In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice

Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verificati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physics and imaging in radiation oncology Ročník 16; s. 1 - 11
Hlavní autori: Fonseca, Gabriel P., Johansen, Jacob G., Smith, Ryan L., Beaulieu, Luc, Beddar, Sam, Kertzscher, Gustavo, Verhaegen, Frank, Tanderup, Kari
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.10.2020
Elsevier
Predmet:
ISSN:2405-6316, 2405-6316
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time–resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research.
AbstractList Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time–resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research.
Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time-resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research.Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time-resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research.
Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time-resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research.
Author Kertzscher, Gustavo
Verhaegen, Frank
Tanderup, Kari
Smith, Ryan L.
Beddar, Sam
Fonseca, Gabriel P.
Beaulieu, Luc
Johansen, Jacob G.
Author_xml – sequence: 1
  givenname: Gabriel P.
  surname: Fonseca
  fullname: Fonseca, Gabriel P.
  email: gabriel.paivafonseca@maastro.nl
  organization: Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, Doctor Tanslaan 12, 6229 ET Maastricht, the Netherlands
– sequence: 2
  givenname: Jacob G.
  surname: Johansen
  fullname: Johansen, Jacob G.
  organization: Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
– sequence: 3
  givenname: Ryan L.
  surname: Smith
  fullname: Smith, Ryan L.
  organization: Alfred Health Radiation Oncology, Alfred Health, 55 Commercial Rd, Melbourne, VIC 3004, Australia
– sequence: 4
  givenname: Luc
  surname: Beaulieu
  fullname: Beaulieu, Luc
  organization: Department of Physics, Engineering Physics & Optics and Cancer Research Center, Université Laval, Quebec City, QC, Canada
– sequence: 5
  givenname: Sam
  surname: Beddar
  fullname: Beddar, Sam
  organization: Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1420, Houston, TX 77030, United States
– sequence: 6
  givenname: Gustavo
  surname: Kertzscher
  fullname: Kertzscher, Gustavo
  organization: Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
– sequence: 7
  givenname: Frank
  surname: Verhaegen
  fullname: Verhaegen, Frank
  organization: Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, Doctor Tanslaan 12, 6229 ET Maastricht, the Netherlands
– sequence: 8
  givenname: Kari
  surname: Tanderup
  fullname: Tanderup, Kari
  organization: Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33458336$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uGyEUhVGVqkndvEAXFcsuYhcYhhmiKlIV9cdSpEpVu0YMXGLSMUxgxpXfvjiOqySLlA0IzncucM9rdBRiAITeUrKghIoPN4thleKCEUYWRC4IYS_QCeOknouKiqMH62N0mvMNKYpGVnVFXqHjquJ1W1XiBP1ZBrzxm4htzH4NY9piH3CXtFltxxUkPWzP8Q-4nXyCNYQxYx0sdtM4JcC2bJrRx5CxiwknyKCTWZ1hCxvo47ADzu4A0_vgje7xUJxHb-ANeul0n-H0fp6hX18-_7z8Nr_6_nV5-elqbkTVjvO6BuCCy46CFc5ZpyUI2nHDpWsaKax1dUdb4G1rmroIuWyopEzTTmjJoJqh5d7XRn2jhuTXOm1V1F7dbcR0rXQqF-pBgWmFgYp1vLEcpG6tqBrQoImrmXS6eF3svYapW4M15XVJ949MH58Ev1LXcaOaljS7_56h9_cGKd5OkEe19tlA3-sAccqK8aZtyhCsSN89rPWvyKFzRdDuBSbFnBM4Zfyod80opX2vKFG7nKjy6JITtcuJIlKVFBSUPUEP7s9CH_cQlG5tPCSVjYdgYB-C8p3-efz8CX6IxG_Y_g_-C4B_7eo
CitedBy_id crossref_primary_10_1016_j_diamond_2025_112764
crossref_primary_10_1016_j_brachy_2022_06_006
crossref_primary_10_1088_1361_6560_ac612d
crossref_primary_10_2478_pjmpe_2024_0036
crossref_primary_10_1088_1361_6560_ade21f
crossref_primary_10_1016_j_zemedi_2022_11_002
crossref_primary_10_1016_j_brachy_2022_07_011
crossref_primary_10_1002_mp_15658
crossref_primary_10_1002_acm2_14150
crossref_primary_10_1002_mp_16629
crossref_primary_10_1002_mp_14607
crossref_primary_10_1016_j_phro_2020_09_001
crossref_primary_10_1088_1742_6596_2630_1_012009
crossref_primary_10_1016_j_brachy_2023_05_003
crossref_primary_10_1109_TMECH_2023_3239750
crossref_primary_10_1016_j_brachy_2024_05_001
crossref_primary_10_1136_bmjopen_2022_070020
crossref_primary_10_1016_j_brachy_2025_03_003
crossref_primary_10_1088_1361_6560_abf605
crossref_primary_10_3390_radiation2040026
crossref_primary_10_1016_j_phro_2024_100638
crossref_primary_10_1002_mp_15257
crossref_primary_10_1088_1361_6560_ad580e
crossref_primary_10_1109_ACCESS_2021_3136255
crossref_primary_10_1002_mp_16745
crossref_primary_10_1016_j_ejmp_2021_12_008
crossref_primary_10_1016_j_brachy_2024_11_004
crossref_primary_10_1007_s12553_024_00905_z
crossref_primary_10_1016_j_tipsro_2024_100290
crossref_primary_10_1007_s41365_021_00965_0
crossref_primary_10_1016_j_clon_2023_01_001
crossref_primary_10_1088_1748_0221_19_04_P04003
crossref_primary_10_1016_j_ejmp_2024_103401
crossref_primary_10_1016_j_brachy_2024_11_012
crossref_primary_10_1002_mp_16971
crossref_primary_10_3390_jpm14030321
crossref_primary_10_3390_ph17081031
crossref_primary_10_1016_j_brachy_2023_10_004
crossref_primary_10_3390_biomedicines9111629
crossref_primary_10_1002_mp_16579
crossref_primary_10_1016_j_radonc_2022_01_006
crossref_primary_10_1016_j_brachy_2022_11_012
crossref_primary_10_1088_2058_8585_ac32aa
crossref_primary_10_1088_1361_6560_ac9a9b
crossref_primary_10_1002_acm2_13729
crossref_primary_10_1016_j_radphyschem_2022_110227
crossref_primary_10_1002_mp_16285
crossref_primary_10_1259_bjr_20220500
crossref_primary_10_1016_j_brachy_2021_08_003
crossref_primary_10_1002_mp_15674
crossref_primary_10_1016_j_radmeas_2023_106936
crossref_primary_10_1002_mp_17614
crossref_primary_10_1016_j_radmeas_2025_107469
crossref_primary_10_3390_encyclopedia5010040
crossref_primary_10_1002_mp_14812
crossref_primary_10_3390_s24020692
crossref_primary_10_1002_mp_14857
crossref_primary_10_3390_jpm12060911
crossref_primary_10_1016_j_apradiso_2024_111429
crossref_primary_10_1016_j_radonc_2021_12_047
crossref_primary_10_1007_s11547_024_01896_7
crossref_primary_10_1002_acm2_70072
crossref_primary_10_3390_cancers13040912
Cites_doi 10.1088/1361-6560/ab18bf
10.1088/0031-9155/49/1/004
10.1093/rpd/ncn235
10.1118/1.4961393
10.1118/1.1339882
10.1118/1.4810943
10.1259/bjr.20140163
10.1016/j.brachy.2019.05.001
10.1016/j.brachy.2019.06.005
10.1118/1.4747264
10.1016/j.radonc.2011.08.014
10.1088/1361-6560/aabb5a
10.1016/j.ijrobp.2016.06.015
10.1002/mp.13508
10.1016/j.brachy.2017.08.009
10.1016/j.brachy.2017.04.240
10.1118/1.1312811
10.1093/rpd/ncr415
10.1118/1.4803510
10.1118/1.1646040
10.1016/j.radonc.2008.08.016
10.1016/j.ijrobp.2019.02.045
10.1016/j.ejmp.2017.05.003
10.1088/0031-9155/59/7/1831
10.1118/1.4957155
10.1016/j.phro.2016.12.001
10.1016/j.radonc.2017.12.025
10.1016/j.ijrobp.2018.04.066
10.1016/j.radonc.2010.09.009
10.1016/j.ijrobp.2010.03.030
10.1016/j.brachy.2017.04.003
10.1016/j.radonc.2013.11.002
10.1016/j.brachy.2017.08.005
10.1016/j.radmeas.2014.05.021
10.1016/j.radonc.2006.02.016
10.1118/1.4903286
10.1118/1.4947547
10.1016/j.brachy.2018.09.007
10.1016/j.radonc.2005.09.004
10.1088/1361-6560/aa7028
10.5114/jcb.2015.54062
10.1016/j.radonc.2009.09.015
10.1016/j.radonc.2016.05.008
10.1118/1.4823758
10.1118/1.597458
10.1016/j.radonc.2014.12.006
10.1118/1.3693049
10.1016/j.nima.2009.09.122
10.1016/j.radonc.2013.08.043
10.1016/j.radonc.2008.06.010
10.5114/jcb.2017.72567
10.1118/1.4935866
10.1016/j.radonc.2016.03.011
10.1088/0031-9155/50/2/010
10.1007/s13246-019-00809-7
10.1118/1.4811143
10.1118/1.598598
10.1016/S0360-3016(03)00762-4
10.1002/mp.12459
10.1088/1361-6560/aacdc9
10.1118/1.4822736
10.1016/j.brachy.2018.07.014
10.1016/j.brachy.2018.08.006
10.1016/j.canrad.2006.12.003
10.1007/BF03178424
10.1016/j.radonc.2006.07.008
10.1016/j.radonc.2015.12.022
10.1016/j.clon.2015.09.006
10.1016/j.ijrobp.2004.10.031
10.1118/1.4870438
10.1016/j.ejmp.2017.11.003
10.1093/jrr/rrz013
10.1118/1.3238102
10.5114/jcb.2018.76748
10.1016/j.ejmp.2019.03.031
10.1088/1361-6560/aa8d0a
10.1016/j.brachy.2017.08.004
10.1016/j.ejmp.2019.11.025
10.1088/1361-6560/aa91a9
ContentType Journal Article
Copyright 2020 The Authors
2020 The Authors.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: 2020 The Authors.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.phro.2020.09.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-6316
EndPage 11
ExternalDocumentID oai_doaj_org_article_ec86ce32b47d4e9a8d637eaea0f529fa
PMC7807583
33458336
10_1016_j_phro_2020_09_002
S2405631620300518
Genre Journal Article
Review
GroupedDBID .1-
.FO
0R~
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AFTJW
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
O9-
OK1
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
NCXOZ
RIG
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c638t-55ee4649b1ed6ffdfa9e61b4c49f7796ddf5b18e488c756494971912a1b6a92e3
IEDL.DBID DOA
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645142500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-6316
IngestDate Fri Oct 03 12:44:46 EDT 2025
Tue Sep 30 16:59:07 EDT 2025
Thu Oct 02 11:47:54 EDT 2025
Thu Jan 02 22:57:26 EST 2025
Tue Nov 18 22:33:25 EST 2025
Thu Nov 13 04:28:10 EST 2025
Thu Jul 20 20:16:25 EDT 2023
Tue Aug 26 17:19:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Treatment verification
In vivo dosimetry
Brachytherapy
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c638t-55ee4649b1ed6ffdfa9e61b4c49f7796ddf5b18e488c756494971912a1b6a92e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Equally contributing authors.
Equally contributing senior authors.
OpenAccessLink https://doaj.org/article/ec86ce32b47d4e9a8d637eaea0f529fa
PMID 33458336
PQID 2478777762
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ec86ce32b47d4e9a8d637eaea0f529fa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7807583
proquest_miscellaneous_2478777762
pubmed_primary_33458336
crossref_citationtrail_10_1016_j_phro_2020_09_002
crossref_primary_10_1016_j_phro_2020_09_002
elsevier_sciencedirect_doi_10_1016_j_phro_2020_09_002
elsevier_clinicalkey_doi_10_1016_j_phro_2020_09_002
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Physics and imaging in radiation oncology
PublicationTitleAlternate Phys Imaging Radiat Oncol
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wang, Ribouton, Pittet, Guiral, Jalade, Lu (b0175) 2014; 71
Nose, Masui, Takenaka, Yamazaki, Nakata, Otani (b0355) 2019; 60
Carrara, Tenconi, Rossi, Borroni, Cerrotta, Grisotto (b0125) 2016; 118
Fonseca, Van den Bosch, Voncken, Podesta, Verhaegen (b0190) 2017; 62
Watanabe, Muraishi, Takei, Hara, Terazaki, Shuto (b0155) 2018; 63
Guedea, Venselaar, Hoskin, Hellebust, Peiffert, Londres (b0335) 2010; 97
Jaberi, Siavashpour, Aghamiri, Kirisits, Ghaderi (b0325) 2017; 9
Duan, Macey, Pareek, Brezovich (b0405) 2001; 28
Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF and Meigooni AS, Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys. 1995; 22:209-34. 10.1118/1.597458.
Simnor, Li, Lowe, Ostler, Bryant, Chapman (b0095) 2009; 93
Huq, Fraass, Dunscombe, Gibbons, Ibbott, Mundt (b0065) 2016; 43
Hoskin, Rojas, Ostler, Hughes, Bryant, Lowe (b0075) 2014; 110
Astrom, Grusell, Sandin, Turesson, Holmberg (b0040) 2018; 127
Das, Toye, Kron, Williams, Duchesne (b0220) 2007; 30
Wagner, Hermann, Hille (b0275) 2017; 16
Tho, Beaulieu (b0365) 2019; 46
Alecu, Alecu (b0260) 1999; 26
Sharma, Jursinic (b0245) 2013; 40
Johansen, Rylander, Buus, Bentzen, Hokland, Sondergaard (b0180) 2018; 17
Honderden vrouwen onjuist bestraald in Maastricht. 2014 [cited 2018 13/11/2018]; Available from
Ma, Vijande, Ballester, Tedgren, Granero, Haworth (b0020) 2017; 44
Palmer, Diez, Gandon, Wynn-Jones, Bownes, Lee (b0345) 2015; 114
Fonseca, Landry, Reniers, Hoffmann, Rubo, Antunes (b0305) 2014; 59
Smith, Hanlon, Panettieri, Millar, Matheson, Haworth (b0185) 2018; 17
Tanderup, Hellebust, Lang, Granfeldt, Potter, Lindegaard (b0080) 2008; 89
Boutaleb, Racine, Fillion, Bonillas, Hautvast, Binnekamp (b0375) 2015; 7
Radiation equipment may not have correctly targeted cervical cancer in 25 patients. 2019 04/06/2019]; Available from
Fonseca, Podesta, Reniers, Verhaegen (b0195) 2016; 43
Safavi-Naeini, Han, Alnaghy, Cutajar, Petasecca, Lerch (b0200) 2015; 42
.
Fonseca, Viana, Podesta, Rubo, de Sales, Reniers (b0310) 2015; 42
Therriault-Proulx, Beddar, Beaulieu (b0170) 2013; 40
Derreumaux, Etard, Huet, Trompier, Clairand, Bottollier-Depois (b0395) 2008; 131
Guiral, Ribouton, Jalade, Wang, Galvan, Lu (b0130) 2016; 43
ISO/IEC, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). 2008, JCGM.
Andersen, Nielsen, Lindegaard, Tanderup (b0120) 2009; 36
Waldhausl, Wambersie, Potter, Georg (b0255) 2005; 77
Damato, Viswanathan, Don, Hansen, Cormack (b0380) 2014; 41
The Patient Safety in Radiotherapy Steering Group and Public Health England. 14/12/2019]; Available from
Kallis, Kreppner, Lotter, Fietkau, Strnad, Bert (b0385) 2018; 63
Cygler, Saoudi, Perry (b0240) 2006; 80
Mason, Mamo, Al-Qaisieh, Henry, Bownes (b0280) 2016; 120
Nakano, Suchowerska, McKenzie, Bilek (b0410) 2005; 50
Belley, Craciunescu, Chang, Langloss, Stanton, Yoshizumi (b0425) 2018; 17
Sturdza, Potter, Fokdal, Haie-Meder, Tan, Mazeron (b0035) 2016; 120
Radiological Protection Act 1991 (Ionising Radiation) Regulations 2019.
Brezovich, Duan, Pareek, Fiveash, Ezekiel (b0210) 2000; 27
Papagiannis, Pantelis, Karaiskos (b0030) 2014; 87
Jamalludin, Jong, Malik, Rosenfeld, Ung (b0435) 2019; 69
Tanderup, Beddar, Andersen, Kertzscher, Cygler (b0060) 2013; 40
Melchert, Soror, Kovacs (b0230) 2018; 10
Beld, Seevinck, Schuurman, Viergever, Lagendijk, Moerland (b0360) 2018; 102
Peiffert, Mazeron, Guedea, Nisin (b0330) 2007; 11
Nose, Koizumi, Yoshida, Nishiyama, Sasaki, Ohnishi (b0265) 2005; 61
Diez, Aird, Sander, Gouldstone, Sharpe, Lee (b0340) 2017; 62
Shaaer, Davidson, Semple, Nicolae, Mendez, Chung (b0005) 2019; 18
Han, Safigholi, Soliman, Ravi, Leung, Scanderbeg (b0015) 2016; 96
Kirisits, Rivard, Baltas, Ballester, De Brabandere, van der Laarse (b0290) 2014; 110
Van Gellekom, Canters, Dankers, Loopstra, van der Steen-Banasik, Haverkort (b0420) 2018; 17
Jamalludin, Jong, Ho, Rosenfeld, Ung (b0430) 2019; 42
Verhaegen, Palefsky, Rempel, Poon (b0300) 2007; 6510
Johansen, Kertzscher, Jorgensen, Rylander, Bentzen, Hokland (b0135) 2019; 60
Pasalic, Kuban, Allen, Tang, Mesko, Grant (b0090) 2019; 104
Suchowerska, Jackson, Lambert, Yin, Hruby, McKenzie (b0270) 2011; 79
Allahverdi, Sarkhosh, Aghili, Jaberi, Adelnia, Geraily (b0250) 2012; 150
Carrara, Romanyukha, Tenconi, Mazzeo, Cerrotta, Borroni (b0235) 2017; 41
Buus, Lizondo, Hokland, Rylander, Pedersen, Tanderup (b0105) 2018; 17
Pantelis, Papagiannis, Anagnostopoulos, Baltas, Karaiskos, Sandilos (b0110) 2004; 49
Humbert-Vidan, Sander, Eaton, Clark (b0350) 2017; 1
Fonseca, Podesta, Bellezzo, Van den Bosch, Lutgens, Vanneste (b0145) 2017; 62
Toye, Das, Kron, Franich, Johnston, Duchesne (b0225) 2009; 91
Espinoza, Beeksma, Petasecca, Fuduli, Porumb, Cutajar (b0150) 2013; 40
Bati, Burger, Cindro, Kramberger (b0415) 2010; 617
Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, et al., Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004; 31:633-74. 10.1118/1.1646040.
Valentin (b0045) 2005; 35
Shen, Gonzalez, Klages, Qin, Jung, Chen (b0320) 2019; 64
Anagnostopoulos, Baltas, Geretschlaeger, Martin, Papagiannis, Tselis (b0215) 2003; 57
Reniers, Landry, Eichner, Hallil, Verhaegen (b0370) 2012; 39
Aristei, Lancellotta, Piergentini, Costantini, Saldi, Chierchini (b0010) 2018; 18
Jaselske, Adliene, Rudzianskas, Urbonavicius, Inciura (b0205) 2017; 44
Beaulieu, Carlsson Tedgren, Carrier, Davis, Mourtada, Rivard (b0025) 2012; 39
Bellezzo, Baeza, Voncken, Reniers, Verhaegen, Fonseca (b0315) 2019; 18
Smith, Taylor, McDermott, Haworth, Millar, Franich (b0140) 2013; 40
Kertzscher, Andersen, Tanderup (b0295) 2014; 41
Poder, Carrara, Howie, Cutajar, Bucci, Rosenfeld (b0100) 2019; 18
Tanderup, Christensen, Granfeldt, Lindegaard (b0285) 2006; 79
Schmid, Kirisits, Nesvacil, Dimopoulos, Berger, Pötter (b0070) 2011; 100
Uzan, Nahum, Syndikus (b0085) 2016; 28
Kertzscher (10.1016/j.phro.2020.09.002_b0295) 2014; 41
Van Gellekom (10.1016/j.phro.2020.09.002_b0420) 2018; 17
Mason (10.1016/j.phro.2020.09.002_b0280) 2016; 120
Pantelis (10.1016/j.phro.2020.09.002_b0110) 2004; 49
Therriault-Proulx (10.1016/j.phro.2020.09.002_b0170) 2013; 40
Fonseca (10.1016/j.phro.2020.09.002_b0195) 2016; 43
Ma (10.1016/j.phro.2020.09.002_b0020) 2017; 44
Smith (10.1016/j.phro.2020.09.002_b0185) 2018; 17
Carrara (10.1016/j.phro.2020.09.002_b0125) 2016; 118
Boutaleb (10.1016/j.phro.2020.09.002_b0375) 2015; 7
Valentin (10.1016/j.phro.2020.09.002_b0045) 2005; 35
Tanderup (10.1016/j.phro.2020.09.002_b0080) 2008; 89
Pasalic (10.1016/j.phro.2020.09.002_b0090) 2019; 104
Guiral (10.1016/j.phro.2020.09.002_b0130) 2016; 43
Bati (10.1016/j.phro.2020.09.002_b0415) 2010; 617
Toye (10.1016/j.phro.2020.09.002_b0225) 2009; 91
Tho (10.1016/j.phro.2020.09.002_b0365) 2019; 46
Sturdza (10.1016/j.phro.2020.09.002_b0035) 2016; 120
Diez (10.1016/j.phro.2020.09.002_b0340) 2017; 62
Humbert-Vidan (10.1016/j.phro.2020.09.002_b0350) 2017; 1
Smith (10.1016/j.phro.2020.09.002_b0140) 2013; 40
10.1016/j.phro.2020.09.002_b0390
Astrom (10.1016/j.phro.2020.09.002_b0040) 2018; 127
Reniers (10.1016/j.phro.2020.09.002_b0370) 2012; 39
Melchert (10.1016/j.phro.2020.09.002_b0230) 2018; 10
10.1016/j.phro.2020.09.002_b0115
Shen (10.1016/j.phro.2020.09.002_b0320) 2019; 64
Espinoza (10.1016/j.phro.2020.09.002_b0150) 2013; 40
Waldhausl (10.1016/j.phro.2020.09.002_b0255) 2005; 77
Derreumaux (10.1016/j.phro.2020.09.002_b0395) 2008; 131
Jaselske (10.1016/j.phro.2020.09.002_b0205) 2017; 44
Guedea (10.1016/j.phro.2020.09.002_b0335) 2010; 97
Huq (10.1016/j.phro.2020.09.002_b0065) 2016; 43
Hoskin (10.1016/j.phro.2020.09.002_b0075) 2014; 110
Brezovich (10.1016/j.phro.2020.09.002_b0210) 2000; 27
Tanderup (10.1016/j.phro.2020.09.002_b0060) 2013; 40
Carrara (10.1016/j.phro.2020.09.002_b0235) 2017; 41
Fonseca (10.1016/j.phro.2020.09.002_b0310) 2015; 42
Jamalludin (10.1016/j.phro.2020.09.002_b0435) 2019; 69
Belley (10.1016/j.phro.2020.09.002_b0425) 2018; 17
Jamalludin (10.1016/j.phro.2020.09.002_b0430) 2019; 42
Verhaegen (10.1016/j.phro.2020.09.002_b0300) 2007; 6510
Cygler (10.1016/j.phro.2020.09.002_b0240) 2006; 80
10.1016/j.phro.2020.09.002_b0160
Nakano (10.1016/j.phro.2020.09.002_b0410) 2005; 50
Suchowerska (10.1016/j.phro.2020.09.002_b0270) 2011; 79
10.1016/j.phro.2020.09.002_b0400
Wang (10.1016/j.phro.2020.09.002_b0175) 2014; 71
Shaaer (10.1016/j.phro.2020.09.002_b0005) 2019; 18
Beaulieu (10.1016/j.phro.2020.09.002_b0025) 2012; 39
10.1016/j.phro.2020.09.002_b0165
Nose (10.1016/j.phro.2020.09.002_b0355) 2019; 60
Peiffert (10.1016/j.phro.2020.09.002_b0330) 2007; 11
Uzan (10.1016/j.phro.2020.09.002_b0085) 2016; 28
Tanderup (10.1016/j.phro.2020.09.002_b0285) 2006; 79
Schmid (10.1016/j.phro.2020.09.002_b0070) 2011; 100
Jaberi (10.1016/j.phro.2020.09.002_b0325) 2017; 9
Palmer (10.1016/j.phro.2020.09.002_b0345) 2015; 114
Kallis (10.1016/j.phro.2020.09.002_b0385) 2018; 63
Aristei (10.1016/j.phro.2020.09.002_b0010) 2018; 18
Watanabe (10.1016/j.phro.2020.09.002_b0155) 2018; 63
Kirisits (10.1016/j.phro.2020.09.002_b0290) 2014; 110
Duan (10.1016/j.phro.2020.09.002_b0405) 2001; 28
Alecu (10.1016/j.phro.2020.09.002_b0260) 1999; 26
Han (10.1016/j.phro.2020.09.002_b0015) 2016; 96
Safavi-Naeini (10.1016/j.phro.2020.09.002_b0200) 2015; 42
Damato (10.1016/j.phro.2020.09.002_b0380) 2014; 41
Fonseca (10.1016/j.phro.2020.09.002_b0190) 2017; 62
Papagiannis (10.1016/j.phro.2020.09.002_b0030) 2014; 87
10.1016/j.phro.2020.09.002_b0050
Simnor (10.1016/j.phro.2020.09.002_b0095) 2009; 93
Johansen (10.1016/j.phro.2020.09.002_b0135) 2019; 60
Das (10.1016/j.phro.2020.09.002_b0220) 2007; 30
10.1016/j.phro.2020.09.002_b0055
Beld (10.1016/j.phro.2020.09.002_b0360) 2018; 102
Bellezzo (10.1016/j.phro.2020.09.002_b0315) 2019; 18
Johansen (10.1016/j.phro.2020.09.002_b0180) 2018; 17
Andersen (10.1016/j.phro.2020.09.002_b0120) 2009; 36
Nose (10.1016/j.phro.2020.09.002_b0265) 2005; 61
Allahverdi (10.1016/j.phro.2020.09.002_b0250) 2012; 150
Sharma (10.1016/j.phro.2020.09.002_b0245) 2013; 40
Buus (10.1016/j.phro.2020.09.002_b0105) 2018; 17
Wagner (10.1016/j.phro.2020.09.002_b0275) 2017; 16
Anagnostopoulos (10.1016/j.phro.2020.09.002_b0215) 2003; 57
Poder (10.1016/j.phro.2020.09.002_b0100) 2019; 18
Fonseca (10.1016/j.phro.2020.09.002_b0145) 2017; 62
Fonseca (10.1016/j.phro.2020.09.002_b0305) 2014; 59
References_xml – volume: 104
  start-page: 790
  year: 2019
  end-page: 797
  ident: b0090
  article-title: Dose escalation for prostate adenocarcinoma: a long-term update on the outcomes of a phase 3, single institution randomized clinical trial
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 62
  start-page: 8832
  year: 2017
  end-page: 8849
  ident: b0340
  article-title: A multicentre audit of HDR/PDR brachytherapy absolute dosimetry in association with the INTERLACE trial (NCT015662405)
  publication-title: Phys Med Biol
– volume: 41
  start-page: 5
  year: 2017
  end-page: 12
  ident: b0235
  article-title: Clinical application of MOSkin dosimeters to rectal wall in vivo dosimetry in gynecological HDR brachytherapy
  publication-title: Phys Med
– volume: 1
  start-page: 1
  year: 2017
  end-page: 5
  ident: b0350
  article-title: National audit of a system for rectal contact brachytherapy
  publication-title: Phys Imag Radiat Oncol
– volume: 28
  start-page: 167
  year: 2001
  end-page: 173
  ident: b0405
  article-title: Real-time monitoring and verification of in vivo high dose rate brachytherapy using a pinhole camera
  publication-title: Med Phys
– volume: 40
  year: 2013
  ident: b0170
  article-title: On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy
  publication-title: Med Phys
– volume: 11
  start-page: 146
  year: 2007
  end-page: 149
  ident: b0330
  article-title: Brachytherapy in France in 2002: results of the ESTRO-PCBE questionnaire
  publication-title: Cancer Radiother
– reference: The Patient Safety in Radiotherapy Steering Group and Public Health England. 14/12/2019]; Available from:
– volume: 127
  start-page: 81
  year: 2018
  end-page: 87
  ident: b0040
  article-title: Two decades of high dose rate brachytherapy with external beam radiotherapy for prostate cancer
  publication-title: Radiother Oncol
– volume: 57
  start-page: 1183
  year: 2003
  end-page: 1191
  ident: b0215
  article-title: In vivo thermoluminescence dosimetry dose verification of transperineal 192Ir high-dose-rate brachytherapy using CT-based planning for the treatment of prostate cancer
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 93
  start-page: 253
  year: 2009
  end-page: 258
  ident: b0095
  article-title: Justification for inter-fraction correction of catheter movement in fractionated high dose-rate brachytherapy treatment of prostate cancer
  publication-title: Radiother Oncol
– reference: Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, et al., Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004; 31:633-74. 10.1118/1.1646040.
– volume: 80
  start-page: 296
  year: 2006
  end-page: 301
  ident: b0240
  article-title: Morash C and E C, Feasibility study of using MOSFET detectors for in vivo dosimetry during permanent low-dose-rate prostate implants
  publication-title: Radiother Oncol
– volume: 43
  start-page: 5240
  year: 2016
  ident: b0130
  article-title: Design and testing of a phantom and instrumented gynecological applicator based on GaN dosimeter for use in high dose rate brachytherapy quality assurance
  publication-title: Med Phys
– volume: 39
  start-page: 1925
  year: 2012
  end-page: 1935
  ident: b0370
  article-title: In vivo dosimetry for gynaecological brachytherapy using a novel position sensitive radiation detector: feasibility study
  publication-title: Med Phys
– volume: 17
  start-page: 50
  year: 2018
  end-page: 58
  ident: b0105
  article-title: Needle migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer evaluated by repeated MRI
  publication-title: Brachytherapy
– volume: 30
  start-page: 178
  year: 2007
  end-page: 184
  ident: b0220
  article-title: Thermoluminescence dosimetry for in-vivo verification of high dose rate brachytherapy for prostate cancer
  publication-title: Australas Phys Eng Sci Med
– volume: 69
  start-page: 52
  year: 2019
  end-page: 60
  ident: b0435
  article-title: Evaluation of rectal dose discrepancies between planned and in vivo dosimetry using MOSkin detector and PTW 9112 semiconductor probe during (60)Co HDR CT-based intracavitary cervix brachytherapy
  publication-title: Phys Med
– reference: Radiation equipment may not have correctly targeted cervical cancer in 25 patients. 2019 04/06/2019]; Available from:
– volume: 40
  year: 2013
  ident: b0150
  article-title: The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance
  publication-title: Med Phys
– volume: 42
  start-page: 7098
  year: 2015
  end-page: 7107
  ident: b0200
  article-title: BrachyView, a novel in-body imaging system for HDR prostate brachytherapy: Experimental evaluation
  publication-title: Med Phys
– volume: 102
  start-page: 960
  year: 2018
  end-page: 968
  ident: b0360
  article-title: Development and testing of a magnetic resonance (MR) conditional afterloader for source tracking in magnetic resonance imaging-guided high-dose-rate (HDR) brachytherapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 17
  start-page: 122
  year: 2018
  end-page: 132
  ident: b0180
  article-title: Time-resolved in vivo dosimetry for source tracking in brachytherapy
  publication-title: Brachytherapy
– reference: Honderden vrouwen onjuist bestraald in Maastricht. 2014 [cited 2018 13/11/2018]; Available from:
– volume: 64
  year: 2019
  ident: b0320
  article-title: Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer
  publication-title: Phys Med Biol
– volume: 100
  start-page: 468
  year: 2011
  end-page: 472
  ident: b0070
  article-title: Local recurrences in cervical cancer patients in the setting of image-guided brachytherapy: A comparison of spatial dose distribution within a matched-pair analysis
  publication-title: Radiother Oncol
– volume: 63
  year: 2018
  ident: b0155
  article-title: Automated source tracking with a pinhole imaging system during high-dose-rate brachytherapy treatment
  publication-title: Phys Med Biol
– volume: 26
  start-page: 768
  year: 1999
  end-page: 770
  ident: b0260
  article-title: In-vivo rectal dose measurements with diodes to avoid misadministrations during intracavitary high dose rate brachytherapy for carcinoma of the cervix
  publication-title: Med Phys
– volume: 131
  start-page: 130
  year: 2008
  end-page: 135
  ident: b0395
  article-title: Lessons from recent accidents in radiation therapy in France
  publication-title: Radiat Prot Dosimetry
– reference: Radiological Protection Act 1991 (Ionising Radiation) Regulations 2019.
– reference: Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF and Meigooni AS, Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys. 1995; 22:209-34. 10.1118/1.597458.
– volume: 40
  year: 2013
  ident: b0245
  article-title: In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters
  publication-title: Med Phys
– volume: 63
  year: 2018
  ident: b0385
  article-title: Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy
  publication-title: Phys Med Biol
– reference: ISO/IEC, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). 2008, JCGM.
– volume: 43
  year: 2016
  ident: b0195
  article-title: MO-AB-BRA-03: development of novel real time in vivo EPID treatment verification for brachytherapy
  publication-title: Med Phys
– volume: 79
  start-page: 609
  year: 2011
  end-page: 615
  ident: b0270
  article-title: Clinical trials of a urethral dose measurement system in brachytherapy using scintillation detectors
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 41
  year: 2014
  ident: b0380
  article-title: A system to use electromagnetic tracking for the quality assurance of brachytherapy catheter digitization
  publication-title: Med Phys
– volume: 44
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0205
  article-title: In vivo dose verification method in catheter based high dose rate brachytherapy
  publication-title: Phys Med
– volume: 43
  start-page: 4209
  year: 2016
  ident: b0065
  article-title: The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management
  publication-title: Med Phys
– volume: 97
  start-page: 514
  year: 2010
  end-page: 520
  ident: b0335
  article-title: Patterns of care for brachytherapy in Europe: updated results
  publication-title: Radiother Oncol
– volume: 79
  start-page: 87
  year: 2006
  end-page: 93
  ident: b0285
  article-title: Geometric stability of intracavitary pulsed dose rate brachytherapy monitored by in vivo rectal dosimetry
  publication-title: Radiother Oncol
– volume: 17
  start-page: 146
  year: 2018
  end-page: 153
  ident: b0420
  article-title: In vivo dosimetry in gynecological applications-A feasibility study
  publication-title: Brachytherapy
– volume: 62
  start-page: 5440
  year: 2017
  end-page: 5461
  ident: b0145
  article-title: Online pretreatment verification of high-dose rate brachytherapy using an imaging panel
  publication-title: Phys Med Biol
– volume: 62
  start-page: 8360
  year: 2017
  end-page: 8375
  ident: b0190
  article-title: A novel system for commissioning brachytherapy applicators: example of a ring applicator
  publication-title: Phys Med Biol
– volume: 17
  start-page: 111
  year: 2018
  end-page: 121
  ident: b0185
  article-title: An integrated system for clinical treatment verification of HDR prostate brachytherapy combining source tracking with pretreatment imaging
  publication-title: Brachytherapy
– volume: 110
  start-page: 199
  year: 2014
  end-page: 212
  ident: b0290
  article-title: Review of clinical brachytherapy uncertainties: analysis guidelines of GEC-ESTRO and the AAPM
  publication-title: Radiother Oncol
– volume: 110
  start-page: 110
  year: 2014
  end-page: 113
  ident: b0075
  article-title: Dosimetric predictors of biochemical control of prostate cancer in patients randomised to external beam radiotherapy with a boost of high dose rate brachytherapy
  publication-title: Radiother Oncol
– volume: 96
  start-page: 440
  year: 2016
  end-page: 448
  ident: b0015
  article-title: Direction modulated brachytherapy for treatment of cervical cancer. II: Comparative planning study with intracavitary and intracavitary-interstitial techniques
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 120
  start-page: 428
  year: 2016
  end-page: 433
  ident: b0035
  article-title: Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study
  publication-title: Radiother Oncol
– volume: 46
  start-page: 2031
  year: 2019
  end-page: 2036
  ident: b0365
  article-title: Technical Note: Identification of an optimal electromagnetic sensor for in vivo electromagnetic-tracked scintillation dosimeter for HDR brachytherapy
  publication-title: Med Phys
– volume: 49
  start-page: 55
  year: 2004
  end-page: 67
  ident: b0110
  article-title: Evaluation of a TG-43 compliant analytical dosimetry model in clinical 192Ir HDR brachytherapy treatment planning and assessment of the significance of source position and catheter reconstruction uncertainties
  publication-title: Phys Med Biol
– volume: 42
  start-page: 1099
  year: 2019
  end-page: 1107
  ident: b0430
  article-title: In vivo dosimetry using MOSkin detector during Cobalt-60 high-dose-rate (HDR) brachytherapy of skin cancer
  publication-title: Australas Phys Eng Sci Med
– volume: 18
  start-page: 57
  year: 2018
  end-page: 62
  ident: b0010
  article-title: Individualized 3D-printed templates for high-dose-rate interstitial multicathether brachytherapy in patients with breast cancer
  publication-title: Brachytherapy
– volume: 60
  start-page: 156
  year: 2019
  end-page: 161
  ident: b0135
  article-title: Dwell time verification in brachytherapy based on time resolved in vivo dosimetry
  publication-title: Phys Med
– volume: 7
  start-page: 280
  year: 2015
  end-page: 289
  ident: b0375
  article-title: Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy
  publication-title: J Contemp Brachytherapy
– volume: 9
  start-page: 508
  year: 2017
  end-page: 518
  ident: b0325
  article-title: Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation
  publication-title: J Contemp Brachytherapy
– volume: 39
  start-page: 6208
  year: 2012
  end-page: 6236
  ident: b0025
  article-title: Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation
  publication-title: Med Phys
– volume: 36
  start-page: 5033
  year: 2009
  end-page: 5043
  ident: b0120
  article-title: Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy
  publication-title: Med Phys
– volume: 118
  start-page: 148
  year: 2016
  end-page: 153
  ident: b0125
  article-title: In vivo rectal wall measurements during HDR prostate brachytherapy with MOSkin dosimeters integrated on a trans-rectal US probe: Comparison with planned and reconstructed doses
  publication-title: Radiother Oncol
– volume: 18
  start-page: 95
  year: 2019
  end-page: 102
  ident: b0005
  article-title: Clinical evaluation of an MRI-to-ultrasound deformable image registration algorithm for prostate brachytherapy
  publication-title: Brachytherapy
– volume: 150
  start-page: 312
  year: 2012
  end-page: 315
  ident: b0250
  article-title: Evaluation of treatment planning system of brachytherapy according to dose to the rectum delivered
  publication-title: Radiat Prot Dosim
– volume: 42
  start-page: 412
  year: 2015
  end-page: 415
  ident: b0310
  article-title: HDR 192Ir source speed measurements using a high speed video camera
  publication-title: Med Phys
– volume: 114
  start-page: 264
  year: 2015
  end-page: 271
  ident: b0345
  article-title: A multicentre 'end to end' dosimetry audit for cervix HDR brachytherapy treatment
  publication-title: Radiother Oncol
– volume: 6510
  year: 2007
  ident: b0300
  article-title: Imaging with Iridium photons: an application in brachytherapy
  publication-title: Med Imaging
– volume: 35
  year: 2005
  ident: b0045
  article-title: Prevention of high-dose-rate brachytherapy accidents. ICRP Publication 97
  publication-title: Ann ICRP
– volume: 61
  start-page: 945
  year: 2005
  end-page: 953
  ident: b0265
  article-title: In vivo dosimetry of high-dose-rate brachytherapy: study on 61 head-and-neck cancer patients using radiophotoluminescence glass dosimeter
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 44
  start-page: 5961
  year: 2017
  end-page: 5976
  ident: b0020
  article-title: A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate (192) Ir brachytherapy
  publication-title: Med Phys
– volume: 18
  start-page: 711
  year: 2019
  end-page: 719
  ident: b0100
  article-title: Derivation of in vivo source tracking error thresholds for TRUS-based HDR prostate brachytherapy through simulation of source positioning errors
  publication-title: Brachytherapy
– volume: 40
  year: 2013
  ident: b0060
  article-title: In vivo dosimetry in brachytherapy
  publication-title: Med Phys
– volume: 16
  start-page: 815
  year: 2017
  end-page: 821
  ident: b0275
  article-title: In vivo dosimetry with alanine/electron spin resonance dosimetry to evaluate the urethra dose during high-dose-rate brachytherapy
  publication-title: Brachytherapy
– volume: 91
  start-page: 243
  year: 2009
  end-page: 248
  ident: b0225
  article-title: An in vivo investigative protocol for HDR prostate brachytherapy using urethral and rectal thermoluminescence dosimetry
  publication-title: Radiother Oncol
– volume: 60
  start-page: 412
  year: 2019
  end-page: 415
  ident: b0355
  article-title: An easy and novel method for safer brachytherapy: real-time fluoroscopic verification of high-dose-rate 192Ir source position using a flat-panel detector
  publication-title: J Radiat Res
– volume: 50
  start-page: 319
  year: 2005
  end-page: 327
  ident: b0410
  article-title: Real-time verification of HDR brachytherapy source location: implementation of detector redundancy
  publication-title: Phys Med Biol
– volume: 28
  start-page: 165
  year: 2016
  end-page: 170
  ident: b0085
  article-title: Prostate dose-painting radiotherapy and radiobiological guided optimisation enhances the therapeutic ratio
  publication-title: Clin Oncol (R Coll Radiol)
– volume: 71
  start-page: 293
  year: 2014
  end-page: 296
  ident: b0175
  article-title: Implementation of GaN based real-time source position monitoring in HDR brachytherapy
  publication-title: Radiat Meas
– volume: 17
  start-page: 1023
  year: 2018
  end-page: 1029
  ident: b0425
  article-title: Real-time dose-rate monitoring with gynecologic brachytherapy: Results of an initial clinical trial
  publication-title: Brachytherapy
– reference: .
– volume: 59
  start-page: 1831
  year: 2014
  end-page: 1844
  ident: b0305
  article-title: The contribution from transit dose for (192)Ir HDR brachytherapy treatments
  publication-title: Phys Med Biol
– volume: 87
  start-page: 20140163
  year: 2014
  ident: b0030
  article-title: Current state of the art brachytherapy treatment planning dosimetry algorithms
  publication-title: Br J Radiol
– volume: 27
  start-page: 2297
  year: 2000
  end-page: 2301
  ident: b0210
  article-title: In vivo urethral dose measurements: a method to verify high dose rate prostate treatments
  publication-title: Med Phys
– volume: 41
  year: 2014
  ident: b0295
  article-title: Adaptive error detection for HDR/PDR brachytherapy: guidance for decision making during real-time in vivo point dosimetry
  publication-title: Med Phys
– volume: 120
  start-page: 333
  year: 2016
  end-page: 338
  ident: b0280
  article-title: Real-time in vivo dosimetry in high dose rate prostate brachytherapy
  publication-title: Radiother Oncol
– volume: 617
  start-page: 206
  year: 2010
  end-page: 208
  ident: b0415
  article-title: Verification of high dose rate 192Ir source position during brachytherapy treatment
  publication-title: Nucl Instrum Methods Phys Res A
– volume: 18
  start-page: 852
  year: 2019
  end-page: 862
  ident: b0315
  article-title: Mechanical evaluation of the Bravos afterloader system for HDR brachytherapy
  publication-title: Brachytherapy
– volume: 89
  start-page: 156
  year: 2008
  end-page: 163
  ident: b0080
  article-title: Consequences of random and systematic reconstruction uncertainties in 3D image based brachytherapy in cervical cancer
  publication-title: Radiother Oncol
– volume: 10
  start-page: 232
  year: 2018
  end-page: 237
  ident: b0230
  article-title: Quality assurance during interstitial brachytherapy: in vivo dosimetry using MOSFET dosimeters
  publication-title: J Contemp Brachytherapy
– volume: 40
  year: 2013
  ident: b0140
  article-title: Source position verification and dosimetry in HDR brachytherapy using an EPID
  publication-title: Med Phys
– volume: 77
  start-page: 310
  year: 2005
  end-page: 317
  ident: b0255
  article-title: In-vivo dosimetry for gynaecological brachytherapy: physical and clinical considerations
  publication-title: Radiother Oncol
– volume: 64
  year: 2019
  ident: 10.1016/j.phro.2020.09.002_b0320
  article-title: Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab18bf
– volume: 49
  start-page: 55
  year: 2004
  ident: 10.1016/j.phro.2020.09.002_b0110
  article-title: Evaluation of a TG-43 compliant analytical dosimetry model in clinical 192Ir HDR brachytherapy treatment planning and assessment of the significance of source position and catheter reconstruction uncertainties
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/49/1/004
– volume: 131
  start-page: 130
  year: 2008
  ident: 10.1016/j.phro.2020.09.002_b0395
  article-title: Lessons from recent accidents in radiation therapy in France
  publication-title: Radiat Prot Dosimetry
  doi: 10.1093/rpd/ncn235
– volume: 43
  start-page: 5240
  year: 2016
  ident: 10.1016/j.phro.2020.09.002_b0130
  article-title: Design and testing of a phantom and instrumented gynecological applicator based on GaN dosimeter for use in high dose rate brachytherapy quality assurance
  publication-title: Med Phys
  doi: 10.1118/1.4961393
– ident: 10.1016/j.phro.2020.09.002_b0400
– volume: 28
  start-page: 167
  year: 2001
  ident: 10.1016/j.phro.2020.09.002_b0405
  article-title: Real-time monitoring and verification of in vivo high dose rate brachytherapy using a pinhole camera
  publication-title: Med Phys
  doi: 10.1118/1.1339882
– volume: 40
  year: 2013
  ident: 10.1016/j.phro.2020.09.002_b0060
  article-title: In vivo dosimetry in brachytherapy
  publication-title: Med Phys
  doi: 10.1118/1.4810943
– volume: 87
  start-page: 20140163
  year: 2014
  ident: 10.1016/j.phro.2020.09.002_b0030
  article-title: Current state of the art brachytherapy treatment planning dosimetry algorithms
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20140163
– volume: 18
  start-page: 711
  year: 2019
  ident: 10.1016/j.phro.2020.09.002_b0100
  article-title: Derivation of in vivo source tracking error thresholds for TRUS-based HDR prostate brachytherapy through simulation of source positioning errors
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2019.05.001
– volume: 18
  start-page: 852
  year: 2019
  ident: 10.1016/j.phro.2020.09.002_b0315
  article-title: Mechanical evaluation of the Bravos afterloader system for HDR brachytherapy
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2019.06.005
– ident: 10.1016/j.phro.2020.09.002_b0115
– volume: 39
  start-page: 6208
  year: 2012
  ident: 10.1016/j.phro.2020.09.002_b0025
  article-title: Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation
  publication-title: Med Phys
  doi: 10.1118/1.4747264
– volume: 100
  start-page: 468
  year: 2011
  ident: 10.1016/j.phro.2020.09.002_b0070
  article-title: Local recurrences in cervical cancer patients in the setting of image-guided brachytherapy: A comparison of spatial dose distribution within a matched-pair analysis
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2011.08.014
– volume: 63
  year: 2018
  ident: 10.1016/j.phro.2020.09.002_b0385
  article-title: Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aabb5a
– volume: 96
  start-page: 440
  year: 2016
  ident: 10.1016/j.phro.2020.09.002_b0015
  article-title: Direction modulated brachytherapy for treatment of cervical cancer. II: Comparative planning study with intracavitary and intracavitary-interstitial techniques
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2016.06.015
– volume: 46
  start-page: 2031
  year: 2019
  ident: 10.1016/j.phro.2020.09.002_b0365
  article-title: Technical Note: Identification of an optimal electromagnetic sensor for in vivo electromagnetic-tracked scintillation dosimeter for HDR brachytherapy
  publication-title: Med Phys
  doi: 10.1002/mp.13508
– volume: 17
  start-page: 122
  year: 2018
  ident: 10.1016/j.phro.2020.09.002_b0180
  article-title: Time-resolved in vivo dosimetry for source tracking in brachytherapy
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2017.08.009
– ident: 10.1016/j.phro.2020.09.002_b0055
– volume: 17
  start-page: 146
  year: 2018
  ident: 10.1016/j.phro.2020.09.002_b0420
  article-title: In vivo dosimetry in gynecological applications-A feasibility study
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2017.04.240
– volume: 27
  start-page: 2297
  year: 2000
  ident: 10.1016/j.phro.2020.09.002_b0210
  article-title: In vivo urethral dose measurements: a method to verify high dose rate prostate treatments
  publication-title: Med Phys
  doi: 10.1118/1.1312811
– volume: 150
  start-page: 312
  year: 2012
  ident: 10.1016/j.phro.2020.09.002_b0250
  article-title: Evaluation of treatment planning system of brachytherapy according to dose to the rectum delivered
  publication-title: Radiat Prot Dosim
  doi: 10.1093/rpd/ncr415
– volume: 40
  year: 2013
  ident: 10.1016/j.phro.2020.09.002_b0170
  article-title: On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy
  publication-title: Med Phys
  doi: 10.1118/1.4803510
– ident: 10.1016/j.phro.2020.09.002_b0165
  doi: 10.1118/1.1646040
– volume: 91
  start-page: 243
  year: 2009
  ident: 10.1016/j.phro.2020.09.002_b0225
  article-title: An in vivo investigative protocol for HDR prostate brachytherapy using urethral and rectal thermoluminescence dosimetry
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2008.08.016
– volume: 104
  start-page: 790
  year: 2019
  ident: 10.1016/j.phro.2020.09.002_b0090
  article-title: Dose escalation for prostate adenocarcinoma: a long-term update on the outcomes of a phase 3, single institution randomized clinical trial
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2019.02.045
– volume: 41
  start-page: 5
  year: 2017
  ident: 10.1016/j.phro.2020.09.002_b0235
  article-title: Clinical application of MOSkin dosimeters to rectal wall in vivo dosimetry in gynecological HDR brachytherapy
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2017.05.003
– volume: 59
  start-page: 1831
  year: 2014
  ident: 10.1016/j.phro.2020.09.002_b0305
  article-title: The contribution from transit dose for (192)Ir HDR brachytherapy treatments
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/59/7/1831
– ident: 10.1016/j.phro.2020.09.002_b0390
– volume: 43
  year: 2016
  ident: 10.1016/j.phro.2020.09.002_b0195
  article-title: MO-AB-BRA-03: development of novel real time in vivo EPID treatment verification for brachytherapy
  publication-title: Med Phys
  doi: 10.1118/1.4957155
– volume: 1
  start-page: 1
  year: 2017
  ident: 10.1016/j.phro.2020.09.002_b0350
  article-title: National audit of a system for rectal contact brachytherapy
  publication-title: Phys Imag Radiat Oncol
  doi: 10.1016/j.phro.2016.12.001
– volume: 127
  start-page: 81
  year: 2018
  ident: 10.1016/j.phro.2020.09.002_b0040
  article-title: Two decades of high dose rate brachytherapy with external beam radiotherapy for prostate cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2017.12.025
– volume: 102
  start-page: 960
  year: 2018
  ident: 10.1016/j.phro.2020.09.002_b0360
  article-title: Development and testing of a magnetic resonance (MR) conditional afterloader for source tracking in magnetic resonance imaging-guided high-dose-rate (HDR) brachytherapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2018.04.066
– volume: 97
  start-page: 514
  year: 2010
  ident: 10.1016/j.phro.2020.09.002_b0335
  article-title: Patterns of care for brachytherapy in Europe: updated results
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2010.09.009
– volume: 79
  start-page: 609
  year: 2011
  ident: 10.1016/j.phro.2020.09.002_b0270
  article-title: Clinical trials of a urethral dose measurement system in brachytherapy using scintillation detectors
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.03.030
– volume: 16
  start-page: 815
  year: 2017
  ident: 10.1016/j.phro.2020.09.002_b0275
  article-title: In vivo dosimetry with alanine/electron spin resonance dosimetry to evaluate the urethra dose during high-dose-rate brachytherapy
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2017.04.003
– volume: 110
  start-page: 199
  year: 2014
  ident: 10.1016/j.phro.2020.09.002_b0290
  article-title: Review of clinical brachytherapy uncertainties: analysis guidelines of GEC-ESTRO and the AAPM
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2013.11.002
– volume: 17
  start-page: 50
  year: 2018
  ident: 10.1016/j.phro.2020.09.002_b0105
  article-title: Needle migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer evaluated by repeated MRI
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2017.08.005
– volume: 71
  start-page: 293
  year: 2014
  ident: 10.1016/j.phro.2020.09.002_b0175
  article-title: Implementation of GaN based real-time source position monitoring in HDR brachytherapy
  publication-title: Radiat Meas
  doi: 10.1016/j.radmeas.2014.05.021
– volume: 79
  start-page: 87
  year: 2006
  ident: 10.1016/j.phro.2020.09.002_b0285
  article-title: Geometric stability of intracavitary pulsed dose rate brachytherapy monitored by in vivo rectal dosimetry
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2006.02.016
– volume: 42
  start-page: 412
  year: 2015
  ident: 10.1016/j.phro.2020.09.002_b0310
  article-title: HDR 192Ir source speed measurements using a high speed video camera
  publication-title: Med Phys
  doi: 10.1118/1.4903286
– volume: 43
  start-page: 4209
  year: 2016
  ident: 10.1016/j.phro.2020.09.002_b0065
  article-title: The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management
  publication-title: Med Phys
  doi: 10.1118/1.4947547
– volume: 35
  issue: 1–51
  year: 2005
  ident: 10.1016/j.phro.2020.09.002_b0045
  article-title: Prevention of high-dose-rate brachytherapy accidents. ICRP Publication 97
  publication-title: Ann ICRP
– volume: 18
  start-page: 57
  year: 2018
  ident: 10.1016/j.phro.2020.09.002_b0010
  article-title: Individualized 3D-printed templates for high-dose-rate interstitial multicathether brachytherapy in patients with breast cancer
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2018.09.007
– volume: 77
  start-page: 310
  year: 2005
  ident: 10.1016/j.phro.2020.09.002_b0255
  article-title: In-vivo dosimetry for gynaecological brachytherapy: physical and clinical considerations
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2005.09.004
– volume: 62
  start-page: 5440
  year: 2017
  ident: 10.1016/j.phro.2020.09.002_b0145
  article-title: Online pretreatment verification of high-dose rate brachytherapy using an imaging panel
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa7028
– volume: 7
  start-page: 280
  year: 2015
  ident: 10.1016/j.phro.2020.09.002_b0375
  article-title: Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy
  publication-title: J Contemp Brachytherapy
  doi: 10.5114/jcb.2015.54062
– volume: 93
  start-page: 253
  year: 2009
  ident: 10.1016/j.phro.2020.09.002_b0095
  article-title: Justification for inter-fraction correction of catheter movement in fractionated high dose-rate brachytherapy treatment of prostate cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2009.09.015
– volume: 120
  start-page: 333
  year: 2016
  ident: 10.1016/j.phro.2020.09.002_b0280
  article-title: Real-time in vivo dosimetry in high dose rate prostate brachytherapy
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.05.008
– volume: 40
  year: 2013
  ident: 10.1016/j.phro.2020.09.002_b0140
  article-title: Source position verification and dosimetry in HDR brachytherapy using an EPID
  publication-title: Med Phys
  doi: 10.1118/1.4823758
– ident: 10.1016/j.phro.2020.09.002_b0160
  doi: 10.1118/1.597458
– volume: 114
  start-page: 264
  year: 2015
  ident: 10.1016/j.phro.2020.09.002_b0345
  article-title: A multicentre 'end to end' dosimetry audit for cervix HDR brachytherapy treatment
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2014.12.006
– volume: 39
  start-page: 1925
  year: 2012
  ident: 10.1016/j.phro.2020.09.002_b0370
  article-title: In vivo dosimetry for gynaecological brachytherapy using a novel position sensitive radiation detector: feasibility study
  publication-title: Med Phys
  doi: 10.1118/1.3693049
– volume: 617
  start-page: 206
  year: 2010
  ident: 10.1016/j.phro.2020.09.002_b0415
  article-title: Verification of high dose rate 192Ir source position during brachytherapy treatment
  publication-title: Nucl Instrum Methods Phys Res A
  doi: 10.1016/j.nima.2009.09.122
– volume: 110
  start-page: 110
  year: 2014
  ident: 10.1016/j.phro.2020.09.002_b0075
  article-title: Dosimetric predictors of biochemical control of prostate cancer in patients randomised to external beam radiotherapy with a boost of high dose rate brachytherapy
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2013.08.043
– volume: 89
  start-page: 156
  year: 2008
  ident: 10.1016/j.phro.2020.09.002_b0080
  article-title: Consequences of random and systematic reconstruction uncertainties in 3D image based brachytherapy in cervical cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2008.06.010
– volume: 9
  start-page: 508
  year: 2017
  ident: 10.1016/j.phro.2020.09.002_b0325
  article-title: Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation
  publication-title: J Contemp Brachytherapy
  doi: 10.5114/jcb.2017.72567
– volume: 42
  start-page: 7098
  year: 2015
  ident: 10.1016/j.phro.2020.09.002_b0200
  article-title: BrachyView, a novel in-body imaging system for HDR prostate brachytherapy: Experimental evaluation
  publication-title: Med Phys
  doi: 10.1118/1.4935866
– volume: 120
  start-page: 428
  year: 2016
  ident: 10.1016/j.phro.2020.09.002_b0035
  article-title: Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.03.011
– volume: 50
  start-page: 319
  year: 2005
  ident: 10.1016/j.phro.2020.09.002_b0410
  article-title: Real-time verification of HDR brachytherapy source location: implementation of detector redundancy
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/50/2/010
– volume: 42
  start-page: 1099
  year: 2019
  ident: 10.1016/j.phro.2020.09.002_b0430
  article-title: In vivo dosimetry using MOSkin detector during Cobalt-60 high-dose-rate (HDR) brachytherapy of skin cancer
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-019-00809-7
– volume: 40
  year: 2013
  ident: 10.1016/j.phro.2020.09.002_b0245
  article-title: In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters
  publication-title: Med Phys
  doi: 10.1118/1.4811143
– volume: 6510
  year: 2007
  ident: 10.1016/j.phro.2020.09.002_b0300
  article-title: Imaging with Iridium photons: an application in brachytherapy
  publication-title: Med Imaging
– volume: 26
  start-page: 768
  year: 1999
  ident: 10.1016/j.phro.2020.09.002_b0260
  article-title: In-vivo rectal dose measurements with diodes to avoid misadministrations during intracavitary high dose rate brachytherapy for carcinoma of the cervix
  publication-title: Med Phys
  doi: 10.1118/1.598598
– volume: 57
  start-page: 1183
  year: 2003
  ident: 10.1016/j.phro.2020.09.002_b0215
  article-title: In vivo thermoluminescence dosimetry dose verification of transperineal 192Ir high-dose-rate brachytherapy using CT-based planning for the treatment of prostate cancer
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(03)00762-4
– volume: 44
  start-page: 5961
  year: 2017
  ident: 10.1016/j.phro.2020.09.002_b0020
  article-title: A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate (192) Ir brachytherapy
  publication-title: Med Phys
  doi: 10.1002/mp.12459
– volume: 63
  year: 2018
  ident: 10.1016/j.phro.2020.09.002_b0155
  article-title: Automated source tracking with a pinhole imaging system during high-dose-rate brachytherapy treatment
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aacdc9
– volume: 40
  year: 2013
  ident: 10.1016/j.phro.2020.09.002_b0150
  article-title: The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance
  publication-title: Med Phys
  doi: 10.1118/1.4822736
– volume: 17
  start-page: 1023
  year: 2018
  ident: 10.1016/j.phro.2020.09.002_b0425
  article-title: Real-time dose-rate monitoring with gynecologic brachytherapy: Results of an initial clinical trial
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2018.07.014
– volume: 18
  start-page: 95
  year: 2019
  ident: 10.1016/j.phro.2020.09.002_b0005
  article-title: Clinical evaluation of an MRI-to-ultrasound deformable image registration algorithm for prostate brachytherapy
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2018.08.006
– volume: 11
  start-page: 146
  year: 2007
  ident: 10.1016/j.phro.2020.09.002_b0330
  article-title: Brachytherapy in France in 2002: results of the ESTRO-PCBE questionnaire
  publication-title: Cancer Radiother
  doi: 10.1016/j.canrad.2006.12.003
– volume: 30
  start-page: 178
  year: 2007
  ident: 10.1016/j.phro.2020.09.002_b0220
  article-title: Thermoluminescence dosimetry for in-vivo verification of high dose rate brachytherapy for prostate cancer
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/BF03178424
– volume: 80
  start-page: 296
  year: 2006
  ident: 10.1016/j.phro.2020.09.002_b0240
  article-title: Morash C and E C, Feasibility study of using MOSFET detectors for in vivo dosimetry during permanent low-dose-rate prostate implants
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2006.07.008
– volume: 118
  start-page: 148
  year: 2016
  ident: 10.1016/j.phro.2020.09.002_b0125
  article-title: In vivo rectal wall measurements during HDR prostate brachytherapy with MOSkin dosimeters integrated on a trans-rectal US probe: Comparison with planned and reconstructed doses
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2015.12.022
– volume: 41
  year: 2014
  ident: 10.1016/j.phro.2020.09.002_b0380
  article-title: A system to use electromagnetic tracking for the quality assurance of brachytherapy catheter digitization
  publication-title: Med Phys
– volume: 28
  start-page: 165
  year: 2016
  ident: 10.1016/j.phro.2020.09.002_b0085
  article-title: Prostate dose-painting radiotherapy and radiobiological guided optimisation enhances the therapeutic ratio
  publication-title: Clin Oncol (R Coll Radiol)
  doi: 10.1016/j.clon.2015.09.006
– volume: 61
  start-page: 945
  year: 2005
  ident: 10.1016/j.phro.2020.09.002_b0265
  article-title: In vivo dosimetry of high-dose-rate brachytherapy: study on 61 head-and-neck cancer patients using radiophotoluminescence glass dosimeter
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2004.10.031
– volume: 41
  year: 2014
  ident: 10.1016/j.phro.2020.09.002_b0295
  article-title: Adaptive error detection for HDR/PDR brachytherapy: guidance for decision making during real-time in vivo point dosimetry
  publication-title: Med Phys
  doi: 10.1118/1.4870438
– volume: 44
  start-page: 1
  year: 2017
  ident: 10.1016/j.phro.2020.09.002_b0205
  article-title: In vivo dose verification method in catheter based high dose rate brachytherapy
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2017.11.003
– volume: 60
  start-page: 412
  year: 2019
  ident: 10.1016/j.phro.2020.09.002_b0355
  article-title: An easy and novel method for safer brachytherapy: real-time fluoroscopic verification of high-dose-rate 192Ir source position using a flat-panel detector
  publication-title: J Radiat Res
  doi: 10.1093/jrr/rrz013
– volume: 36
  start-page: 5033
  year: 2009
  ident: 10.1016/j.phro.2020.09.002_b0120
  article-title: Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy
  publication-title: Med Phys
  doi: 10.1118/1.3238102
– volume: 10
  start-page: 232
  year: 2018
  ident: 10.1016/j.phro.2020.09.002_b0230
  article-title: Quality assurance during interstitial brachytherapy: in vivo dosimetry using MOSFET dosimeters
  publication-title: J Contemp Brachytherapy
  doi: 10.5114/jcb.2018.76748
– volume: 60
  start-page: 156
  year: 2019
  ident: 10.1016/j.phro.2020.09.002_b0135
  article-title: Dwell time verification in brachytherapy based on time resolved in vivo dosimetry
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2019.03.031
– volume: 62
  start-page: 8360
  year: 2017
  ident: 10.1016/j.phro.2020.09.002_b0190
  article-title: A novel system for commissioning brachytherapy applicators: example of a ring applicator
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa8d0a
– volume: 17
  start-page: 111
  year: 2018
  ident: 10.1016/j.phro.2020.09.002_b0185
  article-title: An integrated system for clinical treatment verification of HDR prostate brachytherapy combining source tracking with pretreatment imaging
  publication-title: Brachytherapy
  doi: 10.1016/j.brachy.2017.08.004
– volume: 69
  start-page: 52
  year: 2019
  ident: 10.1016/j.phro.2020.09.002_b0435
  article-title: Evaluation of rectal dose discrepancies between planned and in vivo dosimetry using MOSkin detector and PTW 9112 semiconductor probe during (60)Co HDR CT-based intracavitary cervix brachytherapy
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2019.11.025
– ident: 10.1016/j.phro.2020.09.002_b0050
– volume: 62
  start-page: 8832
  year: 2017
  ident: 10.1016/j.phro.2020.09.002_b0340
  article-title: A multicentre audit of HDR/PDR brachytherapy absolute dosimetry in association with the INTERLACE trial (NCT015662405)
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa91a9
SSID ssj0002793530
Score 2.4195201
SecondaryResourceType review_article
Snippet Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Brachytherapy
In vivo dosimetry
Review
Treatment verification
Title In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2405631620300518
https://dx.doi.org/10.1016/j.phro.2020.09.002
https://www.ncbi.nlm.nih.gov/pubmed/33458336
https://www.proquest.com/docview/2478777762
https://pubmed.ncbi.nlm.nih.gov/PMC7807583
https://doaj.org/article/ec86ce32b47d4e9a8d637eaea0f529fa
Volume 16
WOSCitedRecordID wos000645142500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-6316
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793530
  issn: 2405-6316
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-6316
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793530
  issn: 2405-6316
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogLojy30MpI3GhEEr-5QdUKJFohBNLeLDueaFOVLNrdbrUXfjt-ZdktUnshhxwSTyLPIzPOzHxG6I1x1vqwwhaEOyhoZUMRQC0LK5igpqwNgwiZ_0WcncnxWH3d2Oor1IQleODEuHfQSN4AqS0VjoIy0nEiwIApW1arNoZGpVAbi6nzmE5ThMWNRrzHYgUnFc8dM6m4yzMqdP7VZQQ5zf9UBq8Uwfu3nNO_wef1GsoNp3TyCD3M0ST-kGaxi-5A_xjdP8358ifo6nOPl91yit103v2ExWyFux77BXIzWaXOq9V7_A1CNXD8TTjHpnc44Yzg5O2CWmIf2eIMCzQ5xO5vodFhJBjaK_HQc_UU_Tg5_n70qchbLRSNN8BFwRgA5VTZChxvW9caBbyytKGqFUJx51pmKwne3BvBeIC0EX6lV5vKcqNqIM_QTj_t4QXCpZJe_tza0lnKCKi2lgYIVBacBAYjVA2s1k3GIQ_bYVzooeDsXAfx6CAeXSrtxTNCb9c0vxIKx42jPwYJrkcGBO14weuVznqlb9OrESKD_PXARf9Z9Q_qbnw1W1PlECYJ61a614OKaW_fIWljepheznUd0JP8wf2Y50nl1hMjJGS9CR8hsaWMWzPfvtN3k4ghLgIItSR7_4NVL9GDMJVU4vgK7Sxml7CP7jXLRTefHaC7YiwPonn68-nv4z-JdkPa
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+dosimetry+in+brachytherapy%3A+Requirements+and+future+directions+for+research%2C+development%2C+and+clinical+practice&rft.jtitle=Physics+and+imaging+in+radiation+oncology&rft.au=Fonseca%2C+Gabriel+P.&rft.au=Johansen%2C+Jacob+G.&rft.au=Smith%2C+Ryan+L.&rft.au=Beaulieu%2C+Luc&rft.date=2020-10-01&rft.pub=Elsevier&rft.eissn=2405-6316&rft.volume=16&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.phro.2020.09.002&rft_id=info%3Apmid%2F33458336&rft.externalDocID=PMC7807583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-6316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-6316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-6316&client=summon