Targeted next generation sequencing as a tool for precision medicine

Background Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is essential for implementation of individualized pharmacotherapy. Successful application of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC medical genomics Ročník 12; číslo 1; s. 81 - 17
Hlavní autoři: Gulilat, Markus, Lamb, Tyler, Teft, Wendy A., Wang, Jian, Dron, Jacqueline S., Robinson, John F., Tirona, Rommel G., Hegele, Robert A., Kim, Richard B., Schwarz, Ute I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 03.06.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1755-8794, 1755-8794
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is essential for implementation of individualized pharmacotherapy. Successful application of short-read based NGS to pharmacogenes with high sequence homology, nearby pseudogenes and complex structure has been previously shown despite anticipated technical challenges. However, little is known regarding the utility of such panels to detect copy number variation (CNV) in the highly polymorphic cytochrome P450 ( CYP) 2D6 gene, or to identify the promoter (TA) 7 TAA repeat polymorphism UDP glucuronosyltransferase ( UGT) 1A1 *28. Here we developed and validated PGxSeq, a targeted exome panel for pharmacogenes pertinent to drug disposition and/or response. Methods A panel of capture probes was generated to assess 422 kb of total coding region in 100 pharmacogenes. NGS was carried out in 235 subjects, and sequencing performance and accuracy of variant discovery validated in clinically relevant pharmacogenes. CYP2D6 CNV was determined using the bioinformatics tool CNV caller (VarSeq). Identified SNVs were assessed in terms of population allele frequency and predicted functional effects through in silico algorithms. Results Adequate performance of the PGxSeq panel was demonstrated with a depth-of-coverage (DOC) ≥ 20× for at least 94% of the target sequence. We showed accurate detection of 39 clinically relevant gene variants compared to standard genotyping techniques (99.9% concordance), including CYP2D6 CNV and UGT1A1*28 . Allele frequency of rare or novel variants and predicted function in 235 subjects mirrored findings from large genomic datasets. A large proportion of patients (78%, 183 out of 235) were identified as homozygous carriers of at least one variant necessitating altered pharmacotherapy. Conclusions PGxSeq can serve as a comprehensive, rapid, and reliable approach for the detection of common and novel SNVs in pharmacogenes benefiting the emerging field of precision medicine.
AbstractList Background Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is essential for implementation of individualized pharmacotherapy. Successful application of short-read based NGS to pharmacogenes with high sequence homology, nearby pseudogenes and complex structure has been previously shown despite anticipated technical challenges. However, little is known regarding the utility of such panels to detect copy number variation (CNV) in the highly polymorphic cytochrome P450 (CYP) 2D6 gene, or to identify the promoter (TA).sub.7 TAA repeat polymorphism UDP glucuronosyltransferase (UGT) 1A1*28. Here we developed and validated PGxSeq, a targeted exome panel for pharmacogenes pertinent to drug disposition and/or response. Methods A panel of capture probes was generated to assess 422 kb of total coding region in 100 pharmacogenes. NGS was carried out in 235 subjects, and sequencing performance and accuracy of variant discovery validated in clinically relevant pharmacogenes. CYP2D6 CNV was determined using the bioinformatics tool CNV caller (VarSeq). Identified SNVs were assessed in terms of population allele frequency and predicted functional effects through in silico algorithms. Results Adequate performance of the PGxSeq panel was demonstrated with a depth-of-coverage (DOC) [greater than or equai to] 20x for at least 94% of the target sequence. We showed accurate detection of 39 clinically relevant gene variants compared to standard genotyping techniques (99.9% concordance), including CYP2D6 CNV and UGT1A1*28. Allele frequency of rare or novel variants and predicted function in 235 subjects mirrored findings from large genomic datasets. A large proportion of patients (78%, 183 out of 235) were identified as homozygous carriers of at least one variant necessitating altered pharmacotherapy. Conclusions PGxSeq can serve as a comprehensive, rapid, and reliable approach for the detection of common and novel SNVs in pharmacogenes benefiting the emerging field of precision medicine. Keywords: Targeted exome sequencing, Next generation sequencing, Pharmacogenes, Copy number variation, In silico prediction
Abstract Background Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is essential for implementation of individualized pharmacotherapy. Successful application of short-read based NGS to pharmacogenes with high sequence homology, nearby pseudogenes and complex structure has been previously shown despite anticipated technical challenges. However, little is known regarding the utility of such panels to detect copy number variation (CNV) in the highly polymorphic cytochrome P450 (CYP) 2D6 gene, or to identify the promoter (TA)7 TAA repeat polymorphism UDP glucuronosyltransferase (UGT) 1A1*28. Here we developed and validated PGxSeq, a targeted exome panel for pharmacogenes pertinent to drug disposition and/or response. Methods A panel of capture probes was generated to assess 422 kb of total coding region in 100 pharmacogenes. NGS was carried out in 235 subjects, and sequencing performance and accuracy of variant discovery validated in clinically relevant pharmacogenes. CYP2D6 CNV was determined using the bioinformatics tool CNV caller (VarSeq). Identified SNVs were assessed in terms of population allele frequency and predicted functional effects through in silico algorithms. Results Adequate performance of the PGxSeq panel was demonstrated with a depth-of-coverage (DOC) ≥ 20× for at least 94% of the target sequence. We showed accurate detection of 39 clinically relevant gene variants compared to standard genotyping techniques (99.9% concordance), including CYP2D6 CNV and UGT1A1*28. Allele frequency of rare or novel variants and predicted function in 235 subjects mirrored findings from large genomic datasets. A large proportion of patients (78%, 183 out of 235) were identified as homozygous carriers of at least one variant necessitating altered pharmacotherapy. Conclusions PGxSeq can serve as a comprehensive, rapid, and reliable approach for the detection of common and novel SNVs in pharmacogenes benefiting the emerging field of precision medicine.
Background Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is essential for implementation of individualized pharmacotherapy. Successful application of short-read based NGS to pharmacogenes with high sequence homology, nearby pseudogenes and complex structure has been previously shown despite anticipated technical challenges. However, little is known regarding the utility of such panels to detect copy number variation (CNV) in the highly polymorphic cytochrome P450 ( CYP) 2D6 gene, or to identify the promoter (TA) 7 TAA repeat polymorphism UDP glucuronosyltransferase ( UGT) 1A1 *28. Here we developed and validated PGxSeq, a targeted exome panel for pharmacogenes pertinent to drug disposition and/or response. Methods A panel of capture probes was generated to assess 422 kb of total coding region in 100 pharmacogenes. NGS was carried out in 235 subjects, and sequencing performance and accuracy of variant discovery validated in clinically relevant pharmacogenes. CYP2D6 CNV was determined using the bioinformatics tool CNV caller (VarSeq). Identified SNVs were assessed in terms of population allele frequency and predicted functional effects through in silico algorithms. Results Adequate performance of the PGxSeq panel was demonstrated with a depth-of-coverage (DOC) ≥ 20× for at least 94% of the target sequence. We showed accurate detection of 39 clinically relevant gene variants compared to standard genotyping techniques (99.9% concordance), including CYP2D6 CNV and UGT1A1*28 . Allele frequency of rare or novel variants and predicted function in 235 subjects mirrored findings from large genomic datasets. A large proportion of patients (78%, 183 out of 235) were identified as homozygous carriers of at least one variant necessitating altered pharmacotherapy. Conclusions PGxSeq can serve as a comprehensive, rapid, and reliable approach for the detection of common and novel SNVs in pharmacogenes benefiting the emerging field of precision medicine.
Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is essential for implementation of individualized pharmacotherapy. Successful application of short-read based NGS to pharmacogenes with high sequence homology, nearby pseudogenes and complex structure has been previously shown despite anticipated technical challenges. However, little is known regarding the utility of such panels to detect copy number variation (CNV) in the highly polymorphic cytochrome P450 (CYP) 2D6 gene, or to identify the promoter (TA) TAA repeat polymorphism UDP glucuronosyltransferase (UGT) 1A1*28. Here we developed and validated PGxSeq, a targeted exome panel for pharmacogenes pertinent to drug disposition and/or response. A panel of capture probes was generated to assess 422 kb of total coding region in 100 pharmacogenes. NGS was carried out in 235 subjects, and sequencing performance and accuracy of variant discovery validated in clinically relevant pharmacogenes. CYP2D6 CNV was determined using the bioinformatics tool CNV caller (VarSeq). Identified SNVs were assessed in terms of population allele frequency and predicted functional effects through in silico algorithms. Adequate performance of the PGxSeq panel was demonstrated with a depth-of-coverage (DOC) ≥ 20× for at least 94% of the target sequence. We showed accurate detection of 39 clinically relevant gene variants compared to standard genotyping techniques (99.9% concordance), including CYP2D6 CNV and UGT1A1*28. Allele frequency of rare or novel variants and predicted function in 235 subjects mirrored findings from large genomic datasets. A large proportion of patients (78%, 183 out of 235) were identified as homozygous carriers of at least one variant necessitating altered pharmacotherapy. PGxSeq can serve as a comprehensive, rapid, and reliable approach for the detection of common and novel SNVs in pharmacogenes benefiting the emerging field of precision medicine.
Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is essential for implementation of individualized pharmacotherapy. Successful application of short-read based NGS to pharmacogenes with high sequence homology, nearby pseudogenes and complex structure has been previously shown despite anticipated technical challenges. However, little is known regarding the utility of such panels to detect copy number variation (CNV) in the highly polymorphic cytochrome P450 (CYP) 2D6 gene, or to identify the promoter (TA).sub.7 TAA repeat polymorphism UDP glucuronosyltransferase (UGT) 1A1*28. Here we developed and validated PGxSeq, a targeted exome panel for pharmacogenes pertinent to drug disposition and/or response. A panel of capture probes was generated to assess 422 kb of total coding region in 100 pharmacogenes. NGS was carried out in 235 subjects, and sequencing performance and accuracy of variant discovery validated in clinically relevant pharmacogenes. CYP2D6 CNV was determined using the bioinformatics tool CNV caller (VarSeq). Identified SNVs were assessed in terms of population allele frequency and predicted functional effects through in silico algorithms. Adequate performance of the PGxSeq panel was demonstrated with a depth-of-coverage (DOC) [greater than or equai to] 20x for at least 94% of the target sequence. We showed accurate detection of 39 clinically relevant gene variants compared to standard genotyping techniques (99.9% concordance), including CYP2D6 CNV and UGT1A1*28. Allele frequency of rare or novel variants and predicted function in 235 subjects mirrored findings from large genomic datasets. A large proportion of patients (78%, 183 out of 235) were identified as homozygous carriers of at least one variant necessitating altered pharmacotherapy. PGxSeq can serve as a comprehensive, rapid, and reliable approach for the detection of common and novel SNVs in pharmacogenes benefiting the emerging field of precision medicine.
Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is essential for implementation of individualized pharmacotherapy. Successful application of short-read based NGS to pharmacogenes with high sequence homology, nearby pseudogenes and complex structure has been previously shown despite anticipated technical challenges. However, little is known regarding the utility of such panels to detect copy number variation (CNV) in the highly polymorphic cytochrome P450 (CYP) 2D6 gene, or to identify the promoter (TA)7 TAA repeat polymorphism UDP glucuronosyltransferase (UGT) 1A1*28. Here we developed and validated PGxSeq, a targeted exome panel for pharmacogenes pertinent to drug disposition and/or response.BACKGROUNDTargeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is essential for implementation of individualized pharmacotherapy. Successful application of short-read based NGS to pharmacogenes with high sequence homology, nearby pseudogenes and complex structure has been previously shown despite anticipated technical challenges. However, little is known regarding the utility of such panels to detect copy number variation (CNV) in the highly polymorphic cytochrome P450 (CYP) 2D6 gene, or to identify the promoter (TA)7 TAA repeat polymorphism UDP glucuronosyltransferase (UGT) 1A1*28. Here we developed and validated PGxSeq, a targeted exome panel for pharmacogenes pertinent to drug disposition and/or response.A panel of capture probes was generated to assess 422 kb of total coding region in 100 pharmacogenes. NGS was carried out in 235 subjects, and sequencing performance and accuracy of variant discovery validated in clinically relevant pharmacogenes. CYP2D6 CNV was determined using the bioinformatics tool CNV caller (VarSeq). Identified SNVs were assessed in terms of population allele frequency and predicted functional effects through in silico algorithms.METHODSA panel of capture probes was generated to assess 422 kb of total coding region in 100 pharmacogenes. NGS was carried out in 235 subjects, and sequencing performance and accuracy of variant discovery validated in clinically relevant pharmacogenes. CYP2D6 CNV was determined using the bioinformatics tool CNV caller (VarSeq). Identified SNVs were assessed in terms of population allele frequency and predicted functional effects through in silico algorithms.Adequate performance of the PGxSeq panel was demonstrated with a depth-of-coverage (DOC) ≥ 20× for at least 94% of the target sequence. We showed accurate detection of 39 clinically relevant gene variants compared to standard genotyping techniques (99.9% concordance), including CYP2D6 CNV and UGT1A1*28. Allele frequency of rare or novel variants and predicted function in 235 subjects mirrored findings from large genomic datasets. A large proportion of patients (78%, 183 out of 235) were identified as homozygous carriers of at least one variant necessitating altered pharmacotherapy.RESULTSAdequate performance of the PGxSeq panel was demonstrated with a depth-of-coverage (DOC) ≥ 20× for at least 94% of the target sequence. We showed accurate detection of 39 clinically relevant gene variants compared to standard genotyping techniques (99.9% concordance), including CYP2D6 CNV and UGT1A1*28. Allele frequency of rare or novel variants and predicted function in 235 subjects mirrored findings from large genomic datasets. A large proportion of patients (78%, 183 out of 235) were identified as homozygous carriers of at least one variant necessitating altered pharmacotherapy.PGxSeq can serve as a comprehensive, rapid, and reliable approach for the detection of common and novel SNVs in pharmacogenes benefiting the emerging field of precision medicine.CONCLUSIONSPGxSeq can serve as a comprehensive, rapid, and reliable approach for the detection of common and novel SNVs in pharmacogenes benefiting the emerging field of precision medicine.
Background Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is essential for implementation of individualized pharmacotherapy. Successful application of short-read based NGS to pharmacogenes with high sequence homology, nearby pseudogenes and complex structure has been previously shown despite anticipated technical challenges. However, little is known regarding the utility of such panels to detect copy number variation (CNV) in the highly polymorphic cytochrome P450 (CYP) 2D6 gene, or to identify the promoter (TA)7 TAA repeat polymorphism UDP glucuronosyltransferase (UGT) 1A1*28. Here we developed and validated PGxSeq, a targeted exome panel for pharmacogenes pertinent to drug disposition and/or response. Methods A panel of capture probes was generated to assess 422 kb of total coding region in 100 pharmacogenes. NGS was carried out in 235 subjects, and sequencing performance and accuracy of variant discovery validated in clinically relevant pharmacogenes. CYP2D6 CNV was determined using the bioinformatics tool CNV caller (VarSeq). Identified SNVs were assessed in terms of population allele frequency and predicted functional effects through in silico algorithms. Results Adequate performance of the PGxSeq panel was demonstrated with a depth-of-coverage (DOC) ≥ 20× for at least 94% of the target sequence. We showed accurate detection of 39 clinically relevant gene variants compared to standard genotyping techniques (99.9% concordance), including CYP2D6 CNV and UGT1A1*28. Allele frequency of rare or novel variants and predicted function in 235 subjects mirrored findings from large genomic datasets. A large proportion of patients (78%, 183 out of 235) were identified as homozygous carriers of at least one variant necessitating altered pharmacotherapy. Conclusions PGxSeq can serve as a comprehensive, rapid, and reliable approach for the detection of common and novel SNVs in pharmacogenes benefiting the emerging field of precision medicine.
ArticleNumber 81
Audience Academic
Author Wang, Jian
Dron, Jacqueline S.
Lamb, Tyler
Schwarz, Ute I.
Hegele, Robert A.
Gulilat, Markus
Tirona, Rommel G.
Teft, Wendy A.
Robinson, John F.
Kim, Richard B.
Author_xml – sequence: 1
  givenname: Markus
  surname: Gulilat
  fullname: Gulilat, Markus
  organization: Division of Clinical Pharmacology, Department of Medicine, Western University, London Health Sciences Centre - University Hospital, Department of Physiology and Pharmacology, Western University, Medical Sciences Building
– sequence: 2
  givenname: Tyler
  surname: Lamb
  fullname: Lamb, Tyler
  organization: Department of Physiology and Pharmacology, Western University, Medical Sciences Building
– sequence: 3
  givenname: Wendy A.
  surname: Teft
  fullname: Teft, Wendy A.
  organization: Division of Clinical Pharmacology, Department of Medicine, Western University, London Health Sciences Centre - University Hospital
– sequence: 4
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: Robarts Research Institute, Western University
– sequence: 5
  givenname: Jacqueline S.
  surname: Dron
  fullname: Dron, Jacqueline S.
  organization: Robarts Research Institute, Western University
– sequence: 6
  givenname: John F.
  surname: Robinson
  fullname: Robinson, John F.
  organization: Robarts Research Institute, Western University
– sequence: 7
  givenname: Rommel G.
  surname: Tirona
  fullname: Tirona, Rommel G.
  organization: Division of Clinical Pharmacology, Department of Medicine, Western University, London Health Sciences Centre - University Hospital, Department of Physiology and Pharmacology, Western University, Medical Sciences Building
– sequence: 8
  givenname: Robert A.
  surname: Hegele
  fullname: Hegele, Robert A.
  organization: Robarts Research Institute, Western University
– sequence: 9
  givenname: Richard B.
  surname: Kim
  fullname: Kim, Richard B.
  organization: Division of Clinical Pharmacology, Department of Medicine, Western University, London Health Sciences Centre - University Hospital, Department of Physiology and Pharmacology, Western University, Medical Sciences Building
– sequence: 10
  givenname: Ute I.
  orcidid: 0000-0003-1569-1580
  surname: Schwarz
  fullname: Schwarz, Ute I.
  email: ute.schwarz@lhsc.on.ca
  organization: Division of Clinical Pharmacology, Department of Medicine, Western University, London Health Sciences Centre - University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31159795$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGxgkWI7dhxvkKryGqkSEpS15dxcB48y9mAnFfx7PJ3SNhWgLBzZ3zm2j89xceCDx6J4TskppW3zJlGmGKkIVRURTFbsUXFEpRBVKxU_uPd_WByntCakIULRJ8VhTalQUomj4t2liQNO2Jcef07lgB6jmVzwZcIfM3pwfihNKk05hTCWNsRyGxFc2iEb7F0G8Gnx2Jox4bOb8aT49uH95fmn6uLzx9X52UUFTS2nylpiDSXAetPYrgXFIR9Jdh0oKTrBKUgFhPWUoqXAGxQKFeMIaI1RoOqTYrX37YNZ6210GxN_6WCcvp4IcdAmTg5G1AL7mtdYM9sY3hFjAFomjOqBcGV7yF5v917bucv3APRTNOPCdLni3Xc9hCvdCC4bwrLBqxuDGHJSadIblwDH0XgMc9KM1YI0QnGS0ZcP0HWYo89RZYqzbNe28o4aTL6A8zbkfWFnqs-EIpJxyWimTv9C5a_HjYPcD-vy_ELweiHIzJSfejBzSnr19cuSfXE_lNs0_vQlA3QPQAwpRbS3CCV610m976TOndS7TupdUPKBBtx03bF8cjf-V8n2ypR38QPGu9z-LfoNbljzww
CitedBy_id crossref_primary_10_3390_jcm10010034
crossref_primary_10_1016_j_gim_2021_12_009
crossref_primary_10_1007_s11033_023_08748_z
crossref_primary_10_1007_s12687_023_00674_8
crossref_primary_10_1038_s41598_020_78231_3
crossref_primary_10_1038_s41397_022_00286_4
crossref_primary_10_3390_genes11121456
crossref_primary_10_1002_cncr_33504
crossref_primary_10_1186_s40246_021_00329_0
crossref_primary_10_2217_pgs_2020_0128
crossref_primary_10_3389_fphar_2021_693453
crossref_primary_10_1016_j_jceh_2023_07_415
crossref_primary_10_2147_IDR_S404277
crossref_primary_10_3390_ijms25179463
crossref_primary_10_3390_cancers17061040
crossref_primary_10_1371_journal_pone_0306445
crossref_primary_10_3390_medsci13020044
crossref_primary_10_3390_ijms26073123
crossref_primary_10_3389_fgene_2024_1341272
crossref_primary_10_1093_labmed_lmac141
crossref_primary_10_1038_s41392_024_01760_0
crossref_primary_10_4236_ojcd_2025_153006
crossref_primary_10_1016_j_drup_2022_100889
crossref_primary_10_1093_oncolo_oyad093
crossref_primary_10_1038_s41598_020_72404_w
crossref_primary_10_1007_s00439_019_02081_x
crossref_primary_10_1016_j_dmpk_2020_11_005
crossref_primary_10_1080_17512433_2024_2307418
crossref_primary_10_3390_biomedicines11071899
crossref_primary_10_1016_j_diagmicrobio_2024_116534
crossref_primary_10_1038_s41698_023_00373_0
crossref_primary_10_3390_biomedicines12122659
crossref_primary_10_1007_s42242_022_00206_2
crossref_primary_10_1038_s41525_022_00283_3
crossref_primary_10_3389_fphar_2022_912618
crossref_primary_10_3390_pathogens10121586
crossref_primary_10_7759_cureus_52708
crossref_primary_10_1111_cts_13868
crossref_primary_10_1016_j_ijbiomac_2025_144407
crossref_primary_10_1515_dmpt_2020_0155
crossref_primary_10_1002_mma_7748
crossref_primary_10_3390_ph15050637
crossref_primary_10_1007_s00439_019_02093_7
crossref_primary_10_1097_FPC_0000000000000459
crossref_primary_10_1186_s13098_022_00893_y
crossref_primary_10_3390_ijms24054440
crossref_primary_10_1080_03602532_2021_1909613
crossref_primary_10_3390_jpm11070650
crossref_primary_10_1155_2022_5023011
crossref_primary_10_1111_ijlh_13286
crossref_primary_10_1177_14604582241294217
crossref_primary_10_3389_fgene_2020_544162
crossref_primary_10_1371_journal_pcbi_1012885
crossref_primary_10_1146_annurev_genom_121323_104008
crossref_primary_10_2217_pgs_2019_0190
crossref_primary_10_1016_j_jiph_2025_102936
crossref_primary_10_1002_cpt_2270
crossref_primary_10_1007_s11033_021_06454_2
crossref_primary_10_3390_biomedicines12071467
crossref_primary_10_1016_j_yexcr_2020_112054
Cites_doi 10.1126/science.1219240
10.1038/clpt.2013.4
10.1038/sj.tpj.6500072
10.1146/annurev-pharmtox-010611-134529
10.1002/cpt.911
10.1093/hmg/ddt588
10.1136/adc.2009.163089
10.1038/nprot.2009.86
10.1038/nature19057
10.1186/s13059-017-1353-5
10.1038/gim.2013.92
10.1002/cpt.350
10.2217/pgs.14.102
10.1038/nrg2986
10.1038/clpt.2010.320
10.1101/gr.129668.111
10.1016/j.cjca.2018.07.479
10.1038/tpj.2014.86
10.1097/FPC.0000000000000202
10.2174/1389200215666140202215316
10.1038/clpt.2014.125
10.1002/cpt.1007
10.1038/nature11632
10.1097/FPC.0b013e328338bac2
10.1002/cpt.532
10.2217/pgs-2016-0023
10.1038/gim.2016.58
10.1016/S0140-6736(10)60452-7
10.2353/jmoldx.2008.080036
10.1016/j.cell.2013.09.006
10.1136/jmedgenet-2017-104791
10.1038/clpt.2013.105
10.1038/clpt.2011.185
10.1097/FPC.0000000000000006
10.1038/clpt.2011.132
10.1101/cshperspect.a033027
10.1038/nmeth.1419
10.1038/gim.2016.33
10.1038/nmeth0410-248
10.2133/dmpk.DMPK-11-RV-111
10.1038/ng.2892
10.1038/clpt.2013.254
10.1194/jlr.D045963
10.1056/NEJM199511023331802
10.1093/bib/bbt069
10.1038/clpt.2014.38
10.1016/j.pharmthera.2007.09.004
10.1186/s13073-017-0502-5
10.1126/science.286.5439.487
10.1038/npjgenmed.2015.7
10.1097/FPC.0000000000000172
10.1002/cpt.597
10.1038/s41525-017-0021-8
10.1002/cpt.269
10.1126/science.1217876
10.1093/nar/gkq603
10.1194/jlr.D079301
10.1002/cpt.668
10.2217/pgs-2017-0046
10.1089/gtmb.2010.0036
10.1016/S0009-9236(98)90040-6
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12920-019-0527-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1755-8794
EndPage 17
ExternalDocumentID oai_doaj_org_article_5ed343e32f6a4b0aacc825a9dc049fdc
PMC6547602
A590724721
31159795
10_1186_s12920_019_0527_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wolfe Medical Research Chair in Pharmacogenomics (CA)
  grantid: n/a
– fundername: Children’s Health Foundation, London, Canada
  grantid: n/a
– fundername: Canadian Institutes of Health Research
  grantid: DSEN-PREVENT, FRN-117588
  funderid: http://dx.doi.org/10.13039/501100000024
– fundername: CIHR
  grantid: FRN-117588
– fundername: ;
  grantid: DSEN-PREVENT, FRN-117588
– fundername: ;
  grantid: n/a
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
~8M
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c637t-ff0fa10c2da6fb8c94c0067bbc975b541c79c02d11ef1c46e59e924ecefaa9c93
IEDL.DBID M7P
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470111200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1755-8794
IngestDate Fri Oct 03 12:51:54 EDT 2025
Tue Nov 04 02:01:31 EST 2025
Fri Sep 05 12:34:37 EDT 2025
Tue Oct 07 05:36:02 EDT 2025
Tue Nov 11 10:07:25 EST 2025
Tue Nov 04 18:02:21 EST 2025
Thu Nov 13 15:32:10 EST 2025
Thu Jan 02 22:59:27 EST 2025
Sat Nov 29 04:12:01 EST 2025
Tue Nov 18 22:31:08 EST 2025
Sat Sep 06 07:29:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pharmacogenes
Copy number variation
Next generation sequencing
Targeted exome sequencing
In silico prediction
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-ff0fa10c2da6fb8c94c0067bbc975b541c79c02d11ef1c46e59e924ecefaa9c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1569-1580
OpenAccessLink https://www.proquest.com/docview/2242760887?pq-origsite=%requestingapplication%
PMID 31159795
PQID 2242760887
PQPubID 55237
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_5ed343e32f6a4b0aacc825a9dc049fdc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6547602
proquest_miscellaneous_2235065940
proquest_journals_2242760887
gale_infotracmisc_A590724721
gale_infotracacademiconefile_A590724721
gale_incontextgauss_ISR_A590724721
pubmed_primary_31159795
crossref_primary_10_1186_s12920_019_0527_2
crossref_citationtrail_10_1186_s12920_019_0527_2
springer_journals_10_1186_s12920_019_0527_2
PublicationCentury 2000
PublicationDate 2019-06-03
PublicationDateYYYYMMDD 2019-06-03
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-03
  day: 03
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical genomics
PublicationTitleAbbrev BMC Med Genomics
PublicationTitleAlternate BMC Med Genomics
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References C Mizzi (527_CR20) 2014; 15
H Sagreiya (527_CR23) 2010; 20
MP Goetz (527_CR11) 2018; 103
HL Rehm (527_CR63) 2013; 15
JA Johnson (527_CR4) 2017; 102
SE Flanagan (527_CR58) 2010; 14
JA Tennessen (527_CR21) 2012; 337
P Dalén (527_CR35) 1998; 63
M Ingelman-Sundberg (527_CR51) 2007; 116
KR Crews (527_CR52) 2014; 95
RS Gammal (527_CR14) 2016; 99
MA Iacocca (527_CR47) 2018; 34
JK Hicks (527_CR53) 2017; 102
JA Johnson (527_CR5) 2011; 90
Jamie M Ellingford (527_CR48) 2017; 55
SM Han (527_CR27) 2017; 101
VM Lauschke (527_CR61) 2016; 17
F Ehmann (527_CR16) 2015; 15
MV Relling (527_CR10) 2011; 89
EA Ashley (527_CR19) 2010; 375
CT Johansen (527_CR36) 2014; 55
MR Nelson (527_CR18) 2012; 337
GR Abecasis (527_CR22) 2012; 491
BI Drogemoller (527_CR30) 2013; 23
WS Bush (527_CR46) 2016; 100
527_CR3
M Kircher (527_CR42) 2014; 46
R Ghosh (527_CR59) 2017; 18
527_CR37
U Ehmer (527_CR39) 2008; 10
K Kurose (527_CR62) 2012; 27
K Wang (527_CR41) 2010; 38
SA Scott (527_CR7) 2013; 94
R Nielsen (527_CR31) 2011; 12
MA Iacocca (527_CR40) 2017; 58
CPI Scharfe (527_CR64) 2017; 9
MA Martin (527_CR13) 2014; 95
MK DeGorter (527_CR2) 2012; 52
S Sakaguchi (527_CR54) 2009; 94
527_CR33
PJ Bosma (527_CR34) 1995; 333
AS Gordon (527_CR56) 2014; 23
DC Koboldt (527_CR26) 2013; 155
Ute I. Schwarz (527_CR1) 2018; 9
JK Hicks (527_CR49) 2014; 15
U Amstutz (527_CR12) 2018; 103
LB Ramsey (527_CR25) 2012; 22
P Kumar (527_CR43) 2009; 4
SA Scott (527_CR6) 2011; 90
L Mamanova (527_CR32) 2010; 7
I Cohn (527_CR50) 2017; 2
K Fujikura (527_CR57) 2015; 25
M Lek (527_CR45) 2016; 536
Y. Guo (527_CR38) 2013; 15
L Iyer (527_CR55) 2002; 2
Adam S. Gordon (527_CR28) 2016; 26
MV Relling (527_CR9) 2013; 93
M Kozyra (527_CR17) 2017; 19
LB Ramsey (527_CR8) 2014; 96
D Mandelker (527_CR29) 2016; 18
N Liu (527_CR24) 2017; 18
527_CR15
WE Evans (527_CR60) 1999; 286
IA Adzhubei (527_CR44) 2010; 7
References_xml – volume: 337
  start-page: 64
  year: 2012
  ident: 527_CR21
  publication-title: Science.
  doi: 10.1126/science.1219240
– volume: 93
  start-page: 324
  year: 2013
  ident: 527_CR9
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2013.4
– volume: 2
  start-page: 43
  year: 2002
  ident: 527_CR55
  publication-title: Pharmacogenomics J
  doi: 10.1038/sj.tpj.6500072
– volume: 52
  start-page: 249
  year: 2012
  ident: 527_CR2
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev-pharmtox-010611-134529
– volume: 103
  start-page: 210
  year: 2018
  ident: 527_CR12
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.911
– volume: 23
  start-page: 1957
  year: 2014
  ident: 527_CR56
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddt588
– volume: 94
  start-page: 981
  year: 2009
  ident: 527_CR54
  publication-title: Arch Dis Child
  doi: 10.1136/adc.2009.163089
– volume: 4
  start-page: 1073
  year: 2009
  ident: 527_CR43
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.86
– volume: 536
  start-page: 285
  year: 2016
  ident: 527_CR45
  publication-title: Nature.
  doi: 10.1038/nature19057
– volume: 18
  start-page: 225
  year: 2017
  ident: 527_CR59
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1353-5
– volume: 15
  start-page: 733
  year: 2013
  ident: 527_CR63
  publication-title: Genet Med.
  doi: 10.1038/gim.2013.92
– volume: 100
  start-page: 160
  year: 2016
  ident: 527_CR46
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.350
– volume: 15
  start-page: 1223
  year: 2014
  ident: 527_CR20
  publication-title: Pharmacogenomics.
  doi: 10.2217/pgs.14.102
– volume: 12
  start-page: 443
  year: 2011
  ident: 527_CR31
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2986
– volume: 89
  start-page: 387
  year: 2011
  ident: 527_CR10
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2010.320
– volume: 22
  start-page: 1
  year: 2012
  ident: 527_CR25
  publication-title: Genome Res
  doi: 10.1101/gr.129668.111
– volume: 34
  start-page: 1316
  year: 2018
  ident: 527_CR47
  publication-title: Can J Cardiol
  doi: 10.1016/j.cjca.2018.07.479
– volume: 15
  start-page: 201
  year: 2015
  ident: 527_CR16
  publication-title: Pharmacogenomics J.
  doi: 10.1038/tpj.2014.86
– volume: 26
  start-page: 161
  issue: 4
  year: 2016
  ident: 527_CR28
  publication-title: Pharmacogenetics and Genomics
  doi: 10.1097/FPC.0000000000000202
– volume: 15
  start-page: 218
  year: 2014
  ident: 527_CR49
  publication-title: Curr Drug Metab
  doi: 10.2174/1389200215666140202215316
– volume: 96
  start-page: 423
  year: 2014
  ident: 527_CR8
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2014.125
– volume: 103
  start-page: 770
  year: 2018
  ident: 527_CR11
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.1007
– volume: 491
  start-page: 56
  year: 2012
  ident: 527_CR22
  publication-title: Nature.
  doi: 10.1038/nature11632
– volume: 20
  start-page: 407
  year: 2010
  ident: 527_CR23
  publication-title: Pharmacogenet Genomics
  doi: 10.1097/FPC.0b013e328338bac2
– volume: 101
  start-page: 396
  year: 2017
  ident: 527_CR27
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.532
– volume: 17
  start-page: 917
  year: 2016
  ident: 527_CR61
  publication-title: Pharmacogenomics.
  doi: 10.2217/pgs-2016-0023
– volume: 18
  start-page: 1282
  year: 2016
  ident: 527_CR29
  publication-title: Genet Med
  doi: 10.1038/gim.2016.58
– volume: 375
  start-page: 1525
  year: 2010
  ident: 527_CR19
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(10)60452-7
– volume: 10
  start-page: 549
  year: 2008
  ident: 527_CR39
  publication-title: J Mol Diagn
  doi: 10.2353/jmoldx.2008.080036
– volume: 155
  start-page: 27
  year: 2013
  ident: 527_CR26
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.09.006
– volume: 55
  start-page: 114
  issue: 2
  year: 2017
  ident: 527_CR48
  publication-title: Journal of Medical Genetics
  doi: 10.1136/jmedgenet-2017-104791
– volume: 94
  start-page: 317
  year: 2013
  ident: 527_CR7
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2013.105
– volume: 90
  start-page: 625
  year: 2011
  ident: 527_CR5
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2011.185
– volume: 23
  start-page: 666
  year: 2013
  ident: 527_CR30
  publication-title: Pharmacogenet Genomics
  doi: 10.1097/FPC.0000000000000006
– volume: 90
  start-page: 328
  year: 2011
  ident: 527_CR6
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2011.132
– volume: 9
  start-page: a033027
  issue: 2
  year: 2018
  ident: 527_CR1
  publication-title: Cold Spring Harbor Perspectives in Medicine
  doi: 10.1101/cshperspect.a033027
– ident: 527_CR15
– ident: 527_CR3
– volume: 7
  start-page: 111
  year: 2010
  ident: 527_CR32
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1419
– volume: 19
  start-page: 20
  year: 2017
  ident: 527_CR17
  publication-title: Genet Med.
  doi: 10.1038/gim.2016.33
– volume: 7
  start-page: 248
  year: 2010
  ident: 527_CR44
  publication-title: Nat Methods
  doi: 10.1038/nmeth0410-248
– volume: 27
  start-page: 9
  year: 2012
  ident: 527_CR62
  publication-title: Drug Metab Pharmacokinet
  doi: 10.2133/dmpk.DMPK-11-RV-111
– volume: 46
  start-page: 310
  year: 2014
  ident: 527_CR42
  publication-title: Nat Genet
  doi: 10.1038/ng.2892
– volume: 95
  start-page: 376
  year: 2014
  ident: 527_CR52
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2013.254
– volume: 55
  start-page: 765
  year: 2014
  ident: 527_CR36
  publication-title: J Lipid Res
  doi: 10.1194/jlr.D045963
– volume: 333
  start-page: 1171
  year: 1995
  ident: 527_CR34
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199511023331802
– volume: 15
  start-page: 879
  issue: 6
  year: 2013
  ident: 527_CR38
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbt069
– volume: 95
  start-page: 499
  year: 2014
  ident: 527_CR13
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2014.38
– volume: 116
  start-page: 496
  year: 2007
  ident: 527_CR51
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2007.09.004
– volume: 9
  start-page: 117
  year: 2017
  ident: 527_CR64
  publication-title: Genome Med
  doi: 10.1186/s13073-017-0502-5
– ident: 527_CR37
– volume: 286
  start-page: 487
  year: 1999
  ident: 527_CR60
  publication-title: Science.
  doi: 10.1126/science.286.5439.487
– ident: 527_CR33
  doi: 10.1038/npjgenmed.2015.7
– volume: 25
  start-page: 584
  year: 2015
  ident: 527_CR57
  publication-title: Pharmacogenet Genomics
  doi: 10.1097/FPC.0000000000000172
– volume: 102
  start-page: 37
  year: 2017
  ident: 527_CR53
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.597
– volume: 2
  start-page: 19
  year: 2017
  ident: 527_CR50
  publication-title: NPJ Genom Med
  doi: 10.1038/s41525-017-0021-8
– volume: 99
  start-page: 363
  year: 2016
  ident: 527_CR14
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.269
– volume: 337
  start-page: 100
  year: 2012
  ident: 527_CR18
  publication-title: Science.
  doi: 10.1126/science.1217876
– volume: 38
  start-page: e164
  year: 2010
  ident: 527_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq603
– volume: 58
  start-page: 2202
  year: 2017
  ident: 527_CR40
  publication-title: J Lipid Res
  doi: 10.1194/jlr.D079301
– volume: 102
  start-page: 397
  year: 2017
  ident: 527_CR4
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.668
– volume: 18
  start-page: 1059
  year: 2017
  ident: 527_CR24
  publication-title: Pharmacogenomics.
  doi: 10.2217/pgs-2017-0046
– volume: 14
  start-page: 533
  year: 2010
  ident: 527_CR58
  publication-title: Genet Test Mol Biomarkers
  doi: 10.1089/gtmb.2010.0036
– volume: 63
  start-page: 444
  year: 1998
  ident: 527_CR35
  publication-title: Clin Pharmacol Ther
  doi: 10.1016/S0009-9236(98)90040-6
SSID ssj0060591
Score 2.4520578
Snippet Background Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing...
Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to...
Background Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing...
Abstract Background Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 81
SubjectTerms Adult
Algorithms
Alleles
Anticoagulants
Bioinformatics
Biomarkers
Biomedical and Life Sciences
Biomedicine
Child
Computational biology
Computer Simulation
Consortia
Copy number
Copy number variation
CYP2D6 protein
Cytochrome
Cytochrome P-450
Cytochrome P-450 CYP2D6 - genetics
Cytochrome P450
Data processing
Deoxyribonucleic acid
DNA
DNA Copy Number Variations
DNA probes
DNA sequencing
Drug dosages
Drug therapy
Enzymes
Gene Expression
Gene frequency
Gene polymorphism
Genes
Genetic diversity
Genetic variation
Genomes
Genomics
Genotype & phenotype
Genotyping
Glucuronosyltransferase
Glucuronosyltransferase - genetics
High-Throughput Nucleotide Sequencing
Homology
Human Genetics
Humans
In silico prediction
Metabolism
Microarrays
Molecular Sequence Annotation
Next generation sequencing
Novels
Pediatrics
Pharmacogenes
Polymorphism
Population genetics
Precision medicine
Precision Medicine - methods
Prognostics and diagnostics/biomarkers
Pseudogenes
Targeted exome sequencing
Technical Advance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yiHgRv62uEkUQlLBJmibNcf1Y9OAiusLeQpomuwtLu7y-59_vTJs-tyvqxWszKe0vk5lMZ_obQl7KtgK301omdGOZ0t4wK0NkRjYqqVImbqdmE-bwsD4-tl8utfrCmrCJHngCbq-KbanKCLO0Vw33PgQIarxtA5xtUxvQ-nJj52BqssFwRrci5zBFrfcGgU2ZIGy2jFfSMLnwQiNZ_-8m-ZJPuloveSVpOvqig9vkVj5E0v3p4e-Qa7G7S258zmnye-T90VjfHVvage2lJyO1NK4AzZXTcFfqB-rpuu_PKZxb6cUqN9uhc7b9Pvl-8OHo3UeW2yWwoEuzZinx5AUPsvU6NXWwKqAvappgTdVUSgRjA5etEDGJoHSsbIToK4aYvLfBlg_ITtd38RGhTQVra2GuKmvVhBqCMqHw8wSHSxBgFITP8LmQucSxpcW5G2OKWrsJcQeIO0TcyYK83k65mIg0_ib8FtdkK4gc2OMF0AyXNcP9SzMK8gJX1CHLRYdlNCd-Mwzu07evbr-y3EgF0W9BXmWh1MMbBJ__SgAckBhrIbm7kIRtGJbDs-K4bAYGB-cjaTQa8oI83w7jTCxt62K_QZmywuS24gV5OOnZ9r2RCskaC3ibhQYugFmOdGenI0k4NpXWHJB8M-vqr8f6I-6P_wfuT8hNOe40zXi5S3bWq018Sq6HH-uzYfVs3Kc_AQ6hP9U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQQYgL70egIIOQkEBRHcex42N5VHCgQm1BvVnOxF4qVUm12e3v79hxFlIeElzjsRJ_-TzjyUxmCHnJ2wrNTqvzQjY6F9KqXHNwueKN8KLknumx2YTa36-Pj_WX9B_3MGW7TyHJqKnjtq7lzlCExkro-uqcVVzlqHevorWrQ7-Gg8Nvk_rF47kuUvjyt9NmBijW6f9VG_9kji6nSl6Kl0YztHfrvxZwm9xMp066O9LkDrniurvk-ucUV79H3h_FhHDX0g6VNV3EWtThldGUao33oXaglq76_pTiQZeeLVN3HjqF5--Tr3sfjt59zFN_hRxkqVa598zbggFvrfRNDVpAMF5NA1pVTSUKUBoYb4vC-QKEdJV26K45cN5aDbp8QLa6vnOPCG0qJIPGuaKsRQM1enGFCN8zGF5CjyQjbALdQCo-HnpgnJrohNTSjOgYRMcEdAzPyOvNlLOx8sbfhN-GN7kRDEWz44V-uTBpD5rKtaUoHRJQWtEwawHQP7a6BXSTfAsZeRF4YEJZjC7k3SzsehjMp8MDs1tpprhAdzkjr5KQ73EFYNNvDIhDqKQ1k9yeSeK-hfnwRDeT9MZg8EDFlQyaPyPPN8NhZsiF61y_DjJlFaLhgmXk4cjOzbpD7SStNOKtZrydATMf6U6-x6rioQu1ZIjkm4m9Px7rj7g__ifpJ-QGj_SXOSu3ydZquXZPyTU4X50My2dxG18AapVB1w
  priority: 102
  providerName: Springer Nature
Title Targeted next generation sequencing as a tool for precision medicine
URI https://link.springer.com/article/10.1186/s12920-019-0527-2
https://www.ncbi.nlm.nih.gov/pubmed/31159795
https://www.proquest.com/docview/2242760887
https://www.proquest.com/docview/2235065940
https://pubmed.ncbi.nlm.nih.gov/PMC6547602
https://doaj.org/article/5ed343e32f6a4b0aacc825a9dc049fdc
Volume 12
WOSCitedRecordID wos000470111200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: RBZ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1755-8794
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060591
  issn: 1755-8794
  databaseCode: RSV
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0GIbQrzw_REYVUBISCBrjuPE8RPaYBN7WFV1A40ny3GcMmlKStPy-7lznY4MsRdeIsU-S_F9-nyXO0Le8ioDs1MpmuSloiI3kipuHZW8FLVIec3UutmEHI-L83M1CRduXUir7HWiV9RVa_GOfA9MDZc5ysTH-U-KXaMwuhpaaGyRHaySwH3q3qTXxHBSV0mIZCZFvtcl2JoJnGdFWcYl5QNb5Ev2_62Y_7BM17Mmr4VOvUU6uv-_e3lA7oWzaLy_Zp6H5JZrHpE7JyHa_ph8PvNp4q6KG1Dh8cxXqEZCxiEBGz4rNl1s4mXbXsZw_I3ni9CzJ-6D9k_I16PDs09faOi6QG2eyiWta1abhFlembwuC6uERZNWllbJrMxEYqWyjFdJ4urEitxlyoET56yrjVFWpU_JdtM27jmJywxYRMFakRaitAX4donAWw4GQ-CnRIT1-Nc2lCTHzhiX2rsmRa7XJNNAMo0k0zwi7zdL5ut6HDcBHyBRN4BYStsPtIuZDpKpM1elInXAlrkRJTPGWvCajaosOE91ZSPyBllCY7GMBrNxZmbVdfr4dKr3M8UkF-BER-RdAKpb2IE14ecGwAPW1xpA7g4gQZrtcLpnGR20Saev-CUirzfTuBIz5BrXrhAmzTBGLlhEnq0ZdbNvrKikpAJ8ywELDxAznGkufvha49ibOmeAyQ89s1991j_x_uLmTbwkd7kXwpyydJdsLxcr94rctr-WF91iRLbkufTPYkR2Dg7Hk-nI35SMvHDD2OT4ZPId3qan334DijNTmw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLQIuvB-BAgaBkEBRE8eJ4wNChVJ11e5qBa1UTsZxnKVSlSybXRB_it_ITOJsSRG99cA1Hkvx-JtvMvF4hpDnLI_B7eTSD5NM-jzRwpfMWF-wjBc8YkUg22YTYjxOj47kZI386u7CYFplx4kNUeeVwX_km-BqmEjQJt7OvvnYNQpPV7sWGi0s9uzPHxCy1W-G27C_Lxjb-XDwftd3XQV8k0Ri4RdFUOgwMCzXSZGlRnKDlJ1lRoo4i3lohDQBy8PQFqHhiY2lhSDFGltoLQ0WXwLKX-cI9gFZnwxHk88d90NsIEN3dhqmyWYdYjMoCNelH8RM-Kzn_ZomAX-7gj984dk8zTOHtY0P3Ln-v2nvBrnmvrbpVmseN8maLW-RyyOXT3CbbB80ifA2pyU4KTptanAjVKlLMQc1UF1TTRdVdULhA5_O5q4rEe3SEu6QwwtZw10yKKvS3ic0i8EIJMzlUcozk0L0GnL8jxPAI4jEPBJ0-62MK7qOvT9OVBN8pYlqIaIAIgohophHXq2mzNqKI-cJv0MQrQSxWHjzoJpPleMeFds84pEFw0s0zwKtjUlZrGVuIDwscuORZwhBheVASsw3muplXavhp49qK5aBYFyw0CMvnVBRwQqMdtc3QA9YQawnudGTBL4y_eEOosrxZa1O8emRp6thnIk5gKWtligTxZgFwAOP3GsNY7VurBklhQR9i57J9BTTHymPvzbV1LH7dhKAJl93xnX6Wv_U-4PzF_GEXNk9GO2r_eF47yG5yhoCSPwg2iCDxXxpH5FL5vviuJ4_dgRCyZeLtrrfTcyt9g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQQRUv3EeggEFISKCojuPY8WOhVFTAqqIF9c1yHHupVCWrzS6_n5nEWUg5JMRrPFbi8RyezPgbQp7zugC3U-s0k5VOhbQq1dz5VPFKBJHzwPTQbELNZuXpqT6KfU67sdp9TEkOdxoQpalZ7S7qMKh4KXe7DJssQRisU1ZwlYINviywjh7D9eMvoymGo7rOYirzt9MmzqjH7P_VMv_kmi6WTV7InfYu6eD6fy_mBrkWT6N0bxCfm-SSb26R7Y8x336b7J_0heK-pg0YcTrvMapxK2kswYZ3UttRS1dte07hAEwXy9i1h45p-zvk88Hbkzfv0th3IXUyV6s0BBZsxhyvrQxV6bRw6NSqymlVVIXInNKO8TrLfMickL7QHsI473ywVjud3yVbTdv4-4RWBQiJhrkiL0XlSojuMoH_ORg8gkglIWzcAOMiKDn2xjg3fXBSSjNwxwB3DHLH8IS83ExZDIgcfyN-jbu6IUQw7f5Bu5ybqJum8HUucg-CKa2omLXOQdxsde0gfAq1S8gzlAmDcBkN1uPM7brrzOHxJ7NXaKa4gDA6IS8iUWhhBc7G6w3AB0TYmlDuTChBn910eBQ9E-1JZ-CgxZVEj5CQp5thnIk1co1v10iTF5glFywh9wZJ3awbMZW00sBvNZHhCWOmI83Z1x5tHLtTSwacfDVK8o_P-iPfH_wT9ROyfbR_YD4czt4_JFd5rwkyZfkO2Vot1_4RueK-rc665eNeu78DQ1FNnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+next+generation+sequencing+as+a+tool+for+precision+medicine&rft.jtitle=BMC+medical+genomics&rft.au=Gulilat%2C+Markus&rft.au=Lamb%2C+Tyler&rft.au=Teft%2C+Wendy+A&rft.au=Wang%2C+Jian&rft.date=2019-06-03&rft.eissn=1755-8794&rft.volume=12&rft.issue=1&rft.spage=81&rft_id=info:doi/10.1186%2Fs12920-019-0527-2&rft_id=info%3Apmid%2F31159795&rft.externalDocID=31159795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-8794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-8794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-8794&client=summon