Multivariate Meta-Analysis of Heterogeneous Studies Using Only Summary Statistics: Efficiency and Robustness
Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations, or out...
Uložené v:
| Vydané v: | Journal of the American Statistical Association Ročník 110; číslo 509; s. 326 - 340 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Taylor & Francis
01.03.2015
Taylor & Francis Group, LLC Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1537-274X, 0162-1459, 1537-274X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations, or outcomes. For heterogeneous studies, the parameter of interest may not be estimable for certain studies, and in such a case, these studies are typically excluded from conventional meta-analysis. The exclusion of part of the studies can lead to a nonnegligible loss of information. This article introduces a meta-analysis for heterogeneous studies by combining the confidence density functions derived from the summary statistics of individual studies, hence referred to as the CD approach. It includes all the studies in the analysis and makes use of all information, direct as well as indirect. Under a general likelihood inference framework, this new approach is shown to have several desirable properties, including: (i) it is asymptotically as efficient as the maximum likelihood approach using individual participant data (IPD) from all studies; (ii) unlike the IPD analysis, it suffices to use summary statistics to carry out the CD approach. Individual-level data are not required; and (iii) it is robust against misspecification of the working covariance structure of parameter estimates. Besides its own theoretical significance, the last property also substantially broadens the applicability of the CD approach. All the properties of the CD approach are further confirmed by data simulated from a randomized clinical trials setting as well as by real data on aircraft landing performance. Overall, one obtains a unifying approach for combining summary statistics, subsuming many of the existing meta-analysis methods as special cases. |
|---|---|
| AbstractList | Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations, or outcomes. For heterogeneous studies, the parameter of interest may not be estimable for certain studies, and in such a case, these studies are typically excluded from conventional meta-analysis. The exclusion of part of the studies can lead to a nonnegligible loss of information. This article introduces a meta-analysis for heterogeneous studies by combining the confidence density functions derived from the summary statistics of individual studies, hence referred to as the CD approach. It includes all the studies in the analysis and makes use of all information, direct as well as indirect. Under a general likelihood inference framework, this new approach is shown to have several desirable properties, including: (i) it is asymptotically as efficient as the maximum likelihood approach using individual participant data (IPD) from all studies; (ii) unlike the IPD analysis, it suffices to use summary statistics to carry out the CD approach. Individual-level data are not required; and (iii) it is robust against misspecification of the working covariance structure of parameter estimates. Besides its own theoretical significance, the last property also substantially broadens the applicability of the CD approach. All the properties of the CD approach are further confirmed by data simulated from a randomized clinical trials setting as well as by real data on aircraft landing performance. Overall, one obtains a unifying approach for combining summary statistics, subsuming many of the existing meta-analysis methods as special cases. Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations or outcomes. For heterogeneous studies, the parameter of interest may not be estimable for certain studies, and in such a case, these studies are typically excluded from conventional meta-analysis. The exclusion of part of the studies can lead to a non-negligible loss of information. This paper introduces a metaanalysis for heterogeneous studies by combining the confidence density functions derived from the summary statistics of individual studies, hence referred to as the CD approach. It includes all the studies in the analysis and makes use of all information, direct as well as indirect. Under a general likelihood inference framework, this new approach is shown to have several desirable properties, including: i) it is asymptotically as efficient as the maximum likelihood approach using individual participant data (IPD) from all studies; ii) unlike the IPD analysis, it suffices to use summary statistics to carry out the CD approach. Individual-level data are not required; and iii) it is robust against misspecification of the working covariance structure of the parameter estimates. Besides its own theoretical significance, the last property also substantially broadens the applicability of the CD approach. All the properties of the CD approach are further confirmed by data simulated from a randomized clinical trials setting as well as by real data on aircraft landing performance. Overall, one obtains an unifying approach for combining summary statistics, subsuming many of the existing meta-analysis methods as special cases. Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations or outcomes. For heterogeneous studies, the parameter of interest may not be estimable for certain studies, and in such a case, these studies are typically excluded from conventional meta-analysis. The exclusion of part of the studies can lead to a non-negligible loss of information. This paper introduces a metaanalysis for heterogeneous studies by combining the derived from the summary statistics of individual studies, hence referred to as the CD approach. It includes all the studies in the analysis and makes use of all information, direct as well as indirect. Under a general likelihood inference framework, this new approach is shown to have several desirable properties, including: i) it is asymptotically as efficient as the maximum likelihood approach using individual participant data (IPD) from all studies; ii) unlike the IPD analysis, it suffices to use summary statistics to carry out the CD approach. Individual-level data are not required; and iii) it is robust against misspecification of the working covariance structure of the parameter estimates. Besides its own theoretical significance, the last property also substantially broadens the applicability of the CD approach. All the properties of the CD approach are further confirmed by data simulated from a randomized clinical trials setting as well as by real data on aircraft landing performance. Overall, one obtains an unifying approach for combining summary statistics, subsuming many of the existing meta-analysis methods as special cases. |
| Author | Liu, Dungang Xie, Minge Liu, Regina Y. |
| AuthorAffiliation | 1 Department of Biostatistics, Yale University School of Public Health, New Haven, CT 06511, USA 2 Department of Statistics and Biostatistics, Rutgers University, New Brunswick, NJ 08854, USA |
| AuthorAffiliation_xml | – name: 2 Department of Statistics and Biostatistics, Rutgers University, New Brunswick, NJ 08854, USA – name: 1 Department of Biostatistics, Yale University School of Public Health, New Haven, CT 06511, USA |
| Author_xml | – sequence: 1 givenname: Dungang surname: Liu fullname: Liu, Dungang – sequence: 2 givenname: Regina Y. surname: Liu fullname: Liu, Regina Y. – sequence: 3 givenname: Minge surname: Xie fullname: Xie, Minge |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26190875$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB_wD3hEYsNmBj8S2-kCVFWFIrWqxDASO-vGsQdXHru1naL59yRNW0o3gze2dL9zfO179osdH7wuitcYzTES6CPCjOCqbuYE4WoumobQ-lmxh2vKZ4RXP3cenXeL_ZQu0bC4EC-KXcJwgwSv9wp33rtsbyBayLo81xlmRx7cJtlUBlOe6qxjWGmvQ5_KRe47q1O5TNavygvvNuWiX68hDnuGbFO2Kh2WJ8ZYZbVXmxJ8V34PbZ-y1ym9LJ4bcEm_utsPiuWXkx_Hp7Ozi6_fjo_OZopRnmdKINIh4IgTptpWsFpjggFMoyqmOe1YQ1uEgbTUMKOAdbWClnWG4LZpSUUPik-T71XfrnWntM8RnLyKduxVBrDy34q3v-Qq3MiqRhXBzWDw4c4ghutepyzXNintHNx-hMSCMEYFw-Q_UESRIITg7SgTrMKM0tH1_RP0MvRxGMwthRFBqOED9fbxOx8eeD_eAagmQMWQUtTmAcFIjimS9ymSY4rklKJBdvhEpuw43zD-lnXbxG8m8WXKIf7tqeK0oWhs-vNUt96EuIbfIbpOZti4EE0Er2ySdMsN7yYHA0HCKg6C5WIA2JBvUXPS0D9cVPNO |
| CODEN | JSTNAL |
| CitedBy_id | crossref_primary_10_1186_s12874_015_0087_x crossref_primary_10_1002_cjs_70011 crossref_primary_10_1016_j_jmva_2020_104669 crossref_primary_10_1016_j_csda_2019_04_016 crossref_primary_10_1002_sim_9307 crossref_primary_10_1111_biom_13238 crossref_primary_10_1016_j_jmva_2019_104567 crossref_primary_10_1002_sim_9026 crossref_primary_10_1002_sim_8499 crossref_primary_10_1016_j_spl_2017_10_011 crossref_primary_10_1080_00031305_2024_2368799 crossref_primary_10_1146_annurev_statistics_040522_021241 crossref_primary_10_1080_01621459_2020_1736082 crossref_primary_10_1080_10618600_2018_1497512 crossref_primary_10_1016_j_stamet_2014_07_002 crossref_primary_10_1093_biomet_asaa012 crossref_primary_10_1016_j_jspi_2017_09_012 crossref_primary_10_1016_j_csda_2024_107990 crossref_primary_10_1016_j_jspi_2017_09_017 crossref_primary_10_1214_23_BA1363 crossref_primary_10_1111_biom_13469 crossref_primary_10_1111_sjos_12530 crossref_primary_10_1214_24_BA1465 crossref_primary_10_1080_10618600_2025_2459287 crossref_primary_10_1002_cjs_11330 crossref_primary_10_1016_j_apmr_2016_06_017 crossref_primary_10_1080_01621459_2019_1672557 crossref_primary_10_1002_sim_9557 crossref_primary_10_1002_wics_1498 crossref_primary_10_1016_j_jspi_2016_11_006 crossref_primary_10_1080_01621459_2025_2504037 crossref_primary_10_1093_biomet_asad013 crossref_primary_10_1080_01621459_2025_2520469 crossref_primary_10_1093_alcalc_agab044 crossref_primary_10_1002_jrsm_1293 crossref_primary_10_1007_s00362_023_01445_w crossref_primary_10_1002_sim_9125 crossref_primary_10_1111_biom_12497 crossref_primary_10_1007_s11222_023_10211_9 crossref_primary_10_1007_s12561_024_09445_6 crossref_primary_10_1177_09622802231221201 crossref_primary_10_1080_01621459_2021_1902817 crossref_primary_10_1016_j_spl_2015_06_016 crossref_primary_10_1186_s12982_016_0050_2 crossref_primary_10_1214_21_AOAS1563 crossref_primary_10_1080_01621459_2017_1292915 crossref_primary_10_1214_24_STS924 crossref_primary_10_1186_s12874_017_0419_0 crossref_primary_10_1002_sim_6463 crossref_primary_10_1016_j_ejor_2020_11_041 crossref_primary_10_1002_sim_7434 crossref_primary_10_1016_j_jspi_2015_11_003 crossref_primary_10_1002_cjs_11559 crossref_primary_10_1002_cjs_11797 crossref_primary_10_1002_pst_2415 |
| Cites_doi | 10.1214/07-AOS587 10.1093/biomet/asp050 10.1002/sim.2934 10.1214/074921707000000102 10.1093/biomet/73.1.13 10.1016/j.ijar.2007.03.004 10.1007/978-1-4757-3454-6 10.2307/2534018 10.1093/biomet/asq006 10.1111/insr.12007 10.1001/jama.283.15.2008 10.1214/06-BA115 10.4088/JCP.v62n1106 10.1111/j.1541-0420.2010.01486.x 10.1081/BIP-100100997 10.1214/aos/1046294467 10.1111/j.0006-341X.1999.01221.x 10.1016/j.jval.2011.01.011 10.1016/j.jval.2011.04.002 10.1016/S0735-1097(03)00262-6 10.1198/jasa.2011.tm09803 10.1214/07-STS243 10.1111/insr.12000 10.1214/aoms/1177706618 10.1093/biomet/80.1.3 10.1080/01621459.2012.747960 10.1111/j.1467-985X.2005.00377.x 10.1097/01.pra.0000358315.88931.fc 10.1177/1740774512465495 10.1214/10-STS322 10.1002/sim.2768 |
| ContentType | Journal Article |
| Copyright | American Statistical Association 2015 2015 American Statistical Association Copyright Taylor & Francis Ltd. Mar 2015 |
| Copyright_xml | – notice: American Statistical Association 2015 – notice: 2015 American Statistical Association – notice: Copyright Taylor & Francis Ltd. Mar 2015 |
| DBID | FBQ AAYXX CITATION NPM 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM |
| DOI | 10.1080/01621459.2014.899235 |
| DatabaseName | AGRIS CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) AGRICOLA PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 340 |
| ExternalDocumentID | PMC4504219 3685579331 26190875 10_1080_01621459_2014_899235 24739307 899235 US201600085729 |
| Genre | Article Journal Article Feature |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA016750 |
| GroupedDBID | -DZ -~X .-4 ..I .7F .GJ .QJ 07G 0BK 0R~ 1OL 29L 2AX 30N 3R3 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AAAVZ AABCJ AAENE AAFWJ AAHBH AAIKQ AAJMT AAKBW AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEFU ABEHJ ABFAN ABFIM ABJCF ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABUWG ABXSQ ABXUL ABXYU ABYWD ACAGQ ACGEE ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADBBV ADCVX ADGTB ADLSF ADMHG ADODI ADULT ADYSH AEISY AENEX AEOZL AEPSL AEUMN AEUPB AEYOC AFFNX AFKRA AFQQW AFRVT AFSUE AFVYC AFXHP AGCQS AGDLA AGLEN AGLNM AGMYJ AGROQ AHDZW AHMOU AI. AIHAF AIJEM AIYEW AKBVH AKOOK ALCKM ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMATQ AMEWO AMXXU AQRUH AQUVI AVBZW AWYRJ AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BPLKW BVXVI C06 CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWIFK DWQXO E.L EBS ECEWR EJD E~A E~B F5P FBQ FEDTE FJW FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IPNFZ IPSME IVXBP J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ K9- KQ8 KYCEM L6V LJTGL LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 NA5 NHB NUSFT NY~ O9- OFU OK1 P-O P2P PADUT PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TAQ TBQAZ TDBHL TEJ TFL TFMCV TFT TFW TN5 TOXWX TTHFI TUROJ U5U UB9 UKHRP UPT UQL UT5 UU3 VH1 VOH WH7 WHG WZA YQT YXB YYM YYP ZCG ZGI ZGOLN ZUP ZXP ~S~ AAGDL AAHIA ABUFD ADXHL AMVHM AQTUD TASJS AMPGV AAYXX CITATION NPM 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c637t-c802d0a70726cbb865e121aaf9c46e73d693b01a2b3f6fca6d5cab6df21b9b243 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353474200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1537-274X 0162-1459 |
| IngestDate | Tue Nov 04 01:56:36 EST 2025 Sat Sep 27 23:55:54 EDT 2025 Fri Oct 03 00:00:32 EDT 2025 Sun Sep 28 06:25:30 EDT 2025 Mon Nov 10 01:13:52 EST 2025 Thu Apr 03 07:02:50 EDT 2025 Tue Nov 18 20:53:07 EST 2025 Sat Nov 29 03:56:40 EST 2025 Fri May 30 11:19:52 EDT 2025 Mon Oct 20 23:47:13 EDT 2025 Thu Apr 03 09:43:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 509 |
| Keywords | individual participant data multivariate meta-analysis efficiency combining information generalized estimating equations indirect evidence confidence distribution complex evidence synthesis heterogeneous studies |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c637t-c802d0a70726cbb865e121aaf9c46e73d693b01a2b3f6fca6d5cab6df21b9b243 |
| Notes | http://dx.doi.org/10.1080/01621459.2014.899235 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Dungang Liu is Postdoctoral Associate, Department of Biostatistics, Yale University School of Public Health, New Haven, CT 06511. dungang.liu@yale.edu. Regina Liu and Minge Xie are Professors, Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854. rliu; mxie@stat.rutgers.edu. |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4504219 |
| PMID | 26190875 |
| PQID | 1681020097 |
| PQPubID | 41715 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1803082221 proquest_miscellaneous_1826638612 jstor_primary_24739307 informaworld_taylorfrancis_310_1080_01621459_2014_899235 proquest_miscellaneous_1686416332 crossref_primary_10_1080_01621459_2014_899235 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4504219 crossref_citationtrail_10_1080_01621459_2014_899235 proquest_journals_1681020097 pubmed_primary_26190875 fao_agris_US201600085729 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-03-01 |
| PublicationDateYYYYMMDD | 2015-03-01 |
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationTitleAlternate | J Am Stat Assoc |
| PublicationYear | 2015 |
| Publisher | Taylor & Francis Taylor & Francis Group, LLC Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group, LLC – name: Taylor & Francis Ltd |
| References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 cit0019 cit0017 cit0018 cit0015 cit0016 cit0035 cit0022 cit0001 cit0023 cit0020 cit0021 Dominici F. (cit0009) 2000 cit0008 cit0006 cit0028 cit0007 Hannig J. (cit0013) 2009; 19 Hannig J. (cit0014) 2013; 23 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 10091907 - J Biopharm Stat. 1999 Mar;9(1):1-16 9544524 - Biometrics. 1998 Mar;54(1):317-22 19625884 - J Psychiatr Pract. 2009 Jul;15(4):289-305 12742294 - J Am Coll Cardiol. 2003 May 7;41(9):1529-38 20825392 - Biometrics. 2011 Jun;67(2):604-10 11775046 - J Clin Psychiatry. 2001 Nov;62(11):869-77 21669366 - Value Health. 2011 Jun;14(4):417-28 10789670 - JAMA. 2000 Apr 19;283(15):2008-12 17195960 - Stat Med. 2007 Jul 10;26(15):2982-99 23171499 - Clin Trials. 2013 Feb;10(1):20-31 11315071 - Biometrics. 1999 Dec;55(4):1221-3 17590884 - Stat Med. 2008 Feb 28;27(5):625-50 21669367 - Value Health. 2011 Jun;14(4):429-37 23049122 - Biometrika. 2010 Jun;97(2):321-332 |
| References_xml | – ident: cit0004 doi: 10.1214/07-AOS587 – ident: cit0015 doi: 10.1093/biomet/asp050 – start-page: 105 volume-title: Meta-analysis in Medicine and Health Policy year: 2000 ident: cit0009 – ident: cit0028 doi: 10.1002/sim.2934 – ident: cit0026 doi: 10.1214/074921707000000102 – ident: cit0018 doi: 10.1093/biomet/73.1.13 – ident: cit0008 doi: 10.1016/j.ijar.2007.03.004 – ident: cit0012 doi: 10.1007/978-1-4757-3454-6 – ident: cit0023 doi: 10.2307/2534018 – ident: cit0019 doi: 10.1093/biomet/asq006 – ident: cit0007 doi: 10.1111/insr.12007 – ident: cit0027 doi: 10.1001/jama.283.15.2008 – ident: cit0003 doi: 10.1214/06-BA115 – ident: cit0011 doi: 10.4088/JCP.v62n1106 – ident: cit0029 doi: 10.1111/j.1541-0420.2010.01486.x – ident: cit0031 doi: 10.1081/BIP-100100997 – ident: cit0033 doi: 10.1214/aos/1046294467 – volume: 23 start-page: 489 year: 2013 ident: cit0014 publication-title: Statistica Sinica – ident: cit0022 doi: 10.1111/j.0006-341X.1999.01221.x – ident: cit0016 doi: 10.1016/j.jval.2011.01.011 – ident: cit0017 doi: 10.1016/j.jval.2011.04.002 – ident: cit0024 doi: 10.1016/S0735-1097(03)00262-6 – ident: cit0035 doi: 10.1198/jasa.2011.tm09803 – ident: cit0002 doi: 10.1214/07-STS243 – ident: cit0032 doi: 10.1111/insr.12000 – ident: cit0006 doi: 10.1214/aoms/1177706618 – ident: cit0010 doi: 10.1093/biomet/80.1.3 – ident: cit0020 doi: 10.1080/01621459.2012.747960 – ident: cit0001 doi: 10.1111/j.1467-985X.2005.00377.x – volume: 19 start-page: 491 year: 2009 ident: cit0013 publication-title: Statistica Sinica – ident: cit0034 doi: 10.1097/01.pra.0000358315.88931.fc – ident: cit0005 doi: 10.1177/1740774512465495 – ident: cit0021 doi: 10.1214/10-STS322 – ident: cit0025 doi: 10.1002/sim.2768 – reference: 11775046 - J Clin Psychiatry. 2001 Nov;62(11):869-77 – reference: 23171499 - Clin Trials. 2013 Feb;10(1):20-31 – reference: 10789670 - JAMA. 2000 Apr 19;283(15):2008-12 – reference: 21669366 - Value Health. 2011 Jun;14(4):417-28 – reference: 20825392 - Biometrics. 2011 Jun;67(2):604-10 – reference: 23049122 - Biometrika. 2010 Jun;97(2):321-332 – reference: 12742294 - J Am Coll Cardiol. 2003 May 7;41(9):1529-38 – reference: 9544524 - Biometrics. 1998 Mar;54(1):317-22 – reference: 21669367 - Value Health. 2011 Jun;14(4):429-37 – reference: 11315071 - Biometrics. 1999 Dec;55(4):1221-3 – reference: 19625884 - J Psychiatr Pract. 2009 Jul;15(4):289-305 – reference: 17195960 - Stat Med. 2007 Jul 10;26(15):2982-99 – reference: 17590884 - Stat Med. 2008 Feb 28;27(5):625-50 – reference: 10091907 - J Biopharm Stat. 1999 Mar;9(1):1-16 |
| SSID | ssj0000788 |
| Score | 2.4625952 |
| Snippet | Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been... |
| SourceID | pubmedcentral proquest pubmed crossref jstor informaworld fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 326 |
| SubjectTerms | Aircraft Analysis Analysis of covariance aviation Clinical research Clinical trials Combining information Complex evidence synthesis Confidence distribution Covariance Data data analysis equations Generalized estimating equations Heterogeneity Hypotheses Indirect evidence Individual differences Individual participant data Inference Maximum likelihood method Meta-analysis Multivariate analysis Parameter estimation Property randomized clinical trials Robustness Statistical inference Statistics Theory and Methods |
| Title | Multivariate Meta-Analysis of Heterogeneous Studies Using Only Summary Statistics: Efficiency and Robustness |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2014.899235 https://www.jstor.org/stable/24739307 https://www.ncbi.nlm.nih.gov/pubmed/26190875 https://www.proquest.com/docview/1681020097 https://www.proquest.com/docview/1686416332 https://www.proquest.com/docview/1803082221 https://www.proquest.com/docview/1826638612 https://pubmed.ncbi.nlm.nih.gov/PMC4504219 |
| Volume | 110 |
| WOSCitedRecordID | wos000353474200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 1537-274X databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoxaEX3qWBUhmJayC2E9vhhlBXvVAQbcXeLNtrA9IqQd1sJf49M06yjwoWCY4rjy2vPR5_E898Q8grISvmNH4CC8Ll-LKXwzaXeV0A-JgxEVjhU7EJdX6up9P600YWP4ZVog8de6KIZKvxcFu3GCPi3gBKQX5tTDNh5WtwGLjALHO4-fFkXk6-rE2xSoUnsUOOPcbcuT8MsnU37UXb3uIvHWMWf4dGbwdVbtxSk_v___8ekHsDQqXvepV6SO6E5hE5QFDaczo_JvOUtXsDXjYAVfohdDYfuU1oG-kZRti0oJihXS7oEKhIU2wC_djMf9KLPmGOrsd8S08TlQXmgVKYN_3cuuWiQzP8hFxNTi_fn-VD1YbcS6G63OuCzwqrCsWld07LKjDOrI21L2VQYiZr4QpmuRNRRm_lrPLWyVnkzNWOl-KQ7DdtE44IjYDNlBc6BM_L6AsNvitjjoWax9JWPCNi3C_jB0pzrKwxN2xkPh2W0uBSmn4pM5Kvev3oKT3-In8EqmDsV7C65uqCIydfKgzA64zoTf0wXfrKEvuSKEbsHvUw6dJqCrxEcsJCZeR4VC4z2JOFYUgbhw9Z0Pxy1QyWAJ93bNpPlJEIrwXfIaMTPxHnbJcMgDahAfpm5Gmv0-tJgr-NNRAyora0fSWAbOXbLc33b4m1vKzgfmD1s39fsufkAH5VfQTgMdnvrpfhBbnrb0BXr0_Inprqk3T-fwFIEVLW |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbYQGIv4-dYYICReA3EduIkvCG0qoitINaJvVm2Yw-kKkFrOmn_PXdO0q4TFAnx7LPl2Jfzd_bdd4S8FjJjpsArMCdMjC97MWxzGpcJgI-KCccSG4pN5JNJcXZWfumjCed9WCX60L4jigi2Gn9uvIweQuLeAkxBgm3MM2HpG_AYuMi2yO0Mjlqkz5-Ovq2McR5KT2KPGLsM2XN_GGXtdNryurnBYDpELf4Oj94Mq7x2To3u_YcvvE92e5BK33da9YDccvVDsoO4tKN1fkRmIXH3EhxtwKr02LU6HuhNaOPpGINsGtBN1yzmtI9VpCE8gX6uZ1f0pMuZo6sx39HDwGaBqaAUJk6_NmYxb9ESPyano8Pph3HcF26IrRR5G9si4VWi8yTn0hpTyMwxzrT2pU2ly0UlS2ESprkRXnqrZZVZbWTlOTOl4anYI9t1U7t9Qj3As9yKwjnLU2-TAtxXxgxzJfepznhExLBhyvas5lhcY6bYQH7aL6XCpVTdUkYkXvb62bF6_EV-H3RB6XMwvOr0hCMtX6gNwMuIFNcVRLXhosV3VVGU2DzqXlCm5RR4ivyESR6Rg0G7VG9S5oohcxy-ZUHzq2UzGAN84dFhP1FGIsIWfINMESiKOGebZAC3iQLQb0SedEq9miS43FgGISL5mrovBZCwfL2l_vE9EJenGRwRrHz670v2ktwdT4-P1NHHyadnZAdasi4g8IBstxcL95zcsZegtxcvghn4BZwHVhg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoQagXvksDLRiJayC2EyfprYKuioCloq3ozbIdG5BWSdXNVuLfM-Mk-1HRRYKzx5bXfjt-jmfeEPJayIyZAj-BOWFifNmLYZvTuEyAfFRMOJbYUGwiH4-L8_PyeCmLH8Mq8Q7tO6GI4Kvxz31R-SEi7i2wFNTXxjQTlr6BCwMX2Qa5DcxZIsZPR98WvjgPlSexR4xdhuS5G0ZZOZw2vG6uCZgOQYt_oqPXoyqXjqnR_f__gQ_IvZ6i0oMOUw_JLVc_IlvISjtR58dkEtJ2r-CaDUyVfnatjgdxE9p4eoQhNg0g0zWzKe0jFWkITqBf6skvetJlzNHFmPv0MGhZYCIohXnTr42ZTVv0w0_I2ejw9N1R3JdtiK0UeRvbIuFVovMk59IaU8jMMc609qVNpctFJUthEqa5EV56q2WVWW1k5TkzpeGp2CabdVO7HUI9kLPcisI5y1NvkwIur4wZ5kruU53xiIhhv5TtNc2xtMZEsUH6tF9KhUupuqWMSDzvddFpevzFfgegoPR3cLvq7ISjKF-oDMDLiBTL-FBt-Mziu5ooSqwfdTtgaT4FnqI6YZJHZHcAl-odylQx1I3DlyxofjVvBleA7zs67CfaSOTXgq-xKYJAEedsnQ2wNlEA943I0w7Ti0nChRuLIEQkX0H73ADlyldb6p8_gmx5msEBwcpn_75kL8nd4_cj9enD-ONzsgUNWRcNuEs228uZ2yN37BXA9vJFcAK_AUpvVMo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Meta-Analysis+of+Heterogeneous+Studies+Using+Only+Summary+Statistics%3A+Efficiency+and+Robustness&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Liu%2C+Dungang&rft.au=Liu%2C+Regina+Y.&rft.au=Xie%2C+Minge&rft.date=2015-03-01&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=110&rft.issue=509&rft.spage=326&rft.epage=340&rft_id=info:doi/10.1080%2F01621459.2014.899235&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2014_899235 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon |