The artificial intelligence-based agricultural field irrigation warning system using GA-BP neural network under smart agriculture

This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 20; číslo 1; s. e0317277
Hlavní autor: Wang, Xiying
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 17.01.2025
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10 −4 to 3.68×10 −4 and 2.38×10 −4 to 1.66×10 −4 , respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making.
AbstractList This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model's Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10-4 to 3.68×10-4 and 2.38×10-4 to 1.66×10-4, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making.
This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model's Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53x10.sup.-4 to 3.68x10.sup.-4 and 2.38x10.sup.-4 to 1.66x10.sup.-4, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making.
This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10−4 to 3.68×10−4 and 2.38×10−4 to 1.66×10−4, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making.
This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10 −4 to 3.68×10 −4 and 2.38×10 −4 to 1.66×10 −4 , respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making.
This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model's Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10-4 to 3.68×10-4 and 2.38×10-4 to 1.66×10-4, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making.This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model's Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10-4 to 3.68×10-4 and 2.38×10-4 to 1.66×10-4, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making.
This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10 −4 to 3.68×10 −4 and 2.38×10 −4 to 1.66×10 −4 , respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making.
Audience Academic
Author Wang, Xiying
Author_xml – sequence: 1
  givenname: Xiying
  orcidid: 0009-0002-7590-1922
  surname: Wang
  fullname: Wang, Xiying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39823438$$D View this record in MEDLINE/PubMed
BookMark eNqNk01v1DAQhiNURD_gHyCIhITgkCWOk9jhtlRQVqpUBIWr5TjjrIvXXmxHpUf-Oc5uWu1WFUI5JJ4878zkzcxxcmCsgSR5jvIZwgS9u7KDM1zP1jE8yzEiBSGPkiPU4CKrixwf7DwfJsfeX-V5hWldP0kOcUMLXGJ6lPy5XELKXVBSCcV1qkwArVUPRkDWcg9dynunxKDD4OJ7qUB3qXJO9Twoa9Jr7owyfepvfIBVOvjxcDbPPnxJDWwkBsK1dT_TwXTgUr-K1XZywtPkseTaw7PpfpJ8__Tx8vRzdn5xtjidn2eixiRkHS5zXneAZdMhTktcVgKLhktacgwSMG0JtARLVEMOLRJdXhJOUSUrCoK2-CR5uc271tazyT3PMKpqQoq6qSKx2BKd5Vds7VRs9YZZrtgmYF3PRqeEBkZiZS6kxDi2IqXkABwVYydCiI6gmOvNVM3ZXwP4wFbKi2gtN2CHbVmao7omEX11D324uYnqeayvjLTBcTEmZfP4MxtMG1RGavYAFa8OVkrESZEqxvcEb_cEkQnwO_R88J4tvn39f_bixz77eoddAtdh6a0expnx--CL6euHdgXdne23IxqBcgsIZ713IO8QlLNxE27tYuMmsGkTouz9PZlQYTOy0RGl_y3-CxJzEak
CitedBy_id crossref_primary_10_3390_w17091304
crossref_primary_10_3390_technologies13080366
crossref_primary_10_12688_f1000research_161865_2
crossref_primary_10_3390_agriculture15151703
Cites_doi 10.1007/s11630-022-1766-7
10.1007/s00521-022-07377-0
10.1089/big.2021.0242
10.1109/ICSITech.2015.7407796
10.1016/j.compstruct.2019.111739
10.3390/w11091795
10.1016/j.agwat.2019.105953
10.3390/buildings12040438
10.1016/j.iswcr.2022.03.004
10.2298/TSCI220307121J
10.1016/j.scitotenv.2020.140338
10.1038/s41586-021-04223-6
10.1016/B978-0-12-816514-0.00014-X
10.1186/s12879-021-05973-4
10.1016/j.scitotenv.2020.142761
10.1007/s11063-022-11055-6
10.1016/j.dibe.2022.100113
10.3390/s21093079
10.1109/JSEN.2021.3069266
10.1007/s11227-020-03404-w
10.1016/j.envsoft.2022.105436
10.1016/j.uclim.2021.101078
10.1007/s11063-020-10363-z
10.1080/13241583.2021.1936907
10.1007/s40745-021-00354-9
10.3390/axioms12070613
10.1007/s11042-020-10139-6
10.1016/j.aej.2020.06.008
10.3390/ma15041477
10.32604/iasc.2022.016543
10.1016/j.agwat.2021.106838
10.1007/s11269-022-03401-z
10.3390/app13095317
10.1142/S0219691322500308
10.1371/journal.pone.0233723
10.1016/j.jcis.2023.02.030
10.1007/s00521-020-05604-0
10.1177/03611981221083311
10.1155/2021/1718234
10.3390/electronics10212689
10.1016/j.uclim.2023.101630
10.17762/turcomat.v12i11.6155
10.1111/pce.13970
10.1016/j.aiia.2022.09.007
10.3390/en16093632
10.1007/s12065-019-00327-1
10.1142/S0218001419590286
10.1016/j.ijhydene.2021.03.132
10.1093/jxb/erab090
10.1080/00103624.2022.2118291
10.1109/ACCESS.2020.3002928
10.1109/MIS.2022.3201553
10.1109/ACCESS.2021.3075159
10.1007/s00521-020-05035-x
10.3390/electronics11193022
10.1016/j.future.2021.08.006
10.1016/j.commatsci.2020.110067
10.1038/s41598-023-28855-y
10.1109/ACCESS.2020.2971969
ContentType Journal Article
Copyright Copyright: © 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0317277
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Opposing Viewpoints (Gale In Context)
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection (ProQuest)
ProQuest Central Essentials
Biological Science Database
Download PDF from ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Agricultural Science Database
CrossRef
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Agriculture
EISSN 1932-6203
ExternalDocumentID 3156772695
oai_doaj_org_article_7c9aacff33a84fffaeea124a3ecccd71
A823938914
39823438
10_1371_journal_pone_0317277
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c637t-d340a6de3f9d1a84345c3c9af84a3efe38b7eb73f16e0eb1cd047a815f58ec8b3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001407853100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Wed Aug 13 01:18:42 EDT 2025
Mon Nov 10 04:29:37 EST 2025
Fri Sep 05 14:05:54 EDT 2025
Tue Oct 07 09:15:14 EDT 2025
Sat Nov 29 13:50:02 EST 2025
Sat Nov 29 10:29:32 EST 2025
Wed Nov 26 10:45:40 EST 2025
Wed Nov 26 10:45:32 EST 2025
Mon Dec 01 06:32:00 EST 2025
Mon Jul 21 05:33:42 EDT 2025
Sat Nov 29 02:49:15 EST 2025
Tue Nov 18 22:43:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright: © 2025 Xiying Wang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-d340a6de3f9d1a84345c3c9af84a3efe38b7eb73f16e0eb1cd047a815f58ec8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-7590-1922
OpenAccessLink https://doaj.org/article/7c9aacff33a84fffaeea124a3ecccd71
PMID 39823438
PQID 3156772695
PQPubID 1436336
PageCount e0317277
ParticipantIDs plos_journals_3156772695
doaj_primary_oai_doaj_org_article_7c9aacff33a84fffaeea124a3ecccd71
proquest_miscellaneous_3156801667
proquest_journals_3156772695
gale_infotracmisc_A823938914
gale_infotracacademiconefile_A823938914
gale_incontextgauss_ISR_A823938914
gale_incontextgauss_IOV_A823938914
gale_healthsolutions_A823938914
pubmed_primary_39823438
crossref_primary_10_1371_journal_pone_0317277
crossref_citationtrail_10_1371_journal_pone_0317277
PublicationCentury 2000
PublicationDate 2025-01-17
PublicationDateYYYYMMDD 2025-01-17
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Kashif (pone.0317277.ref043) 2023; 4
C F Muller (pone.0317277.ref010) 2021; 25
J Zhang (pone.0317277.ref021) 2021; 2021
G Wang (pone.0317277.ref044) 2023; 54
M Zhai (pone.0317277.ref065) 2021; 21
B Li (pone.0317277.ref012) 2023; 640
Z Chikr Elmezouar (pone.0317277.ref058) 2023; 12
M Chen (pone.0317277.ref014) 2021; 250
Z Zhang (pone.0317277.ref003) 2020; 230
W Sadok (pone.0317277.ref060) 2021; 44
B. Liu (pone.0317277.ref055) 2023; 6
K Reza Kashyzadeh (pone.0317277.ref013) 2022; 12
C Kim (pone.0317277.ref052) 2021; 186
N Sadeghi Gargari (pone.0317277.ref015) 2022; 2676
X Guo (pone.0317277.ref017) 2022; 10
B Mohebali (pone.0317277.ref036) 2020
M Jiang (pone.0317277.ref056) 2023; 27
A. Sohail (pone.0317277.ref049) 2023; 10
S Lu (pone.0317277.ref063) 2021; 60
Y Song (pone.0317277.ref040) 2023; 32
S Song (pone.0317277.ref028) 2021; 46
A F. Gad (pone.0317277.ref051) 2023
S N Kim (pone.0317277.ref009) 2020; 62
A Hamrani (pone.0317277.ref018) 2020; 741
X Qin (pone.0317277.ref029) 2022; 11
D M Mulumba (pone.0317277.ref041) 2023; 13
M G M Abdolrasol (pone.0317277.ref045) 2021; 10
X R Zhang (pone.0317277.ref031) 2022; 32
T Wang (pone.0317277.ref057) 2023; 16
B B Sinha (pone.0317277.ref001) 2022; 126
J X Han (pone.0317277.ref032) 2021; 33
S He (pone.0317277.ref039) 2023; 37
Z Lyu (pone.0317277.ref046) 2022; 15
M Sumathi (pone.0317277.ref019) 2022; 20
J Tian (pone.0317277.ref030) 2022; 41
H Zhao (pone.0317277.ref026) 2018; 122
C E Moore (pone.0317277.ref061) 2021; 72
M Rashid (pone.0317277.ref020) 2021; 9
A Mukherjee (pone.0317277.ref038) 2020; 8
M Kaveh (pone.0317277.ref034) 2023; 55
S Nazar (pone.0317277.ref059) 2023; 13
Z Xia (pone.0317277.ref025) 2022; 10
pone.0317277.ref023
M Hosseinzadeh (pone.0317277.ref037) 2021; 77
Z Z Wang (pone.0317277.ref050) 2020; 233
K M Hamdia (pone.0317277.ref054) 2021; 33
P K Kashyap (pone.0317277.ref062) 2021; 21
Q Li (pone.0317277.ref002) 2020; 15
Z Jiang (pone.0317277.ref008) 2022; 155
L Wang (pone.0317277.ref064) 2020; 52
M Suresh (pone.0317277.ref016) 2021; 12
N Chen (pone.0317277.ref022) 2019; 11
V G Dhanya (pone.0317277.ref005) 2022; 6
L G Wright (pone.0317277.ref011) 2022; 601
L Sharafi (pone.0317277.ref006) 2021; 758
P Liu (pone.0317277.ref033) 2019; 33
A Glória (pone.0317277.ref007) 2021; 21
J Kuck (pone.0317277.ref035) 2020; 33
J Chen (pone.0317277.ref027) 2023; 51
R Kumar (pone.0317277.ref004) 2022; 38
G T Reddy (pone.0317277.ref053) 2020; 13
X Li (pone.0317277.ref042) 2023; 35
S Katoch (pone.0317277.ref048) 2021; 80
X Shen (pone.0317277.ref024) 2020; 8
H Bai (pone.0317277.ref047) 2023; 13
References_xml – volume: 32
  start-page: 387
  issue: 1
  year: 2023
  ident: pone.0317277.ref040
  article-title: Optimization of a Lobed Mixer with BP Neural Network and Genetic Algorithm
  publication-title: Journal of Thermal Science
  doi: 10.1007/s11630-022-1766-7
– volume: 62
  start-page: 33
  issue: 4
  year: 2020
  ident: pone.0317277.ref009
  article-title: Establishment of inundation probability DB for forecasting the farmland inundation risk using weather forecast data
  publication-title: Journal of the Korean Society of Agricultural Engineers
– volume: 35
  start-page: 2045
  issue: 3
  year: 2023
  ident: pone.0317277.ref042
  article-title: Risk prediction in financial management of listed companies based on optimized BP neural network under digital economy
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-07377-0
– start-page: 1
  year: 2023
  ident: pone.0317277.ref051
  article-title: Pygad: An intuitive genetic algorithm python library
  publication-title: Multimedia Tools and Applications
– volume: 10
  start-page: 493
  issue: 6
  year: 2022
  ident: pone.0317277.ref017
  article-title: A hybrid seasonal autoregressive integrated moving average and denoising autoencoder model for atmospheric temperature profile prediction
  publication-title: Big Data
  doi: 10.1089/big.2021.0242
– ident: pone.0317277.ref023
  doi: 10.1109/ICSITech.2015.7407796
– volume: 233
  start-page: 111739
  year: 2020
  ident: pone.0317277.ref050
  article-title: A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2019.111739
– volume: 11
  start-page: 1795
  issue: 9
  year: 2019
  ident: pone.0317277.ref022
  article-title: An improved genetic algorithm coupling a back-propagation neural network model (IEGA-BPNN) for water-level predictions
  publication-title: Water
  doi: 10.3390/w11091795
– volume: 230
  start-page: 105953
  year: 2020
  ident: pone.0317277.ref003
  article-title: Influence of mulched drip irrigation on landscape scale evapotranspiration from farmland in an arid area
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2019.105953
– volume: 12
  start-page: 438
  issue: 4
  year: 2022
  ident: pone.0317277.ref013
  article-title: Prediction of concrete compressive strength using a back-propagation neural network optimized by a genetic algorithm and response surface analysis considering the appearance of aggregates and curing conditions
  publication-title: Buildings
  doi: 10.3390/buildings12040438
– volume: 10
  start-page: 635
  issue: 4
  year: 2022
  ident: pone.0317277.ref025
  article-title: A spatial frequency/spectral indicator-driven model for estimating cultivated land quality using the gradient boosting decision tree and genetic algorithm-back propagation neural network
  publication-title: International Soil and Water Conservation Research
  doi: 10.1016/j.iswcr.2022.03.004
– volume: 27
  start-page: 179
  issue: 1 Part A
  year: 2023
  ident: pone.0317277.ref056
  article-title: Optimization of micro-channel heat sink based on genetic algorithm and back propagation neural network
  publication-title: Thermal Science
  doi: 10.2298/TSCI220307121J
– volume: 741
  start-page: 140338
  year: 2020
  ident: pone.0317277.ref018
  article-title: Machine learning for predicting greenhouse gas emissions from agricultural soils
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2020.140338
– volume: 601
  start-page: 549
  issue: 7894
  year: 2022
  ident: pone.0317277.ref011
  article-title: Deep physical neural networks trained with backpropagation
  publication-title: Nature
  doi: 10.1038/s41586-021-04223-6
– start-page: 347
  volume-title: Handbook of probabilistic models
  year: 2020
  ident: pone.0317277.ref036
  doi: 10.1016/B978-0-12-816514-0.00014-X
– volume: 122
  start-page: 30
  year: 2018
  ident: pone.0317277.ref026
  publication-title: Optimization of wastewater anaerobic digestion treatment based on GA-BP neural network
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0317277.ref065
  article-title: Research on the predictive effect of a combined model of ARIMA and neural networks on human brucellosis in Shanxi Province, China, pp. a time series predictive analysis
  publication-title: BMC Infectious Diseases
  doi: 10.1186/s12879-021-05973-4
– volume: 758
  start-page: 142761
  year: 2021
  ident: pone.0317277.ref006
  article-title: Farmers’ decision to use drought early warning system in developing countries
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2020.142761
– volume: 55
  start-page: 4519
  issue: 4
  year: 2023
  ident: pone.0317277.ref034
  article-title: Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-022-11055-6
– volume: 13
  start-page: 100113
  year: 2023
  ident: pone.0317277.ref059
  article-title: Formulation of estimation models for the compressive strength of concrete mixed with nanosilica and carbon nanotubes
  publication-title: Developments in the Built Environment
  doi: 10.1016/j.dibe.2022.100113
– volume: 21
  start-page: 3079
  issue: 9
  year: 2021
  ident: pone.0317277.ref007
  article-title: Sustainable irrigation system for farming supported by machine learning and real-time sensor data
  publication-title: Sensors
  doi: 10.3390/s21093079
– volume: 33
  start-page: 667
  year: 2020
  ident: pone.0317277.ref035
  article-title: Belief propagation neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 21
  start-page: 17479
  issue: 16
  year: 2021
  ident: pone.0317277.ref062
  article-title: Towards precision agriculture: IoT-enabled intelligent irrigation systems using deep learning neural network
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3069266
– volume: 77
  start-page: 3616
  year: 2021
  ident: pone.0317277.ref037
  article-title: A multiple multilayer perceptron neural network with an adaptive learning algorithm for thyroid disease diagnosis in the internet of medical things
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-020-03404-w
– volume: 155
  start-page: 105436
  year: 2022
  ident: pone.0317277.ref008
  article-title: Coupling machine learning and weather forecast to predict farmland flood disaster: A case study in Yangtze River basin
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2022.105436
– volume: 4
  start-page: 015004
  issue: 1
  year: 2023
  ident: pone.0317277.ref043
  article-title: The impact of cost function globality and locality in hybrid quantum neural networks on NISQ devices. Machine Learning
  publication-title: Science and Technology
– volume: 41
  start-page: 101078
  year: 2022
  ident: pone.0317277.ref030
  article-title: Smog prediction based on the deep belief-BP neural network model (DBN-BP)
  publication-title: Urban Climate
  doi: 10.1016/j.uclim.2021.101078
– volume: 52
  start-page: 2607
  year: 2020
  ident: pone.0317277.ref064
  article-title: Forecasting monthly tourism demand using enhanced backpropagation neural network
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-020-10363-z
– volume: 25
  start-page: 159
  issue: 2
  year: 2021
  ident: pone.0317277.ref010
  article-title: Incorporating weather forecasts into risk-based irrigation decision-making
  publication-title: Australasian Journal of Water Resources
  doi: 10.1080/13241583.2021.1936907
– volume: 10
  start-page: 1007
  issue: 4
  year: 2023
  ident: pone.0317277.ref049
  article-title: Genetic algorithms in the fields of artificial intelligence and data sciences
  publication-title: Annals of Data Science
  doi: 10.1007/s40745-021-00354-9
– volume: 6
  start-page: 151
  issue: 6
  year: 2023
  ident: pone.0317277.ref055
  article-title: Review of swarm intelligence algorithm optimization of BP neural network
  publication-title: Academic Journal of Computing & Information Science
– volume: 12
  start-page: 613
  issue: 7
  year: 2023
  ident: pone.0317277.ref058
  article-title: Scalar-on-Function Relative Error Regression for Weak Dependent Case
  publication-title: Axioms
  doi: 10.3390/axioms12070613
– volume: 80
  start-page: 8091
  year: 2021
  ident: pone.0317277.ref048
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimedia tools and applications
  doi: 10.1007/s11042-020-10139-6
– volume: 60
  start-page: 87
  issue: 1
  year: 2021
  ident: pone.0317277.ref063
  article-title: A combined method for short-term traffic flow prediction based on recurrent neural network
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2020.06.008
– volume: 15
  start-page: 1477
  issue: 4
  year: 2022
  ident: pone.0317277.ref046
  article-title: Back-propagation neural network optimized by K-fold cross-validation for prediction of torsional strength of reinforced Concrete beam
  publication-title: Materials
  doi: 10.3390/ma15041477
– volume: 32
  start-page: 1041
  issue: 2
  year: 2022
  ident: pone.0317277.ref031
  article-title: Deformation expression of soft tissue based on BP neural network
  publication-title: Intelligent Automation & Soft Computing
  doi: 10.32604/iasc.2022.016543
– volume: 250
  start-page: 106838
  year: 2021
  ident: pone.0317277.ref014
  article-title: A reinforcement learning approach to irrigation decision-making for rice using weather forecasts
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2021.106838
– volume: 37
  start-page: 747
  issue: 2
  year: 2023
  ident: pone.0317277.ref039
  article-title: Short-term runoff prediction optimization method based on bgru-bp and blstm-bp neural networks
  publication-title: Water Resources Management
  doi: 10.1007/s11269-022-03401-z
– volume: 13
  start-page: 5317
  issue: 9
  year: 2023
  ident: pone.0317277.ref041
  article-title: Application of an Optimized PSO-BP Neural Network to the Assessment and Prediction of Underground Coal Mine Safety Risk Factors
  publication-title: Applied Sciences
  doi: 10.3390/app13095317
– volume: 20
  start-page: 2250030
  issue: 06
  year: 2022
  ident: pone.0317277.ref019
  article-title: A crop yield prediction model based on an improved artificial neural network and yield monitoring using a blockchain technique
  publication-title: International journal of Wavelets, Multiresolution and Information processing
  doi: 10.1142/S0219691322500308
– volume: 15
  start-page: e0233723
  issue: 6
  year: 2020
  ident: pone.0317277.ref002
  article-title: Multistage stochastic programming modeling for farmland irrigation management under uncertainty
  publication-title: Plos one
  doi: 10.1371/journal.pone.0233723
– volume: 640
  start-page: 110
  year: 2023
  ident: pone.0317277.ref012
  article-title: Quantification of interfacial interaction related with adhesive membrane fouling by genetic algorithm back propagation (GABP) neural network
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1016/j.jcis.2023.02.030
– volume: 33
  start-page: 4111
  year: 2021
  ident: pone.0317277.ref032
  article-title: Product modeling design based on genetic algorithm and BP neural network
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05604-0
– volume: 2676
  start-page: 236
  issue: 8
  year: 2022
  ident: pone.0317277.ref015
  article-title: Long-Term Traffic Forecast Using Neural Network and Seasonal Autoregressive Integrated Moving Average: Case of a Container Port
  publication-title: Transportation Research Record
  doi: 10.1177/03611981221083311
– volume: 2021
  start-page: 1718234
  issue: 1
  year: 2021
  ident: pone.0317277.ref021
  article-title: Optimization of backpropagation neural network under the adaptive genetic algorithm
  publication-title: Complexity
  doi: 10.1155/2021/1718234
– volume: 10
  start-page: 2689
  issue: 21
  year: 2021
  ident: pone.0317277.ref045
  article-title: Artificial neural networks based optimization techniques: A review
  publication-title: Electronics
  doi: 10.3390/electronics10212689
– volume: 51
  start-page: 101630
  year: 2023
  ident: pone.0317277.ref027
  article-title: Predict the effect of meteorological factors on haze using BP neural network
  publication-title: Urban Climate
  doi: 10.1016/j.uclim.2023.101630
– volume: 12
  start-page: 1986
  issue: 11
  year: 2021
  ident: pone.0317277.ref016
  article-title: Analyzing and Forecasting of Electricity Consumption by Integration of Autoregressive Integrated Moving Average Model with Neural Network on Smart Meter Data
  publication-title: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
  doi: 10.17762/turcomat.v12i11.6155
– volume: 44
  start-page: 2102
  issue: 7
  year: 2021
  ident: pone.0317277.ref060
  article-title: Transpiration increases under high‐temperature stress: Potential mechanisms, trade‐offs and prospects for crop resilience in a warming world
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.13970
– volume: 6
  start-page: 211
  year: 2022
  ident: pone.0317277.ref005
  article-title: Deep learning based computer vision approaches for smart agricultural applications
  publication-title: Artificial Intelligence in Agriculture
  doi: 10.1016/j.aiia.2022.09.007
– volume: 16
  start-page: 3632
  issue: 9
  year: 2023
  ident: pone.0317277.ref057
  article-title: Research on Optimization of Profile Parameters in Screw Compressor Based on BP Neural Network and Genetic Algorithm
  publication-title: Energies
  doi: 10.3390/en16093632
– volume: 13
  start-page: 185
  year: 2020
  ident: pone.0317277.ref053
  article-title: Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-019-00327-1
– volume: 33
  start-page: 1959028
  issue: 09
  year: 2019
  ident: pone.0317277.ref033
  article-title: A fault diagnosis intelligent algorithm based on improved BP neural network
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001419590286
– volume: 46
  start-page: 20065
  issue: 38
  year: 2021
  ident: pone.0317277.ref028
  article-title: Modeling the SOFC by BP neural network algorithm
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.03.132
– volume: 72
  start-page: 2822
  issue: 8
  year: 2021
  ident: pone.0317277.ref061
  article-title: The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems
  publication-title: Journal of experimental botany
  doi: 10.1093/jxb/erab090
– volume: 54
  start-page: 463
  issue: 4
  year: 2023
  ident: pone.0317277.ref044
  article-title: Study on Prediction Model of Soil Nutrient Content Based on Optimized BP Neural Network Model
  publication-title: Communications in Soil Science and Plant Analysis
  doi: 10.1080/00103624.2022.2118291
– volume: 8
  start-page: 111731
  year: 2020
  ident: pone.0317277.ref024
  article-title: A hybrid forecasting model for the velocity of hybrid robotic fish based on back-propagation neural network with genetic algorithm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002928
– volume: 38
  start-page: 42
  issue: 4
  year: 2022
  ident: pone.0317277.ref004
  article-title: Deep learning and smart contract-assisted secure data sharing for IoT-based intelligent agriculture
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2022.3201553
– volume: 9
  start-page: 63406
  year: 2021
  ident: pone.0317277.ref020
  article-title: A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2021.3075159
– volume: 33
  start-page: 1923
  year: 2021
  ident: pone.0317277.ref054
  article-title: An efficient optimization approach for designing machine learning models based on genetic algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05035-x
– volume: 11
  start-page: 3022
  issue: 19
  year: 2022
  ident: pone.0317277.ref029
  article-title: User OCEAN personality model construction method using a BP neural network
  publication-title: Electronics
  doi: 10.3390/electronics11193022
– volume: 126
  start-page: 169
  year: 2022
  ident: pone.0317277.ref001
  article-title: Recent advancements and challenges of Internet of Things in smart agriculture: A survey
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2021.08.006
– volume: 186
  start-page: 110067
  year: 2021
  ident: pone.0317277.ref052
  article-title: Polymer design using genetic algorithm and machine learning
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2020.110067
– volume: 13
  start-page: 2095
  issue: 1
  year: 2023
  ident: pone.0317277.ref047
  article-title: Mind evolutionary algorithm optimization in the prediction of satellite clock bias using the back propagation neural network
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-28855-y
– volume: 8
  start-page: 28524
  year: 2020
  ident: pone.0317277.ref038
  article-title: Back propagation neural network based cluster head identification in MIMO sensor networks for intelligent transportation systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971969
SSID ssj0053866
Score 2.4854617
Snippet This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in...
This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage e0317277
SubjectTerms Accuracy
Agricultural Irrigation - methods
Agricultural land
Agricultural production
Agriculture
Agriculture - methods
Algorithms
Artificial Intelligence
Artificial neural networks
Back propagation networks
Decision making
Digital agriculture
Emissions
Environmental factors
Flow
Genetic algorithms
Irrigation
Irrigation systems
Local optimization
Methods
Neural networks
Neural Networks, Computer
Nodes
Prediction models
Technology application
Warning systems
Water levels
Water resources
Water resources planning
SummonAdditionalLinks – databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZg4QAHoOXRhQIGIQEHt0mcxMkJbREFJFSqAqveIseP1UolWZJdOPPPmXGc0Ei8JPa4Hjux_Xlm7Iy_IeRJGYVpknDDeCRgg5IHCZNgZ1hWcms4eLSlu18xfyeOjrLT0_zYH7i1Pqyy14lOUeta4Rn5PoeNBniCaZ68WH1hmDUKv676FBoXyaUQfWPAsziZ95oY1nKa-utyXIT7fnb2VnVl9gDMYLrFyBw51v5BN09WZ3X7e8fTGaDD6__76jfINe960lmHlS1ywVTb5Ops0Xj6DbNNtvxSb-kzz0f9_Cb5DlCiiLCObIIuz7F4MrSCmsqhESh3QXF02TSOvaOu6Lfu9IV2rNEUQ-0X9PWMHRxTpNOEKlUXjE7xRltD28_wtHNtmlvk0-Grjy_fMJ-5gamUizXTPA5kqg23uQ5lFvM4UVzl0max5AZAkJXClILbMDUBWAulg1jILExskhkFOLlNJhXM0g6hkbbg8XGubRnExuoyLCX8okTGuQ5yMyW8n8BCeVpzzK5xVrhvdQK2N93wFjjthZ_2KWFDrVVH6_EX-QPExiCLpNzuj7pZFH6NFwJ6KJW1nEOXrbXSGAnuE_RYKaVFOCUPEVlFd8N1UC3FLEMeuiwP4yl57CSQmKPCyJ-F3LRt8fb9_B-EPpyMhJ56IVvDcCjpb1tAn5DwayS5O5IE9aJGxTu4DvpRaYufaIaaPd5_XfxoKMZGMZqvMvWmkwHPKE1hXO90a2oYWZ7Do2Oe3f1z4_fIlQgzMYNaCcUumaybjblPLquv62XbPHBq4AeKaWqR
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELeg8MAegI2PBQYYhAQ8ZCS5JHYeO0QBaRoVH9PeLMexq0pbUiUtPPOfc47dsCIqII_x2a7Pd7675u5nQp6XSZxnGegQEoYBShFloUQ7E_ISjAb0aMu-vuL0mJ2c8LOzYvorUPztCz6w-LXn6eGiqfUhiiAaXHaVXEsgz22wNZker09e1N089-Vx23pumJ8epX84i0eL86bb7mj2Bmdy639_6m1y07uWdOxkYZdc0fUe2RnPWg-voffIrlfljr70eNOv7pAfKCrUSpADk6DzSyidobVyFZXDINjeJ73Redv26BxNTb-7f1eoQ4WmNpV-Rt-Nw6MptXCZ2KV2yebUVqy1tLvA2S6Nqe-Sr5O3X968D_3NDKHKgS3DCtJI5pUGU1Sx5CmkmQJVSMNTCRo3mZdMlwxMnOsIrYGqopRJHmcm41qhHNwjoxqZtE9oUhn06AAqU0apNlUZlxKfJJNpUUWFDgisN0woD1tub884F_23OIbhi2OvsFwXnusBCYdeCwfb8Rf6IysLA60F3e5f4PYKr8OC4QqlMgYAl2yMkVpLdI9wxUqpisUBeWIlSbgK1uHoEGNuceZ4EacBedZTWOCN2mb2zOSq68SHj6f_QPT50wbRC09kGmSHkr6aAtdkAb02KA82KPH4UBvN-1bu11zpBGBEjyFXXmTYc60Lf25-OjTbQW22Xq2blaNBzwcVNCD3nQ4NnIUCp06BP9g-70NyI7G3LOOREbMDMlq2K_2IXFfflvOufdyr_E84uli0
  priority: 102
  providerName: Public Library of Science
Title The artificial intelligence-based agricultural field irrigation warning system using GA-BP neural network under smart agriculture
URI https://www.ncbi.nlm.nih.gov/pubmed/39823438
https://www.proquest.com/docview/3156772695
https://www.proquest.com/docview/3156801667
https://doaj.org/article/7c9aacff33a84fffaeea124a3ecccd71
http://dx.doi.org/10.1371/journal.pone.0317277
Volume 20
WOSCitedRecordID wos001407853100033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (subscripiton)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Engineering Database (NC LIVE)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Materials Science Database (NC LIVE)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database (NC LIVE)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagcOCCWF5bWIpBSMAh3SROYufYrraw2t0SdaEqXCLHsatKS1olLZz554wfjVoJtBzoYQ7NOG6-GXvsdOYzQm-KMEjimEiPhBQ2KKkfexzijMcKoiSBFW1h6iumF3Q8ZrNZmu0c9aVzwiw9sAXumIqUc6EUIZxFSikuJYeYxAn0LUpTPR76NN1upuwcDKM4SVyhHKHBsbNLf7WsZB_cGII23QtEhq-_nZU7q-tl8_clpwk9owfovlsz4oH9rQfolqweogM3Khv8zlFHv3-EfoHVsX4mywuBFzuEm54OWCXm87ql28Amfw0v6toQbSwr_NO-KMGW4BnrrPg5_jDwhhnWzJfQpLJ541gXn9W4-Q697dxTPkZfRqefTz567pAFTySErr2SRD5PSklUWgYAMYliQQBzxTTGYC9WUFlQooJE-jCxi9KPKGdBrGImBZj0CepUAOshwmGpYHFGSKkKP5KqLIKCwyeMeZSWfiq7iGwRz4VjINcHYVzn5m81CjsRC2iu7ZQ7O3WR17ZaWQaOG_SH2pitrubPNl-AV-XOq_KbvKqLXmpXyG0xajsL5AOmKeNYGkRd9NpoaA6NSifpzPmmafKzT9N_ULqa7Cm9dUpqCXAI7goj4Jk0N9ee5tGeJswEYu_yoXbcLSpNTmBzDrunJI2h5daZ_3z5VXtZ31Qn3lVyubE6sIhJEsD1qR0ELbIkha4jwp79D8Sfo3uhPloZ5omAHqHOut7IF-iu-LFeNHUP3aaTqZYzaiQDyU6CHrozPB1nk54Z_SBH2QXI82Ef5KV_riXNjLwCmcXfoEV2dpl9_Q3d9WdF
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQQIegI2PFQYzCAR7yJbESZw8INQBY9VKqcY2TbwEx7GrSiMpScvEI_8QfyN3iRNWia-XPZDH-OzU17ufz4nvd4Q8Tlwn8H2mLOZy2KBEtm8JWGesMGFaMYhokyq_4mjAh8Pw-DgaLZHvTS4MHqtsMLEC6jSX-I58i8FGAyLBIPJfTD9bWDUKv642JTRqs9hTX09hy1Y-77-C__eJ6-68Pni5a5mqApYMGJ9ZKfNsEaSK6Sh1ROgxz5dMRkKHnmAKfmCYcJVwpp1A2YBkMrU9LkLH136oJMwBxr1ALnqea6MXjfwPDfIDdgSBSc9j3Nky1rA5zTO1Cc4DoQJfWP6qKgHtWtCZnuTl7wPdasHbuf6_qeoGuWZCa9qrfWGZLKlshVztjQtDL6JWyLKBspI-M3zbGzfJN3AVih5Uk2nQyRmWUgtX-ZSKdhBorw790UlRVOwkeUZP67dLtGbFpphKMKZvetb2iCJdKHTJ6sP2FDP2Clp-gqedGVPdIofnopjbpJOBVawS6qYaIlrGUp3YntJp4iQCLtcXXpTakeoS1hhMLA1tO1YPOYmrb5Ectm-1emM0s9iYWZdYba9pTVvyF_lttMVWFknHqxt5MY4NhsUcZiik1ozBlLXWQikB4SHMWEqZcqdL1tGS4zqDt4XOuBciz14YOV6XPKokkHgkw5NNYzEvy7j_7ugfhN7vLwg9NUI6B3VIYbJJYE5IaLYgubYgCfApF5pX0e8arZTxT--Bno1__br5YduMg-JpxUzl81oGIr8gAL3eqX241SyL4NEeC-_-efB1cnn34O0gHvSHe_fIFRerTgOEOnyNdGbFXN0nl-SX2aQsHlQQRMnH83bkHyUiyg8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgBAcgJZHA4UuCAQ9uLG9ttc-IJRSAlGrEBWoql7Mer0bRSp2sBMqjvwtfh0z9to0Eq9LD_jonV1nJ_Nae-YbQh4nrhP4PlMWczkcUCLbtwT4GStMmFYMItqkqq843OejUXh0FI1XyPemFgbTKhubWBnqNJf4jrzH4KABkWAQ-T1t0iLGu4MXs88WdpDCL61NO41aRPbU11M4vpXPh7vwXz9x3cGr9y_fWKbDgCUDxudWyjxbBKliOkodEXrM8yWTkdChJ5iCHxsmXCWcaSdQNlg1mdoeF6Hjaz9UEvYD614gFzmcMTGdcOwfN14A7EgQmFI9xp2ekYztWZ6pbVAkCBv4kiusOga0fqEzO8nL3we9lfMbXP-f2XaDXDMhN-3XOrJKVlS2Rq72J4WBHVFrZNWYuJI-MzjcWzfJN1AhippVg2zQ6Rn0Ugu9f0pFuwiMV8mAdFoUFWpJntHT-q0TrdGyKZYYTOjrvrUzpggjClOyOgmfYiVfQctP8LQza6pb5MO5MOY26WQgIeuEuqmGSJexVCe2p3SaOImAy_WFF6V2pLqENcITSwPnjl1FTuLqGyWHY13N3hhFLjYi1yVWO2tWw5n8hX4H5bKlRTDy6kZeTGJj22IOOxRSa8Zgy1proZSAsBF2LKVMudMlmyjVcV3Z25rUuB8i_l4YOV6XPKooEJAkQxmdiEVZxsO3h_9A9O5gieipIdI5sEMKU2UCe0KgsyXKjSVKMKtyaXgddbDhShn_1CSY2ejar4cftsO4KGYxZipf1DQQEQYB8PVOrc8tZ1kEj_ZYePfPi2-Sy6C_8f5wtHePXHGxGTVYVodvkM68WKj75JL8Mp-WxYPKGlHy8bz1-Afaq9LZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+artificial+intelligence-based+agricultural+field+irrigation+warning+system+using+GA-BP+neural+network+under+smart+agriculture&rft.jtitle=PloS+one&rft.au=Xiying+Wang&rft.date=2025-01-17&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=20&rft.issue=1&rft.spage=e0317277&rft_id=info:doi/10.1371%2Fjournal.pone.0317277&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7c9aacff33a84fffaeea124a3ecccd71
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon