Multivariate Meta-Analysis of Heterogeneous Studies Using Only Summary Statistics: Efficiency and Robustness

Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations, or out...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 110; číslo 509; s. 326 - 340
Hlavní autori: Liu, Dungang, Liu, Regina Y., Xie, Minge
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Taylor & Francis 01.03.2015
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Predmet:
ISSN:1537-274X, 0162-1459, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations, or outcomes. For heterogeneous studies, the parameter of interest may not be estimable for certain studies, and in such a case, these studies are typically excluded from conventional meta-analysis. The exclusion of part of the studies can lead to a nonnegligible loss of information. This article introduces a meta-analysis for heterogeneous studies by combining the confidence density functions derived from the summary statistics of individual studies, hence referred to as the CD approach. It includes all the studies in the analysis and makes use of all information, direct as well as indirect. Under a general likelihood inference framework, this new approach is shown to have several desirable properties, including: (i) it is asymptotically as efficient as the maximum likelihood approach using individual participant data (IPD) from all studies; (ii) unlike the IPD analysis, it suffices to use summary statistics to carry out the CD approach. Individual-level data are not required; and (iii) it is robust against misspecification of the working covariance structure of parameter estimates. Besides its own theoretical significance, the last property also substantially broadens the applicability of the CD approach. All the properties of the CD approach are further confirmed by data simulated from a randomized clinical trials setting as well as by real data on aircraft landing performance. Overall, one obtains a unifying approach for combining summary statistics, subsuming many of the existing meta-analysis methods as special cases.
AbstractList Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations, or outcomes. For heterogeneous studies, the parameter of interest may not be estimable for certain studies, and in such a case, these studies are typically excluded from conventional meta-analysis. The exclusion of part of the studies can lead to a nonnegligible loss of information. This article introduces a meta-analysis for heterogeneous studies by combining the confidence density functions derived from the summary statistics of individual studies, hence referred to as the CD approach. It includes all the studies in the analysis and makes use of all information, direct as well as indirect. Under a general likelihood inference framework, this new approach is shown to have several desirable properties, including: (i) it is asymptotically as efficient as the maximum likelihood approach using individual participant data (IPD) from all studies; (ii) unlike the IPD analysis, it suffices to use summary statistics to carry out the CD approach. Individual-level data are not required; and (iii) it is robust against misspecification of the working covariance structure of parameter estimates. Besides its own theoretical significance, the last property also substantially broadens the applicability of the CD approach. All the properties of the CD approach are further confirmed by data simulated from a randomized clinical trials setting as well as by real data on aircraft landing performance. Overall, one obtains a unifying approach for combining summary statistics, subsuming many of the existing meta-analysis methods as special cases.
Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations or outcomes. For heterogeneous studies, the parameter of interest may not be estimable for certain studies, and in such a case, these studies are typically excluded from conventional meta-analysis. The exclusion of part of the studies can lead to a non-negligible loss of information. This paper introduces a metaanalysis for heterogeneous studies by combining the confidence density functions derived from the summary statistics of individual studies, hence referred to as the CD approach. It includes all the studies in the analysis and makes use of all information, direct as well as indirect. Under a general likelihood inference framework, this new approach is shown to have several desirable properties, including: i) it is asymptotically as efficient as the maximum likelihood approach using individual participant data (IPD) from all studies; ii) unlike the IPD analysis, it suffices to use summary statistics to carry out the CD approach. Individual-level data are not required; and iii) it is robust against misspecification of the working covariance structure of the parameter estimates. Besides its own theoretical significance, the last property also substantially broadens the applicability of the CD approach. All the properties of the CD approach are further confirmed by data simulated from a randomized clinical trials setting as well as by real data on aircraft landing performance. Overall, one obtains an unifying approach for combining summary statistics, subsuming many of the existing meta-analysis methods as special cases.
Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been fully developed for incorporating heterogeneous studies, which arise often in applications due to different study designs, populations or outcomes. For heterogeneous studies, the parameter of interest may not be estimable for certain studies, and in such a case, these studies are typically excluded from conventional meta-analysis. The exclusion of part of the studies can lead to a non-negligible loss of information. This paper introduces a metaanalysis for heterogeneous studies by combining the derived from the summary statistics of individual studies, hence referred to as the CD approach. It includes all the studies in the analysis and makes use of all information, direct as well as indirect. Under a general likelihood inference framework, this new approach is shown to have several desirable properties, including: i) it is asymptotically as efficient as the maximum likelihood approach using individual participant data (IPD) from all studies; ii) unlike the IPD analysis, it suffices to use summary statistics to carry out the CD approach. Individual-level data are not required; and iii) it is robust against misspecification of the working covariance structure of the parameter estimates. Besides its own theoretical significance, the last property also substantially broadens the applicability of the CD approach. All the properties of the CD approach are further confirmed by data simulated from a randomized clinical trials setting as well as by real data on aircraft landing performance. Overall, one obtains an unifying approach for combining summary statistics, subsuming many of the existing meta-analysis methods as special cases.
Author Liu, Dungang
Xie, Minge
Liu, Regina Y.
AuthorAffiliation 1 Department of Biostatistics, Yale University School of Public Health, New Haven, CT 06511, USA
2 Department of Statistics and Biostatistics, Rutgers University, New Brunswick, NJ 08854, USA
AuthorAffiliation_xml – name: 2 Department of Statistics and Biostatistics, Rutgers University, New Brunswick, NJ 08854, USA
– name: 1 Department of Biostatistics, Yale University School of Public Health, New Haven, CT 06511, USA
Author_xml – sequence: 1
  givenname: Dungang
  surname: Liu
  fullname: Liu, Dungang
– sequence: 2
  givenname: Regina Y.
  surname: Liu
  fullname: Liu, Regina Y.
– sequence: 3
  givenname: Minge
  surname: Xie
  fullname: Xie, Minge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26190875$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wD3hEYsNmBj8S2-kCVFWFIrWqxDASO-vGsQdXHru1naL59yRNW0o3gze2dL9zfO179osdH7wuitcYzTES6CPCjOCqbuYE4WoumobQ-lmxh2vKZ4RXP3cenXeL_ZQu0bC4EC-KXcJwgwSv9wp33rtsbyBayLo81xlmRx7cJtlUBlOe6qxjWGmvQ5_KRe47q1O5TNavygvvNuWiX68hDnuGbFO2Kh2WJ8ZYZbVXmxJ8V34PbZ-y1ym9LJ4bcEm_utsPiuWXkx_Hp7Ozi6_fjo_OZopRnmdKINIh4IgTptpWsFpjggFMoyqmOe1YQ1uEgbTUMKOAdbWClnWG4LZpSUUPik-T71XfrnWntM8RnLyKduxVBrDy34q3v-Qq3MiqRhXBzWDw4c4ghutepyzXNintHNx-hMSCMEYFw-Q_UESRIITg7SgTrMKM0tH1_RP0MvRxGMwthRFBqOED9fbxOx8eeD_eAagmQMWQUtTmAcFIjimS9ymSY4rklKJBdvhEpuw43zD-lnXbxG8m8WXKIf7tqeK0oWhs-vNUt96EuIbfIbpOZti4EE0Er2ySdMsN7yYHA0HCKg6C5WIA2JBvUXPS0D9cVPNO
CODEN JSTNAL
CitedBy_id crossref_primary_10_1186_s12874_015_0087_x
crossref_primary_10_1002_cjs_70011
crossref_primary_10_1016_j_jmva_2020_104669
crossref_primary_10_1016_j_csda_2019_04_016
crossref_primary_10_1002_sim_9307
crossref_primary_10_1111_biom_13238
crossref_primary_10_1016_j_jmva_2019_104567
crossref_primary_10_1002_sim_9026
crossref_primary_10_1002_sim_8499
crossref_primary_10_1016_j_spl_2017_10_011
crossref_primary_10_1080_00031305_2024_2368799
crossref_primary_10_1146_annurev_statistics_040522_021241
crossref_primary_10_1080_01621459_2020_1736082
crossref_primary_10_1080_10618600_2018_1497512
crossref_primary_10_1016_j_stamet_2014_07_002
crossref_primary_10_1093_biomet_asaa012
crossref_primary_10_1016_j_jspi_2017_09_012
crossref_primary_10_1016_j_csda_2024_107990
crossref_primary_10_1016_j_jspi_2017_09_017
crossref_primary_10_1214_23_BA1363
crossref_primary_10_1111_biom_13469
crossref_primary_10_1111_sjos_12530
crossref_primary_10_1214_24_BA1465
crossref_primary_10_1080_10618600_2025_2459287
crossref_primary_10_1002_cjs_11330
crossref_primary_10_1016_j_apmr_2016_06_017
crossref_primary_10_1080_01621459_2019_1672557
crossref_primary_10_1002_sim_9557
crossref_primary_10_1002_wics_1498
crossref_primary_10_1016_j_jspi_2016_11_006
crossref_primary_10_1080_01621459_2025_2504037
crossref_primary_10_1093_biomet_asad013
crossref_primary_10_1080_01621459_2025_2520469
crossref_primary_10_1093_alcalc_agab044
crossref_primary_10_1002_jrsm_1293
crossref_primary_10_1007_s00362_023_01445_w
crossref_primary_10_1002_sim_9125
crossref_primary_10_1111_biom_12497
crossref_primary_10_1007_s11222_023_10211_9
crossref_primary_10_1007_s12561_024_09445_6
crossref_primary_10_1177_09622802231221201
crossref_primary_10_1080_01621459_2021_1902817
crossref_primary_10_1016_j_spl_2015_06_016
crossref_primary_10_1186_s12982_016_0050_2
crossref_primary_10_1214_21_AOAS1563
crossref_primary_10_1080_01621459_2017_1292915
crossref_primary_10_1214_24_STS924
crossref_primary_10_1186_s12874_017_0419_0
crossref_primary_10_1002_sim_6463
crossref_primary_10_1016_j_ejor_2020_11_041
crossref_primary_10_1002_sim_7434
crossref_primary_10_1016_j_jspi_2015_11_003
crossref_primary_10_1002_cjs_11559
crossref_primary_10_1002_cjs_11797
crossref_primary_10_1002_pst_2415
Cites_doi 10.1214/07-AOS587
10.1093/biomet/asp050
10.1002/sim.2934
10.1214/074921707000000102
10.1093/biomet/73.1.13
10.1016/j.ijar.2007.03.004
10.1007/978-1-4757-3454-6
10.2307/2534018
10.1093/biomet/asq006
10.1111/insr.12007
10.1001/jama.283.15.2008
10.1214/06-BA115
10.4088/JCP.v62n1106
10.1111/j.1541-0420.2010.01486.x
10.1081/BIP-100100997
10.1214/aos/1046294467
10.1111/j.0006-341X.1999.01221.x
10.1016/j.jval.2011.01.011
10.1016/j.jval.2011.04.002
10.1016/S0735-1097(03)00262-6
10.1198/jasa.2011.tm09803
10.1214/07-STS243
10.1111/insr.12000
10.1214/aoms/1177706618
10.1093/biomet/80.1.3
10.1080/01621459.2012.747960
10.1111/j.1467-985X.2005.00377.x
10.1097/01.pra.0000358315.88931.fc
10.1177/1740774512465495
10.1214/10-STS322
10.1002/sim.2768
ContentType Journal Article
Copyright American Statistical Association 2015
2015 American Statistical Association
Copyright Taylor & Francis Ltd. Mar 2015
Copyright_xml – notice: American Statistical Association 2015
– notice: 2015 American Statistical Association
– notice: Copyright Taylor & Francis Ltd. Mar 2015
DBID FBQ
AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
DOI 10.1080/01621459.2014.899235
DatabaseName AGRIS
CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

International Bibliography of the Social Sciences (IBSS)


AGRICOLA

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 340
ExternalDocumentID PMC4504219
3685579331
26190875
10_1080_01621459_2014_899235
24739307
899235
US201600085729
Genre Article
Journal Article
Feature
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA016750
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
07G
0BK
0R~
1OL
29L
2AX
30N
3R3
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AAAVZ
AABCJ
AAENE
AAFWJ
AAHBH
AAIKQ
AAJMT
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUWG
ABXSQ
ABXUL
ABXYU
ABYWD
ACAGQ
ACGEE
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEUMN
AEUPB
AEYOC
AFFNX
AFKRA
AFQQW
AFRVT
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGLEN
AGLNM
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMATQ
AMEWO
AMXXU
AQRUH
AQUVI
AVBZW
AWYRJ
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BPLKW
BVXVI
C06
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWIFK
DWQXO
E.L
EBS
ECEWR
EJD
E~A
E~B
F5P
FBQ
FEDTE
FJW
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IPNFZ
IPSME
IVXBP
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
K9-
KQ8
KYCEM
L6V
LJTGL
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
NA5
NHB
NUSFT
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TAQ
TBQAZ
TDBHL
TEJ
TFL
TFMCV
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UB9
UKHRP
UPT
UQL
UT5
UU3
VH1
VOH
WH7
WHG
WZA
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
ZUP
ZXP
~S~
AAGDL
AAHIA
ABUFD
ADXHL
AMVHM
AQTUD
TASJS
AMPGV
AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c637t-c802d0a70726cbb865e121aaf9c46e73d693b01a2b3f6fca6d5cab6df21b9b243
IEDL.DBID TFW
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353474200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1537-274X
0162-1459
IngestDate Tue Nov 04 01:56:36 EST 2025
Sat Sep 27 23:55:54 EDT 2025
Fri Oct 03 00:00:32 EDT 2025
Sun Sep 28 06:25:30 EDT 2025
Mon Nov 10 01:13:52 EST 2025
Thu Apr 03 07:02:50 EDT 2025
Tue Nov 18 20:53:07 EST 2025
Sat Nov 29 03:56:40 EST 2025
Fri May 30 11:19:52 EDT 2025
Mon Oct 20 23:47:13 EDT 2025
Thu Apr 03 09:43:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 509
Keywords individual participant data
multivariate meta-analysis
efficiency
combining information
generalized estimating equations
indirect evidence
confidence distribution
complex evidence synthesis
heterogeneous studies
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-c802d0a70726cbb865e121aaf9c46e73d693b01a2b3f6fca6d5cab6df21b9b243
Notes http://dx.doi.org/10.1080/01621459.2014.899235
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Dungang Liu is Postdoctoral Associate, Department of Biostatistics, Yale University School of Public Health, New Haven, CT 06511. dungang.liu@yale.edu. Regina Liu and Minge Xie are Professors, Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854. rliu; mxie@stat.rutgers.edu.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4504219
PMID 26190875
PQID 1681020097
PQPubID 41715
PageCount 15
ParticipantIDs proquest_miscellaneous_1803082221
proquest_miscellaneous_1826638612
jstor_primary_24739307
informaworld_taylorfrancis_310_1080_01621459_2014_899235
proquest_miscellaneous_1686416332
crossref_primary_10_1080_01621459_2014_899235
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4504219
crossref_citationtrail_10_1080_01621459_2014_899235
proquest_journals_1681020097
pubmed_primary_26190875
fao_agris_US201600085729
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2015
Publisher Taylor & Francis
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group, LLC
– name: Taylor & Francis Ltd
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
cit0019
cit0017
cit0018
cit0015
cit0016
cit0035
cit0022
cit0001
cit0023
cit0020
cit0021
Dominici F. (cit0009) 2000
cit0008
cit0006
cit0028
cit0007
Hannig J. (cit0013) 2009; 19
Hannig J. (cit0014) 2013; 23
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
10091907 - J Biopharm Stat. 1999 Mar;9(1):1-16
9544524 - Biometrics. 1998 Mar;54(1):317-22
19625884 - J Psychiatr Pract. 2009 Jul;15(4):289-305
12742294 - J Am Coll Cardiol. 2003 May 7;41(9):1529-38
20825392 - Biometrics. 2011 Jun;67(2):604-10
11775046 - J Clin Psychiatry. 2001 Nov;62(11):869-77
21669366 - Value Health. 2011 Jun;14(4):417-28
10789670 - JAMA. 2000 Apr 19;283(15):2008-12
17195960 - Stat Med. 2007 Jul 10;26(15):2982-99
23171499 - Clin Trials. 2013 Feb;10(1):20-31
11315071 - Biometrics. 1999 Dec;55(4):1221-3
17590884 - Stat Med. 2008 Feb 28;27(5):625-50
21669367 - Value Health. 2011 Jun;14(4):429-37
23049122 - Biometrika. 2010 Jun;97(2):321-332
References_xml – ident: cit0004
  doi: 10.1214/07-AOS587
– ident: cit0015
  doi: 10.1093/biomet/asp050
– start-page: 105
  volume-title: Meta-analysis in Medicine and Health Policy
  year: 2000
  ident: cit0009
– ident: cit0028
  doi: 10.1002/sim.2934
– ident: cit0026
  doi: 10.1214/074921707000000102
– ident: cit0018
  doi: 10.1093/biomet/73.1.13
– ident: cit0008
  doi: 10.1016/j.ijar.2007.03.004
– ident: cit0012
  doi: 10.1007/978-1-4757-3454-6
– ident: cit0023
  doi: 10.2307/2534018
– ident: cit0019
  doi: 10.1093/biomet/asq006
– ident: cit0007
  doi: 10.1111/insr.12007
– ident: cit0027
  doi: 10.1001/jama.283.15.2008
– ident: cit0003
  doi: 10.1214/06-BA115
– ident: cit0011
  doi: 10.4088/JCP.v62n1106
– ident: cit0029
  doi: 10.1111/j.1541-0420.2010.01486.x
– ident: cit0031
  doi: 10.1081/BIP-100100997
– ident: cit0033
  doi: 10.1214/aos/1046294467
– volume: 23
  start-page: 489
  year: 2013
  ident: cit0014
  publication-title: Statistica Sinica
– ident: cit0022
  doi: 10.1111/j.0006-341X.1999.01221.x
– ident: cit0016
  doi: 10.1016/j.jval.2011.01.011
– ident: cit0017
  doi: 10.1016/j.jval.2011.04.002
– ident: cit0024
  doi: 10.1016/S0735-1097(03)00262-6
– ident: cit0035
  doi: 10.1198/jasa.2011.tm09803
– ident: cit0002
  doi: 10.1214/07-STS243
– ident: cit0032
  doi: 10.1111/insr.12000
– ident: cit0006
  doi: 10.1214/aoms/1177706618
– ident: cit0010
  doi: 10.1093/biomet/80.1.3
– ident: cit0020
  doi: 10.1080/01621459.2012.747960
– ident: cit0001
  doi: 10.1111/j.1467-985X.2005.00377.x
– volume: 19
  start-page: 491
  year: 2009
  ident: cit0013
  publication-title: Statistica Sinica
– ident: cit0034
  doi: 10.1097/01.pra.0000358315.88931.fc
– ident: cit0005
  doi: 10.1177/1740774512465495
– ident: cit0021
  doi: 10.1214/10-STS322
– ident: cit0025
  doi: 10.1002/sim.2768
– reference: 11775046 - J Clin Psychiatry. 2001 Nov;62(11):869-77
– reference: 23171499 - Clin Trials. 2013 Feb;10(1):20-31
– reference: 10789670 - JAMA. 2000 Apr 19;283(15):2008-12
– reference: 21669366 - Value Health. 2011 Jun;14(4):417-28
– reference: 20825392 - Biometrics. 2011 Jun;67(2):604-10
– reference: 23049122 - Biometrika. 2010 Jun;97(2):321-332
– reference: 12742294 - J Am Coll Cardiol. 2003 May 7;41(9):1529-38
– reference: 9544524 - Biometrics. 1998 Mar;54(1):317-22
– reference: 21669367 - Value Health. 2011 Jun;14(4):429-37
– reference: 11315071 - Biometrics. 1999 Dec;55(4):1221-3
– reference: 19625884 - J Psychiatr Pract. 2009 Jul;15(4):289-305
– reference: 17195960 - Stat Med. 2007 Jul 10;26(15):2982-99
– reference: 17590884 - Stat Med. 2008 Feb 28;27(5):625-50
– reference: 10091907 - J Biopharm Stat. 1999 Mar;9(1):1-16
SSID ssj0000788
Score 2.4625952
Snippet Meta-analysis has been widely used to synthesize evidence from multiple studies for common hypotheses or parameters of interest. However, it has not yet been...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 326
SubjectTerms Aircraft
Analysis
Analysis of covariance
aviation
Clinical research
Clinical trials
Combining information
Complex evidence synthesis
Confidence distribution
Covariance
Data
data analysis
equations
Generalized estimating equations
Heterogeneity
Hypotheses
Indirect evidence
Individual differences
Individual participant data
Inference
Maximum likelihood method
Meta-analysis
Multivariate analysis
Parameter estimation
Property
randomized clinical trials
Robustness
Statistical inference
Statistics
Theory and Methods
Title Multivariate Meta-Analysis of Heterogeneous Studies Using Only Summary Statistics: Efficiency and Robustness
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2014.899235
https://www.jstor.org/stable/24739307
https://www.ncbi.nlm.nih.gov/pubmed/26190875
https://www.proquest.com/docview/1681020097
https://www.proquest.com/docview/1686416332
https://www.proquest.com/docview/1803082221
https://www.proquest.com/docview/1826638612
https://pubmed.ncbi.nlm.nih.gov/PMC4504219
Volume 110
WOSCitedRecordID wos000353474200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 1537-274X
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoxaEX3qWBUhmJayC2E9vhhlBXvVAQbcXeLNtrA9IqQd1sJf49M06yjwoWCY4rjy2vPR5_E898Q8grISvmNH4CC8Ll-LKXwzaXeV0A-JgxEVjhU7EJdX6up9P600YWP4ZVog8de6KIZKvxcFu3GCPi3gBKQX5tTDNh5WtwGLjALHO4-fFkXk6-rE2xSoUnsUOOPcbcuT8MsnU37UXb3uIvHWMWf4dGbwdVbtxSk_v___8ekHsDQqXvepV6SO6E5hE5QFDaczo_JvOUtXsDXjYAVfohdDYfuU1oG-kZRti0oJihXS7oEKhIU2wC_djMf9KLPmGOrsd8S08TlQXmgVKYN_3cuuWiQzP8hFxNTi_fn-VD1YbcS6G63OuCzwqrCsWld07LKjDOrI21L2VQYiZr4QpmuRNRRm_lrPLWyVnkzNWOl-KQ7DdtE44IjYDNlBc6BM_L6AsNvitjjoWax9JWPCNi3C_jB0pzrKwxN2xkPh2W0uBSmn4pM5Kvev3oKT3-In8EqmDsV7C65uqCIydfKgzA64zoTf0wXfrKEvuSKEbsHvUw6dJqCrxEcsJCZeR4VC4z2JOFYUgbhw9Z0Pxy1QyWAJ93bNpPlJEIrwXfIaMTPxHnbJcMgDahAfpm5Gmv0-tJgr-NNRAyora0fSWAbOXbLc33b4m1vKzgfmD1s39fsufkAH5VfQTgMdnvrpfhBbnrb0BXr0_Inprqk3T-fwFIEVLW
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbYQGIv4-dYYICReA3EduIkvCG0qoitINaJvVm2Yw-kKkFrOmn_PXdO0q4TFAnx7LPl2Jfzd_bdd4S8FjJjpsArMCdMjC97MWxzGpcJgI-KCccSG4pN5JNJcXZWfumjCed9WCX60L4jigi2Gn9uvIweQuLeAkxBgm3MM2HpG_AYuMi2yO0Mjlqkz5-Ovq2McR5KT2KPGLsM2XN_GGXtdNryurnBYDpELf4Oj94Mq7x2To3u_YcvvE92e5BK33da9YDccvVDsoO4tKN1fkRmIXH3EhxtwKr02LU6HuhNaOPpGINsGtBN1yzmtI9VpCE8gX6uZ1f0pMuZo6sx39HDwGaBqaAUJk6_NmYxb9ESPyano8Pph3HcF26IrRR5G9si4VWi8yTn0hpTyMwxzrT2pU2ly0UlS2ESprkRXnqrZZVZbWTlOTOl4anYI9t1U7t9Qj3As9yKwjnLU2-TAtxXxgxzJfepznhExLBhyvas5lhcY6bYQH7aL6XCpVTdUkYkXvb62bF6_EV-H3RB6XMwvOr0hCMtX6gNwMuIFNcVRLXhosV3VVGU2DzqXlCm5RR4ivyESR6Rg0G7VG9S5oohcxy-ZUHzq2UzGAN84dFhP1FGIsIWfINMESiKOGebZAC3iQLQb0SedEq9miS43FgGISL5mrovBZCwfL2l_vE9EJenGRwRrHz670v2ktwdT4-P1NHHyadnZAdasi4g8IBstxcL95zcsZegtxcvghn4BZwHVhg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoQagXvksDLRiJayC2EyfprYKuioCloq3ozbIdG5BWSdXNVuLfM-Mk-1HRRYKzx5bXfjt-jmfeEPJayIyZAj-BOWFifNmLYZvTuEyAfFRMOJbYUGwiH4-L8_PyeCmLH8Mq8Q7tO6GI4Kvxz31R-SEi7i2wFNTXxjQTlr6BCwMX2Qa5DcxZIsZPR98WvjgPlSexR4xdhuS5G0ZZOZw2vG6uCZgOQYt_oqPXoyqXjqnR_f__gQ_IvZ6i0oMOUw_JLVc_IlvISjtR58dkEtJ2r-CaDUyVfnatjgdxE9p4eoQhNg0g0zWzKe0jFWkITqBf6skvetJlzNHFmPv0MGhZYCIohXnTr42ZTVv0w0_I2ejw9N1R3JdtiK0UeRvbIuFVovMk59IaU8jMMc609qVNpctFJUthEqa5EV56q2WVWW1k5TkzpeGp2CabdVO7HUI9kLPcisI5y1NvkwIur4wZ5kruU53xiIhhv5TtNc2xtMZEsUH6tF9KhUupuqWMSDzvddFpevzFfgegoPR3cLvq7ISjKF-oDMDLiBTL-FBt-Mziu5ooSqwfdTtgaT4FnqI6YZJHZHcAl-odylQx1I3DlyxofjVvBleA7zs67CfaSOTXgq-xKYJAEedsnQ2wNlEA943I0w7Ti0nChRuLIEQkX0H73ADlyldb6p8_gmx5msEBwcpn_75kL8nd4_cj9enD-ONzsgUNWRcNuEs228uZ2yN37BXA9vJFcAK_AUpvVMo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Meta-Analysis+of+Heterogeneous+Studies+Using+Only+Summary+Statistics%3A+Efficiency+and+Robustness&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Liu%2C+Dungang&rft.au=Liu%2C+Regina+Y.&rft.au=Xie%2C+Minge&rft.date=2015-03-01&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=110&rft.issue=509&rft.spage=326&rft.epage=340&rft_id=info:doi/10.1080%2F01621459.2014.899235&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2014_899235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon