Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol

There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defe...

Full description

Saved in:
Bibliographic Details
Published in:Gastroenterology (New York, N.Y. 1943) Vol. 151; no. 4; p. 733
Main Authors: Rahman, Khalidur, Desai, Chirayu, Iyer, Smita S, Thorn, Natalie E, Kumar, Pradeep, Liu, Yunshan, Smith, Tekla, Neish, Andrew S, Li, Hongliang, Tan, Shiyun, Wu, Pengbo, Liu, Xiaoxiong, Yu, Yuanjie, Farris, Alton B, Nusrat, Asma, Parkos, Charles A, Anania, Frank A
Format: Journal Article
Language:English
Published: United States 01.10.2016
Subjects:
ISSN:1528-0012, 1528-0012
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH. Male C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy. F11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation. Mice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH.
AbstractList There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH. Male C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy. F11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation. Mice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH.
There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH.BACKGROUND & AIMSThere is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH.Male C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy.METHODSMale C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy.F11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation.RESULTSF11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation.Mice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH.CONCLUSIONSMice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH.
Author Anania, Frank A
Parkos, Charles A
Kumar, Pradeep
Smith, Tekla
Nusrat, Asma
Neish, Andrew S
Desai, Chirayu
Iyer, Smita S
Wu, Pengbo
Liu, Yunshan
Farris, Alton B
Li, Hongliang
Yu, Yuanjie
Liu, Xiaoxiong
Tan, Shiyun
Rahman, Khalidur
Thorn, Natalie E
Author_xml – sequence: 1
  givenname: Khalidur
  surname: Rahman
  fullname: Rahman, Khalidur
  email: reben.rahman@emory.edu
  organization: Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia. Electronic address: reben.rahman@emory.edu
– sequence: 2
  givenname: Chirayu
  surname: Desai
  fullname: Desai, Chirayu
  organization: P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Gujarat, India
– sequence: 3
  givenname: Smita S
  surname: Iyer
  fullname: Iyer, Smita S
  organization: Microbiology and Immunology, Yerkes National Primate Center, Emory University, Atlanta, Georgia
– sequence: 4
  givenname: Natalie E
  surname: Thorn
  fullname: Thorn, Natalie E
  organization: Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
– sequence: 5
  givenname: Pradeep
  surname: Kumar
  fullname: Kumar, Pradeep
  organization: Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
– sequence: 6
  givenname: Yunshan
  surname: Liu
  fullname: Liu, Yunshan
  organization: Atlanta VA Medical Center, Decatur, Georgia
– sequence: 7
  givenname: Tekla
  surname: Smith
  fullname: Smith, Tekla
  organization: Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia
– sequence: 8
  givenname: Andrew S
  surname: Neish
  fullname: Neish, Andrew S
  organization: Department of Pathology and Laboratory Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
– sequence: 9
  givenname: Hongliang
  surname: Li
  fullname: Li, Hongliang
  organization: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
– sequence: 10
  givenname: Shiyun
  surname: Tan
  fullname: Tan, Shiyun
  organization: Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
– sequence: 11
  givenname: Pengbo
  surname: Wu
  fullname: Wu, Pengbo
  organization: Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
– sequence: 12
  givenname: Xiaoxiong
  surname: Liu
  fullname: Liu, Xiaoxiong
  organization: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
– sequence: 13
  givenname: Yuanjie
  surname: Yu
  fullname: Yu, Yuanjie
  organization: Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
– sequence: 14
  givenname: Alton B
  surname: Farris
  fullname: Farris, Alton B
  organization: Department of Pathology and Laboratory Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
– sequence: 15
  givenname: Asma
  surname: Nusrat
  fullname: Nusrat, Asma
  organization: Department of Pathology, The University of Michigan, Ann Arbor, Michigan
– sequence: 16
  givenname: Charles A
  surname: Parkos
  fullname: Parkos, Charles A
  organization: Department of Pathology, The University of Michigan, Ann Arbor, Michigan
– sequence: 17
  givenname: Frank A
  surname: Anania
  fullname: Anania, Frank A
  email: fanania@emory.edu
  organization: Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia. Electronic address: fanania@emory.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27342212$$D View this record in MEDLINE/PubMed
BookMark eNpNkN1Kw0AQhRep2B99A5G99KKps5Omm70s1VqlolC9Lptk0m5Js3V3I_gIvrURKwgDcxi-cw5Mn3VqWxNjlwJGApL4ZjfaaB-cHSGIyQjaQTxhPZFgGgEI7PzTXdb3fgcAKk7FGeuijMeIAnvsa2m957bkj02dB2NrXfFpsSXfSv5kK8qbiviUvzi7t4E8X9EHOeKrQDrYLR10MMF4blra5MRbl-a3hgJfmM3257zSoXE6UMHnOgz53DV5sJ6GXNcFn23bCh_I2eqcnZa68nRx3AP2Nr97nS2i5fP9w2y6jPJJLENUiixOdSllTFQoqaRWAEkux4CZAiQ1ySAGOVEFQpaoTJQJKUSQshyrNClwwK5_cw_Ovjdt-XpvfE5VpWuyjV-LFGMFUqXYoldHtMn2VKwPzuy1-1z_vQ-_AeI7dRI
CitedBy_id crossref_primary_10_1016_j_jhep_2017_11_014
crossref_primary_10_1016_j_phymed_2024_156347
crossref_primary_10_1016_j_fbio_2024_103851
crossref_primary_10_1111_jgh_15713
crossref_primary_10_3390_cells13090756
crossref_primary_10_1016_j_foodres_2024_115123
crossref_primary_10_1146_annurev_pathol_030320_095722
crossref_primary_10_1053_j_gastro_2020_03_010
crossref_primary_10_1096_fj_201902687R
crossref_primary_10_3390_cancers13040730
crossref_primary_10_1016_j_clinre_2021_101710
crossref_primary_10_1016_j_jff_2024_106247
crossref_primary_10_1038_s41575_018_0011_z
crossref_primary_10_1080_17474124_2017_1291340
crossref_primary_10_1155_2018_9547613
crossref_primary_10_1016_j_livres_2021_08_003
crossref_primary_10_1055_s_0042_1748037
crossref_primary_10_3389_fimmu_2025_1575770
crossref_primary_10_3389_fcimb_2020_00272
crossref_primary_10_1016_j_dld_2022_04_012
crossref_primary_10_12938_bmfh_2024_074
crossref_primary_10_1007_s40572_019_00232_w
crossref_primary_10_1038_s41598_021_82208_1
crossref_primary_10_1016_j_cgh_2021_12_011
crossref_primary_10_3390_antiox14010056
crossref_primary_10_1111_hepr_13473
crossref_primary_10_3389_fimmu_2022_893617
crossref_primary_10_3390_ijms21041525
crossref_primary_10_1016_j_lfs_2018_08_017
crossref_primary_10_1016_j_bpg_2017_09_008
crossref_primary_10_1091_mbc_E18_08_0531
crossref_primary_10_1053_j_gastro_2018_02_019
crossref_primary_10_15252_emmm_201809302
crossref_primary_10_1016_j_lfs_2021_119135
crossref_primary_10_3389_fphar_2022_944088
crossref_primary_10_1186_s12929_019_0554_5
crossref_primary_10_1016_j_jnutbio_2025_110069
crossref_primary_10_1186_s40168_019_0713_7
crossref_primary_10_1080_19490976_2024_2331460
crossref_primary_10_1016_j_intimp_2025_115050
crossref_primary_10_3389_fimmu_2021_678360
crossref_primary_10_1093_nutrit_nuy064
crossref_primary_10_3390_nu15061323
crossref_primary_10_1007_s00109_022_02282_4
crossref_primary_10_1016_j_cmet_2024_05_008
crossref_primary_10_3390_nu9091013
crossref_primary_10_1097_HEP_0000000000001214
crossref_primary_10_3390_biomedicines12020397
crossref_primary_10_1155_2021_5320445
crossref_primary_10_3390_biom12010056
crossref_primary_10_1007_s12072_023_10601_1
crossref_primary_10_3389_fimmu_2021_660179
crossref_primary_10_3389_fimmu_2021_742584
crossref_primary_10_1053_j_gastro_2020_04_077
crossref_primary_10_1016_j_nutres_2022_07_006
crossref_primary_10_1038_s41467_022_31947_4
crossref_primary_10_3168_jds_2022_23045
crossref_primary_10_3390_livers5020017
crossref_primary_10_1016_j_cld_2024_03_001
crossref_primary_10_1007_s11901_018_0425_7
crossref_primary_10_1016_j_livres_2017_11_005
crossref_primary_10_1007_s11684_023_0990_1
crossref_primary_10_3390_children4080066
crossref_primary_10_3390_ijms242316733
crossref_primary_10_1016_j_cmet_2020_11_002
crossref_primary_10_3389_fcimb_2022_774335
crossref_primary_10_3390_pathogens12091087
crossref_primary_10_1016_j_smim_2023_101846
crossref_primary_10_1038_s41467_025_60457_2
crossref_primary_10_3390_nu12113444
crossref_primary_10_3390_nu13041314
crossref_primary_10_3390_metabo14120704
crossref_primary_10_1016_j_mce_2022_111650
crossref_primary_10_1002_hep4_1448
crossref_primary_10_1016_j_aninu_2024_06_006
crossref_primary_10_1016_j_intimp_2021_108500
crossref_primary_10_1002_ame2_12337
crossref_primary_10_1016_j_cgh_2018_08_065
crossref_primary_10_1080_21688370_2021_1879719
crossref_primary_10_2147_DMSO_S370492
crossref_primary_10_1111_liv_15967
crossref_primary_10_1002_advs_202402551
crossref_primary_10_1515_hsz_2017_0324
crossref_primary_10_3390_cells11233751
crossref_primary_10_1038_s41575_018_0009_6
crossref_primary_10_3389_fcvm_2022_888818
crossref_primary_10_1136_gutjnl_2024_332894
crossref_primary_10_1002_mnfr_202000375
crossref_primary_10_1038_nm_4346
crossref_primary_10_1111_jcmm_16229
crossref_primary_10_1155_2021_2234695
crossref_primary_10_1146_annurev_immunol_082019_081656
crossref_primary_10_3390_biomedicines10010083
crossref_primary_10_1016_j_cmet_2020_10_019
crossref_primary_10_14814_phy2_13541
crossref_primary_10_1080_14737175_2019_1623026
crossref_primary_10_1038_s42255_020_0261_2
crossref_primary_10_3389_fimmu_2017_01159
crossref_primary_10_2174_1381612826666200523180301
crossref_primary_10_1016_j_nutres_2021_04_008
crossref_primary_10_1242_dmm_048922
crossref_primary_10_3390_ijms21175999
crossref_primary_10_1016_j_ijbiomac_2022_12_201
crossref_primary_10_3389_fphar_2021_734670
crossref_primary_10_3390_nu14091699
crossref_primary_10_1016_j_mocell_2025_100216
crossref_primary_10_1155_2024_4864639
crossref_primary_10_1002_hep4_1331
crossref_primary_10_1038_s41598_025_92282_4
crossref_primary_10_1080_21688370_2022_2077069
crossref_primary_10_1177_1535370219836739
crossref_primary_10_1016_j_jnutbio_2019_05_013
crossref_primary_10_3390_ijms25116280
crossref_primary_10_1016_j_jhep_2020_05_047
crossref_primary_10_1111_joim_12892
crossref_primary_10_1055_s_0041_1723752
crossref_primary_10_1172_JCI186423
crossref_primary_10_3390_ijms22136969
crossref_primary_10_3390_biology11111622
crossref_primary_10_3390_ijms231810620
crossref_primary_10_1007_s13105_024_01023_0
crossref_primary_10_1016_j_intimp_2023_111429
crossref_primary_10_1016_j_jhep_2019_08_005
crossref_primary_10_1016_j_bbamem_2020_183299
crossref_primary_10_3390_antiox10030384
crossref_primary_10_1155_ijm_2273986
crossref_primary_10_1016_j_biopha_2024_116333
crossref_primary_10_5582_bst_2024_01097
crossref_primary_10_3350_cmh_2022_0398
crossref_primary_10_3390_ijms22126485
crossref_primary_10_1039_D0FO02664F
crossref_primary_10_1136_gutjnl_2017_313884
crossref_primary_10_1016_j_metabol_2021_154844
crossref_primary_10_1194_jlr_M075713
crossref_primary_10_1016_j_bbrc_2021_05_097
crossref_primary_10_1007_s00281_021_00881_w
crossref_primary_10_1016_j_gtc_2019_09_003
crossref_primary_10_3390_jcm9082648
crossref_primary_10_1016_j_lfs_2023_121614
crossref_primary_10_1096_fj_201801415RR
crossref_primary_10_1111_liv_15187
crossref_primary_10_1038_s41575_025_01089_1
crossref_primary_10_3748_wjg_v26_i16_1901
crossref_primary_10_4239_wjd_v13_i9_668
crossref_primary_10_1371_journal_pone_0218490
crossref_primary_10_3390_cells13070649
crossref_primary_10_3390_biomedicines9020145
crossref_primary_10_3389_fendo_2022_841703
crossref_primary_10_3389_fmicb_2022_1003755
crossref_primary_10_1016_j_molcel_2021_08_027
crossref_primary_10_1038_nm_4412
crossref_primary_10_1146_annurev_pathol_020117_043617
crossref_primary_10_1007_s00210_024_03710_7
crossref_primary_10_3389_fimmu_2025_1593245
crossref_primary_10_1515_hmbci_2019_0044
crossref_primary_10_1016_j_jhazmat_2025_137166
crossref_primary_10_1016_j_clnesp_2022_12_030
crossref_primary_10_1111_liv_16045
crossref_primary_10_1017_cts_2021_801
crossref_primary_10_3724_abbs_2025081
crossref_primary_10_3389_fendo_2022_885039
crossref_primary_10_1039_D0FO02153A
crossref_primary_10_3389_fendo_2025_1543003
crossref_primary_10_3748_wjg_v24_i27_2974
crossref_primary_10_3390_ijms23158253
crossref_primary_10_3390_livers5010011
crossref_primary_10_1053_j_gastro_2020_01_049
crossref_primary_10_3390_livers5010013
crossref_primary_10_3390_ijerph182312836
crossref_primary_10_3389_fimmu_2025_1599956
crossref_primary_10_3390_nu13041281
crossref_primary_10_1111_jcmm_17175
crossref_primary_10_1038_s41423_020_00579_3
crossref_primary_10_7717_peerj_4195
crossref_primary_10_1016_j_ajpath_2017_10_006
crossref_primary_10_3389_fnut_2022_1072044
crossref_primary_10_1002_2211_5463_13243
crossref_primary_10_1186_s13099_019_0302_0
crossref_primary_10_1002_hep_30652
crossref_primary_10_1002_hep4_1165
crossref_primary_10_3390_metabo12050431
crossref_primary_10_3389_fendo_2021_751802
crossref_primary_10_3390_microorganisms12122488
crossref_primary_10_1007_s00281_024_01026_5
crossref_primary_10_1007_s00394_020_02431_w
crossref_primary_10_1016_j_nut_2022_111829
crossref_primary_10_1016_j_tem_2022_07_001
crossref_primary_10_1097_CM9_0000000000002711
crossref_primary_10_1111_bph_14095
crossref_primary_10_1016_j_coph_2020_03_006
crossref_primary_10_3748_wjg_v31_i4_101436
crossref_primary_10_1016_j_mce_2024_112177
crossref_primary_10_1007_s11684_018_0645_9
crossref_primary_10_1016_j_scitotenv_2024_172037
crossref_primary_10_1038_s12276_019_0304_5
crossref_primary_10_1016_j_pharmthera_2024_108593
crossref_primary_10_1097_MD_0000000000031508
crossref_primary_10_3389_fmicb_2021_761836
crossref_primary_10_3748_wjg_v25_i33_4814
crossref_primary_10_1016_j_dld_2022_12_022
crossref_primary_10_3350_cmh_2024_0782
crossref_primary_10_3390_toxins11070398
crossref_primary_10_1093_jn_nxac181
crossref_primary_10_1093_lifemeta_load032
crossref_primary_10_1016_j_cmet_2018_08_020
crossref_primary_10_1038_s41579_023_00904_3
crossref_primary_10_3390_jcm10245721
crossref_primary_10_3389_fmicb_2025_1577724
crossref_primary_10_1016_j_freeradbiomed_2021_06_027
crossref_primary_10_1016_j_cld_2022_05_001
crossref_primary_10_3390_nu16091388
crossref_primary_10_1016_j_jhep_2018_02_005
crossref_primary_10_1016_j_jhep_2019_10_003
crossref_primary_10_1177_17562848231176427
crossref_primary_10_1080_19490976_2025_2500099
crossref_primary_10_1186_s13213_020_01608_2
crossref_primary_10_1016_j_lfs_2024_122818
crossref_primary_10_1038_s41385_019_0143_7
crossref_primary_10_1007_s13167_025_00398_4
crossref_primary_10_1111_jcmm_18364
crossref_primary_10_1016_j_biopha_2021_111235
crossref_primary_10_1111_1751_2980_12709
crossref_primary_10_1089_jir_2023_0162
crossref_primary_10_1371_journal_pone_0288907
crossref_primary_10_3390_medicina59030594
crossref_primary_10_1038_s41387_024_00323_0
crossref_primary_10_1016_j_phrs_2020_105135
crossref_primary_10_1016_j_jnutbio_2024_109704
ContentType Journal Article
Copyright Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1053/j.gastro.2016.06.022
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1528-0012
ExternalDocumentID 27342212
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK062092
– fundername: NIDDK NIH HHS
  grantid: R01 DK089763
– fundername: NIDDK NIH HHS
  grantid: R01 DK079392
– fundername: BLRD VA
  grantid: I01 BX001746
– fundername: NIDDK NIH HHS
  grantid: R01 DK061379
– fundername: NIDDK NIH HHS
  grantid: R01 DK111678
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
1B1
1CY
1P~
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
AAEDT
AAEDW
AAFWJ
AAIKJ
AALRI
AAQFI
AAQOH
AAQQT
AAQXK
AAXUO
ABCQX
ABDPE
ABJNI
ABLJU
ABMAC
ABOCM
ABWVN
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
AENEX
AEVXI
AFCTW
AFFNX
AFHKK
AFJKZ
AFRHN
AFTJW
AGCQF
AGHFR
AGQPQ
AI.
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BELOY
BR6
C5W
CAG
CGR
COF
CS3
CUY
CVF
DU5
EBS
ECM
EFJIC
EFKBS
EIF
EJD
F5P
FD8
FDB
FEDTE
FGOYB
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
NPM
NQ-
O9-
OC.
OHT
ON0
P2P
PC.
QTD
R2-
RIG
ROL
RPZ
SEL
SES
SJN
SSZ
UDS
UGJ
UV1
VH1
WH7
X7M
XH2
Y6R
YQJ
Z5R
ZGI
ZXP
7X8
ID FETCH-LOGICAL-c637t-f1b38af773eed9797a9005c7402b902e96b030769d20b59b1f5e922077f4985d2
IEDL.DBID 7X8
ISICitedReferencesCount 267
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389548500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1528-0012
IngestDate Sat Sep 27 23:29:55 EDT 2025
Mon Jul 21 06:04:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bacterial Translocation
Claudin-4
Occludin
Language English
License Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-f1b38af773eed9797a9005c7402b902e96b030769d20b59b1f5e922077f4985d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5037035
PMID 27342212
PQID 1823907982
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1823907982
pubmed_primary_27342212
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastroenterology (New York, N.Y. 1943)
PublicationTitleAlternate Gastroenterology
PublicationYear 2016
SSID ssj0009381
Score 2.6269
Snippet There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 733
SubjectTerms Animals
Cell Adhesion Molecules - deficiency
Cholesterol
Diet, High-Fat - adverse effects
Diet, High-Fat - methods
Dietary Carbohydrates
Disease Models, Animal
Dysbiosis - complications
Dysbiosis - genetics
Fructose
Gastrointestinal Microbiome - genetics
Intestinal Mucosa - metabolism
Intestinal Mucosa - microbiology
Liver - pathology
Male
Mice
Mice, Inbred C57BL
Non-alcoholic Fatty Liver Disease - genetics
Non-alcoholic Fatty Liver Disease - microbiology
Non-alcoholic Fatty Liver Disease - pathology
Permeability
Receptors, Cell Surface - deficiency
Reverse Transcriptase Polymerase Chain Reaction
Title Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol
URI https://www.ncbi.nlm.nih.gov/pubmed/27342212
https://www.proquest.com/docview/1823907982
Volume 151
WOSCitedRecordID wos000389548500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG5cXcSLj13Xt5Tg0axJ9ySdOsmgDiLOMKALcxs6ne51RBI10f_gv7YqyeBpQdhLDiENTaW6qrrqq6-EOFaRsSrGJEAX26DnsRcYciOBdYm1CZLdDJtG4Rs9GqWTCY67hFvVwSrnNrEx1HlpOUd-SnEwXc81pvLs6TngqVFcXe1GaHwTS4pCGdZqPflkC0eVtnypzMJMlnjeOher04fff01Vv3D7X5Q0DJ48PvdfQWbjbAZr_7vNdbHahZnQb_ViQyy44odYHnaF9J_i_YacI5QersmvtelA6Of3jnNnMGxH5jrow7hB67kKbh3pvAOG_9blvWMcdj2rYEZfk6kBWmXgYuZqYOAIv75lxlAKZHMYmPoEBkxTW1buBEyRwzlP5WWKhvJxU_wZXN6dXwXdVIbAJkrXgY8ylRqvtSL3ihq1QTrJVtNFNMNQOkwyNhwJ5jLMYswiHzuUMtTa9zCNc_lLLBZl4bYF9JQ2xsdh5CUTF2oTJT70uYyM9GGO8Y44mgt5SlrPpQxTuPK1mn6KeUdstX9q-tTSc0yZsEeSR979wuo9scIK0KLz9sWSpzPvDsR3-0YyfDls1Imeo_HwA-vV0-k
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+Junctional+Adhesion+Molecule+A+Promotes+Severe+Steatohepatitis+in+Mice+on+a+Diet+High+in+Saturated+Fat%2C+Fructose%2C+and+Cholesterol&rft.jtitle=Gastroenterology+%28New+York%2C+N.Y.+1943%29&rft.au=Rahman%2C+Khalidur&rft.au=Desai%2C+Chirayu&rft.au=Iyer%2C+Smita+S&rft.au=Thorn%2C+Natalie+E&rft.date=2016-10-01&rft.issn=1528-0012&rft.eissn=1528-0012&rft.volume=151&rft.issue=4&rft.spage=733&rft_id=info:doi/10.1053%2Fj.gastro.2016.06.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-0012&client=summon