Automated chest screening based on a hybrid model of transfer learning and convolutional sparse denoising autoencoder

Objective In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions involving tens of thousands of chest X-rays (CXRs) that are required for diagnosis. Therefore, high accuracy of diagnosis by an automated system can...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomedical engineering online Ročník 17; číslo 1; s. 63 - 19
Hlavní autori: Wang, Changmiao, Elazab, Ahmed, Jia, Fucang, Wu, Jianhuang, Hu, Qingmao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 23.05.2018
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1475-925X, 1475-925X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Objective In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions involving tens of thousands of chest X-rays (CXRs) that are required for diagnosis. Therefore, high accuracy of diagnosis by an automated system can reduce the radiologist’s workload on scrutinizing the medical images. Method We present a deep learning model in order to efficiently detect abnormal levels or identify normal levels during mass chest screening so as to obtain the probability confidence of the CXRs. Moreover, a convolutional sparse denoising autoencoder is designed to compute the reconstruction error. We employ four publicly available radiology datasets pertaining to CXRs, analyze their reports, and utilize their images for mining the correct disease level of the CXRs that are to be submitted to a computer aided triaging system. Based on our approach, we vote for the final decision from multi-classifiers to determine which three levels of the images (i.e. normal, abnormal, and uncertain cases) that the CXRs fall into. Results We only deal with the grade diagnosis for physical examination and propose multiple new metric indices. Combining predictors for classification by using the area under a receiver operating characteristic curve, we observe that the final decision is related to the threshold from reconstruction error and the probability value. Our method achieves promising results in terms of precision of 98.7 and 94.3% based on the normal and abnormal cases, respectively. Conclusion The results achieved by the proposed framework show superiority in classifying the disease level with high accuracy. This can potentially save the radiologists time and effort, so as to allow them to focus on higher-level risk CXRs.
AbstractList Abstract Objective In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions involving tens of thousands of chest X-rays (CXRs) that are required for diagnosis. Therefore, high accuracy of diagnosis by an automated system can reduce the radiologist’s workload on scrutinizing the medical images. Method We present a deep learning model in order to efficiently detect abnormal levels or identify normal levels during mass chest screening so as to obtain the probability confidence of the CXRs. Moreover, a convolutional sparse denoising autoencoder is designed to compute the reconstruction error. We employ four publicly available radiology datasets pertaining to CXRs, analyze their reports, and utilize their images for mining the correct disease level of the CXRs that are to be submitted to a computer aided triaging system. Based on our approach, we vote for the final decision from multi-classifiers to determine which three levels of the images (i.e. normal, abnormal, and uncertain cases) that the CXRs fall into. Results We only deal with the grade diagnosis for physical examination and propose multiple new metric indices. Combining predictors for classification by using the area under a receiver operating characteristic curve, we observe that the final decision is related to the threshold from reconstruction error and the probability value. Our method achieves promising results in terms of precision of 98.7 and 94.3% based on the normal and abnormal cases, respectively. Conclusion The results achieved by the proposed framework show superiority in classifying the disease level with high accuracy. This can potentially save the radiologists time and effort, so as to allow them to focus on higher-level risk CXRs.
Objective In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions involving tens of thousands of chest X-rays (CXRs) that are required for diagnosis. Therefore, high accuracy of diagnosis by an automated system can reduce the radiologist’s workload on scrutinizing the medical images. Method We present a deep learning model in order to efficiently detect abnormal levels or identify normal levels during mass chest screening so as to obtain the probability confidence of the CXRs. Moreover, a convolutional sparse denoising autoencoder is designed to compute the reconstruction error. We employ four publicly available radiology datasets pertaining to CXRs, analyze their reports, and utilize their images for mining the correct disease level of the CXRs that are to be submitted to a computer aided triaging system. Based on our approach, we vote for the final decision from multi-classifiers to determine which three levels of the images (i.e. normal, abnormal, and uncertain cases) that the CXRs fall into. Results We only deal with the grade diagnosis for physical examination and propose multiple new metric indices. Combining predictors for classification by using the area under a receiver operating characteristic curve, we observe that the final decision is related to the threshold from reconstruction error and the probability value. Our method achieves promising results in terms of precision of 98.7 and 94.3% based on the normal and abnormal cases, respectively. Conclusion The results achieved by the proposed framework show superiority in classifying the disease level with high accuracy. This can potentially save the radiologists time and effort, so as to allow them to focus on higher-level risk CXRs.
In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions involving tens of thousands of chest X-rays (CXRs) that are required for diagnosis. Therefore, high accuracy of diagnosis by an automated system can reduce the radiologist's workload on scrutinizing the medical images. We present a deep learning model in order to efficiently detect abnormal levels or identify normal levels during mass chest screening so as to obtain the probability confidence of the CXRs. Moreover, a convolutional sparse denoising autoencoder is designed to compute the reconstruction error. We employ four publicly available radiology datasets pertaining to CXRs, analyze their reports, and utilize their images for mining the correct disease level of the CXRs that are to be submitted to a computer aided triaging system. Based on our approach, we vote for the final decision from multi-classifiers to determine which three levels of the images (i.e. normal, abnormal, and uncertain cases) that the CXRs fall into. We only deal with the grade diagnosis for physical examination and propose multiple new metric indices. Combining predictors for classification by using the area under a receiver operating characteristic curve, we observe that the final decision is related to the threshold from reconstruction error and the probability value. Our method achieves promising results in terms of precision of 98.7 and 94.3% based on the normal and abnormal cases, respectively. The results achieved by the proposed framework show superiority in classifying the disease level with high accuracy. This can potentially save the radiologists time and effort, so as to allow them to focus on higher-level risk CXRs.
Objective In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions involving tens of thousands of chest X-rays (CXRs) that are required for diagnosis. Therefore, high accuracy of diagnosis by an automated system can reduce the radiologist’s workload on scrutinizing the medical images. Method We present a deep learning model in order to efficiently detect abnormal levels or identify normal levels during mass chest screening so as to obtain the probability confidence of the CXRs. Moreover, a convolutional sparse denoising autoencoder is designed to compute the reconstruction error. We employ four publicly available radiology datasets pertaining to CXRs, analyze their reports, and utilize their images for mining the correct disease level of the CXRs that are to be submitted to a computer aided triaging system. Based on our approach, we vote for the final decision from multi-classifiers to determine which three levels of the images (i.e. normal, abnormal, and uncertain cases) that the CXRs fall into. Results We only deal with the grade diagnosis for physical examination and propose multiple new metric indices. Combining predictors for classification by using the area under a receiver operating characteristic curve, we observe that the final decision is related to the threshold from reconstruction error and the probability value. Our method achieves promising results in terms of precision of 98.7 and 94.3% based on the normal and abnormal cases, respectively. Conclusion The results achieved by the proposed framework show superiority in classifying the disease level with high accuracy. This can potentially save the radiologists time and effort, so as to allow them to focus on higher-level risk CXRs.
In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions involving tens of thousands of chest X-rays (CXRs) that are required for diagnosis. Therefore, high accuracy of diagnosis by an automated system can reduce the radiologist's workload on scrutinizing the medical images. We present a deep learning model in order to efficiently detect abnormal levels or identify normal levels during mass chest screening so as to obtain the probability confidence of the CXRs. Moreover, a convolutional sparse denoising autoencoder is designed to compute the reconstruction error. We employ four publicly available radiology datasets pertaining to CXRs, analyze their reports, and utilize their images for mining the correct disease level of the CXRs that are to be submitted to a computer aided triaging system. Based on our approach, we vote for the final decision from multi-classifiers to determine which three levels of the images (i.e. normal, abnormal, and uncertain cases) that the CXRs fall into. We only deal with the grade diagnosis for physical examination and propose multiple new metric indices. Combining predictors for classification by using the area under a receiver operating characteristic curve, we observe that the final decision is related to the threshold from reconstruction error and the probability value. Our method achieves promising results in terms of precision of 98.7 and 94.3% based on the normal and abnormal cases, respectively. The results achieved by the proposed framework show superiority in classifying the disease level with high accuracy. This can potentially save the radiologists time and effort, so as to allow them to focus on higher-level risk CXRs.
Objective In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions involving tens of thousands of chest X-rays (CXRs) that are required for diagnosis. Therefore, high accuracy of diagnosis by an automated system can reduce the radiologist's workload on scrutinizing the medical images. Method We present a deep learning model in order to efficiently detect abnormal levels or identify normal levels during mass chest screening so as to obtain the probability confidence of the CXRs. Moreover, a convolutional sparse denoising autoencoder is designed to compute the reconstruction error. We employ four publicly available radiology datasets pertaining to CXRs, analyze their reports, and utilize their images for mining the correct disease level of the CXRs that are to be submitted to a computer aided triaging system. Based on our approach, we vote for the final decision from multi-classifiers to determine which three levels of the images (i.e. normal, abnormal, and uncertain cases) that the CXRs fall into. Results We only deal with the grade diagnosis for physical examination and propose multiple new metric indices. Combining predictors for classification by using the area under a receiver operating characteristic curve, we observe that the final decision is related to the threshold from reconstruction error and the probability value. Our method achieves promising results in terms of precision of 98.7 and 94.3% based on the normal and abnormal cases, respectively. Conclusion The results achieved by the proposed framework show superiority in classifying the disease level with high accuracy. This can potentially save the radiologists time and effort, so as to allow them to focus on higher-level risk CXRs. Keywords: Chest screening, Computer aided diagnosis, Deep learning, Autoencoder, Receiver operating characteristic
In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions involving tens of thousands of chest X-rays (CXRs) that are required for diagnosis. Therefore, high accuracy of diagnosis by an automated system can reduce the radiologist's workload on scrutinizing the medical images.OBJECTIVEIn this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions involving tens of thousands of chest X-rays (CXRs) that are required for diagnosis. Therefore, high accuracy of diagnosis by an automated system can reduce the radiologist's workload on scrutinizing the medical images.We present a deep learning model in order to efficiently detect abnormal levels or identify normal levels during mass chest screening so as to obtain the probability confidence of the CXRs. Moreover, a convolutional sparse denoising autoencoder is designed to compute the reconstruction error. We employ four publicly available radiology datasets pertaining to CXRs, analyze their reports, and utilize their images for mining the correct disease level of the CXRs that are to be submitted to a computer aided triaging system. Based on our approach, we vote for the final decision from multi-classifiers to determine which three levels of the images (i.e. normal, abnormal, and uncertain cases) that the CXRs fall into.METHODWe present a deep learning model in order to efficiently detect abnormal levels or identify normal levels during mass chest screening so as to obtain the probability confidence of the CXRs. Moreover, a convolutional sparse denoising autoencoder is designed to compute the reconstruction error. We employ four publicly available radiology datasets pertaining to CXRs, analyze their reports, and utilize their images for mining the correct disease level of the CXRs that are to be submitted to a computer aided triaging system. Based on our approach, we vote for the final decision from multi-classifiers to determine which three levels of the images (i.e. normal, abnormal, and uncertain cases) that the CXRs fall into.We only deal with the grade diagnosis for physical examination and propose multiple new metric indices. Combining predictors for classification by using the area under a receiver operating characteristic curve, we observe that the final decision is related to the threshold from reconstruction error and the probability value. Our method achieves promising results in terms of precision of 98.7 and 94.3% based on the normal and abnormal cases, respectively.RESULTSWe only deal with the grade diagnosis for physical examination and propose multiple new metric indices. Combining predictors for classification by using the area under a receiver operating characteristic curve, we observe that the final decision is related to the threshold from reconstruction error and the probability value. Our method achieves promising results in terms of precision of 98.7 and 94.3% based on the normal and abnormal cases, respectively.The results achieved by the proposed framework show superiority in classifying the disease level with high accuracy. This can potentially save the radiologists time and effort, so as to allow them to focus on higher-level risk CXRs.CONCLUSIONThe results achieved by the proposed framework show superiority in classifying the disease level with high accuracy. This can potentially save the radiologists time and effort, so as to allow them to focus on higher-level risk CXRs.
ArticleNumber 63
Audience Academic
Author Wang, Changmiao
Jia, Fucang
Elazab, Ahmed
Wu, Jianhuang
Hu, Qingmao
Author_xml – sequence: 1
  givenname: Changmiao
  surname: Wang
  fullname: Wang, Changmiao
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Ahmed
  surname: Elazab
  fullname: Elazab, Ahmed
  organization: Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Department of Computer Science, Misr Higher Institute for Commerce and Computers
– sequence: 3
  givenname: Fucang
  surname: Jia
  fullname: Jia, Fucang
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
– sequence: 4
  givenname: Jianhuang
  surname: Wu
  fullname: Wu, Jianhuang
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
– sequence: 5
  givenname: Qingmao
  surname: Hu
  fullname: Hu, Qingmao
  email: qm.hu@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Key Laboratory of Human-Machine Intelligence Synergy Systems
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29792208$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhU1JaR7tD-imGLpJF071smxtCkPoYyBQ6AO6E7J05dFgS1PJDs2_r2YmaTKhLUbYXH_nyDo-p8WRDx6K4iVGFxi3_G3CRNC2QjgvJnhFnhQnmDV1JUj94-jB83FxmtIaIYIQF8-KYyIaQQhqT4p5MU9hVBOYUq8gTWXSEcA735edSnkafKnK1U0XnSnHYGAogy2nqHyyEMsBVNzBymeD4K_DME8ueDWUaaNigtKADy7tkLwTeJ094vPiqVVDghe397Pi-4f33y4_VVefPy4vF1eV5rSZKiAKGMEdVaRFVFNrCOoENLizXKuGEUSAa4Y0CEOpBWMAbKdwzRBiWHf0rFjufU1Qa7mJblTxRgbl5G4QYi9VnJweQCJeYw2dUJQDa2kjGBPCEIta3CqLRPZ6t_fazN0IRoPPKQwHpodvvFvJPlzLWnAuSJMNzm8NYvg556zl6JKGYVAewpwkQYw2GAtWZ_T1I3Qd5phT3VI1bxhvGbqnepUP4LwNeV-9NZWLmnGGakpZpi7-QuXLwOjyLwPr8vxA8OZAkJkJfk29mlOSy69fDtlXD0P5k8ZdwTLQ7AEdQ0oRrNRuUtuK5K9wg8RIbqss91WWucpyW2VJshI_Ut6Z_09D9pqUWd9DvM_t36LffrUFsw
CitedBy_id crossref_primary_10_1038_s41598_025_13818_2
crossref_primary_10_1016_j_jcf_2019_04_016
crossref_primary_10_1007_s42600_021_00152_5
crossref_primary_10_3390_healthcare8020107
crossref_primary_10_3390_math7121170
crossref_primary_10_1002_mp_13421
crossref_primary_10_1016_j_jbi_2021_103693
crossref_primary_10_1007_s00138_021_01224_3
crossref_primary_10_1016_j_bbe_2021_11_004
crossref_primary_10_1109_ACCESS_2024_3389669
crossref_primary_10_1007_s00530_023_01172_0
crossref_primary_10_1109_ACCESS_2020_2989273
crossref_primary_10_3389_fdata_2023_1120989
crossref_primary_10_1016_j_media_2021_102125
crossref_primary_10_1016_j_ejmp_2021_05_003
Cites_doi 10.1038/nature14539
10.1109/TBME.2016.2613502
10.1016/S0042-6989(97)00169-7
10.1109/CVPR.2017.369
10.1162/neco.1997.9.8.1735
10.1109/TMI.2016.2629462
10.1007/978-3-319-93000-8_62
10.1007/978-3-319-19992-4_46
10.1118/1.4948498
10.1109/TPAMI.2016.2644615
10.1109/TMI.2016.2528162
10.1109/ISBI.2015.7163869
10.1613/jair.953
10.1007/s00429-015-1059-y
10.1109/TMI.2016.2536809
10.1109/TMI.2013.2290491
10.1016/j.neunet.2014.09.003
10.1109/ISBI.2015.7163871
10.1145/1390156.1390294
10.1166/jmihi.2015.1382
10.1109/CVPR.2015.7298594
10.1109/CVPR.2016.308
10.1007/978-3-319-24574-4_28
10.1145/1007730.1007735
10.2214/ajr.174.1.1740071
10.1166/jmihi.2016.1714
10.1111/j.1541-0420.2005.00420.x
10.1109/CVPR.2015.7298965
10.1166/jmihi.2016.1871
10.1148/radiol.11091710
10.1109/CVPR.2016.274
10.1166/jmihi.2015.1673
10.1109/CVPR.2009.5206848
10.1007/s10278-016-9914-9
10.1007/978-3-319-46723-8_15
10.1038/srep46479
10.1109/ICCV.2017.324
10.1038/381607a0
10.1109/CVPR.2017.243
10.1109/CVPR.2016.90
10.1155/2016/6215085
10.1109/TPAMI.2017.2699184
10.1016/j.media.2015.08.001
10.1166/jmihi.2017.2280
10.1166/jmihi.2018.2345
10.1038/nature21056
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s12938-018-0496-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database (ProQuest)
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 19
ExternalDocumentID oai_doaj_org_article_0651ceb9a36e483794499d2f0818af09
PMC5966927
A546405334
29792208
10_1186_s12938_018_0496_2
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Shenzhen Key Basic Research Grant
  grantid: JCYJ20160331191401141
– fundername: National Natural Science Foundation of China
  grantid: 61671440
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Joint Key project of NSFC-Shenzhen Robot Foundation Research Center
  grantid: U1713215
– fundername: National Natural Science Foundation of China
  grantid: 61671440
– fundername: ;
  grantid: JCYJ20160331191401141
– fundername: ;
  grantid: 61671440
– fundername: ;
  grantid: U1713215
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c637t-e2ae421b3a2803c3fd20b9e71bf6ca74202e6c40ce9d33feddeefba1540041cb3
IEDL.DBID M7P
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433383100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1475-925X
IngestDate Fri Oct 03 12:41:50 EDT 2025
Tue Nov 04 01:46:33 EST 2025
Thu Sep 04 15:17:22 EDT 2025
Mon Oct 06 18:23:02 EDT 2025
Tue Nov 11 10:02:43 EST 2025
Tue Nov 04 17:44:30 EST 2025
Thu Nov 13 15:18:36 EST 2025
Thu Apr 03 07:04:25 EDT 2025
Sat Nov 29 01:47:55 EST 2025
Tue Nov 18 21:18:20 EST 2025
Sat Sep 06 07:30:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Computer aided diagnosis
Receiver operating characteristic
Autoencoder
Chest screening
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-e2ae421b3a2803c3fd20b9e71bf6ca74202e6c40ce9d33feddeefba1540041cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2056746840?pq-origsite=%requestingapplication%
PMID 29792208
PQID 2056746840
PQPubID 42562
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_0651ceb9a36e483794499d2f0818af09
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5966927
proquest_miscellaneous_2043711945
proquest_journals_2056746840
gale_infotracmisc_A546405334
gale_infotracacademiconefile_A546405334
gale_incontextgauss_ISR_A546405334
pubmed_primary_29792208
crossref_citationtrail_10_1186_s12938_018_0496_2
crossref_primary_10_1186_s12938_018_0496_2
springer_journals_10_1186_s12938_018_0496_2
PublicationCentury 2000
PublicationDate 2018-05-23
PublicationDateYYYYMMDD 2018-05-23
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-23
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 496_CR16
F Ciompi (496_CR12) 2017; 7
F Ciompi (496_CR8) 2015; 26
BA Olshausen (496_CR56) 1997; 37
W Sun (496_CR17) 2016
496_CR9
496_CR5
496_CR7
B Ginneken van (496_CR20) 2011; 261
496_CR60
496_CR2
496_CR61
496_CR1
496_CR62
S Wang (496_CR46) 2017
496_CR63
496_CR64
496_CR21
496_CR26
T Lan (496_CR24) 2018; 8
496_CR27
496_CR28
BA Olshausen (496_CR59) 1996; 381
Y LeCun (496_CR4) 2015; 521
S Candemir (496_CR39) 2014; 33
PO Hoyer (496_CR58) 2004; 5
S Hochreiter (496_CR29) 1997; 9
Q Dou (496_CR13) 2017; 64
SL Fernandes (496_CR22) 2017; 7
496_CR30
496_CR31
H-C Shin (496_CR35) 2016; 35
J Neyman (496_CR65) 1933; 20
496_CR34
496_CR36
V Badrinarayanan (496_CR42) 2017; 39
S Chen (496_CR11) 2017; 36
M Keming (496_CR25) 2016; 6
496_CR43
AAA Setio (496_CR15) 2016; 35
T Jia (496_CR23) 2015; 5
J Schmidhuber (496_CR3) 2015; 61
496_CR48
A Teramoto (496_CR18) 2016; 43
496_CR49
S Jaeger (496_CR33) 2014; 4
H-I Suk (496_CR45) 2016; 221
W Li (496_CR14) 2016; 2016
NV Chawla (496_CR37) 2002; 16
GE Batista (496_CR38) 2004; 6
G Wu (496_CR41) 2015; 5
A Rajkomar (496_CR19) 2017; 30
Y Bar (496_CR47) 2015
J Shiraishi (496_CR32) 2000; 174
X Li (496_CR40) 2016; 6
496_CR50
496_CR51
496_CR52
L-C Chen (496_CR44) 2018; 40
496_CR53
496_CR10
496_CR54
A Esteva (496_CR6) 2017; 542
496_CR55
MS Pepe (496_CR66) 2006; 62
496_CR57
References_xml – volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 496_CR4
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 496_CR57
– volume: 64
  start-page: 1558
  issue: 7
  year: 2017
  ident: 496_CR13
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2613502
– volume: 37
  start-page: 3311
  issue: 23
  year: 1997
  ident: 496_CR56
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(97)00169-7
– ident: 496_CR27
  doi: 10.1109/CVPR.2017.369
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 496_CR29
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 36
  start-page: 802
  issue: 3
  year: 2017
  ident: 496_CR11
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2629462
– ident: 496_CR30
  doi: 10.1007/978-3-319-93000-8_62
– ident: 496_CR10
  doi: 10.1007/978-3-319-19992-4_46
– volume: 43
  start-page: 2821
  issue: 6Part 1
  year: 2016
  ident: 496_CR18
  publication-title: Med phys.
  doi: 10.1118/1.4948498
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 496_CR42
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2644615
– ident: 496_CR21
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 496_CR35
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: 496_CR9
  doi: 10.1109/ISBI.2015.7163869
– volume: 16
  start-page: 321
  year: 2002
  ident: 496_CR37
  publication-title: J Artif Intell Res.
  doi: 10.1613/jair.953
– volume: 221
  start-page: 2569
  issue: 5
  year: 2016
  ident: 496_CR45
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-015-1059-y
– ident: 496_CR53
– volume: 35
  start-page: 1160
  issue: 5
  year: 2016
  ident: 496_CR15
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2536809
– volume: 4
  start-page: 475
  issue: 6
  year: 2014
  ident: 496_CR33
  publication-title: Quant Imaging Med Surg.
– volume: 33
  start-page: 577
  issue: 2
  year: 2014
  ident: 496_CR39
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2013.2290491
– ident: 496_CR62
– volume: 61
  start-page: 85
  year: 2015
  ident: 496_CR3
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– ident: 496_CR1
– ident: 496_CR7
  doi: 10.1109/ISBI.2015.7163871
– ident: 496_CR63
  doi: 10.1145/1390156.1390294
– volume: 5
  start-page: 184
  issue: 2
  year: 2015
  ident: 496_CR41
  publication-title: J Med Imaging Health Inform.
  doi: 10.1166/jmihi.2015.1382
– ident: 496_CR51
  doi: 10.1109/CVPR.2015.7298594
– ident: 496_CR48
  doi: 10.1109/CVPR.2016.308
– ident: 496_CR36
  doi: 10.1007/978-3-319-24574-4_28
– volume: 6
  start-page: 20
  issue: 1
  year: 2004
  ident: 496_CR38
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/1007730.1007735
– ident: 496_CR52
– volume: 174
  start-page: 71
  issue: 1
  year: 2000
  ident: 496_CR32
  publication-title: Am J Roentgenol
  doi: 10.2214/ajr.174.1.1740071
– volume: 6
  start-page: 338
  issue: 2
  year: 2016
  ident: 496_CR40
  publication-title: J Med Imaging Health Inform
  doi: 10.1166/jmihi.2016.1714
– volume: 62
  start-page: 221
  issue: 1
  year: 2006
  ident: 496_CR66
  publication-title: Biometrics.
  doi: 10.1111/j.1541-0420.2005.00420.x
– ident: 496_CR31
– volume-title: Medical imaging 2015: computer-aided diagnosis 2015
  year: 2015
  ident: 496_CR47
– ident: 496_CR43
  doi: 10.1109/CVPR.2015.7298965
– ident: 496_CR61
– volume: 20
  start-page: 175
  year: 1933
  ident: 496_CR65
  publication-title: Biometrika A.
– volume: 6
  start-page: 1679
  issue: 7
  year: 2016
  ident: 496_CR25
  publication-title: J Med Imaging Health Inform
  doi: 10.1166/jmihi.2016.1871
– volume: 5
  start-page: 1457
  year: 2004
  ident: 496_CR58
  publication-title: J Mach Learn Res.
– volume: 261
  start-page: 719
  issue: 3
  year: 2011
  ident: 496_CR20
  publication-title: Radiology
  doi: 10.1148/radiol.11091710
– ident: 496_CR26
– volume-title: Medical imaging 2016: computer-aided diagnosis
  year: 2016
  ident: 496_CR17
– ident: 496_CR34
  doi: 10.1109/CVPR.2016.274
– ident: 496_CR5
– volume: 5
  start-page: 1936
  issue: 8
  year: 2015
  ident: 496_CR23
  publication-title: J Med Imaging Health Inform
  doi: 10.1166/jmihi.2015.1673
– ident: 496_CR2
  doi: 10.1109/CVPR.2009.5206848
– ident: 496_CR55
– volume: 30
  start-page: 95
  issue: 1
  year: 2017
  ident: 496_CR19
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-016-9914-9
– ident: 496_CR16
  doi: 10.1007/978-3-319-46723-8_15
– ident: 496_CR60
– volume: 7
  start-page: 46479
  year: 2017
  ident: 496_CR12
  publication-title: Sci Rep
  doi: 10.1038/srep46479
– ident: 496_CR64
  doi: 10.1109/ICCV.2017.324
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: 496_CR59
  publication-title: Nature
  doi: 10.1038/381607a0
– ident: 496_CR28
  doi: 10.1109/CVPR.2017.243
– ident: 496_CR49
  doi: 10.1109/CVPR.2016.90
– volume: 2016
  start-page: 6215085
  year: 2016
  ident: 496_CR14
  publication-title: Comput Math Methods Med
  doi: 10.1155/2016/6215085
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 496_CR44
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2699184
– volume: 26
  start-page: 195
  issue: 1
  year: 2015
  ident: 496_CR8
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.08.001
– start-page: 245
  volume-title: Scalable high performance image registration framework by unsupervised deep feature representations learning. Deep learning for medical image analysis
  year: 2017
  ident: 496_CR46
– ident: 496_CR54
– volume: 7
  start-page: 1841
  issue: 8
  year: 2017
  ident: 496_CR22
  publication-title: J Med Imaging Health Inform
  doi: 10.1166/jmihi.2017.2280
– volume: 8
  start-page: 464
  issue: 3
  year: 2018
  ident: 496_CR24
  publication-title: J Med Imaging Health Inform
  doi: 10.1166/jmihi.2018.2345
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 496_CR6
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: 496_CR50
SSID ssj0020069
Score 2.2899592
Snippet Objective In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions...
In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions involving tens of...
Objective In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions...
Abstract Objective In this paper, we aim to investigate the effect of computer-aided triage system, which is implemented for the health checkup of lung lesions...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms Accuracy
Advances in Medical Robotics and Automation for Surgery and Rehabilitation
Artificial intelligence
Autoencoder
Automation
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biotechnology
Care and treatment
Chest
Chest screening
Chest x-rays
Classification
Computer aided diagnosis
Datasets
Deep learning
Diagnosis
Engineering
Health screening
Humans
Image Processing, Computer-Assisted - methods
Information processing
International conferences
Lesions
Lung - diagnostic imaging
Lung diseases
Machine Learning
Medical imaging
Methods
Neural networks
Noise reduction
Pattern recognition
Radiography, Thoracic
Radiology
Receiver operating characteristic
Reconstruction
Regulatory approval
ROC Curve
Screening
Signal-To-Noise Ratio
Transfer learning
Triage - methods
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEB5kEdEH0fXWdZUogqCUbZP0ksejuOiDi3iBfQtpmu4ekFZ6Wdh_70yaczxdUV98OC_ttCedTOZCJt8H8MIoUYlCZLTpXsYy4yauytzGhvpzhJUmbYwnmyhOTsrTU_Vph-qLesJmeOBZcUcYIlPrKmVE7gj9XEnM0WveEBSbaeaje0mhNsVUKLUIgDfsYaZlfjRQVKOmLfxJlcd8EYU8WP_vLnknJl3tl7yyaepj0fEduB2SSLaaB38Xrrl2H27tQAvuw42PYdP8HkyraewwMXU18-xYDD0FVq8oxiiG1axrmWHnl3R2i3lmHNY1bPQZretZ4JU4Y6bFF3TtRTBWHAB6o35wDF1Xtx68CP4TIWPWrr8P347ffX37Pg5sC7HNRTHGjhsneVoJQ4RVVjQ1TyrlirRqcmuwgk64y61MrFO1EI1Dv-iaymAKRphdthIPYK_tWvcIWJ5VqjJNyjHWEYW5MUoSUzthr-EbsgiSjfa1DVDkxIjxXfuSpMz1PGEaJ0zThGkewavtIz9mHI6_Cb-hKd0KEoS2v4CGpYNh6X8ZVgTPySA0gWS01IVzZqZh0B--fNarTObSH2KO4GUQajr8AmvCoQbUA-FqLSQPF5K4iu3y9sbudPAig-aYnRaS4HgieLa9TU9SZ1zruolkpCjSFPUcwcPZTLffzVWhOE_KCIqFAS8Us7zTrs89xniGZbDiRQSvN6b-a1h_1PvB_9D7Y7jJ_ULNYi4OYW_sJ_cErtuLcT30T_0y_wlFMlNv
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hghAceJRXoCCDkJBAURPbefi4ICo4UKEWUG-W4zjblVCCkt1K_HtmvE5oykOCw17W42w8O56HPP4-gOdGiUoUIqND9zKWGTdxVeY2NtSfI6w0aWM82URxeFienKiP4R73MHa7j0eS3lP7bV3m-wNFJmq8wo9UeYx-9zJGu5L4Go6Ov0xVFmHvhuPL306bBSCP0_-rNz4Xji62Sl44L_Vh6ODmfy3gFtwIWSdbbM3kNlxy7S5cP4dFuAtXP4RT9juwWWzWHWayrmaeTouha8FyF8UYBb2adS0z7PQ7XfZinkqHdQ1b-xTY9SwQUSyZafEBXXsWrBtfAN1XPziGvq5bDV4Ef4mgNGvX34XPB28_vXkXB3qG2OaiWMeOGyd5WglDDFdWNDVPKuWKtGpya7DkTrjLrUysU7UQjUNH6prKYM5GIF-2Evdgp-1a9wBYnlWqMk3KMTgS57kxShK1O4G14ROyCJLxP9M2YJcThcZX7WuYMtdb5WpUriblah7By2nKty1wx9-EX5MhTIKEue2_6PqlDltYY7KWWlcpI3JHOPxKYrVY84ZAAU2TqAiekRlpQtVoqW1naTbDoN8fH-lFJnPpbz1H8CIINR2uwJpwCwL1QEBcM8m9mSRuezsfHq1VB7czaI7pbCEJvyeCp9MwzaRWutZ1G5KRokhT1HME97fGPa2bq0JxnpQRFDOznylmPtKuTj0oeYZ1s-JFBK9G4__5Wn_U-8N_kn4E17jfPVnMxR7srPuNewxX7Nl6NfRPvBf4AfV2V_4
  priority: 102
  providerName: Springer Nature
Title Automated chest screening based on a hybrid model of transfer learning and convolutional sparse denoising autoencoder
URI https://link.springer.com/article/10.1186/s12938-018-0496-2
https://www.ncbi.nlm.nih.gov/pubmed/29792208
https://www.proquest.com/docview/2056746840
https://www.proquest.com/docview/2043711945
https://pubmed.ncbi.nlm.nih.gov/PMC5966927
https://doaj.org/article/0651ceb9a36e483794499d2f0818af09
Volume 17
WOSCitedRecordID wos000433383100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M7S
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RSV
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSF44GN8BUZlEBISKKKx8-Un1KFN7GFV1QIqT5bjOF0llIymncR_z53rdssQe-GhkVpf0tg-3_ns8-8H8FZLUYhMJLTpnodxwnVY5KkJNeXnCBPrqNKObCIbDvPpVI78glvr0yo3NtEZ6rIxtEaOQXqSZjFBk3w6_xUSaxTtrnoKjR3YI5QE7lL3RtuAi2B4_U5mlKcfW_JtlLqFn1imIe_4IgfZ_7dhvuKZrmdNXts6dR7p-MH_1uUh3PdzUTZYK88juGXrfbh3BaFwH-6c-r33x7AarJYNzm9tyRzJFkODg0EwijFyhSVraqbZ2W86AsYcwQ5rKrZ0E2O7YJ6eYsZ0jQ9o6guv8_gCaNQWrWVoAZt560Twnwhgs7SLJ_Dt-Ojr5y-hJ20ITSqyZWi5tjGPCqGJ98qIquT9QtosKqrUaAzE-9ymJu4bK0shKovm1VaFxpkcQX-ZQjyF3bqp7XNgaVLIQlcRR5dJTOhay5gI3wnCDZ-QBNDfdJ8yHtGciDV-KhfZ5Kla97jCHlfU44oH8H57y_kazuMm4UPSia0gIXG7H5rFTPmBrXAKFxlbSC1SS-j8MsYYsuQVQQXqqi8DeEMapQhro6Zknpleta06mYzVIInT2J2FDuCdF6oarIHR_mwEtgPBc3UkDzqSaAxMt3ijccobo1ZdqlsAr7fFdCcl2NW2WZFMLLIownYO4Nlaz7f15jKTnPfzALLOCOg0TLeknp85qPIEo2nJswA-bMbK5Wv9s91f3FyJl3CXuzGchFwcwO5ysbKv4La5WM7bRQ92smnmrnkP9g6PhqNxzy209JxtcNcJloxOTkc_8Nt48v0P1Ptqhw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFvE48CivQAGDQEigiI2dOOsDQuVRddWHKlqkcjKO42xXQklJdov6p_iNzHiz26aI3nrgsJfNxBvPzoxn4vH3AbwwSmQiFQltuvfDOOEmzPrShob6c4SNTVQYTzaRbm_39_fVzgL8np2FobbKWUz0gTqvLL0jxyI9kWlM0CTvD3-GxBpFu6szCo2pWWy4419YsjXvBp_w_33J-drnvY_rYcsqEFop0nHouHExjzJhiJjJiiLnvUy5NMoKaQ1Wij3upI171qlciMKh_7siM5hqEDaVzQSOewmWYjL2RVjaGWztfJuXeAT82-6dRn35tqHVlJrF8BMrGfLO6udJAv5eCk6thWf7NM9s1vo1cO3m_6a9W3CjzbbZ6tQ9bsOCK5fh-ikMxmW4stV2F9yByepkXGEG73LmacQYhlQs81GM0WKfs6pkhh0c0yE35imEWFWwsU_9Xc1aAo4hMyUOUJVHrVfjA2DYrhvHMMZXo8aL4C8RhGju6rvw9UJUcA8Wy6p0D4DJJFOZKSKOSQFxvRujYqK0J5A6HCEJoDczF21bzHaiDvmhfe3Wl3pqYRotTJOFaR7A6_kth1PAkvOEP5ANzgUJa9x_UdVD3YYujUlqZF2mjJCO-AdUjFVyzgsCQzRFTwXwnCxYE5pISe1KQzNpGj3Y_aJXk1jG_rR3AK9aoaLCGVjTnv5APRAAWUdypSOJ4c52L88sXLfhttEn5h3As_llupNaCEtXTUgmFmkUoZ4DuD_1q_m8uUoV571-AGnH4zqK6V4pRwcejD1RUiqeBvBm5psnj_VPvT88fxJP4er63tam3hxsbzyCa9zHjyTkYgUWx_XEPYbL9mg8auonbfxh8P2infYPX9zDaQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQQRU8cJQrUMAgJCSqqIntHH5cjhUVsKoooL5ZjuNsV0JJlaMS_54Zx7s05ZAQD_uyHmfj2Tk1428Iea4lL3jGEyy656FImA6LPDWhxv4cboSOK-2GTWSLRX58LA_9nNNu3e2-LkmOdxoQpanu90_LalTxPN3v0EthExZ8hExDsMGXBfbRY7p-9HWTcSEOry9l_nbbxBk5zP5fLfM513SxbfJC7dS5pPmN_z7MTXLdR6N0NorPLXLJ1jvk2jmMwh2y_dFX32-TYTb0DUS4tqRuzBYFkwNpMJBRdIYlbWqq6cl3vARG3Ygd2lS0d6GxbakfULGkuoYHNPWZl3p4ATBrbWcp2MBm1TkS-CWE2Cxte4d8mb_9_Ppd6Mc2hCblWR9apq1gccE1Tr4yvCpZVEibxUWVGg2peMRsakRkrCw5rywYWFsVGmI5BP8yBb9LtuqmtvcJTZNCFrqKGThNnIWutRQ48h1B3OAJSUCi9f-njMc0x9Ea35TLbfJUjcxVwFyFzFUsIC83W05HQI-_Eb9CodgQIha3-6Jpl8qrtoIgLja2kJqnFvH5pYAssmQVggXqKpIBeYYipRBto8Z2nqUeuk4dHH1Ss0Skwt2GDsgLT1Q1cAKj_e0I4AMCdE0odyeUYA7MdHktucqbo04xCHMzgbg-AXm6Wcad2GJX22ZAGsGzOAY-B-TeKOibczOZScaiPCDZRAUmjJmu1KsTB1aeQD4tWRaQvbUi_HytP_L9wT9RPyHbh2_m6sPB4v1DcpU5RUpCxnfJVt8O9hG5Ys76Vdc-dsbhBwwRY8Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+chest+screening+based+on+a+hybrid+model+of+transfer+learning+and+convolutional+sparse+denoising+autoencoder&rft.jtitle=Biomedical+engineering+online&rft.au=Wang%2C+Changmiao&rft.au=Elazab%2C+Ahmed&rft.au=Jia%2C+Fucang&rft.au=Wu%2C+Jianhuang&rft.date=2018-05-23&rft.pub=Springer+Nature+B.V&rft.eissn=1475-925X&rft.volume=17&rft_id=info:doi/10.1186%2Fs12938-018-0496-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon