Inter-subject Variability in Electric Fields of Motor Cortical tDCS

The sources of inter-subject variability in the efficacy of transcranial direct current stimulation (tDCS) remain unknown. One potential source of variations is the brain's electric field, which varies according to each individual's anatomical features. We employed an approach that combine...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Brain stimulation Ročník 8; číslo 5; s. 906 - 913
Hlavní autori: Laakso, Ilkka, Tanaka, Satoshi, Koyama, Soichiro, De Santis, Valerio, Hirata, Akimasa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.09.2015
Predmet:
ISSN:1935-861X, 1876-4754, 1876-4754
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The sources of inter-subject variability in the efficacy of transcranial direct current stimulation (tDCS) remain unknown. One potential source of variations is the brain's electric field, which varies according to each individual's anatomical features. We employed an approach that combines imaging and computational modeling to quantitatively study the extent and primary causes of inter-subject variation in tDCS electric fields. Anatomically-accurate models of the head and brain of 24 males (age: 38.63 ± 11.24 years) were constructed from structural MRI. Finite-element method was used to computationally estimate the electric fields for tDCS of the motor cortex. Surface-based inter-subject registration of the electric field and functional MRI data was used for group level statistical analysis. We observed large differences in each individual's electric field patterns. However, group level analysis revealed that the average electric fields concentrated in the vicinity of the primary motor cortex. The variations in the electric fields in the hand motor area could be characterized by a normal distribution with a standard deviation of approximately 20% of the mean. The cerebrospinal fluid (CSF) thickness was the primary factor influencing an individual's electric field, thereby explaining 50% of the inter-individual variability, a thicker layer of CSF decreasing the electric field strength. The variability in the electric fields is related to each individual's anatomical features and can only be controlled using detailed image processing. Age was found to have a slight negative effect on the electric field, which might have implications on tDCS studies on aging brains. [Display omitted] •TDCS electric fields are modeled in anatomically-accurate models of 24 subjects.•We propose a surface-based inter-subject registration method for variability analysis of electric fields.•The extent and main reasons of inter-subject variation are quantitatively characterized.•Cerebrospinal fluid thickness explains one-half of the inter-subject variability in the electric fields.
AbstractList The sources of inter-subject variability in the efficacy of transcranial direct current stimulation (tDCS) remain unknown. One potential source of variations is the brain's electric field, which varies according to each individual's anatomical features.BACKGROUNDThe sources of inter-subject variability in the efficacy of transcranial direct current stimulation (tDCS) remain unknown. One potential source of variations is the brain's electric field, which varies according to each individual's anatomical features.We employed an approach that combines imaging and computational modeling to quantitatively study the extent and primary causes of inter-subject variation in tDCS electric fields.OBJECTIVEWe employed an approach that combines imaging and computational modeling to quantitatively study the extent and primary causes of inter-subject variation in tDCS electric fields.Anatomically-accurate models of the head and brain of 24 males (age: 38.63 ± 11.24 years) were constructed from structural MRI. Finite-element method was used to computationally estimate the electric fields for tDCS of the motor cortex. Surface-based inter-subject registration of the electric field and functional MRI data was used for group level statistical analysis.METHODSAnatomically-accurate models of the head and brain of 24 males (age: 38.63 ± 11.24 years) were constructed from structural MRI. Finite-element method was used to computationally estimate the electric fields for tDCS of the motor cortex. Surface-based inter-subject registration of the electric field and functional MRI data was used for group level statistical analysis.We observed large differences in each individual's electric field patterns. However, group level analysis revealed that the average electric fields concentrated in the vicinity of the primary motor cortex. The variations in the electric fields in the hand motor area could be characterized by a normal distribution with a standard deviation of approximately 20% of the mean. The cerebrospinal fluid (CSF) thickness was the primary factor influencing an individual's electric field, thereby explaining 50% of the inter-individual variability, a thicker layer of CSF decreasing the electric field strength.RESULTSWe observed large differences in each individual's electric field patterns. However, group level analysis revealed that the average electric fields concentrated in the vicinity of the primary motor cortex. The variations in the electric fields in the hand motor area could be characterized by a normal distribution with a standard deviation of approximately 20% of the mean. The cerebrospinal fluid (CSF) thickness was the primary factor influencing an individual's electric field, thereby explaining 50% of the inter-individual variability, a thicker layer of CSF decreasing the electric field strength.The variability in the electric fields is related to each individual's anatomical features and can only be controlled using detailed image processing. Age was found to have a slight negative effect on the electric field, which might have implications on tDCS studies on aging brains.CONCLUSIONSThe variability in the electric fields is related to each individual's anatomical features and can only be controlled using detailed image processing. Age was found to have a slight negative effect on the electric field, which might have implications on tDCS studies on aging brains.
Abstract Background The sources of inter-subject variability in the efficacy of transcranial direct current stimulation (tDCS) remain unknown. One potential source of variations is the brain's electric field, which varies according to each individual's anatomical features. Objective We employed an approach that combines imaging and computational modeling to quantitatively study the extent and primary causes of inter-subject variation in tDCS electric fields. Methods Anatomically-accurate models of the head and brain of 24 males (age: 38.63 ± 11.24 years) were constructed from structural MRI. Finite-element method was used to computationally estimate the electric fields for tDCS of the motor cortex. Surface-based inter-subject registration of the electric field and functional MRI data was used for group level statistical analysis. Results We observed large differences in each individual's electric field patterns. However, group level analysis revealed that the average electric fields concentrated in the vicinity of the primary motor cortex. The variations in the electric fields in the hand motor area could be characterized by a normal distribution with a standard deviation of approximately 20% of the mean. The cerebrospinal fluid (CSF) thickness was the primary factor influencing an individual's electric field, thereby explaining 50% of the inter-individual variability, a thicker layer of CSF decreasing the electric field strength. Conclusions The variability in the electric fields is related to each individual's anatomical features and can only be controlled using detailed image processing. Age was found to have a slight negative effect on the electric field, which might have implications on tDCS studies on aging brains.
The sources of inter-subject variability in the efficacy of transcranial direct current stimulation (tDCS) remain unknown. One potential source of variations is the brain's electric field, which varies according to each individual's anatomical features. We employed an approach that combines imaging and computational modeling to quantitatively study the extent and primary causes of inter-subject variation in tDCS electric fields. Anatomically-accurate models of the head and brain of 24 males (age: 38.63 ± 11.24 years) were constructed from structural MRI. Finite-element method was used to computationally estimate the electric fields for tDCS of the motor cortex. Surface-based inter-subject registration of the electric field and functional MRI data was used for group level statistical analysis. We observed large differences in each individual's electric field patterns. However, group level analysis revealed that the average electric fields concentrated in the vicinity of the primary motor cortex. The variations in the electric fields in the hand motor area could be characterized by a normal distribution with a standard deviation of approximately 20% of the mean. The cerebrospinal fluid (CSF) thickness was the primary factor influencing an individual's electric field, thereby explaining 50% of the inter-individual variability, a thicker layer of CSF decreasing the electric field strength. The variability in the electric fields is related to each individual's anatomical features and can only be controlled using detailed image processing. Age was found to have a slight negative effect on the electric field, which might have implications on tDCS studies on aging brains. [Display omitted] •TDCS electric fields are modeled in anatomically-accurate models of 24 subjects.•We propose a surface-based inter-subject registration method for variability analysis of electric fields.•The extent and main reasons of inter-subject variation are quantitatively characterized.•Cerebrospinal fluid thickness explains one-half of the inter-subject variability in the electric fields.
The sources of inter-subject variability in the efficacy of transcranial direct current stimulation (tDCS) remain unknown. One potential source of variations is the brain's electric field, which varies according to each individual's anatomical features. We employed an approach that combines imaging and computational modeling to quantitatively study the extent and primary causes of inter-subject variation in tDCS electric fields. Anatomically-accurate models of the head and brain of 24 males (age: 38.63 ± 11.24 years) were constructed from structural MRI. Finite-element method was used to computationally estimate the electric fields for tDCS of the motor cortex. Surface-based inter-subject registration of the electric field and functional MRI data was used for group level statistical analysis. We observed large differences in each individual's electric field patterns. However, group level analysis revealed that the average electric fields concentrated in the vicinity of the primary motor cortex. The variations in the electric fields in the hand motor area could be characterized by a normal distribution with a standard deviation of approximately 20% of the mean. The cerebrospinal fluid (CSF) thickness was the primary factor influencing an individual's electric field, thereby explaining 50% of the inter-individual variability, a thicker layer of CSF decreasing the electric field strength. The variability in the electric fields is related to each individual's anatomical features and can only be controlled using detailed image processing. Age was found to have a slight negative effect on the electric field, which might have implications on tDCS studies on aging brains.
Author Hirata, Akimasa
Laakso, Ilkka
Tanaka, Satoshi
Koyama, Soichiro
De Santis, Valerio
Author_xml – sequence: 1
  givenname: Ilkka
  surname: Laakso
  fullname: Laakso, Ilkka
  email: laakso.ilkka@nitech.ac.jp
  organization: Department of Computer Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
– sequence: 2
  givenname: Satoshi
  surname: Tanaka
  fullname: Tanaka, Satoshi
  organization: Laboratory of Psychology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
– sequence: 3
  givenname: Soichiro
  surname: Koyama
  fullname: Koyama, Soichiro
  organization: Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi 444-8585, Japan
– sequence: 4
  givenname: Valerio
  surname: De Santis
  fullname: De Santis, Valerio
  organization: Department of Computer Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
– sequence: 5
  givenname: Akimasa
  surname: Hirata
  fullname: Hirata, Akimasa
  organization: Department of Computer Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26026283$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNUbHvtD3Ajs3Qz1ySTjwmCIGOrhYqL2tJdyGTOQMa5SU0yhfvvzXDbTcEKB_LB-5yQ55yiIx88IPSO4C3BRHyctn1MW4oJ3-JSmL5CJ6SVomaSs6OyVw2vW0HujtFpShPGXKlWvkHHVGAqaNucoO7SZ4h1WvoJbK5uTXSmd7PL-8r56nwul9HZ6sLBPKQqjNWPkEOsuhCzs2au8tfu-i16PZo5wdnjukE3F-e_uu_11c9vl92Xq9qKRuZaKYGFamGQspcMWi5MyzEF3jBigFE8DsCaXvQGqLW27YeBW2CDkmNjets0G_Th0Pc-hj8LpKx3LlmYZ-MhLEkTSQhnnGNRou8fo0u_g0HfR7czca-fPl4C8hCwMaQUYdTWZZNd8DkaN2uC9apYT7oo1qtijUthWkjyjHxq_hLz6cBA0fPgIOpkHXgLg4vFsB6Ce5H-_Iy2s_Or_t-whzSFJfriXROdqMb6eh37OnXCMVasnDZI_bvBfx7_C0AIuwY
CitedBy_id crossref_primary_10_3389_fnhum_2022_842954
crossref_primary_10_1088_1361_6560_ad33b8
crossref_primary_10_3389_fnbeh_2017_00173
crossref_primary_10_1016_j_clineuro_2019_05_009
crossref_primary_10_1038_s41598_022_15226_2
crossref_primary_10_1016_j_clinph_2019_11_018
crossref_primary_10_1109_TBME_2021_3086594
crossref_primary_10_1088_1361_6560_aba40d
crossref_primary_10_3389_fnins_2021_644951
crossref_primary_10_1109_ACCESS_2020_3043602
crossref_primary_10_1111_ejn_14543
crossref_primary_10_1016_j_eurpsy_2019_06_007
crossref_primary_10_1016_j_ijchp_2024_100480
crossref_primary_10_1016_j_neuroimage_2016_07_005
crossref_primary_10_1016_j_pscychresns_2020_111179
crossref_primary_10_3389_fnbeh_2017_00169
crossref_primary_10_1016_j_scib_2024_10_001
crossref_primary_10_1038_s41598_021_87914_4
crossref_primary_10_1001_jamanetworkopen_2025_26148
crossref_primary_10_1038_s41598_025_06271_8
crossref_primary_10_1016_j_brs_2023_02_010
crossref_primary_10_3390_brainsci11060806
crossref_primary_10_1088_1741_2552_ac9a78
crossref_primary_10_1002_bem_22497
crossref_primary_10_3389_fnhum_2023_1126510
crossref_primary_10_1007_s00406_020_01149_4
crossref_primary_10_1016_j_clinph_2017_06_001
crossref_primary_10_1088_1361_6560_aa77a6
crossref_primary_10_1186_s12888_025_07118_2
crossref_primary_10_1016_j_brs_2023_06_013
crossref_primary_10_1186_s12984_019_0489_9
crossref_primary_10_3389_fnins_2023_1328727
crossref_primary_10_1155_2024_2512796
crossref_primary_10_1016_j_neuroimage_2020_117323
crossref_primary_10_3389_fnins_2024_1332135
crossref_primary_10_1088_1741_2552_aba6dc
crossref_primary_10_1016_j_neuroimage_2019_116132
crossref_primary_10_1088_1361_6560_ab5e4a
crossref_primary_10_1016_j_clinph_2025_2110801
crossref_primary_10_1016_j_compbiomed_2024_108697
crossref_primary_10_1016_j_neunet_2020_02_006
crossref_primary_10_3390_brainsci12020248
crossref_primary_10_1016_j_compbiomed_2023_107516
crossref_primary_10_3389_fphar_2021_624582
crossref_primary_10_1097_WCO_0000000000000395
crossref_primary_10_1016_j_nicl_2022_103011
crossref_primary_10_1080_13803395_2018_1434133
crossref_primary_10_1002_hbm_24908
crossref_primary_10_1016_j_neuroimage_2018_04_038
crossref_primary_10_1016_j_neuroimage_2023_120379
crossref_primary_10_1088_1361_6560_abe223
crossref_primary_10_1109_TMI_2020_2969682
crossref_primary_10_1016_j_enganabound_2020_04_010
crossref_primary_10_1016_j_brs_2021_01_016
crossref_primary_10_1016_j_brs_2017_11_001
crossref_primary_10_1088_1741_2552_ac1f2b
crossref_primary_10_3390_app12094509
crossref_primary_10_1007_s13534_023_00335_2
crossref_primary_10_1088_1361_6560_ab03f5
crossref_primary_10_1016_j_clinph_2024_09_023
crossref_primary_10_1155_2020_8598010
crossref_primary_10_1016_j_neuroimage_2016_05_032
crossref_primary_10_1186_s13195_024_01381_3
crossref_primary_10_1038_s41598_018_37226_x
crossref_primary_10_1109_TBME_2018_2813261
crossref_primary_10_1088_1361_6560_ab7308
crossref_primary_10_1186_s12984_020_00665_7
crossref_primary_10_3389_fnhum_2024_1201574
crossref_primary_10_1007_s10072_019_04229_z
crossref_primary_10_1016_j_neuroimage_2019_116431
crossref_primary_10_1007_s40473_021_00238_5
crossref_primary_10_1007_s00221_021_06163_z
crossref_primary_10_1016_j_clinph_2021_03_009
crossref_primary_10_1007_s10916_019_1490_3
crossref_primary_10_1016_j_cmpb_2023_107878
crossref_primary_10_1088_2057_1976_ac0547
crossref_primary_10_3389_fnhum_2016_00049
crossref_primary_10_1016_j_neuroimage_2022_119713
crossref_primary_10_1109_ACCESS_2020_3022554
crossref_primary_10_3758_s13415_025_01337_6
crossref_primary_10_1016_j_neuroimage_2020_117413
crossref_primary_10_1088_1361_6560_ab5dfb
crossref_primary_10_1016_j_neures_2022_10_003
crossref_primary_10_3389_fneur_2021_729703
crossref_primary_10_1088_1361_6560_add105
crossref_primary_10_3390_brainsci10040235
crossref_primary_10_1186_s12984_017_0242_1
crossref_primary_10_3390_brainsci10040236
crossref_primary_10_3390_jcm9030828
crossref_primary_10_1002_hbm_25857
crossref_primary_10_3389_fpsyt_2020_00375
crossref_primary_10_1080_03036758_2020_1796102
crossref_primary_10_3389_fpsyt_2017_00147
crossref_primary_10_1109_ACCESS_2018_2890019
crossref_primary_10_1016_j_neuroimage_2023_120331
crossref_primary_10_1016_j_neuroimage_2022_119501
crossref_primary_10_3389_fresc_2022_795737
crossref_primary_10_1093_cercor_bhx158
crossref_primary_10_1109_TEMC_2022_3212860
crossref_primary_10_3389_fncel_2015_00405
crossref_primary_10_1088_1361_6560_adb935
crossref_primary_10_1088_1741_2552_ab8ccf
crossref_primary_10_1007_s00421_020_04417_2
crossref_primary_10_1016_j_brs_2020_10_001
crossref_primary_10_1016_j_cmpb_2024_108429
crossref_primary_10_1016_j_neubiorev_2022_104702
crossref_primary_10_3390_jcm12072601
crossref_primary_10_1016_j_compbiomed_2023_106572
crossref_primary_10_1088_1361_6560_aaea06
crossref_primary_10_1016_j_brs_2023_05_020
crossref_primary_10_1038_s41598_017_10128_0
crossref_primary_10_3389_fnhum_2016_00026
crossref_primary_10_1088_1361_6560_aba21e
crossref_primary_10_3390_bioengineering12040346
crossref_primary_10_1016_j_brs_2017_04_002
crossref_primary_10_1016_j_ajp_2018_08_008
crossref_primary_10_3390_jcm13113084
crossref_primary_10_3389_fnins_2018_00426
crossref_primary_10_1016_j_nicl_2022_103178
crossref_primary_10_1016_j_pnpbp_2020_110149
crossref_primary_10_3389_fnhum_2019_00114
crossref_primary_10_3390_brainsci13010116
crossref_primary_10_1177_10738584221113806
crossref_primary_10_1016_j_brs_2017_09_011
crossref_primary_10_1002_ana_24766
crossref_primary_10_1152_jn_00795_2018
crossref_primary_10_1111_cen3_70002
crossref_primary_10_1002_brb3_70302
crossref_primary_10_1007_s00221_018_5442_9
crossref_primary_10_1016_j_brs_2019_10_004
crossref_primary_10_3389_fnhum_2025_1577899
crossref_primary_10_1002_jnr_25304
crossref_primary_10_1016_j_brs_2018_04_011
crossref_primary_10_1162_imag_a_00481
crossref_primary_10_1088_1361_6560_aae932
crossref_primary_10_3390_ijerph20032241
crossref_primary_10_1007_s12206_024_0501_6
crossref_primary_10_1186_s12984_024_01468_w
crossref_primary_10_1088_1741_2552_aafbbd
crossref_primary_10_1371_journal_pone_0266107
crossref_primary_10_3389_fnins_2021_779271
crossref_primary_10_1016_j_enganabound_2020_11_010
crossref_primary_10_1016_j_neures_2017_07_004
crossref_primary_10_1109_TEMC_2021_3098431
crossref_primary_10_1088_1361_6560_abcde7
crossref_primary_10_1016_j_neuroimage_2017_05_060
crossref_primary_10_1016_j_compbiomed_2024_109366
crossref_primary_10_1016_j_neulet_2018_10_032
crossref_primary_10_1088_1741_2552_acb14d
crossref_primary_10_1176_appi_ajp_20240643
crossref_primary_10_3390_ijms21093135
crossref_primary_10_1111_ejn_15006
crossref_primary_10_1109_ACCESS_2020_3028618
crossref_primary_10_1109_JERM_2022_3203576
crossref_primary_10_1088_1361_6560_ad5bb9
crossref_primary_10_1371_journal_pcbi_1009386
crossref_primary_10_3389_fnhum_2019_00137
crossref_primary_10_1371_journal_pcbi_1011572
crossref_primary_10_1038_s41598_021_99749_0
crossref_primary_10_1016_j_nicl_2022_103071
crossref_primary_10_1523_ENEURO_0111_25_2025
crossref_primary_10_1088_1361_6560_ad0219
crossref_primary_10_1016_j_brs_2021_11_001
crossref_primary_10_1016_j_bspc_2024_107481
crossref_primary_10_1016_j_clinph_2019_12_003
crossref_primary_10_1038_s41598_020_68992_2
crossref_primary_10_1002_jnr_24559
crossref_primary_10_1152_jn_00046_2024
crossref_primary_10_1007_s10827_025_00912_7
crossref_primary_10_1016_j_exger_2018_11_019
crossref_primary_10_1016_j_clinph_2021_10_016
crossref_primary_10_1186_s40814_022_01223_9
crossref_primary_10_3389_fnhum_2019_00388
crossref_primary_10_1177_1559325816685467
crossref_primary_10_1016_j_neuroimage_2020_117044
crossref_primary_10_1038_s41598_023_48313_z
crossref_primary_10_1162_jocn_a_01307
crossref_primary_10_3389_fnins_2021_684465
crossref_primary_10_1016_j_brs_2015_07_031
crossref_primary_10_1155_2017_7932604
crossref_primary_10_1002_hbm_25041
crossref_primary_10_1002_hbm_26492
crossref_primary_10_1016_j_neubiorev_2021_08_017
crossref_primary_10_1016_j_enganabound_2021_10_026
crossref_primary_10_1016_j_smrv_2021_101438
crossref_primary_10_1016_j_pscychresns_2022_111547
crossref_primary_10_1097_YCT_0000000000000510
crossref_primary_10_1186_s40359_025_02972_x
crossref_primary_10_1038_s41467_019_13417_6
crossref_primary_10_3389_fneur_2024_1356073
crossref_primary_10_1016_j_brs_2019_09_017
crossref_primary_10_3389_fnins_2018_00067
crossref_primary_10_1038_s41598_023_32779_y
crossref_primary_10_1088_1361_6560_61_24_8825
crossref_primary_10_1016_j_cobme_2018_09_002
crossref_primary_10_1109_JERM_2018_2869021
crossref_primary_10_1016_j_brs_2021_08_003
crossref_primary_10_1038_s41598_023_45905_7
crossref_primary_10_1109_ACCESS_2025_3586112
crossref_primary_10_1159_000502149
crossref_primary_10_3389_fnins_2021_695668
crossref_primary_10_1186_s12984_021_00899_z
crossref_primary_10_1016_j_brs_2021_11_018
crossref_primary_10_1038_s41598_024_52874_y
crossref_primary_10_1016_j_clinph_2023_03_009
crossref_primary_10_1093_arclin_acaa059
crossref_primary_10_3389_fnhum_2023_1274114
crossref_primary_10_1097_WNR_0000000000000845
crossref_primary_10_1016_j_brs_2019_05_006
crossref_primary_10_1176_appi_ajp_20221022
crossref_primary_10_1007_s00221_023_06731_5
crossref_primary_10_3390_vision2040042
crossref_primary_10_1016_j_neulet_2020_135300
crossref_primary_10_1097_WNR_0000000000000723
crossref_primary_10_1088_1361_6560_aa5b70
crossref_primary_10_1088_1741_2552_ab549d
crossref_primary_10_1038_s41598_020_80279_0
crossref_primary_10_1016_j_compbiomed_2022_105337
crossref_primary_10_1109_TNSRE_2025_3585651
crossref_primary_10_3389_fnhum_2021_652393
crossref_primary_10_3389_fnins_2024_1362607
crossref_primary_10_1016_j_brs_2022_07_049
crossref_primary_10_1088_1741_2552_ab0ac5
crossref_primary_10_1016_j_clinph_2022_02_023
crossref_primary_10_3389_fnins_2017_00179
crossref_primary_10_3390_biology10121230
crossref_primary_10_1016_j_clinph_2021_05_020
crossref_primary_10_3390_brainsci12050522
crossref_primary_10_1016_j_neuroimage_2019_03_044
crossref_primary_10_1016_j_neuroimage_2025_121181
crossref_primary_10_1088_1741_2552_ac8e32
crossref_primary_10_1016_j_brs_2022_12_006
crossref_primary_10_3390_brainsci10050304
crossref_primary_10_1038_s41598_020_68660_5
crossref_primary_10_3390_bios15030185
crossref_primary_10_1155_2018_3156796
crossref_primary_10_3758_s13415_018_0561_0
crossref_primary_10_1016_j_arr_2015_11_004
crossref_primary_10_7554_eLife_50232
crossref_primary_10_3389_fnhum_2016_00426
crossref_primary_10_1002_ejp_2249
crossref_primary_10_1016_j_brs_2018_10_016
crossref_primary_10_1016_j_bandc_2023_106073
crossref_primary_10_3389_fnhum_2025_1611272
crossref_primary_10_1007_s12311_022_01469_2
crossref_primary_10_1016_j_brs_2020_02_007
crossref_primary_10_1007_s13534_024_00359_2
crossref_primary_10_1002_mrm_27508
crossref_primary_10_3389_fnagi_2020_00275
Cites_doi 10.3389/fnagi.2014.00146
10.1016/j.nicl.2013.05.011
10.1109/TBME.2011.2116019
10.1016/j.neulet.2014.01.054
10.1016/j.brs.2014.02.003
10.1016/j.jns.2006.05.062
10.1088/0031-9155/57/21/6961
10.1016/j.neuroimage.2013.11.015
10.1113/jphysiol.2010.190314
10.1038/ncpneuro0530
10.3389/fpsyt.2012.00091
10.1097/00001756-199807130-00020
10.3389/fnagi.2014.00115
10.1088/0031-9155/57/23/7753
10.1016/j.brs.2011.03.002
10.1088/1741-2560/10/3/036018
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1006/nimg.1998.0395
10.1073/pnas.200033797
10.1016/j.neuroimage.2015.01.033
10.1006/nimg.2001.0786
10.1088/1741-2560/11/3/036002
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1113/jphysiol.2012.249730
10.1016/j.brs.2014.02.004
10.3389/fnsys.2014.00025
10.1088/1741-2560/11/1/016002
10.1212/WNL.57.10.1899
10.1109/TBME.2014.2322774
10.1007/s00221-007-1149-z
10.1016/j.brs.2008.09.003
10.3389/fpsyt.2012.00083
10.1016/j.brs.2014.10.003
10.1016/j.brs.2009.03.005
10.1142/S012906571430006X
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.brs.2015.05.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1876-4754
EndPage 913
ExternalDocumentID 26026283
10_1016_j_brs_2015_05_002
S1935861X15009419
1_s2_0_S1935861X15009419
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Konica Minolta Science and Technology Foundation
  funderid: http://dx.doi.org/10.13039/100007418
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
4H-
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SSH
SSN
SSZ
T5K
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
9DU
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c637t-9960698ed77b74e856a8502e5341ae420fde43b6bae2ccc8bdd5ce4d97f3abc33
ISICitedReferencesCount 282
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361012000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1935-861X
1876-4754
IngestDate Sat Sep 27 17:06:07 EDT 2025
Mon Jul 21 06:02:53 EDT 2025
Tue Nov 18 22:19:34 EST 2025
Sat Nov 29 03:06:09 EST 2025
Fri Feb 23 02:27:22 EST 2024
Sun Feb 23 10:19:09 EST 2025
Tue Oct 14 19:33:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Finite-element method
Electric field
tDCS
Inter-subject variability
Motor cortex
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c637t-9960698ed77b74e856a8502e5341ae420fde43b6bae2ccc8bdd5ce4d97f3abc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/b9b99f5bc080497baac207afde69cb85
PMID 26026283
PQID 1711545506
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1711545506
pubmed_primary_26026283
crossref_citationtrail_10_1016_j_brs_2015_05_002
crossref_primary_10_1016_j_brs_2015_05_002
elsevier_sciencedirect_doi_10_1016_j_brs_2015_05_002
elsevier_clinicalkeyesjournals_1_s2_0_S1935861X15009419
elsevier_clinicalkey_doi_10_1016_j_brs_2015_05_002
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Brain stimulation
PublicationTitleAlternate Brain Stimul
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Suh, Lee, Kim (bib37) 2012; 57
Ridding, Ziemann (bib12) 2010; 588
Kim, Kim, Chang, Kim, Kim, Im (bib22) 2014; 564
Opitz, Paulus, Will, Antunes, Thielscher (bib24) 2015; 109
Fischl, Sereno, Tootell, Dale (bib27) 1999; 8
Friston (bib28) 1994; 2
Parazzini, Fiocchi, Liorni, Priori, Ravazzani (bib23) 2014; 24
Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib33) 2001; 14
Bai, Dokos, Ho, Loo (bib26) 2014; 87
Truong, Magerowski, Blackburn, Bikson, Alonso-Alonso (bib18) 2013; 2
Datta, Bansal, Diaz, Patel, Reato, Bikson (bib14) 2009; 2
Batsikadze, Moliadze, Paulus, Kuo, Nitsche (bib32) 2013; 591
Nitsche, Paulus (bib2) 2000; 527
Dale, Fischl, Sereno (bib29) 1999; 9
Heise, Niehoff, Feldheim, Liuzzi, Gerloff, Hummel (bib36) 2014; 6
Brunoni, Nitsche, Bolognini (bib8) 2012; 5
Wagner, Rampersad, Aydin (bib20) 2014; 11
Fischl, Dale (bib30) 2000; 97
Boggio, Ferrucci, Rigonatti (bib34) 2006; 249
Noetscher, Yanamadala, Makarov, Pascual-Leone (bib21) 2014; 61
Fregni, Pascual-Leone (bib5) 2007; 3
Datta, Zhou, Su, Parra, Bikson (bib17) 2013; 10
Nitsche, Paulus (bib3) 2001; 57
Tanaka, Watanabe (bib7) 2009; 61
Tremblay, Lepage, Latulipe-Loiselle, Fregni, Pascual-Leone, Théoret (bib10) 2014; 7
Wiethoff, Hamada, Rothwell (bib11) 2014; 7
Fujiyama, Hyde, Hinder (bib35) 2014; 6
Laakso, Hirata (bib31) 2012; 57
Priori, Berardelli, Rona, Accornero, Manfredi (bib1) 1998; 9
Parazzini, Fiocchi, Rossi, Paglialonga, Ravazzani (bib15) 2011; 58
Datta, Truong, Minhas, Parra, Bikson (bib25) 2012; 3
Shahid, Bikson, Salman, Wen, Ahfock (bib19) 2014; 11
Krause, Cohen Kadosh (bib13) 2014; 8
López-Alonso, Cheeran, Rio-Rodriguez, Fernández-Del-Olmo (bib9) 2014; 7
Furubayashi, Terao, Arai (bib4) 2008; 185
Neuling, Wagner, Wolters, Zaehle, Herrmann (bib16) 2012; 3
Hummel, Celnik, Pascual-Leone (bib6) 2008; 1
Priori (10.1016/j.brs.2015.05.002_bib1) 1998; 9
Datta (10.1016/j.brs.2015.05.002_bib25) 2012; 3
Boggio (10.1016/j.brs.2015.05.002_bib34) 2006; 249
Furubayashi (10.1016/j.brs.2015.05.002_bib4) 2008; 185
Datta (10.1016/j.brs.2015.05.002_bib14) 2009; 2
Nitsche (10.1016/j.brs.2015.05.002_bib2) 2000; 527
Truong (10.1016/j.brs.2015.05.002_bib18) 2013; 2
Friston (10.1016/j.brs.2015.05.002_bib28) 1994; 2
Suh (10.1016/j.brs.2015.05.002_bib37) 2012; 57
Kim (10.1016/j.brs.2015.05.002_bib22) 2014; 564
Noetscher (10.1016/j.brs.2015.05.002_bib21) 2014; 61
Parazzini (10.1016/j.brs.2015.05.002_bib23) 2014; 24
Dale (10.1016/j.brs.2015.05.002_bib29) 1999; 9
Wiethoff (10.1016/j.brs.2015.05.002_bib11) 2014; 7
Parazzini (10.1016/j.brs.2015.05.002_bib15) 2011; 58
Fujiyama (10.1016/j.brs.2015.05.002_bib35) 2014; 6
Ridding (10.1016/j.brs.2015.05.002_bib12) 2010; 588
Brunoni (10.1016/j.brs.2015.05.002_bib8) 2012; 5
Krause (10.1016/j.brs.2015.05.002_bib13) 2014; 8
Tremblay (10.1016/j.brs.2015.05.002_bib10) 2014; 7
Heise (10.1016/j.brs.2015.05.002_bib36) 2014; 6
Wagner (10.1016/j.brs.2015.05.002_bib20) 2014; 11
Bai (10.1016/j.brs.2015.05.002_bib26) 2014; 87
Fischl (10.1016/j.brs.2015.05.002_bib30) 2000; 97
Good (10.1016/j.brs.2015.05.002_bib33) 2001; 14
Opitz (10.1016/j.brs.2015.05.002_bib24) 2015; 109
Fischl (10.1016/j.brs.2015.05.002_bib27) 1999; 8
Batsikadze (10.1016/j.brs.2015.05.002_bib32) 2013; 591
Nitsche (10.1016/j.brs.2015.05.002_bib3) 2001; 57
Fregni (10.1016/j.brs.2015.05.002_bib5) 2007; 3
Shahid (10.1016/j.brs.2015.05.002_bib19) 2014; 11
Tanaka (10.1016/j.brs.2015.05.002_bib7) 2009; 61
Datta (10.1016/j.brs.2015.05.002_bib17) 2013; 10
López-Alonso (10.1016/j.brs.2015.05.002_bib9) 2014; 7
Hummel (10.1016/j.brs.2015.05.002_bib6) 2008; 1
Laakso (10.1016/j.brs.2015.05.002_bib31) 2012; 57
Neuling (10.1016/j.brs.2015.05.002_bib16) 2012; 3
References_xml – volume: 87
  start-page: 332
  year: 2014
  end-page: 344
  ident: bib26
  article-title: A computational modelling study of transcranial direct current stimulation montages used in depression
  publication-title: Neuroimage
– volume: 249
  start-page: 31
  year: 2006
  end-page: 38
  ident: bib34
  article-title: Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease
  publication-title: J Neurol Sci
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bib29
  article-title: Cortical surface-based analysis. i. segmentation and surface reconstruction
  publication-title: Neuroimage
– volume: 1
  start-page: 370
  year: 2008
  end-page: 382
  ident: bib6
  article-title: Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients
  publication-title: Brain Stimul
– volume: 61
  start-page: 2488
  year: 2014
  end-page: 2498
  ident: bib21
  article-title: Comparison of cephalic and extracephalic montages for transcranial direct current stimulation–a numerical study
  publication-title: IEEE Trans Biomed Eng
– volume: 57
  start-page: 6961
  year: 2012
  end-page: 6980
  ident: bib37
  article-title: Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model
  publication-title: Phys Med Biol
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  ident: bib30
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc Natl Acad Sci U S A
– volume: 14
  start-page: 21
  year: 2001
  end-page: 36
  ident: bib33
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: Neuroimage
– volume: 6
  start-page: 146
  year: 2014
  ident: bib36
  article-title: Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age
  publication-title: Front Aging Neurosci
– volume: 3
  start-page: 83
  year: 2012
  ident: bib16
  article-title: Finite element model predicts current density distribution for clinical applications of tDCS and tACS
  publication-title: Front Psychiatry
– volume: 3
  start-page: 383
  year: 2007
  end-page: 393
  ident: bib5
  article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS
  publication-title: Nat Clin Pract Neurol
– volume: 7
  start-page: 372
  year: 2014
  end-page: 380
  ident: bib9
  article-title: Inter-individual variability in response to non-invasive brain stimulation paradigms
  publication-title: Brain Stimul
– volume: 9
  start-page: 2257
  year: 1998
  end-page: 2260
  ident: bib1
  article-title: Polarization of the human motor cortex through the scalp
  publication-title: Neuroreport
– volume: 58
  start-page: 1773
  year: 2011
  end-page: 1780
  ident: bib15
  article-title: Transcranial direct current stimulation: estimation of the electric field and of the current density in an anatomical human head model
  publication-title: IEEE Trans Biomed Eng
– volume: 24
  start-page: 1430006
  year: 2014
  ident: bib23
  article-title: Computational modeling of transcranial direct current stimulation in the child brain: implications for the treatment of refractory childhood focal epilepsy
  publication-title: Int J Neural Syst
– volume: 57
  start-page: 1899
  year: 2001
  end-page: 1901
  ident: bib3
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
– volume: 6
  start-page: 115
  year: 2014
  ident: bib35
  article-title: Delayed plastic responses to anodal tDCS in older adults
  publication-title: Front Aging Neurosci
– volume: 185
  start-page: 279
  year: 2008
  end-page: 286
  ident: bib4
  article-title: Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area
  publication-title: Exp Brain Res
– volume: 10
  start-page: 036018
  year: 2013
  ident: bib17
  article-title: Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose
  publication-title: J Neural Eng
– volume: 2
  start-page: 759
  year: 2013
  end-page: 766
  ident: bib18
  article-title: Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines
  publication-title: Neuroimage Clin
– volume: 11
  start-page: 036002
  year: 2014
  ident: bib19
  article-title: The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation
  publication-title: J Neural Eng
– volume: 7
  start-page: 773
  year: 2014
  end-page: 783
  ident: bib10
  article-title: The uncertain outcome of prefrontal tDCS
  publication-title: Brain Stimul
– volume: 591
  start-page: 1987
  year: 2013
  end-page: 2000
  ident: bib32
  article-title: Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans
  publication-title: J Physiol (Lond)
– volume: 57
  start-page: 7753
  year: 2012
  end-page: 7765
  ident: bib31
  article-title: Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation
  publication-title: Phys Med Biol
– volume: 588
  start-page: 2291
  year: 2010
  end-page: 2304
  ident: bib12
  article-title: Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects
  publication-title: J Physiol (Lond)
– volume: 109
  start-page: 140
  year: 2015
  end-page: 150
  ident: bib24
  article-title: Determinants of the electric field during transcranial direct current stimulation
  publication-title: Neuroimage
– volume: 2
  start-page: 5678
  year: 1994
  ident: bib28
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum Brain Mapp
– volume: 8
  start-page: 272
  year: 1999
  end-page: 284
  ident: bib27
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum Brain Mapp
– volume: 5
  start-page: 175
  year: 2012
  end-page: 195
  ident: bib8
  article-title: Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions
  publication-title: Brain Stimul
– volume: 564
  start-page: 6
  year: 2014
  end-page: 10
  ident: bib22
  article-title: Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data
  publication-title: Neurosci Lett
– volume: 527
  start-page: 633
  year: 2000
  end-page: 639
  ident: bib2
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J Physiol (Lond)
– volume: 11
  start-page: 016002
  year: 2014
  ident: bib20
  article-title: Investigation of tDCS volume conduction effects in a highly realistic head model
  publication-title: J Neural Eng
– volume: 8
  start-page: 25
  year: 2014
  ident: bib13
  article-title: Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation
  publication-title: Front Syst Neurosci
– volume: 61
  start-page: 53
  year: 2009
  end-page: 64
  ident: bib7
  article-title: Transcranial direct current stimulation–a new tool for human cognitive neuroscience
  publication-title: Brain Nerve
– volume: 3
  start-page: 91
  year: 2012
  ident: bib25
  article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models
  publication-title: Front Psychiatry
– volume: 2
  start-page: 201
  year: 2009
  end-page: 207
  ident: bib14
  article-title: Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
– volume: 7
  start-page: 468
  year: 2014
  end-page: 475
  ident: bib11
  article-title: Variability in response to transcranial direct current stimulation of the motor cortex
  publication-title: Brain Stimul
– volume: 6
  start-page: 146
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib36
  article-title: Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2014.00146
– volume: 2
  start-page: 759
  year: 2013
  ident: 10.1016/j.brs.2015.05.002_bib18
  article-title: Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2013.05.011
– volume: 58
  start-page: 1773
  issue: 6
  year: 2011
  ident: 10.1016/j.brs.2015.05.002_bib15
  article-title: Transcranial direct current stimulation: estimation of the electric field and of the current density in an anatomical human head model
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2116019
– volume: 564
  start-page: 6
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib22
  article-title: Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2014.01.054
– volume: 7
  start-page: 468
  issue: 3
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib11
  article-title: Variability in response to transcranial direct current stimulation of the motor cortex
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.02.003
– volume: 249
  start-page: 31
  issue: 1
  year: 2006
  ident: 10.1016/j.brs.2015.05.002_bib34
  article-title: Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2006.05.062
– volume: 57
  start-page: 6961
  issue: 21
  year: 2012
  ident: 10.1016/j.brs.2015.05.002_bib37
  article-title: Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/57/21/6961
– volume: 87
  start-page: 332
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib26
  article-title: A computational modelling study of transcranial direct current stimulation montages used in depression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.015
– volume: 588
  start-page: 2291
  issue: Pt 13
  year: 2010
  ident: 10.1016/j.brs.2015.05.002_bib12
  article-title: Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.2010.190314
– volume: 3
  start-page: 383
  issue: 7
  year: 2007
  ident: 10.1016/j.brs.2015.05.002_bib5
  article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS
  publication-title: Nat Clin Pract Neurol
  doi: 10.1038/ncpneuro0530
– volume: 3
  start-page: 91
  year: 2012
  ident: 10.1016/j.brs.2015.05.002_bib25
  article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2012.00091
– volume: 9
  start-page: 2257
  issue: 10
  year: 1998
  ident: 10.1016/j.brs.2015.05.002_bib1
  article-title: Polarization of the human motor cortex through the scalp
  publication-title: Neuroreport
  doi: 10.1097/00001756-199807130-00020
– volume: 6
  start-page: 115
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib35
  article-title: Delayed plastic responses to anodal tDCS in older adults
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2014.00115
– volume: 57
  start-page: 7753
  issue: 23
  year: 2012
  ident: 10.1016/j.brs.2015.05.002_bib31
  article-title: Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/57/23/7753
– volume: 5
  start-page: 175
  issue: 3
  year: 2012
  ident: 10.1016/j.brs.2015.05.002_bib8
  article-title: Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.03.002
– volume: 10
  start-page: 036018
  issue: 3
  year: 2013
  ident: 10.1016/j.brs.2015.05.002_bib17
  article-title: Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/10/3/036018
– volume: 8
  start-page: 272
  issue: 4
  year: 1999
  ident: 10.1016/j.brs.2015.05.002_bib27
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum Brain Mapp
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– volume: 61
  start-page: 53
  issue: 1
  year: 2009
  ident: 10.1016/j.brs.2015.05.002_bib7
  article-title: Transcranial direct current stimulation–a new tool for human cognitive neuroscience
  publication-title: Brain Nerve
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  ident: 10.1016/j.brs.2015.05.002_bib29
  article-title: Cortical surface-based analysis. i. segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 97
  start-page: 11050
  issue: 20
  year: 2000
  ident: 10.1016/j.brs.2015.05.002_bib30
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.200033797
– volume: 109
  start-page: 140
  year: 2015
  ident: 10.1016/j.brs.2015.05.002_bib24
  article-title: Determinants of the electric field during transcranial direct current stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.033
– volume: 14
  start-page: 21
  issue: 1 Pt 1
  year: 2001
  ident: 10.1016/j.brs.2015.05.002_bib33
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0786
– volume: 2
  start-page: 5678
  issue: 1–2
  year: 1994
  ident: 10.1016/j.brs.2015.05.002_bib28
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum Brain Mapp
– volume: 11
  start-page: 036002
  issue: 3
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib19
  article-title: The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/11/3/036002
– volume: 527
  start-page: 633
  issue: Pt 3
  year: 2000
  ident: 10.1016/j.brs.2015.05.002_bib2
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J Physiol (Lond)
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– volume: 591
  start-page: 1987
  issue: Pt 7
  year: 2013
  ident: 10.1016/j.brs.2015.05.002_bib32
  article-title: Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.2012.249730
– volume: 7
  start-page: 372
  issue: 3
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib9
  article-title: Inter-individual variability in response to non-invasive brain stimulation paradigms
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.02.004
– volume: 8
  start-page: 25
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib13
  article-title: Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2014.00025
– volume: 11
  start-page: 016002
  issue: 1
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib20
  article-title: Investigation of tDCS volume conduction effects in a highly realistic head model
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/11/1/016002
– volume: 57
  start-page: 1899
  issue: 10
  year: 2001
  ident: 10.1016/j.brs.2015.05.002_bib3
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
  doi: 10.1212/WNL.57.10.1899
– volume: 61
  start-page: 2488
  issue: 9
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib21
  article-title: Comparison of cephalic and extracephalic montages for transcranial direct current stimulation–a numerical study
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2322774
– volume: 185
  start-page: 279
  issue: 2
  year: 2008
  ident: 10.1016/j.brs.2015.05.002_bib4
  article-title: Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-007-1149-z
– volume: 1
  start-page: 370
  issue: 4
  year: 2008
  ident: 10.1016/j.brs.2015.05.002_bib6
  article-title: Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2008.09.003
– volume: 3
  start-page: 83
  year: 2012
  ident: 10.1016/j.brs.2015.05.002_bib16
  article-title: Finite element model predicts current density distribution for clinical applications of tDCS and tACS
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2012.00083
– volume: 7
  start-page: 773
  issue: 6
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib10
  article-title: The uncertain outcome of prefrontal tDCS
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.10.003
– volume: 2
  start-page: 201
  issue: 4
  year: 2009
  ident: 10.1016/j.brs.2015.05.002_bib14
  article-title: Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2009.03.005
– volume: 24
  start-page: 1430006
  issue: 2
  year: 2014
  ident: 10.1016/j.brs.2015.05.002_bib23
  article-title: Computational modeling of transcranial direct current stimulation in the child brain: implications for the treatment of refractory childhood focal epilepsy
  publication-title: Int J Neural Syst
  doi: 10.1142/S012906571430006X
SSID ssj0059987
Score 2.5342414
Snippet The sources of inter-subject variability in the efficacy of transcranial direct current stimulation (tDCS) remain unknown. One potential source of variations...
Abstract Background The sources of inter-subject variability in the efficacy of transcranial direct current stimulation (tDCS) remain unknown. One potential...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 906
SubjectTerms Adult
Analysis of Variance
Brain Waves
Electric field
Finite-element method
Humans
Inter-subject variability
Male
Middle Aged
Motor cortex
Motor Cortex - physiology
Neurology
tDCS
Transcranial Direct Current Stimulation - methods
Title Inter-subject Variability in Electric Fields of Motor Cortical tDCS
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X15009419
https://www.clinicalkey.es/playcontent/1-s2.0-S1935861X15009419
https://dx.doi.org/10.1016/j.brs.2015.05.002
https://www.ncbi.nlm.nih.gov/pubmed/26026283
https://www.proquest.com/docview/1711545506
Volume 8
WOSCitedRecordID wos000361012000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1876-4754
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0059987
  issn: 1935-861X
  databaseCode: AIEXJ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jQdeEDAu5TIZCfHAlCl3O4_V6MQQmpAoqE9YtuNoWdukStpp-_cc23Eogw54QKqiypdE8fn8-fjk-ByEXqc0KCKqqCd4lnpAeNLjPo-8hOQFcDJoSMJI-iM5O6PTafZpMPjmzsJczklV0aurbPlfRQ1lIGx9dPYfxN3fFArgPwgdriB2uP6V4I2Nz2vXQltYDr_CXtiG4jYH_MYm600pD0-055p1gKlh2w280Fir9updl9Swj3rEoR8QwaJL9NW78HA-a42h9XQ-m_XsPuEVn3FrbF7V7XnZU3p9zRe2oi7lednUvRKtoG216hKzw4rVWOcwZ40Ikt7dChYTy6BAr15MbGRoR7F0A0nJBl1mJtrArzRuLQoXR6LREdWD5MhavjbbwqAvF0aEoc6iFdp0ODdiZ7uqHbQXkiQD1tsbnY6nH9xaDUWUuG_dxuvvxhN1rOjuHtsUl20bE6OgTO6je93OAo8sIh6ggaoeov1RBVJYXOM32Pj6mo8o--j4J5DgDZDgssIOJNiCBNcFNiDBDiRYg-QR-nIynhy_97p0Gp5MI7LydByeNKMqJ0SQWNEk5TTxQ5WAIsNVHPpFruJIpIKrUEpJRZ4nUsV5RoqICxlFj9FuVVfqKcJ5nkWBoEXKSR5DOwGt0ljwSIC-zHkxRL4bKya7WPM65cmcOafCCwYjzfRIMx9-fjhEb_suSxto5bbGoRMAcyeIYc1jgJ_bOpHfdVJtN3lbFrA2ZD77HGjngDSYwmbJz-IgG6K479kpplbh_NMDXzlsMCBt_SWOV6pew4OIjoKVJH46RE8saPqXdnh7trXmObr7Y-q9QLurZq1eojvyEiZqc4B2yJQedED_Dqm-vLM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-subject+Variability+in+Electric+Fields+of+Motor+Cortical+tDCS&rft.jtitle=Brain+stimulation&rft.au=Laakso%2C+Ilkka&rft.au=Tanaka%2C+Satoshi&rft.au=Koyama%2C+Soichiro&rft.au=De+Santis%2C+Valerio&rft.date=2015-09-01&rft.eissn=1876-4754&rft.volume=8&rft.issue=5&rft.spage=906&rft_id=info:doi/10.1016%2Fj.brs.2015.05.002&rft_id=info%3Apmid%2F26026283&rft.externalDocID=26026283
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F1935861X%2FS1935861X15X00040%2Fcov150h.gif