2020.09.002_b0320 article-title: Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab18bf – volume: 49 start-page: 55 year: 2004 ident: 10.1016/j.phro.2020.09.002_b0110 article-title: Evaluation of a TG-43 compliant analytical dosimetry model in clinical 192Ir HDR brachytherapy treatment planning and assessment of the significance of source position and catheter reconstruction uncertainties publication-title: Phys Med Biol doi: 10.1088/0031-9155/49/1/004 – volume: 131 start-page: 130 year: 2008 ident: 10.1016/j.phro.2020.09.002_b0395 article-title: Lessons from recent accidents in radiation therapy in France publication-title: Radiat Prot Dosimetry doi: 10.1093/rpd/ncn235 – volume: 43 start-page: 5240 year: 2016 ident: 10.1016/j.phro.2020.09.002_b0130 article-title: Design and testing of a phantom and instrumented gynecological applicator based on GaN dosimeter for use in high dose rate brachytherapy quality assurance publication-title: Med Phys doi: 10.1118/1.4961393 – ident: 10.1016/j.phro.2020.09.002_b0400 – volume: 28 start-page: 167 year: 2001 ident: 10.1016/j.phro.2020.09.002_b0405 article-title: Real-time monitoring and verification of in vivo high dose rate brachytherapy using a pinhole camera publication-title: Med Phys doi: 10.1118/1.1339882 – volume: 40 year: 2013 ident: 10.1016/j.phro.2020.09.002_b0060 article-title: In vivo dosimetry in brachytherapy publication-title: Med Phys doi: 10.1118/1.4810943 – volume: 87 start-page: 20140163 year: 2014 ident: 10.1016/j.phro.2020.09.002_b0030 article-title: Current state of the art brachytherapy treatment planning dosimetry algorithms publication-title: Br J Radiol doi: 10.1259/bjr.20140163 – volume: 18 start-page: 711 year: 2019 ident: 10.1016/j.phro.2020.09.002_b0100 article-title: Derivation of in vivo source tracking error thresholds for TRUS-based HDR prostate brachytherapy through simulation of source positioning errors publication-title: Brachytherapy doi: 10.1016/j.brachy.2019.05.001 – volume: 18 start-page: 852 year: 2019 ident: 10.1016/j.phro.2020.09.002_b0315 article-title: Mechanical evaluation of the Bravos afterloader system for HDR brachytherapy publication-title: Brachytherapy doi: 10.1016/j.brachy.2019.06.005 – ident: 10.1016/j.phro.2020.09.002_b0115 – volume: 39 start-page: 6208 year: 2012 ident: 10.1016/j.phro.2020.09.002_b0025 article-title: Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation publication-title: Med Phys doi: 10.1118/1.4747264 – volume: 100 start-page: 468 year: 2011 ident: 10.1016/j.phro.2020.09.002_b0070 article-title: Local recurrences in cervical cancer patients in the setting of image-guided brachytherapy: A comparison of spatial dose distribution within a matched-pair analysis publication-title: Radiother Oncol doi: 10.1016/j.radonc.2011.08.014 – volume: 63 year: 2018 ident: 10.1016/j.phro.2020.09.002_b0385 article-title: Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy publication-title: Phys Med Biol doi: 10.1088/1361-6560/aabb5a – volume: 96 start-page: 440 year: 2016 ident: 10.1016/j.phro.2020.09.002_b0015 article-title: Direction modulated brachytherapy for treatment of cervical cancer. II: Comparative planning study with intracavitary and intracavitary-interstitial techniques publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2016.06.015 – volume: 46 start-page: 2031 year: 2019 ident: 10.1016/j.phro.2020.09.002_b0365 article-title: Technical Note: Identification of an optimal electromagnetic sensor for in vivo electromagnetic-tracked scintillation dosimeter for HDR brachytherapy publication-title: Med Phys doi: 10.1002/mp.13508 – volume: 17 start-page: 122 year: 2018 ident: 10.1016/j.phro.2020.09.002_b0180 article-title: Time-resolved in vivo dosimetry for source tracking in brachytherapy publication-title: Brachytherapy doi: 10.1016/j.brachy.2017.08.009 – ident: 10.1016/j.phro.2020.09.002_b0055 – volume: 17 start-page: 146 year: 2018 ident: 10.1016/j.phro.2020.09.002_b0420 article-title: In vivo dosimetry in gynecological applications-A feasibility study publication-title: Brachytherapy doi: 10.1016/j.brachy.2017.04.240 – volume: 27 start-page: 2297 year: 2000 ident: 10.1016/j.phro.2020.09.002_b0210 article-title: In vivo urethral dose measurements: a method to verify high dose rate prostate treatments publication-title: Med Phys doi: 10.1118/1.1312811 – volume: 150 start-page: 312 year: 2012 ident: 10.1016/j.phro.2020.09.002_b0250 article-title: Evaluation of treatment planning system of brachytherapy according to dose to the rectum delivered publication-title: Radiat Prot Dosim doi: 10.1093/rpd/ncr415 – volume: 40 year: 2013 ident: 10.1016/j.phro.2020.09.002_b0170 article-title: On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy publication-title: Med Phys doi: 10.1118/1.4803510 – ident: 10.1016/j.phro.2020.09.002_b0165 doi: 10.1118/1.1646040 – volume: 91 start-page: 243 year: 2009 ident: 10.1016/j.phro.2020.09.002_b0225 article-title: An in vivo investigative protocol for HDR prostate brachytherapy using urethral and rectal thermoluminescence dosimetry publication-title: Radiother Oncol doi: 10.1016/j.radonc.2008.08.016 – volume: 104 start-page: 790 year: 2019 ident: 10.1016/j.phro.2020.09.002_b0090 article-title: Dose escalation for prostate adenocarcinoma: a long-term update on the outcomes of a phase 3, single institution randomized clinical trial publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2019.02.045 – volume: 41 start-page: 5 year: 2017 ident: 10.1016/j.phro.2020.09.002_b0235 article-title: Clinical application of MOSkin dosimeters to rectal wall in vivo dosimetry in gynecological HDR brachytherapy publication-title: Phys Med doi: 10.1016/j.ejmp.2017.05.003 – volume: 59 start-page: 1831 year: 2014 ident: 10.1016/j.phro.2020.09.002_b0305 article-title: The contribution from transit dose for (192)Ir HDR brachytherapy treatments publication-title: Phys Med Biol doi: 10.1088/0031-9155/59/7/1831 – ident: 10.1016/j.phro.2020.09.002_b0390 – volume: 43 year: 2016 ident: 10.1016/j.phro.2020.09.002_b0195 article-title: MO-AB-BRA-03: development of novel real time in vivo EPID treatment verification for brachytherapy publication-title: Med Phys doi: 10.1118/1.4957155 – volume: 1 start-page: 1 year: 2017 ident: 10.1016/j.phro.2020.09.002_b0350 article-title: National audit of a system for rectal contact brachytherapy publication-title: Phys Imag Radiat Oncol doi: 10.1016/j.phro.2016.12.001 – volume: 127 start-page: 81 year: 2018 ident: 10.1016/j.phro.2020.09.002_b0040 article-title: Two decades of high dose rate brachytherapy with external beam radiotherapy for prostate cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2017.12.025 – volume: 102 start-page: 960 year: 2018 ident: 10.1016/j.phro.2020.09.002_b0360 article-title: Development and testing of a magnetic resonance (MR) conditional afterloader for source tracking in magnetic resonance imaging-guided high-dose-rate (HDR) brachytherapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2018.04.066 – volume: 97 start-page: 514 year: 2010 ident: 10.1016/j.phro.2020.09.002_b0335 article-title: Patterns of care for brachytherapy in Europe: updated results publication-title: Radiother Oncol doi: 10.1016/j.radonc.2010.09.009 – volume: 79 start-page: 609 year: 2011 ident: 10.1016/j.phro.2020.09.002_b0270 article-title: Clinical trials of a urethral dose measurement system in brachytherapy using scintillation detectors publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.03.030 – volume: 16 start-page: 815 year: 2017 ident: 10.1016/j.phro.2020.09.002_b0275 article-title: In vivo dosimetry with alanine/electron spin resonance dosimetry to evaluate the urethra dose during high-dose-rate brachytherapy publication-title: Brachytherapy doi: 10.1016/j.brachy.2017.04.003 – volume: 110 start-page: 199 year: 2014 ident: 10.1016/j.phro.2020.09.002_b0290 article-title: Review of clinical brachytherapy uncertainties: analysis guidelines of GEC-ESTRO and the AAPM publication-title: Radiother Oncol doi: 10.1016/j.radonc.2013.11.002 – volume: 17 start-page: 50 year: 2018 ident: 10.1016/j.phro.2020.09.002_b0105 article-title: Needle migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer evaluated by repeated MRI publication-title: Brachytherapy doi: 10.1016/j.brachy.2017.08.005 – volume: 71 start-page: 293 year: 2014 ident: 10.1016/j.phro.2020.09.002_b0175 article-title: Implementation of GaN based real-time source position monitoring in HDR brachytherapy publication-title: Radiat Meas doi: 10.1016/j.radmeas.2014.05.021 – volume: 79 start-page: 87 year: 2006 ident: 10.1016/j.phro.2020.09.002_b0285 article-title: Geometric stability of intracavitary pulsed dose rate brachytherapy monitored by in vivo rectal dosimetry publication-title: Radiother Oncol doi: 10.1016/j.radonc.2006.02.016 – volume: 42 start-page: 412 year: 2015 ident: 10.1016/j.phro.2020.09.002_b0310 article-title: HDR 192Ir source speed measurements using a high speed video camera publication-title: Med Phys doi: 10.1118/1.4903286 – volume: 43 start-page: 4209 year: 2016 ident: 10.1016/j.phro.2020.09.002_b0065 article-title: The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management publication-title: Med Phys doi: 10.1118/1.4947547 – volume: 35 issue: 1–51 year: 2005 ident: 10.1016/j.phro.2020.09.002_b0045 article-title: Prevention of high-dose-rate brachytherapy accidents. ICRP Publication 97 publication-title: Ann ICRP – volume: 18 start-page: 57 year: 2018 ident: 10.1016/j.phro.2020.09.002_b0010 article-title: Individualized 3D-printed templates for high-dose-rate interstitial multicathether brachytherapy in patients with breast cancer publication-title: Brachytherapy doi: 10.1016/j.brachy.2018.09.007 – volume: 77 start-page: 310 year: 2005 ident: 10.1016/j.phro.2020.09.002_b0255 article-title: In-vivo dosimetry for gynaecological brachytherapy: physical and clinical considerations publication-title: Radiother Oncol doi: 10.1016/j.radonc.2005.09.004 – volume: 62 start-page: 5440 year: 2017 ident: 10.1016/j.phro.2020.09.002_b0145 article-title: Online pretreatment verification of high-dose rate brachytherapy using an imaging panel publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa7028 – volume: 7 start-page: 280 year: 2015 ident: 10.1016/j.phro.2020.09.002_b0375 article-title: Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy publication-title: J Contemp Brachytherapy doi: 10.5114/jcb.2015.54062 – volume: 93 start-page: 253 year: 2009 ident: 10.1016/j.phro.2020.09.002_b0095 article-title: Justification for inter-fraction correction of catheter movement in fractionated high dose-rate brachytherapy treatment of prostate cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2009.09.015 – volume: 120 start-page: 333 year: 2016 ident: 10.1016/j.phro.2020.09.002_b0280 article-title: Real-time in vivo dosimetry in high dose rate prostate brachytherapy publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.05.008 – volume: 40 year: 2013 ident: 10.1016/j.phro.2020.09.002_b0140 article-title: Source position verification and dosimetry in HDR brachytherapy using an EPID publication-title: Med Phys doi: 10.1118/1.4823758 – ident: 10.1016/j.phro.2020.09.002_b0160 doi: 10.1118/1.597458 – volume: 114 start-page: 264 year: 2015 ident: 10.1016/j.phro.2020.09.002_b0345 article-title: A multicentre 'end to end' dosimetry audit for cervix HDR brachytherapy treatment publication-title: Radiother Oncol doi: 10.1016/j.radonc.2014.12.006 – volume: 39 start-page: 1925 year: 2012 ident: 10.1016/j.phro.2020.09.002_b0370 article-title: In vivo dosimetry for gynaecological brachytherapy using a novel position sensitive radiation detector: feasibility study publication-title: Med Phys doi: 10.1118/1.3693049 – volume: 617 start-page: 206 year: 2010 ident: 10.1016/j.phro.2020.09.002_b0415 article-title: Verification of high dose rate 192Ir source position during brachytherapy treatment publication-title: Nucl Instrum Methods Phys Res A doi: 10.1016/j.nima.2009.09.122 – volume: 110 start-page: 110 year: 2014 ident: 10.1016/j.phro.2020.09.002_b0075 article-title: Dosimetric predictors of biochemical control of prostate cancer in patients randomised to external beam radiotherapy with a boost of high dose rate brachytherapy publication-title: Radiother Oncol doi: 10.1016/j.radonc.2013.08.043 – volume: 89 start-page: 156 year: 2008 ident: 10.1016/j.phro.2020.09.002_b0080 article-title: Consequences of random and systematic reconstruction uncertainties in 3D image based brachytherapy in cervical cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2008.06.010 – volume: 9 start-page: 508 year: 2017 ident: 10.1016/j.phro.2020.09.002_b0325 article-title: Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation publication-title: J Contemp Brachytherapy doi: 10.5114/jcb.2017.72567 – volume: 42 start-page: 7098 year: 2015 ident: 10.1016/j.phro.2020.09.002_b0200 article-title: BrachyView, a novel in-body imaging system for HDR prostate brachytherapy: Experimental evaluation publication-title: Med Phys doi: 10.1118/1.4935866 – volume: 120 start-page: 428 year: 2016 ident: 10.1016/j.phro.2020.09.002_b0035 article-title: Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.03.011 – volume: 50 start-page: 319 year: 2005 ident: 10.1016/j.phro.2020.09.002_b0410 article-title: Real-time verification of HDR brachytherapy source location: implementation of detector redundancy publication-title: Phys Med Biol doi: 10.1088/0031-9155/50/2/010 – volume: 42 start-page: 1099 year: 2019 ident: 10.1016/j.phro.2020.09.002_b0430 article-title: In vivo dosimetry using MOSkin detector during Cobalt-60 high-dose-rate (HDR) brachytherapy of skin cancer publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-019-00809-7 – volume: 40 year: 2013 ident: 10.1016/j.phro.2020.09.002_b0245 article-title: In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters publication-title: Med Phys doi: 10.1118/1.4811143 – volume: 6510 year: 2007 ident: 10.1016/j.phro.2020.09.002_b0300 article-title: Imaging with Iridium photons: an application in brachytherapy publication-title: Med Imaging – volume: 26 start-page: 768 year: 1999 ident: 10.1016/j.phro.2020.09.002_b0260 article-title: In-vivo rectal dose measurements with diodes to avoid misadministrations during intracavitary high dose rate brachytherapy for carcinoma of the cervix publication-title: Med Phys doi: 10.1118/1.598598 – volume: 57 start-page: 1183 year: 2003 ident: 10.1016/j.phro.2020.09.002_b0215 article-title: In vivo thermoluminescence dosimetry dose verification of transperineal 192Ir high-dose-rate brachytherapy using CT-based planning for the treatment of prostate cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(03)00762-4 – volume: 44 start-page: 5961 year: 2017 ident: 10.1016/j.phro.2020.09.002_b0020 article-title: A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate (192) Ir brachytherapy publication-title: Med Phys doi: 10.1002/mp.12459 – volume: 63 year: 2018 ident: 10.1016/j.phro.2020.09.002_b0155 article-title: Automated source tracking with a pinhole imaging system during high-dose-rate brachytherapy treatment publication-title: Phys Med Biol doi: 10.1088/1361-6560/aacdc9 – volume: 40 year: 2013 ident: 10.1016/j.phro.2020.09.002_b0150 article-title: The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance publication-title: Med Phys doi: 10.1118/1.4822736 – volume: 17 start-page: 1023 year: 2018 ident: 10.1016/j.phro.2020.09.002_b0425 article-title: Real-time dose-rate monitoring with gynecologic brachytherapy: Results of an initial clinical trial publication-title: Brachytherapy doi: 10.1016/j.brachy.2018.07.014 – volume: 18 start-page: 95 year: 2019 ident: 10.1016/j.phro.2020.09.002_b0005 article-title: Clinical evaluation of an MRI-to-ultrasound deformable image registration algorithm for prostate brachytherapy publication-title: Brachytherapy doi: 10.1016/j.brachy.2018.08.006 – volume: 11 start-page: 146 year: 2007 ident: 10.1016/j.phro.2020.09.002_b0330 article-title: Brachytherapy in France in 2002: results of the ESTRO-PCBE questionnaire publication-title: Cancer Radiother doi: 10.1016/j.canrad.2006.12.003 – volume: 30 start-page: 178 year: 2007 ident: 10.1016/j.phro.2020.09.002_b0220 article-title: Thermoluminescence dosimetry for in-vivo verification of high dose rate brachytherapy for prostate cancer publication-title: Australas Phys Eng Sci Med doi: 10.1007/BF03178424 – volume: 80 start-page: 296 year: 2006 ident: 10.1016/j.phro.2020.09.002_b0240 article-title: Morash C and E C, Feasibility study of using MOSFET detectors for in vivo dosimetry during permanent low-dose-rate prostate implants publication-title: Radiother Oncol doi: 10.1016/j.radonc.2006.07.008 – volume: 118 start-page: 148 year: 2016 ident: 10.1016/j.phro.2020.09.002_b0125 article-title: In vivo rectal wall measurements during HDR prostate brachytherapy with MOSkin dosimeters integrated on a trans-rectal US probe: Comparison with planned and reconstructed doses publication-title: Radiother Oncol doi: 10.1016/j.radonc.2015.12.022 – volume: 41 year: 2014 ident: 10.1016/j.phro.2020.09.002_b0380 article-title: A system to use electromagnetic tracking for the quality assurance of brachytherapy catheter digitization publication-title: Med Phys – volume: 28 start-page: 165 year: 2016 ident: 10.1016/j.phro.2020.09.002_b0085 article-title: Prostate dose-painting radiotherapy and radiobiological guided optimisation enhances the therapeutic ratio publication-title: Clin Oncol (R Coll Radiol) doi: 10.1016/j.clon.2015.09.006 – volume: 61 start-page: 945 year: 2005 ident: 10.1016/j.phro.2020.09.002_b0265 article-title: In vivo dosimetry of high-dose-rate brachytherapy: study on 61 head-and-neck cancer patients using radiophotoluminescence glass dosimeter publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2004.10.031 – volume: 41 year: 2014 ident: 10.1016/j.phro.2020.09.002_b0295 article-title: Adaptive error detection for HDR/PDR brachytherapy: guidance for decision making during real-time in vivo point dosimetry publication-title: Med Phys doi: 10.1118/1.4870438 – volume: 44 start-page: 1 year: 2017 ident: 10.1016/j.phro.2020.09.002_b0205 article-title: In vivo dose verification method in catheter based high dose rate brachytherapy publication-title: Phys Med doi: 10.1016/j.ejmp.2017.11.003 – volume: 60 start-page: 412 year: 2019 ident: 10.1016/j.phro.2020.09.002_b0355 article-title: An easy and novel method for safer brachytherapy: real-time fluoroscopic verification of high-dose-rate 192Ir source position using a flat-panel detector publication-title: J Radiat Res doi: 10.1093/jrr/rrz013 – volume: 36 start-page: 5033 year: 2009 ident: 10.1016/j.phro.2020.09.002_b0120 article-title: Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy publication-title: Med Phys doi: 10.1118/1.3238102 – volume: 10 start-page: 232 year: 2018 ident: 10.1016/j.phro.2020.09.002_b0230 article-title: Quality assurance during interstitial brachytherapy: in vivo dosimetry using MOSFET dosimeters publication-title: J Contemp Brachytherapy doi: 10.5114/jcb.2018.76748 – volume: 60 start-page: 156 year: 2019 ident: 10.1016/j.phro.2020.09.002_b0135 article-title: Dwell time verification in brachytherapy based on time resolved in vivo dosimetry publication-title: Phys Med doi: 10.1016/j.ejmp.2019.03.031 – volume: 62 start-page: 8360 year: 2017 ident: 10.1016/j.phro.2020.09.002_b0190 article-title: A novel system for commissioning brachytherapy applicators: example of a ring applicator publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa8d0a – volume: 17 start-page: 111 year: 2018 ident: 10.1016/j.phro.2020.09.002_b0185 article-title: An integrated system for clinical treatment verification of HDR prostate brachytherapy combining source tracking with pretreatment imaging publication-title: Brachytherapy doi: 10.1016/j.brachy.2017.08.004 – volume: 69 start-page: 52 year: 2019 ident: 10.1016/j.phro.2020.09.002_b0435 article-title: Evaluation of rectal dose discrepancies between planned and in vivo dosimetry using MOSkin detector and PTW 9112 semiconductor probe during (60)Co HDR CT-based intracavitary cervix brachytherapy publication-title: Phys Med doi: 10.1016/j.ejmp.2019.11.025 – ident: 10.1016/j.phro.2020.09.002_b0050 – volume: 62 start-page: 8832 year: 2017 ident: 10.1016/j.phro.2020.09.002_b0340 article-title: A multicentre audit of HDR/PDR brachytherapy absolute dosimetry in association with the INTERLACE trial (NCT015662405) publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa91a9 |
| SSID | ssj0002793530 |
| Score | 2.4195201 |
| SecondaryResourceType | review_article |
| Snippet | Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome.... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Brachytherapy In vivo dosimetry Review Treatment verification |
| Title | In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2405631620300518 https://dx.doi.org/10.1016/j.phro.2020.09.002 https://www.ncbi.nlm.nih.gov/pubmed/33458336 https://www.proquest.com/docview/2478777762 https://pubmed.ncbi.nlm.nih.gov/PMC7807583 https://doaj.org/article/ec86ce32b47d4e9a8d637eaea0f529fa |
| Volume | 16 |
| WOSCitedRecordID | wos000645142500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2405-6316 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793530 issn: 2405-6316 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2405-6316 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793530 issn: 2405-6316 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogLojy30MpI3GhEEr-5QdUKJFohBNLeLDueaFOVLNrdbrUXfjt-ZdktUnshhxwSTyLPIzPOzHxG6I1x1vqwwhaEOyhoZUMRQC0LK5igpqwNgwiZ_0WcncnxWH3d2Oor1IQleODEuHfQSN4AqS0VjoIy0nEiwIApW1arNoZGpVAbi6nzmE5ThMWNRrzHYgUnFc8dM6m4yzMqdP7VZQQ5zf9UBq8Uwfu3nNO_wef1GsoNp3TyCD3M0ST-kGaxi-5A_xjdP8358ifo6nOPl91yit103v2ExWyFux77BXIzWaXOq9V7_A1CNXD8TTjHpnc44Yzg5O2CWmIf2eIMCzQ5xO5vodFhJBjaK_HQc_UU_Tg5_n70qchbLRSNN8BFwRgA5VTZChxvW9caBbyytKGqFUJx51pmKwne3BvBeIC0EX6lV5vKcqNqIM_QTj_t4QXCpZJe_tza0lnKCKi2lgYIVBacBAYjVA2s1k3GIQ_bYVzooeDsXAfx6CAeXSrtxTNCb9c0vxIKx42jPwYJrkcGBO14weuVznqlb9OrESKD_PXARf9Z9Q_qbnw1W1PlECYJ61a614OKaW_fIWljepheznUd0JP8wf2Y50nl1hMjJGS9CR8hsaWMWzPfvtN3k4ghLgIItSR7_4NVL9GDMJVU4vgK7Sxml7CP7jXLRTefHaC7YiwPonn68-nv4z-JdkPa |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+dosimetry+in+brachytherapy%3A+Requirements+and+future+directions+for+research%2C+development%2C+and+clinical+practice&rft.jtitle=Physics+and+imaging+in+radiation+oncology&rft.au=Fonseca%2C+Gabriel+P.&rft.au=Johansen%2C+Jacob+G.&rft.au=Smith%2C+Ryan+L.&rft.au=Beaulieu%2C+Luc&rft.date=2020-10-01&rft.pub=Elsevier&rft.eissn=2405-6316&rft.volume=16&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.phro.2020.09.002&rft_id=info%3Apmid%2F33458336&rft.externalDocID=PMC7807583 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-6316&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-6316&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-6316&client=summon |